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Abstract We consider mechanical systems with holonomic constraints given by equalities and

unilateral constraints that arise in contact problems. Impact or lift–off events lead to jump

discontinuities in the velocities and δ–functions in the Lagrange multipliers, and we find piecewise

smooth solutions of the equations of motion. In the special case of one isolated event we study

the sensitivity of the solution w.r.t. small perturbations in the equations and in the constraints.

We derive error bounds for the position and velocity coordinates and illustrate the results by a

numerical example: the collision of a hydrostatic skeleton with an obstacle.

1 Introduction

A perturbation analysis for the equations of motion of constrained mechanical systems

plays an important role in the derivation of efficient numerical methods. Various math-

ematical formulations can be compared w.r.t. the sensitivity of the analytical solution

subject to small perturbations in the equations. Furthermore, the influence of roundoff

errors can be studied by a perturbation analysis of various discretization schemes.

We consider mathematical models that consist of a set of discrete mass–points. The

forces that lead to the motion of the system might be given by internal forces exerted

by massless springs that connect two mass–points, or external forces like gravitation

or fluid forces. In most practical applications we find constraints in the system that

are given by equalities, i.e. there are relations between the mass–points that have to

be fulfilled during the motion. Common examples are rigid connections between single

mass–points, but also global constraints that involve the whole set of mass–points are

possible such as conservation of volume which will be studied in our numerical example,

see Sect. 4. The constraints are incorporated into the equations of motion by a Lagrange

multiplier approach (see e.g. [8]) and we end up with a system of differential–algebraic

equations (DAEs).

In addition, the motion of the system might be constrained by an obstacle, e.g. in

crash simulations. Each mass–point in the system is either distant from the obstacle

(passive) or in contact with the obstacle (active) and we find a unilateral constraint
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for the relative distance. Furthermore, in a non–adhesive contact situation there is a

contact force acting in the direction of the outward normal of the obstacle. It has to

vanish as soon as the mass–point lifts off and this leads to a unilateral constraint for the

contact force. These two unilateral constraints of “no penetration” and “no adhesion”

are connected by a complementarity condition that is added to the DAE system. During

the motion some mass–points might collide with the obstacle or lift off, this leads to

jump discontinuities in the solution.

The solution of an ODE with Lipschitz–continuous right hand side depends continuously

on perturbations of the initial values and the right hand side, i.e. small errors in the

initial values and in the equations lead to small errors in the solution, see e.g. [27].

In the case of a DAE the sensitivity of the solution also depends on derivatives of the

perturbations which might be large compared to the perturbation itself, see e.g. [3], [4],

[11]. In this paper we derive error estimates for the solution of the equations of motion

in the presence of unilateral constraints. While the solution of a DAE is smooth and

standard analytical tools can be used to derive error estimates, we have to account for

jump discontinuities in the presence of unilateral constraints. We study the special case

of one inelastic collision or one lift–off of a single mass–point without tangential friction

forces, and we consider perturbations in the dynamic equations, in the global equality

constraints, and in the unilateral constraints. This leads to the basic theoretical results:

It turns out that the estimates still include second order derivatives of the perturbations

in the equality constraints and in the unilateral constraints, but there are no derivatives

of the perturbations in the dynamic equations. This result corresponds to the “pure”

DAE case without unilateral constraints.

2 Mechanical systems with constraints

In this section we set up the equations of motion for constrained mechanical systems

that consist of d discrete mass–points (or particles). The coordinate (or position) vector

of the system at time t ∈ [0, T ], T > 0 is denoted by q(t) ∈
� 3d and the velocity is

given by u(t) = q̇(t) ∈
� 3d. Usually, the mass–points interact with each other and there

are constraints in the system which reduce the degrees of freedom of the system. We

assume that these constraints are given by relations between the coordinates

g(t, q) = 0, g : (−ε, Tε) ×
� 3d →

� m (1)

with some constants ε > 0, Tε > T . Constraints that can be expressed in this fashion

are called holonomic. Nonholonomic constraints which also involve the velocity u are

not considered here, see e.g. [13], [14].

In most practical applications the interaction of two or more bodies that either collide

or slide on each other has to be considered, typical examples are robots interacting with

the environment, gears in engines, and wheel–rail systems, see e.g. [4], [12], [20], [21],

[23], [24]. We consider the special case that the motion of the system of mass–points is

constrained by an obstacle which is given by the hyperplane

H := {Q ∈
� 3 : Q1 = K}, K > 0. (2)
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With the set J := {1, 4, 7, . . . , 3d−2} ⊂ I := {1 . . . 3d} we find the unilateral constraints

qj(t) −K ≥ 0 for all j ∈ J. (3)

A constraint j ∈ J is called “active” at time t if the corresponding mass–point qj(t) is

in contact with the obstacle H, i.e. (qj(t) −K) = 0. We define the “active set” by

JA(t) := {j ∈ J : qj(t) = K}, a(t) := #JA(t), (4)

and the corresponding “passive set” JP (t) := J\JA(t) contains the indices of all “pas-

sive” constraints, i.e. (qj(t)−K) > 0 for all j ∈ JP (t). Notice that every active constraint

corresponds to a holonomic constraint of the form (1). Newton’s second law together

with d’Alembert’s principle leads to Lagrange’s equations of motion (see e.g. [8])

q̇(t) = u(t) (5)

Mu̇(t) = f(t, q(t), u(t)) +G(t, q(t))T ν(t) +HTλ(t) (6)

0 = g(t, q(t)) (7)

with the complementarity conditions (Hertz–Signorini–Moreau 1963, see [17])

(qj(t) −K) ≥ 0, λj(t) ≥ 0, (qj(t) −K)λj(t) = 0 for all j ∈ J, (8)

see e.g. [7], [13], [20] for a general discussion. Here HTλ are the contact forces, where

λ =
(
λ1, λ4, λ7, . . . , λ3d−2

)T
∈

� d, H ∈
� d,3d, Hji =

{
1, if i = 3j − 2

0, otherwise
.

The vector ν ∈
� m in (6) contains the m Lagrange multipliers that correspond to the

global holonomic constraints (7) and the diagonal mass–matrix

M := diag(m1,m2, . . . ,m3d) ∈
� 3d,3d (9)

contains the lumped masses m3i−2 = m3i−1 = m3i > 0 of the mass–points i = 1 . . . d

as diagonal entries. The applied forces are given by f(t, q, u) and the forces of con-

straint that maintain the global holonomic constraints (7) are given by G(t, q)T ν, where

G(t, q) := (∂g/∂q)(t, q) ∈
� m,3d.

The complementarity conditions (8) can be explained as follows: The frictionless contact

of a single mass–point with the obstacle H is characterized by the three facts that the

mass–point cannot penetrate the obstacle, the mass–point cannot pull on the obstacle

(no adhesion), and either the mass-point presses on the obstacle or it is separated from

the obstacle. The geometric condition of “no penetration” is given by the first inequality

in (8), and the second inequality in (8) expresses the “no adhesion” condition. The

equality condition of complementarity in (8) refers to the fact that at time t the mass–

point is either distant and there is no contact force, i.e. (qj(t) −K) 6= 0 and λj(t) = 0,

or it is in contact with the obstacle and there is an interaction by a contact force, i.e.

(qj(t) −K) = 0 and λj(t) 6= 0. When the mass–point “touches” the obstacle, i.e. both

(qj(t)−K) and λj(t) are zero, we find a more complicated contact situation , cf. Sect. 2.3.

We will use K = 0 in the following, and we state a well–known result which will be used

frequently (see e.g. [9] for a proof):
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Lemma 2.1 Let M ∈
� 3d,3d and G ∈

� s,3d be given such that rank(G) = s and M is

positive definite. Then the block matrix

N :=

(
M GT

G 0

)
∈

� 3d+s,3d+s

as well as its Schur complement −GM−1GT ∈
� s,s is invertible.

2.1 Smooth motion

In time intervals where the active and passive sets are constant the equations of motion

(5)-(7) together with the active constraints in (8) result to

q̇(t) = u(t) (10)

Mu̇(t) = f(t, q(t), u(t)) +G(t, q(t))T ν(t) +A(t)T (A(t)HTλ(t)) (11)

0 = g(t, q(t)) (12)

0 = A(t)q(t) (13)

A(t) ∈
� a(t),3d, Aji(t) =

{
1, if i = kj ∈ JA(t) = {k1, . . . , ka(t)}

0, otherwise
. (14)

The a(t) active constraints are included as holonomic constraints with Lagrange mul-

tipliers Λ(t) := A(t)HTλ(t) ∈
� a(t), and (10)-(13) is a semi–explicit DAE system for

(q, u, ν,Λ), see e.g. [4], [5], [7], [11]. The remaining components of λ(t) are obtained from

the complementarity conditions (8) as λj(t) = 0 for j /∈ JA(t). Differentiating (12), (13)

once and twice with respect to t yields the first and second order “hidden” constraints

which are also fulfilled by a smooth solution of the system (10)-(13):

0 = gt(t, q) +G(t, q)u, 0 = A(t)u, and (15)

0 = g̃(t, q, u) +G(t, q)M−1
[
f(t, q, u) +G(t, q)T ν +A(t)T (A(t)HTλ(t))

]
,

0 = A(t)M−1
[
f(t, q, u) +G(t, q)T ν +A(t)T (A(t)HTλ(t))

]
,

(16)

where g̃(t, q, u) := gtt(t, q) + 2Gt(t, q)u+Gq(t, q)(u, u). (17)

For (t, q) fixed we have gtt(t, q) ∈
� m, Gt(t, q) ∈

� 3d,m, and Gq(t, q) :
� 3d ×

� 3d →
� m

is a bilinear mapping. We assume that the functions f and g have a sufficient number

of continuous derivatives, and we set V :=
� 3d ×

� 3d ×
� m ×

� d. For a < b and s ≥ 1

we denote the left and right limits of a function ψ ∈ C((a, b),
� s) at time c ∈ (a, b) by

ψ−(c) and ψ+(c), respectively. Furthermore, J−
A (c) and J+

A (c) denote the active sets

before and after a collision or a lift–off. The corresponding passive sets are defined by

J−
P (c) = J\J−

A (c) and J+
P (c) = J\J+

A (c).

It turns out that the model (5)-(8) is not yet complete: The active and passive sets are

time–dependent and can alter in the course of motion. In case of a collision a passive

constraint suddenly becomes active, and an active constraint becomes passive if the

corresponding mass–point lifts off the obstacle. Events like this can cause discontinuities

in the system and the equations of motion are no longer valid. Therefore jump conditions

have to be derived that describe the behavior of the system if such an event occurs.
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2.2 The jump conditions

When a collision occurs, the mass–point usually approaches the obstacle with nonzero

normal velocity, i.e. nonzero velocity in the direction normal to the obstacle, and the

distance between the mass–point and the obstacle becomes zero. In a partly or com-

pletely elastic impact the mass–point will separate from the body immediately after the

collision, and it will stay in contact with the obstacle only if the collision is inelastic.

Since the obstacle is assumed to be rigid, the duration of the collision is infinitesimal.

The forces needed to prevent the mass–point from penetrating the obstacle are impul-

sive and there is a jump discontinuity in the normal velocity. However, in reality there

are no rigid bodies. The collision starts with a compression phase where the obstacle is

deformed and elastic energy is stored. At the point of maximum compression the normal

velocity becomes zero, changes sign and the extension (or restitution) phase starts. In

this phase some of the stored elastic energy is returned as kinetic energy and the mass–

point lifts off. The simplest model to approximate this process is given by Newton’s

impact law, which relates the normal velocity u+
p (c) after the impact of a mass–point

p ∈ J−
P (c) at time c > 0 to the normal velocity u−p (c) before the impact:

qp(c) = 0, u−p (c) < 0 =⇒ u+
p (c) = −εu−p (c) (18)

The constant ε ∈ [0, 1] is the coefficient of restitution. The value ε = 1 corresponds

to the completely elastic case, and only for ε = 0 the collision is inelastic and we have

p ∈ J+
A (c). Another collision model is given by Poisson’s law, it relates the impulse

delivered during the compression phase to the impulse delivered during the extension

phase. In the frictionless case Newton’s and Poisson’s law are equivalent, for a deeper

discussion see e.g. [12], [18], [20].

The jump discontinuity in the normal velocity of the colliding mass–point is caused by

an impulsive force (δ–distribution) which is applied at t = c, it approximates a large

force with a short duration. At the time of impact there is not only an impulsive contact

force Ip = Ip(c) ∈
�

in the constraint p ∈ J−
P (c) that suddenly becomes active, we also

have impulsive constraint forces Iλ = Iλ(c) ∈
� a−(c) and Iν = Iν(c) ∈

� m caused by the

constraints in J−
A (c) that are already active as well as the global holonomic constraints

(7). These impulses lead to jump discontinuities in the velocities of all mass–points in

the system and by local conservation of impulses we find the jump condition

M
(
u+(c) − u−(c)

)
= G(c, q(c))T Iν +A−(c)T Iλ + epI

p, (19)

where ep ∈
� 3d is the pth unit vector. This equation is used at t = c instead of the

equations of motion (5)-(8), for a derivation of (19) see e.g. [10]. In [2] it is shown that

(6) is still valid at t = c in the sense of distributions if (19) holds.

Additional conditions are derived by the fact that the first order hidden constraints (15)

have to be fulfilled after the impact, i.e. consistent initial values are needed after the

impact, see Sect. 2.3. For the global holonomic constraints (7) and the constraints in

J−
A (c) that are already active (15) leads to

gt(c, q(c)) +G(c, q(c))u+(c) = 0, A−(c)u+(c) = 0. (20)
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Obviously, there might be a whole subset of indices in J−
P (c) such that all mass–points

with indices in this subset collide with the obstacle at the same time. Newton’s impact

law (18) for inelastic collisions (ε = 0), the condition for the impulses (19), and the

conditions for the first order hidden constraints (20) lead to the system



M G(c, q(c))T A+(c)T

G(c, q(c)) 0 0

A+(c) 0 0







u+(c)

−Iν

−Iλ
C


 =




Mu−(c)

−gt(c, q(c))

0


 (21)

with the impulses Iλ
C = Iλ

C(c) ∈
� a+(c). If the rank condition

rank

(
G(t, q)

H

)
= m+ d (22)

is fulfilled at (t, q) = (c, q(c)), Lemma 2.1 implies that (21) can be solved uniquely for

u+(c), Iν , and Iλ
C . After the collision the Lagrange multipliers are determined uniquely

by the second order hidden constraints (16) with the new active set J+
A (c). These also

involve u+(c) and A+(c), and therefore we also find jump discontinuities in the Lagrange

multipliers, see [2] for details.

During a lift–off the solution (q, u, ν, λ) is continuous, but discontinuities in ν̇ and λ̇

are possible. Usually, the contact force λp of an active constraint p ∈ J−
A (c) becomes

zero at t = c with λ̇−p (c) < 0 and the corresponding mass–point lifts off the obstacle.

Because of the complementarity conditions (8) the contact force has to be zero after

the lift–off, so there is a jump discontinuity in λ̇p and this also affects ν̇ and λ̇j for

j ∈ J+
A (c) = J−

A (c)\{p} (details can be found in [2]):
(

ν̇+(c) − ν̇−(c)

A+(c)HT (λ̇+(c) − λ̇−(c))

)
= D(c, q(c))−1

(
−G(c, q(c))M−1epλ̇

−
p (c)

−A+(c)M−1epλ̇
−
p (c)

)
,

where D(t, q(t)) :=

(
G(t, q)

A(t)

)
M−1

(
G(t, q)

A(t)

)T

. (23)

2.3 Existence and uniqueness of a piecewise smooth solution

The DAE system (10)-(13) has a unique and smooth solution provided that the rank

condition (22) holds and the initial values are consistent up to the first order hidden

constraints, i.e. they fulfill (12), (13), and (15). Using Lemma 2.1 this can be shown

by a well–known reduction process (see e.g. Ch. 1 in [4]). However, in the presence of

unilateral constraints we find jump discontinuities and therefore we extend the notion

of solution to piecewise smooth solutions.

For a countable (but possibly infinite) subset U ⊂ [0, T ) with T > 0 we define the

function spaces of piecewise smooth solutions

Cl
s([0, T )\U , � d) :=

{
ψ ∈ Cl([0, T )\U , � d) | ψ(r)(c) := (ψ(r))−(c) <∞, (ψ(r))+(c) <∞

for c ∈ U and r = 0 . . . l
}

Kl([0, T ),U ;V) :=
{
(q, u, ν, λ) : [0, T ) → V | q ∈ Cl([0, T ), � 3d) ∩ C3

s ([0, T )\U , � 3d);

u ∈ C2
s ([0, T )\U , � 3d); ν ∈ C1

s ([0, T )\U , � m); λ ∈ C1
s ([0, T )\U , � d)

}
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for 0 ≤ l < ∞ and 0 < d < ∞. Notice that the existence of left and right limits of the

piecewise smooth solutions is assured here. Functions ψ ∈ Cs([0, T )\U ,
�

) with a finite

event set U = {c1, . . . , cN}, 0 < c1 < · · · < cN < T are Lebesgue integrable, and the

Gronwall–Lemma still holds for piecewise functions of this type, see [2]. Furthermore, a

function Ψ ∈ C([0, T ],
�

) ∩ C1
s ([0, T ]\U ,

�
) with Ψ′ = ψ ∈ Cs([0, T ]\U ,

�
) is absolutely

continuous and of bounded variation, and the fundamental theorem still holds.

In general, we expect solutions (q, u, ν, λ) of (5)-(8) to be in K0([0, T ),U ;V) since colli-

sions lead to discontinuities in u, ν, and λ. However, if there are only lift–off events and

no collisions in [0, T ) we find (q, u, ν, λ) ∈ K2([0, T ),U ;V), i.e. u = q̇ ∈ C1([0, T ),
� 3d),

u̇ ∈ C([0, T ),
� 3d), and therefore also ν, λ ∈ C([0, T ),

� 3d) by (6).

Definition 2.1 (q, u, ν, λ) : [0, T ) → V with T > 0 is a piecewise solution of the

equations of motion (5)-(8), (21) with global holonomic and unilateral constraints if

there exists a countable event set U ⊂ [0, T ) such that (q, u, ν, λ) ∈ K0([0, T ),U ;V) and

the following holds:

For any closed subset [a, b] ⊂ [0, T ) equations (5)–(8) hold in [a, b]\U b
a, U

b
a := [a, b] ∩ U

and the jump conditions (21) hold for all elements c ∈ U b
a in the following sense: Let

(u+(c), Iν , Iλ
C) be the unique solution of (21) with q(c) = q(c) and u−(c) = u−(c), then

u+(c) = u+(c) results.

Notice that U might be infinite and there might be an infinite number of finite subsets

U b
a ⊂ U . An example of this type is a mass point that collides with the obstacle at

t = (1/2)T , lifts off at t = (3/4)T , collides again at t = (7/8)T , and so on. This

example is strongly related to an elastic ball bouncing on a horizontal plane with a

coefficient of restitution ε ∈ (0, 1), see e.g. [18], [25].

A global existence and uniqueness result can be found in [2]. For technical reasons we

leave out the proof and only discuss the construction of the piecewise smooth solution:

We find a unique and smooth solution of the DAE system (10)-(13) in time intervals

where no collision or lift–off occurs. However, if such an event occurs we have to modify

the active and passive sets, and in the case of a collision new initial values have to

be calculated. The initial values q(c) and u+(c) determined by the jump conditions

(21) are consistent up to the first order hidden constraints, and therefore existence and

uniqueness of a solution of the DAE system (10)-(13) with the new active set J+
A (c) is

guaranteed. We can assemble the DAE solutions on the subintervals and this leads to a

unique piecewise solution of (5)-(8), (21). It exists at least in a short time interval until

we find

• an accumulation point of collision/lift–off events

• an incompatibility in the active/passive sets, i.e. we find a negative Lagrange

multiplier that corresponds to an active constraint

• a more complicated contact situation where qj, λj , and some of their derivatives

are zero for an index j ∈ J

In the second case the solution can be extended if we find a consistent active set such

that the complementarity conditions (8) are fulfilled. This is usually done by solving a
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linear complementarity problem (LCP), see e.g. [6], [13], [20]. Then the improved active

set consists only of those active constraints that will not become passive in infinitesimal

time after the impact. In the presence of global holonomic constraints we find a “mixed”

LCP which can be transformed to a “standard” LCP. However, uniqueness of a solution

of the resulting LCP is not assured in this case, see [2] for details.

In [16] as well as in [19] and [25] the contact problem is stated in terms of differential

measures. It is proved that there exists at least one solution under the additional as-

sumption that f does not depend on the velocity and is globally bounded. Furthermore,

the formulation is extended to contacts with isotropic tangential friction (Coulomb’s

friction law) and the existence of a solution is also shown in that case. However, unique-

ness is not treated in [16] and there seems to be no discussion of stability in this general

situation. Notice that a piecewise solution of our original problem also solves this gen-

eralized problem.

3 Perturbation analysis

It is expected that small errors in the equations caused by inexact measurements or

uncareful modeling have only little influence on the solution of the system, and in this

section it will be analyzed in which sense the influence is small. In the DAE case a

perturbation theory is well known, the solution is smooth and standard analytical tools

can be used to derive error estimates, see e.g. [3], [4], [11]. However, in the presence

of unilateral constraints a more subtle analysis is needed since in general the solution

shows jump discontinuities. In order to analyze the sensitivity of the piecewise solution

of the system (5)-(8) we consider the perturbed system

q̇ = u (24)

Mu̇ = f(t, q, u) +G(t, q)T ν +HTλ+ δ (25)

η = g(t, q) (26)

qj ≥ θj, λj ≥ 0, (qj − θj)λj = 0 for all j ∈ J. (27)

We study only single and isolated collisions, and Newton’s law (18) for an inelastic

impact of a mass–point p ∈ J−
P (c) at time c > 0 reads in the presence of perturbations

qp(c) = θp(c), u
−
p (c) < θ̇p(c) =⇒ u+

p (c) = θ̇p(c), p ∈ J+
A (c).

Using A(t)(q(t) − HT θ(t)) = 0 for the active constraints in (27), the jump conditions

(21) in the special case of a single collision result to




M G(c, q(c))T A+(c)T

G(c, q(c)) 0 0

A+(c) 0 0







u+(c)

−Iν

−Iλ
p


 =




Mu−(c)

−gt(c, q(c)) + η̇(c)

A+(c)HT θ̇(c)


 . (28)

After the impact the Lagrange multipliers have to fulfill the second order hidden con-

straints with the active set J+
A (c) = J−

A (c) ∪ {p}. In the presence of perturbations (16)
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leads to

(
ν+

Λ+

)
= D+(c, q)−1


 η̈(c) − g̃(c, q, u+) −G(c, q)M−1

(
f(c, q, u+) + δ

)

A+(c)HT θ̈ −A+(c)M−1
(
f(c, q, u+) + δ

)

 , (29)

where Λ+ := A+(c)HTλ+ and D+(c, q) defined in (23) is invertible by Lemma 2.1 if the

rank condition (22) is fulfilled. In time intervals where the active set is constant the

system (24)-(27) leads to the DAE system

q̇ = u (30)

Mu̇ = f(t, q, u) +G(t, q)T ν +A(t)T
(
A(t)HTλ

)
+ δ (31)

η = g(t, q) (32)

A(t)HT θ = A(t)q (33)

For given event sets U = {c} and Û = {ĉ} of the original system (5)-(8) and the per-

turbed system (24)-(27) we set cmin := min{c, ĉ} and cmax := max{c, ĉ} in the following.

Furthermore, we use the abbreviations J 0
A := JA(0) and J0

P := JP (0), and ‖ · ‖ denotes

the maximum norm. For the perturbation analysis in the next section we will need the

following auxiliary lemma (see e.g. [26] for a proof):

Lemma 3.1 Suppose that T ∈ C1(U,
� s) with the open set U ⊂

� s and constants

ρ, σ, κ > 0 are given such that with the set S := {ε ∈
� s : ‖ε‖ ≤ ρ} the following

conditions hold:

(a) ‖T ′(0)−1‖ ≤ σ, (b) ‖T ′(0) − T ′(ε)‖ ≤ κ <
1

σ
for ε ∈ S, (c) ‖T (0)‖ ≤ (

1

σ
− κ)ρ.

Then the system T (ε) = 0 has a unique solution ε̄ ∈ S and the following estimate holds

for all ε1, ε2 ∈ S:

‖ε1 − ε2‖ ≤
σ

1 − σκ
‖T (ε1) − T (ε2)‖

3.1 Sensitivity of differential–algebraic equations

While the solution of an ODE with Lipschitz–continuous right hand side depends con-

tinuously on the perturbations (see e.g. [27]), the solution of a DAE also depends on the

derivatives of the perturbations. This well–known result can be found for example in [7]

and [11]. We need rather precise error bounds for the solution of the system (10)-(13),

see [2] for a proof of the following theorem:

Theorem 3.1 Suppose that (q, u, ν, λ) ∈ C2,1,0,0([0, T ],V) with T > 0 is a solution of

(10)-(13) and let the rank condition (22) hold for all (t, q) ∈ (−ε, Tε) ×
� 3d with ε > 0,

Tε > T . Then there exist constants K,C∗
1 , C

∗
2 ,Ks > 0 such that the following holds: For

perturbations δ ∈ C([0, Tε),
� 3d), η ∈ C2([0, Tε),

� m), θ ∈ C2([0, Tε),
� d) with

max
l=0,1,2

‖η(l)(t)‖, max
l=0,1,2

‖θ(l)(t)‖, ‖δ(t)‖ ≤ K for t ∈ [0, Tε) (34)
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and consistent initial values (q̂0, û0, ν̂0, λ̂0) ∈ V with

θj(0) = q̂0
j , θ̇j(0) = û0

j for j ∈ J0
A, η(0) = g(0, q̂0), η̇(0) = gt(0, q̂

0) +G(0, q̂0)û0,

Ψ0 := ‖q̂0 − q0‖ + ‖û0 − u0‖ ≤ K. (35)

there exists a unique solution (q̂, û, ν̂, λ̂) ∈ C2,1,0,0([0, τ),V) of the perturbed system (30)-

(33) with T < τ ≤ Tε. Furthermore, the estimates

‖q̂(t) − q(t)‖ + ‖û(t) − u(t)‖ ≤ C∗
1

(
Ψ0 +

∫ t

0

(
‖η̈(ξ)‖ + ‖θ̈(ξ)‖ + ‖δ(ξ)‖

)
dξ

)
(36)

‖ν̂(t) − ν(t)‖ + ‖λ̂(t) − λ(t)‖ ≤ C∗
2

(
Ψ0 + max

0≤ξ≤t
‖η̈(ξ)‖

+ max
0≤ξ≤t

‖θ̈(ξ)‖ + max
0≤ξ≤t

‖δ(ξ)‖
)

(37)

hold for t ∈ [0, T ] and the solution is bounded, i.e.

‖q̂(t)‖ + ‖û(t)‖ + ‖ ˙̂u(t)‖ + ‖ν̂(t)‖ + ‖λ̂(t)‖ ≤ Ks. (38)

Remark 3.1

1.) Suppose that δ ∈ C1([0, Tε),
� 3d), η ∈ C3([0, Tε),

� m), θ ∈ C3([0, Tε),
� d) and

(q, u, ν, λ), (q̂, û, ν̂, λ̂) ∈ C3,2,1,1([0, T ],V). Furthermore, let ‖η(3)(t)‖, ‖θ(3)(t)‖ ≤ K for

t ∈ [0, Tε) with K from (34) and (35). Then we easily derive ‖ ˙̂ν(t) − ν̇(t)‖ = O(K),

‖ ˙̂
λ(t) − λ̇(t)‖ = O(K), ‖ ˙̂u(t) − u̇(t)‖ = O(K), and ‖¨̂u(t) − ü(t)‖ = O(K). These results

will be needed in the proof of Theorem 3.4.

2.) A detailed sensitivity analysis and a systematic classification of DAEs is given by

the perturbation index, see [11]. It is defined as the smallest integer pi ≥ 1 such that an

error estimate for the solution holds, which contains derivatives of the perturbations up

to order pi− 1 on the right hand side (pi = 0 corresponds to an ODE). In (36) and (37)

we find derivatives of the perturbations up to second order and therefore the system

(10)-(13) has perturbation index 3. Sharper error bounds can be found in [3], [4].

3.2 Perturbation analysis of a collision

In this section we consider the special case of one isolated inelastic collision of a single

mass–point in the system. The main result (Theorem 3.3) will be a pointwise error

estimate for the position and the velocity vectors after the collision. We begin by

estimating the velocities right after the jump discontinuities (Lemma 3.2) and continue

with the Lagrange multipliers in time intervals where the piecewise solution is smooth

(Lemma 3.3). These results finally lead to the desired error bounds for the position and

velocity vectors.

Lemma 3.2 Suppose that (q, u, ν, λ) ∈ C2,1,0,0([0, c],V) solves the DAE system (10)-

(13) with c > 0 and constant active set J 0
A ⊂ J (and JP defined by J\J0

A) such that

• there exists a unique p ∈ J 0
P with qp(t) > 0 for all t ∈ [0, c) and qp(c) = 0

• λj > 0 for all j ∈ J0
A and qj > 0 for all j ∈ J0

P \{p} in [0, c]
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and let u∗(c), ν∗(c), and λ
∗
j (c) > 0 for j ∈ J0

A ∪ {p} be the unique solution of (21) and

(16). Furthermore, let Ks > 0 be given and suppose that the rank condition (22) holds

for all (t, q) ∈ (−ε, cε) ×
� 3d with ε > 0, cε > c. Then there exist constants K,C∗ > 0

such that the following holds:

Let (q̂, û, ν̂, λ̂) ∈ C2,1,0,0([0, ĉ],V) with 0 < ĉ < cε and |ĉ − c| ≤ K be a solution of the

perturbed DAE system (30)-(33) with active set J 0
A and perturbations θ ∈ C2([0, ĉ],

� d),

η ∈ C2([0, ĉ],
� m), δ ∈ C([0, ĉ],

� 3d) with

max
l=1,2

‖θ(l)(t)‖,max
l=1,2

‖η(l)(t)‖ ≤ K for t ∈ [0, ĉ].

Furthermore, suppose that

• q̂p(t) > θp(t) for all t ∈ [0, ĉ) and q̂p(ĉ) = θp(ĉ)

• λ̂j > 0 for all j ∈ J0
A and q̂j > θj for all j ∈ J0

P \{p} in [0, ĉ]

• ‖q̂(t) − q(t)‖ ≤ K for t ∈ [0, cmin] and ‖q̂(t)‖ + ‖û(t)‖ + ‖ ˙̂u(t)‖ ≤ Ks for t ∈ [0, ĉ]

and let û∗(ĉ), ν̂∗(ĉ), and λ̂∗j (ĉ) > 0 for j ∈ J0
A ∪ {p} be the unique solution of (28) and

(29). Then the following estimate holds for all i ∈ I:

|û∗i (ĉ) − u∗i (c)| ≤ C∗
(
|ĉ− c| +

∑

j∈I

(|q̂j(cmin) − qj(cmin)| + |ûj(cmin) − uj(cmin)|)

+

m∑

k=1

|η̇k(cmin)| +
∑

j∈J0
A
∪{p}

|θ̇j(cmin)|
)
. (39)

Proof

The jump conditions (21) and (28) for the original and the perturbed system yield

Γ(c, q(c))




u∗(c)

−Iν

−I
λ

p


 =




Mu(c)

−gt(c, q(c))

0


 , Γ(ĉ, q̂(ĉ))




û∗(ĉ)

−Îν
−Îλ

p


 =




Mû(ĉ)

−gt(ĉ, q̂(ĉ)) + η̇(ĉ)

A∗(0)HT θ̇(ĉ)


 ,

where Γ(t, q) :=




M G(t, q)T A∗(0)T

G(t, q) 0 0

A∗(0) 0 0


 (40)

and A∗(0) corresponds to the active set J 0
A ∪ {p}. The rank condition (22) holds, by

Lemma 2.1 the matrix Γ(t, q) is nonsingular for (t, q) = (c, q(c)) and (t, q) = (ĉ, q̂(ĉ)),

and subtracting the left from the right equation in (40) yields for ĉ ≤ c




w∗

Iν − Îν

I
λ

p − Îλ
p


 = Γ−1(ĉ, q̂(ĉ))




Mû(ĉ)

−gt(ĉ, q̂(ĉ)) + η̇(ĉ)

A∗(0)HT θ̇(ĉ)


− Γ−1(c, q(c))




Mû(ĉ)

−gt(ĉ, q̂(ĉ)) + η̇(ĉ)

A∗(0)HT θ̇(ĉ)




+Γ−1(c, q(c))




Mû(ĉ)

−gt(ĉ, q̂(ĉ)) + η̇(ĉ)

A∗(0)HT θ̇(ĉ)


− Γ−1(c, q(c))




Mu(c)

−gt(c, q(c))

0
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with w∗ := û∗(ĉ)−u∗(c). Since q(t) and q̂(t) are bounded in [0, c] and [0, ĉ], respectively,

they are contained in a compact subset Q ⊂
� 3d. In [cmin, cmax]×Q the functions gt, G,

and therefore also Γ have continuous derivatives and are thus bounded and Lipschitz–

continuous. We find

‖Γ(ĉ, q̂(ĉ)) − Γ(c, q(c))‖ ≤ C1 (|ĉ− c| + ‖q̂(ĉ) − q(c)‖)

≤ C2 (|ĉ− c| + ‖q̂(ĉ) − q(ĉ)‖) = O(K)

with constants C1, C2 > 0, and a perturbation lemma (see e.g. [22]) also yields

‖Γ−1(ĉ, q̂(ĉ)) − Γ−1(c, q(c))‖ ≤ C3 (|ĉ− c| + ‖q̂(ĉ) − q(ĉ)‖)

with C3 > 0. Using all the properties listed above we find a constant C > 0 such that

the following estimate holds for all i ∈ I:

|w∗
i | ≤ C

(
|ĉ− c| +

∑

j∈I

|q̂j(ĉ) − qj(ĉ)| +
∑

j∈I

|ûj(ĉ) − uj(ĉ)| +

m∑

k=1

|η̇k(ĉ)| +
∑

j∈J0
A
∪{p}

|θ̇j(ĉ)|
)

This finally gives estimate (39), and in case c < ĉ we find a similar result.

2

Lemma 3.3 Suppose that (q, u, ν, λ) ∈ C2,1,0,0([α, β],V) solves the DAE system (10)-

(13) with 0 ≤ α < β and the constant active set Jα
A ⊂ J (and Jα

P defined by J\Jα
A) such

that λj ≥ 0 for all j ∈ Jα
A and qj ≥ 0 for all j ∈ Jα

P in [α, β]. Furthermore, suppose that

the rank condition (22) holds for all (t, q) ∈ (αε, βε) ×
� 3d with αε < α, βε > β. Then

there exist constants K,C∗ > 0 such that the following holds:

Let (q̂, û, ν̂, λ̂) ∈ C2,1,0,0([α, β],V) be a solution of the perturbed DAE system (30)-(33)

with the active set Jα
A and the perturbations θ ∈ C2([α, β],

� d), η ∈ C2([α, β],
� m),

δ ∈ C([α, β],
� 3d) with

max
l=1,2

‖θ(l)(t)‖,max
l=1,2

‖η(l)(t)‖ ≤ K for t ∈ [α, β].

Furthermore, suppose that λ̂j ≥ 0 for j ∈ Jα
A and q̂j ≥ θj for j ∈ Jα

P in [α, β], and let

‖q̂(t) − q(t)‖ + ‖û(t) − u(t)‖ ≤ K for t ∈ [α, β]. (41)

Then the following estimate holds for all t ∈ [α, β], j ∈ J , and k = 1 . . . m:

|λ̂j(t) − λj(t)|, |ν̂k(t) − νk(t)| ≤ C∗
(∑

i∈I

(|q̂i(t) − qi(t)| + |ûi(t) − ui(t)|) + h(t)
)
, (42)

where h(t) =
∑

i∈Jα

A

|θ̈i(t)| +

m∑

k=1

|η̈k(t)| +
∑

i∈I

|δi(t)| (43)

Proof

To simplify notations we set wi := q̂i − qi and ẇi := ûi − ui for i ∈ I. For t ∈ [α, β] the

second order hidden constraints yield

g̃(t, q̂, û) +G(t, q̂) ˙̂u− g̃(t, q, u) −G(t, q)u̇ = η̈, A(α)ẅ = A(α)HT θ̈
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with g̃ defined in (17), and using 0 = G(t, q̂)u̇−G(t, q̂)u̇ in the first equation yields

(
G(t, q̂)

A(α)

)
ẅ +

(
g̃(t, q̂, û) − g̃(t, q, u)

0

)
+

(
G(t, q̂) −G(t, q)

0

)
u̇ =

(
η̈

A(α)HT θ̈

)
.

Substituting

ẅ = M−1
(
f(t, q̂, û) − f(t, q, u) +G(t, q̂)T ν̂ −G(t, q)T ν

+G(t, q̂)T ν −G(t, q̂)T ν +A(α)T (λ̂− λ) + δ
)

immediately gives

(
G(t, q̂)

A(α)

)[
M−1A(α)T (λ̂− λ) +M−1G(t, q̂)T (ν̂ − ν)

]

=

(
η̈

A(α)HT θ̈

)
−

(
g̃(t, q̂, û) − g̃(t, q, u)

0

)
−

(
G(t, q̂) −G(t, q)

0

)
u̇

−

(
G(t, q̂)

A(α)

)
M−1

[
f(t, q̂, û) − f(t, q, u) + (G(t, q̂) −G(t, q))T ν + δ

]
.

The matrix D(t, q̂) defined in (23) is nonsingular by Lemma 2.1 and we find

(
ν − ν̂

λ̂− λ

)
= D−1(t, q̂)

[(
η̈

A(α)HT θ̈

)
(44)

−

(
g̃(t, q̂, û) − g̃(t, q, u)

0

)
−

(
G(t, q̂) −G(t, q)

0

)
u̇

−

(
G(t, q̂)

A(α)

)
M−1

[
f(t, q̂, û) − f(t, q, u) + (G(t, q̂) −G(t, q))T ν + δ

]]
.

Since q, u, ν, and u̇ are bounded in [α, β] we find Ks > 0 such that ‖q̂(t)‖+‖û(t)‖ ≤ Ks

for all t ∈ [α, β] by (41), and thus (q, u) and (q̂, û) are contained in a compact subset

Q ⊂
� 3d ×

� 3d. In [α, β] × Q the functions f , g, g̃, G, and therefore also D have

continuous derivatives and are thus bounded and Lipschitz–continuous. Applying a

perturbation lemma (see e.g. [22]) yields the boundedness of ‖D−1(t, q̂(t))‖ since

‖D(t, q̂(t)) −D(t, q(t))‖ ≤ C‖q̂(t) − q(t)‖ = O(K)

by (41) with some constant C > 0. All properties listed above finally lead to estimate

(42) by taking norms in (44) and using λ̂j = λj = 0 in [α, β] for j ∈ Jα
P .

2

The following important auxiliary lemma for real functions will be needed in Theorem 3.3

and Theorem 3.5 to estimate different contact and lift–off times:

Lemma 3.4 Suppose that ϕ ∈ C2([0, τ ],
�

) with τ > 0 and c ∈ (0, τ) are given such that

ϕ(t) > 0 for all t ∈ [0, c), ϕ(c) = 0, ϕ̇(c) < 0, and ϕ(t) < 0 for all t ∈ (c, τ ]. Then there
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exist constants K, ρ,C∗ > 0 such that for any ϕ̂ ∈ C1([0, τ ],
�

) and any perturbation

ζ ∈ C1([0, τ ],
�

) with

|ϕ̂(t) − ϕ(t)| + | ˙̂ϕ(t) − ϕ̇(t)| ≤ K, |ζ(t)|, |ζ̇(t)| ≤ K for t ∈ [0, τ ]

the following holds: There exists a unique ĉ ∈ [c−ρ, c+ρ] ⊂ (0, τ) such that ϕ̂(t) > ζ(t)

for all t ∈ [0, ĉ), ϕ̂(ĉ) = ζ(ĉ), ˙̂ϕ(ĉ) < ζ̇(ĉ), and ϕ̂(t) < ζ(t) for all t ∈ (ĉ, c + ρ].

Furthermore, the following estimate holds:

|ĉ− c| ≤ C∗(|ϕ̂(cmin) − ϕ(cmin)| + |ζ(cmin)|). (45)

Proof

In order to apply Lemma 3.1 we show that (a)-(c) hold. It is sufficient to have ζ ≡ 0,

since one can then apply the result to ϕ̂ − ζ. With a constant ρ > 0 we define the set

S := {ε : |ε| ≤ ρ} and the function T (ε) := ϕ̂(c + ε), and for ρ small enough we obtain

c+ ε ∈ (0, τ) and ϕ̇(c+ ε) < 0 for all ε ∈ S.

(a) For K < (1/4)|ϕ̇(c)| we find

| ˙̂ϕ(c) − ϕ̇(c)| <
1

4
|ϕ̇(c)| =⇒

5

4
ϕ̇(c) < ˙̂ϕ(c) <

3

4
ϕ̇(c) < 0 =⇒ 0 <

1

4
|ϕ̇(c)| < | ˙̂ϕ(c)|.

Therefore there exists a σ > 0 such that |T ′(0)−1| = | ˙̂ϕ(c)|−1 < σ with σ := 4/|ϕ̇(c)|.

(b) For ρ and K small enough we find constants κ,C > 0 (where C > 0 is a constant

that depends only on ϕ̈) such that

|Ṫ (0) − Ṫ (ε)| = | ˙̂ϕ(c) − ˙̂ϕ(c+ ε)|

≤ | ˙̂ϕ(c) − ϕ̇(c)| + |ϕ̇(c) − ϕ̇(c+ ε)| + |ϕ̇(c+ ε) − ˙̂ϕ(c+ ε)|

≤ C (ε+K) ≤ κ <
1

σ
.

(c) Using ϕ(c) = 0 we immediately find for K small enough

|T (0)| = |ϕ̂(c)| = |ϕ̂(c) − ϕ(c)| ≤

(
1

σ
− κ

)
ρ.

The assumptions (a)-(c) of Lemma 3.1 are fulfilled and we find a unique ĉ ∈ (0, τ) with

(ĉ− c) ∈ S and T (ĉ− c) = ϕ̂(ĉ) = 0. Furthermore, the estimate

|ĉ− c| ≤
σ

1 − σκ
|T (0) − T (ĉ− c)| =

σ

1 − σκ
|ϕ̂(c)| =

σ

1 − σκ
(|ϕ̂(c) − ϕ(c)|)

holds with ϕ(c) = 0 for ĉ ≥ c, and for ĉ < c we find

ϕ(c) = ϕ(ĉ) + ϕ̇(ξ)(c − ĉ) =⇒ |c− ĉ| ≤ C (|ϕ(ĉ) − ϕ̂(ĉ)|)

with ξ ∈ [ĉ, c] and a constant C > 0, where again ϕ(c) = 0 and ϕ(ĉ) = ϕ(ĉ) − ϕ̂(ĉ) were

used. For K ≤ (1/4) inf ξ∈[0,c−ρ) ϕ(ξ) we find

|ϕ̂(t) − ϕ(t)| ≤
1

4
ϕ(t) =⇒ 0 <

3

4
ϕ(t) ≤ ϕ̂(t) ≤

5

4
ϕ(t) =⇒ 0 <

1

4
ϕ(t) < ϕ̂(t)
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for t ∈ [0, c − ρ), i.e. ϕ̂ > 0 in [0, c − ρ). In a similar way we find ˙̂ϕ < 0 in [c− ρ, c+ ρ]

and ϕ̂ < 0 in (c+ρ, τ ] for K small enough. The function ϕ̂ is continuous and ĉ is unique

in [c− ρ, c+ ρ], this finally gives ϕ̂ > 0 in [c− ρ, ĉ) and ϕ̂ < 0 in (ĉ, c+ ρ].

2

The next theorem states the following: Suppose that we have a piecewise solution of the

original system (5)-(8) with exactly one collision. Then there exists a unique piecewise

solution of the perturbed system (24)-(27) with the same properties if the perturbations

are small enough.

Theorem 3.2 Suppose that (q, u, ν, λ) ∈ K0([0, T ],U ;V) is a piecewise solution of the

original system (5)-(8), (21) with T > 0, active and passive sets JA, JP , and event set

U = {c}, 0 < c < T such that

(a1) there exists a unique p ∈ J 0
P with qp(t) > 0 for all t ∈ [0, c), u−p (c) < 0, λ

+
p (c) > 0,

and λp(t) > 0 for all t ∈ (c, T ]

(a2) λ
−
j (c) > 0, λ

+
j (c) > 0, and λj(t) > 0 holds for all j ∈ J 0

A and t ∈ [0, T ]

(a3) qj(t) > 0 holds for all j ∈ J 0
P \{p} and t ∈ [0, T ]

Furthermore, suppose that the rank condition (22) holds for all (t, q) ∈ (−ε, Tε) ×
� 3d

with ε > 0, Tε > T . Then there exist constants K,Ks, C
∗ > 0 such that for perturbations

θ ∈ C2([0, Tε],
� d), η ∈ C2([0, Tε],

� m), δ ∈ C([0, Tε],
� 3d) with

max
l=0,1,2

‖θ(l)(t)‖, max
l=0,1,2

‖η(l)(t)‖, ‖δ(t)‖ ≤ K for t ∈ [0, Tε] (46)

and consistent initial values (q̂0, û0, ν̂0, λ̂0) ∈ V with (35) there exists a unique ĉ ∈ (0, T )

and a unique piecewise solution (q̂, û, ν̂, λ̂) ∈ K0([0, τ), Û ;V) of the perturbed system

(24)-(27), (28) with T < τ ≤ Tε and event set Û = {ĉ}. It has the properties

(p1) q̂p(t) > θp(t) for t ∈ [0, ĉ), û−p (ĉ) < θ̇p(ĉ), λ̂
+
p (ĉ) > 0, and λ̂p(t) > 0 for t ∈ (ĉ, T ]

(p2) λ̂−j (ĉ) > 0, λ̂+
j (ĉ) > 0, and λ̂j(t) > 0 holds for all j ∈ J 0

A and t ∈ [0, T ]

(p3) q̂j(t) > θj(t) holds for all j ∈ J 0
P \{p} and t ∈ [0, T ]

Furthermore, the following estimates and bounds hold for t ∈ [0, T ]:

‖q̂(t) − q(t)‖ + ‖û(t) − u(t)‖ + ‖ν̂(t) − ν(t)‖ + ‖λ̂(t) − λ(t)‖ = O(K) (47)

‖q̂(t)‖ + ‖û(t)‖ + ‖ ˙̂u(t)‖ + ‖ν̂(t)‖ + ‖λ̂(t)‖ ≤ Ks (48)

|ĉ− c| ≤ C∗
(
|q̂p(cmin) − qp(cmin)| + |θp(cmin)|

)
= O(K) (49)

Proof

The solution (q, u, ν, λ) ∈ K0([0, T ],U ;V) with λj = 0 for j ∈ J0
P solves the unperturbed

DAE system (10)-(13) with the active set J 0
A in [0, c), it can be extended continuously

to [0, c]. By the local existence and uniqueness theorem of Picard–Lindelöf there exists

a constant ρR > 0 such that the solution of the DAE can be extended (to the right)
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Figure 1: Sketch corresponding to the proof of Theorem 3.2.

to [0, c + ρR] with (qR, uR, νR, λ
R
) = (q, u, ν, λ) in [0, c). Similarly, (q, u, ν, λ) solves

(10)-(13) with the active set J 0
A∪{p} in (c, T ], the solution can be extended (to the left)

to [c− ρL, T ] with a constant ρL > 0 and we find (qL, uL, νL, λ
L
) = (q, u, ν, λ) in (c, T ],

see Figure 1. For ρ′ ≤ min{ρR, ρL} small enough we find λ
R

j , λ
L

j > 0 for j ∈ J0
A and

qR
j , q

L
j > 0 for j ∈ J0

P \{p} in [c− ρ′, c + ρ′] by assumptions (a2),(a3). Furthermore, we

find λ
L
p > 0, uR

p < 0 in [c − ρ′, c + ρ′] by assumption (a1) and this immediately yields

qR
p < 0 in (c, c+ ρ′] by continuity if ρ′ is small enough.

From Theorem 3.1 we obtain constants KR,KR
s > 0 such that for K ≤ KR there exists a

unique solution (q̂R, ûR, ν̂R, λ̂R) of the perturbed DAE system (30)-(33) with the active

set J0
A in [0, τR), where c+ ρR < τR ≤ Tε. Furthermore, the estimate

‖q̂R(t) − qR(t)‖ + ‖ûR(t) − uR(t)‖ + ‖ν̂R(t) − νR(t)‖ + ‖λ̂R(t) − λ
R
(t)‖ = O(K) (50)

holds for t ∈ [0, c+ρR], and (q̂R, ûR, ν̂R, λ̂R) as well as ˙̂u
R

are bounded by KR
s . As in the

proof of Lemma 3.4 estimate (50) yields λ̂R
j > 0 for j ∈ J0

A and q̂R
j > θj for j ∈ JP \{p}

in [0, c+ ρ′].

For K small enough Lemma 3.4 with ϕ = qR
p , ϕ̂ = q̂R

p , ζ = θp, and τ = c + ρ′ yields a

constant ρ > 0 with ρ < ρ′ and a unique ĉ ∈ [c − ρ, c + ρ] such that q̂R
p > θp in [0, ĉ),

q̂R
p (ĉ) = θp(ĉ), û

R
p (ĉ) < θ̇p(ĉ), and q̂R

p < θp in (ĉ, c+ρ]. Furthermore, we have the estimate

(49), where |ĉ − c| = O(K) follows from (50). We set (q̂, û, ν̂, λ̂) := (q̂R, ûR, ν̂R, λ̂R) in

[0, ĉ) and with the active set J ∗
A := JA ∪{p} we determine û∗(ĉ) by (28) and ν̂∗(ĉ), λ̂∗(ĉ)

by (29). This yields

‖q̂(ĉ) − qL(ĉ)‖ ≤ ‖q̂(ĉ) − qR(ĉ)‖ + ‖qR(ĉ) − qL(ĉ)‖

≤ O(K) + ‖qR(c) − qL(c)‖ + C1|ĉ− c| = O(K)

‖û∗(ĉ) − uL(ĉ)‖ ≤ ‖û∗(ĉ) − u+(c)‖ + C2|ĉ− c| = O(K)

with some constants C1, C2 > 0, where estimates (49), (50) and (39) from Lemma 3.2

were used. Now Theorem 3.1 can be applied again: There exist constants KL,KL
s > 0

such that for K ≤ KL we find a unique solution (q̂, û, ν̂, λ̂) of the perturbed DAE system

(30)-(33) with the active set J ∗
A in [ĉ, τ), where T < τ ≤ Tε. Furthermore, (q̂, û, ν̂, λ̂)

and ˙̂u are bounded by KL
s and (48) holds with Ks := max{KR

s ,K
L
s }. Finally, estimate

‖q̂(t) − qL(t)‖ + ‖û(t) − uL(t)‖ + ‖ν̂(t) − νL(t)‖ + ‖λ̂(t) − λ
L
(t)‖ = O(K)
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holds for all t ∈ [ĉ, T ] and as in the proof of Lemma 3.4 we can show that q̂j > θj for

j ∈ J0
P \{p} and λ̂j > 0 for j ∈ J0

A ∪ {p} in [ĉ, T ] by the above estimate.

Now suppose that (q̃, ũ, ν̃, λ̃) ∈ K0([0, τ̃ ), Ũ ;V) with τ̃ > 0 and event set Ũ is another

piecewise solution of the perturbed system (24)-(27), (28) with consistent initial values

(q̃0, ũ0, ν̃0, λ̃0) = (q̂0, û0, ν̂0, λ̂0) ∈ V. Since (q̂, û, ν̂, λ̂) is the unique solution of a DAE

system in [0, ĉ) and properties (p1)–(p3) hold we find (q̃, ũ, ν̃, λ̃) = (q̂, û, ν̂, λ̂) in [0, ĉ)

and ĉ is the smallest element in Ũ . The new initial values ũ∗(ĉ) = û∗(ĉ), ν̃∗(ĉ) = ν̂∗(ĉ),

and λ̃∗(ĉ) = λ̂∗(ĉ) are determined uniquely by (28) and (29). Since (q̂, û, ν̂, λ̂) is the

unique solution of a DAE system in (ĉ, τ) and properties (p1)–(p3) hold we finally

obtain (q̃, ũ, ν̃, λ̃) = (q̂, û, ν̂, λ̂) in (ĉ, τ) and Ũ = Û = {ĉ}, τ̃ = τ .

2

Now existence and uniqueness of a piecewise solution of the perturbed system (24)-(27)

with the desired properties is guaranteed and we derive pointwise error estimates for

the position and velocity vectors after the collision. In the critical region (cmin, cmax) we

can only show that the error of the velocity vector is bounded. However, this region

becomes small as the perturbations tend to zero (see estimate (49) in Theorem 3.2), and

this leads to a pointwise estimate for the position vector in (cmin, cmax).

Theorem 3.3 Suppose that (q, u, ν, λ) ∈ K0([0, T ],U ;V) is a piecewise solution of the

original system (5)-(8), (21) with T > 0, active and passive sets JA, JP , and event

set U = {c}, 0 < c < T such that the assumptions (a1)-(a3) in Theorem 3.2 hold.

Furthermore, suppose that the rank condition (22) holds for all (t, q) ∈ (−ε, Tε) ×
� 3d

with ε > 0, Tε > T .

Then there exist constants K,C∗ > 0 such that for initial values (q̂0, û0, ν̂0, λ̂0) ∈ V

that fulfill the consistency conditions (35) and for perturbations θ ∈ C2([0, Tε],
� d),

η ∈ C2([0, Tε],
� m), δ ∈ C([0, Tε],

� 3d) with (46) there exists a unique piecewise solution

(q̂, û, ν̂, λ̂) ∈ K0([0, T ], Û ;V) of the perturbed system (24)-(27), (28) with the event set

Û = {ĉ}, 0 < ĉ < T (see Theorem 3.2). Furthermore, defining

h(t) :=
∑

i∈Jα

A

|θ̈i(t)| +
m∑

k=1

|η̈k(t)| +
∑

i∈I

|δi(t)| for t ∈ [0, T ] (51)

Φ(t) :=
∑

i∈I

(|q̂0
i − q0i | + |û0

i − u0
i |) +

∫ t

0
h(ξ) dξ for t ∈ [0, cmin] (52)

the following estimates hold with cmin = min{c, ĉ}, cmax = max{c, ĉ}:

t ∈ [0, cmin) :
∑

i∈I

(|q̂i(t) − qi(t)| + |ûi(t) − ui(t)|) ≤ C∗Φ(t) (53)

t ∈ (cmin, cmax) :
∑

i∈I

|q̂i(t) − qi(t)| ≤ C∗
(
Φ(cmin) + |θp(cmin)| (54)

+
∑

j∈J0
A

∫ t

cmin

|θ̈j(ξ)| dξ +
∑

j∈J0
P

∫ t

cmin

|δj(ξ)| dξ

)

t ∈ (cmin, cmax) :
∑

i∈I

|ûi(t) − ui(t)| ≤ C∗ (55)
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t ∈ (cmax, T ] :
∑

i∈I

(|q̂i(t) − qi(t)| + |ûi(t) − ui(t)|) (56)

≤ C∗

(
Φ(cmin) + |θp(cmin)| + |θ̇p(cmin)| +

m∑

k=1

|η̇k(cmin)|

+
∑

j∈J0
A

∫ cmax

cmin

|θ̈j(ξ)| dξ +
∑

j∈J0
P

∫ cmax

cmin

|δj(ξ)| dξ +

∫ t

cmax

h(ξ) dξ




Proof

By Theorem 3.2 the piecewise solution of the perturbed system exists and is unique in
[0, T ]. It has the properties (p1)-(p3) and (47)-(49) hold. Estimate (53) immediately
follows from Theorem 3.1. To simplify the notations we set wi := q̂i−qi with w0

i := wi(0)
and ẇi := ûi − ui with ẇ0

i := ẇi(0) for i ∈ I. Furthermore, we omit the arguments of

the perturbations and the solutions (q, u, ν, λ), (q̂, û, ν̂, λ̂) in the integrals and define

Ii := u+
i (c) − u−i (c), Îi := û+

i (ĉ) − û−i (ĉ) for i ∈ I. In case c < ĉ we find

ẇi(T ) = ẇ+
i (ĉ) +

∫ T

ĉ

ẅidt = ẇ−

i (ĉ) + Îi +

∫ T

ĉ

ẅidt

= ẇ+
i (c) +

∫ ĉ

c

ẅidt+ Îi +

∫ T

ĉ

ẅidt

= ẇ−

i (c) − I i + Îi +

∫ ĉ

c

ẅidt+

∫ T

ĉ

ẅidt

= ẇ0
i − I i + Îi +

∫ c

0

ẅidt+

∫ ĉ

c

ẅidt+

∫ T

ĉ

ẅidt

wi(T ) = w0
i +

∫ T

0

ẇidt

= w0
i +

∫ c

0

(
ẇ0

i +

∫ t

0

ẅidξ

)
dt

+

∫ ĉ

c

(
ẇ+

i (c) +

∫ t

c

ẅidξ

)
dt+

∫ T

ĉ

(
ẇ+

i (ĉ) +

∫ t

ĉ

ẅidξ

)
dt

= w0
i + cẇ0

i + (ĉ− c)ẇ+
i (c) + (T − ĉ)ẇ+

i (ĉ) + Ψi(T )

= w0
i + cẇ0

i + (ĉ− c)
(
ẇ−

i (c) − I i

)
+ (T − ĉ)

(
ẇ−

i (ĉ) + Îi

)
+ Ψi(T )

= w0
i + cẇ0

i + (ĉ− c)

(
ẇ0

i +

∫ c

0

ẅidt− I i

)

+(T − ĉ)

(
ẇ0

i − I i +

∫ c

0

ẅidt+

∫ ĉ

c

ẅidt+ Îi

)
+ Ψi(T )

= w0
i + T ẇ0

i − (T − c)I i + (T − ĉ)Îi + (T − c)

∫ c

0

ẅidt+ (T − ĉ)

∫ ĉ

c

ẅidt+ Ψi(T )

where Ψi(T ) :=

∫ c

0

∫ t

0

ẅidξdt+

∫ ĉ

c

∫ t

c

ẅidξdt+

∫ T

ĉ

∫ t

ĉ

ẅidξdt

and in case c = ĉ as well as c < ĉ we find the same result by reversing the roles of ĉ and

c. Taking absolute values and adding both equations yields

|wi(T )| + |ẇi(T )| ≤ |w0
i | + (1 + T )|ẇ0

i | + (1 + T + c)|Îi − Ii| + |c− ĉ||Îi|
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+(1 + T )

∫ cmin

0
|ẅi|dt+ (1 + T − cmin)

∫ cmax

cmin

|ẅi|dt

+(1 + T − cmax)

∫ T

cmax

|ẅi|dt (57)

with a constant C > 0, where cÎi − cÎi = 0 was used. Now we proceed by estimating

the integrals on the right hand side of (57): Using the active constraints we find

∫ cmin

0
|ẅi|dt =

∫ cmin

0
|θ̈i|dt for i ∈ J0

A,

∫ T

cmax

|ẅi|dt =

∫ T

cmax

|θ̈i|dt for i ∈ J0
A ∪ {p}.

By (48) the solutions (q, u, ν, λ) and (q̂, û, ν̂, λ̂) are bounded and therefore included in

a compact subset of V. The functions f , g, and their derivatives are continuous and

therefore bounded and Lipschitz–continuous on this compact subset. Using estimate

(42) from Lemma 3.3 with α = 0, β = cmin we find for i ∈ J0
P

∫ cmin

0
|ẅi|dt ≤

1

mi

∫ cmin

0

(
|fi(t, q̂, û) − fi(t, q, u)| + |G(t, q̂)T (ν̂ − ν)|i

+ |(G(t, q̂) −G(t, q))T ν|i + |δi|
)
dt

≤ C1

∫ cmin

0



∑

j∈I

(|wj | + |ẇj |) + h(t) +
∑

j∈I

|wj | + |δi|


 dt

≤ C2

∫ cmin

0


h(t) +

∑

j∈I

(|wj | + |ẇj |)


 dt

with constants C1, C2 > 0. Similarly, applying Lemma 3.3 with α = cmax, β = T yields

for i ∈ J0
P \{p}

∫ T

cmax

|ẅi|dt ≤ C

∫ T

cmax


h(t) +

∑

j∈I

(|wj | + |ẇj |)


 dt

with a constant C > 0. Furthermore, using the active constraints and estimate (49)
from Theorem 3.2 gives
∫ cmax

cmin

|ẅi|dt =

∫ cmax

cmin

|θ̈i|dt for i ∈ J0
A,

∫ cmax

cmin

|ẅp|dt ≤
1

mp

∫ cmax

cmin

(
|fp(t, q̂, û) − fp(t, q, u)| + |δp|

+ |G(q̂)T ν̂|p + |G(q)T ν|p + |λ̂p| + |λp|
)
dt

≤ C1



∫ cmax

cmin


∑

j∈I

(|wj | + |ẇj |) + |δp|


 dt+ (cmax − cmin)




≤ C2



∫ cmax

cmin



∑

j∈I

(|wj | + |ẇj |) + |δp|


 dt+ |w0

p| +

∫ cmin

0

|ẇp|dt+ |θp(cmin)|
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with C1, C2 > 0, and for i ∈ J0
P \{p} we find in a similar way

∫ cmax

cmin

|ẅi|dt ≤
1

mi

∫ cmax

cmin

(
|fi(t, q̂, û) − fi(t, q, u)| + |δi| + |G(q̂)T ν̂|i + |G(q)T ν|i

)
dt

≤ C



∫ cmax

cmin


∑

j∈I

(|wj | + |ẇj |) + |δi|


 dt+ |w0

p| +

∫ cmin

0

|ẇp|dt+ |θp(cmin)|


 .

We proceed by estimating the terms |Îi − Ii| in (57) and for j ∈ J0
A we immediately find

Ij(c) = Îj(ĉ) = 0. Then estimates (39) from Lemma 3.2 and (49) from Theorem 3.2

yield for i ∈ J0
P

|Îi − Ii| = |û+
i (ĉ) − û−i (ĉ) + u−i (c) − u+

i (c)|

≤ |û+
i (ĉ) − u+

i (c)| + C1(|ẇ
−
i (cmin)| + |ĉ− c|)

≤ C2


|ĉ− c| +

∑

j∈I

(|wj(cmin)| + |ẇ−
j (cmin)|)

+
m∑

k=1

|η̇k(cmin)| +
∑

j∈J0
A
∪{p}

|θ̇j(cmin)|




≤ C3


|θp(cmin)| +

∑

j∈I

(|w0
j | + |ẇ0

j |) +
∑

j∈I

∫ cmin

0
(|ẇj | + |ẅj|) dt

+

m∑

k=1

|η̇k(cmin)| + |θ̇p(cmin)| +
∑

j∈J0
A

∫ cmin

0
|θ̈j |dt




with some constants C1, C2, C3 > 0, where ẇ0
j = θ̇j(0) for j ∈ J0

A was used. Taking

sums on both sides of (57) and substituting the estimates for the integrals and the

terms |Îi − I i| we find

∑

i∈I

(|wi(T )| + |ẇi(T )|) ≤ C1


∑

i∈I

(|w0
i | + |ẇ0

i |) +
∑

i∈JP

(|Îi − I i|)




+C2

(
∑

i∈I

∫ cmin

0
|ẅi|dt+

∫ cmax

cmin

|ẅi|dt+

∫ T

cmax

|ẅi|dt

)

≤ C3ψ(T ) + C4

∫ T

0

∑

i∈I

(|wi| + |ẇi|) dt (58)

where ψ(τ) := Φ(cmin) + |θp(cmin)| + |θ̇p(cmin)| +

m∑

k=1

|η̇k(cmin)|

+
∑

j∈J0
A

∫ cmax

cmin

|θ̈j|dt+
∑

j∈J0
P

∫ cmax

cmin

|δj |dt+

∫ τ

cmax

h(t)dt

is defined for τ ∈ (cmax, T ]. Here C1, C2, C3, C4 > 0 are constants, and Φ(cmin) is defined

in (52). In fact, following the proof we find the same estimate (58) with T replaced by
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τ ∈ (cmax, T ]. Moreover, defining

ψ(τ) := Φ(τ) for τ ∈ [0, cmin)

ψ(τ) := Φ(cmin) +
∑

i∈J0
P

|Ii| +
∑

j∈J0
A

∫ τ

cmin

|θ̈j |dt+
∑

j∈J0
P

∫ τ

cmin

|δj |dt for τ ∈ (cmin, cmax)

Ii :=

{
Îi for cmin = ĉ,

Ii for cmin = c

the above estimate holds in the whole interval, i.e.

∑

i∈I

(|wi(τ)| + |ẇi(τ)|) ≤ C1ψ(τ) + C2

∫ τ

0

∑

i∈I

(|wi| + |ẇi|) dt

for τ ∈ [0, T ]\{ĉ, c} with constants C1, C2 > 0. Notice that ψ is discontinuous and we

have ψ(τ) = O(1) for τ ∈ (cmin, cmax). Now Gronwall’s inequality leads to

∑

i∈I

(|wi(τ)| + |ẇi(τ)|) ≤ C1ψ(τ) + C2

∫ τ

0
ψ(ξ)eC2(τ−ξ)dξ (59)

for τ ∈ [0, T ]. For τ ∈ (cmin, cmax) we find

∑

i∈I

(|wi(τ)| + |ẇi(τ)|) ≤ (C1 + eC2τ − 1)ψ(τ) (60)

with ψ(τ) ≥ ψ(t) for all t ∈ [0, τ ]\{cmin}. The boundedness of |Ii|, i ∈ J0
p also yields the

bound for |ẇi(τ)|, i ∈ I in (55).

For |wi(τ)|, i ∈ I, τ ∈ (cmin, cmax) we find with estimates (53) and (60)

∑

i∈I

|wi(τ)| =
∑

i∈I

(
|w0

i | +

∫ τ

0

|ẇi(t)|dt

)
≤
∑

i∈I

(
|w0

i | +

∫ cmin

0

|ẇi(t)|dt+

∫ τ

cmin

|ẇi(t)|dt

)

≤ C3Φ(cmin) + (τ − cmin)(C1 + eC2τ − 1)ψ(τ)

≤ C4


Φ(cmin) + (τ − cmin)

∑

i∈J0

P

|Ii| +
∑

j∈J0

A

∫ τ

cmin

|θ̈j |dt+
∑

j∈J0

P

∫ τ

cmin

|δj |dt


 ,

where C3, C4 > 0. Estimates (49) from Theorem 3.2 and (53) immediately give

(τ − cmin) ≤ C5(|wp(cmin)| + |θp(cmin)|) ≤ C6(Φ(cmin) + |θp(cmin)|)

with C5, C6 > 0, and this finally leads to (54). For τ ∈ (cmax, T ] estimate (59) yields

∑

i∈I

(|wi(τ)| + |ẇi(τ)|) ≤ C1ψ(τ) + C2

∫ cmin

0
ψ(ξ)eC2(τ−ξ)dξ

+C2

∫ cmax

cmin

ψ(ξ)eC2(τ−ξ)dξ + C2

∫ τ

cmax

ψ(ξ)eC2(τ−ξ)dξ

≤ C7

(
ψ(τ) + (cmax − cmin)

∑

i∈J0
P

|Ii|
)

≤ C8(ψ(τ) + |wp(cmin)| + |θp(cmin)|) ≤ C9ψ(τ)
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with constants C7, C8, C9 > 0. Here estimates (49), (53), ψ(τ) ≥ ψ(t) for all t ∈

[0, cmin) ∪ (cmax, τ ], and

ψ(t) ≤ ψ(τ) +
∑

i∈J0
P

|Ii|

for t ∈ (cmin, cmax) were used. This finally leads to (56).

2

3.3 Perturbation analysis of a lift–off

We proceed as in the previous section and first prove the following: Suppose that we have

a piecewise solution of the original unperturbed system (5)-(8) with exactly one lift–off

of a single mass–point. Then there exists a unique piecewise solution of the perturbed

system (24)-(27) with the same properties if the perturbations are small enough. The

proof is similar to that of Theorem 3.2, but we apply Lemma 3.4 with ϕ = λp instead of

ϕ = qp. Furthermore, the boundedness of the third order derivatives of the perturbations

in the global holonomic and the unilateral constraints is required here, cf. Remark 3.1.

Theorem 3.4 Suppose that (q, u, ν, λ) ∈ K2([0, T ],U ;V) is a piecewise solution of the

original system (5)-(8) with T > 0, active and passive sets JA, JP , and event set U =

{c}, 0 < c < T such that

(a1) there exists a unique p ∈ J 0
A such that λp(t) > 0 for all t ∈ [0, c), λp(c) = 0,

λ̇
−
p (c) < 0, ü

+
p (c) > 0, and qp(t) > 0 for all t ∈ (c, T ]

(a2) λj(t) > 0 holds for all j ∈ J 0
A\{p} and t ∈ [0, T ]

(a3) qj(t) > 0 holds for all j ∈ J 0
P and t ∈ [0, T ]

Furthermore, suppose that the rank condition (22) holds for all (t, q) ∈ (−ε, Tε) ×
� 3d

with ε > 0, Tε > T . Then there exist constants K,Ks, C
∗ > 0 such that for perturbations

θ ∈ C2([0, Tε],
� d), η ∈ C2([0, Tε],

� m), δ ∈ C([0, Tε],
� 3d) with

max
l=0,1,2,3

‖θ(l)(t)‖, max
l=0,1,2,3

‖η(l)(t)‖, ‖δ(t)‖ ≤ K for t ∈ [0, Tε] (61)

and consistent initial values (q̂0, û0, ν̂0, λ̂0) ∈ V with (35) there exists a unique ĉ ∈ (0, T )

and a unique piecewise solution (q̂, û, ν̂, λ̂) ∈ K2([0, τ), Û ;V) of the perturbed system

(24)-(27) with T < τ ≤ Tε and event set Û = {ĉ}. It has the properties

(p1) λ̂p(t) > 0 for t ∈ [0, ĉ), λ̂p(ĉ) = 0, ˙̂
λ
−

p (ĉ) < 0, and q̂p(t) > θp(t) for t ∈ (ĉ, T ]

(p2) λ̂j(t) > 0 holds for all j ∈ J 0
A\{p} and t ∈ [0, T ]

(p3) q̂j(t) > θj(t) holds for all j ∈ J 0
P and t ∈ [0, T ]

Furthermore, the following estimates holds:

‖q̂(t)‖ + ‖û(t)‖ + ‖ν̂(t)‖ + ‖λ̂(t)‖ ≤ Ks (62)

|ĉ− c| ≤ C∗
(
|λ̂p(cmin) − λp(cmin)|

)
= O(K) (63)
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Proof

As in the proof of Theorem 3.2 the solution (q, u, ν, λ) can be extended uniquely to

the intervals [0, c + ρR] and [c − ρL, T ] with some constants ρR, ρL > 0 such that

(qR, uR, νR, λ
R
) = (q, u, ν, λ) in [0, c] and (qL, uL, νL, λ

L
) = (q, u, ν, λ) in [c, T ], re-

spectively. For ρ′ ≤ min{ρR, ρL} small enough we find λ
R

j , λ
L

j > 0 for j ∈ J0
A\{p} and

qR
j , q

L
j > 0 for j ∈ J0

P in [c − ρ′, c + ρ′]. Furthermore, we obtain λ̇
R

p < 0 and ü
L
p > 0 in

[c− ρ′, c+ ρ′] if ρ′ is small enough, and by continuity this also gives λ
R
p < 0 in (c, c+ ρ′].

By Theorem 3.1 there exist constants KR,KR
s > 0 such that for K ≤ KR there exists a

unique solution (q̂R, ûR, ν̂R, λ̂R) of the perturbed DAE system (30)-(33) with the active

set J0
A in [0, τR), where c+ ρR < τR ≤ Tε. Furthermore, the estimate

‖q̂R(t) − qR(t)‖ + ‖ûR(t) − uR(t)‖

+‖ν̂R(t) − νR(t)‖ + ‖λ̂R(t) − λ
R
(t)‖ + ‖ ˙̂

λ
R
(t) − λ̇

R
(t)‖ = O(K) (64)

holds for t ∈ [0, c + ρR] (see Remark 3.1) and (q̂R, ûR, ν̂R, λ̂R) are bounded by KR
s . As

in the proof of Lemma 3.4 estimate (64) yields λ̂R
j > 0 for j ∈ J0

A\{p} and q̂R
j > θj for

j ∈ J0
P in [0, c + ρ′] if K is small enough.

We apply Lemma 3.4 with ϕ = λ
R

p , ϕ̂ = λ̂R
p , ζ = 0, and τ = c+ ρ′. For K small enough

we find a constant ρ > 0 with ρ ≤ ρ′ and a unique ĉ ∈ [c − ρ, c + ρ] such that λ̂R
p > 0

in [0, ĉ), λ̂R
p (ĉ) = 0, ˙̂

λ
R

p (ĉ) < 0, and λ̂R
p < 0 in (ĉ, c + ρ]. Furthermore, we estimate (63)

follows, and (64) leads to |ĉ − c| = O(K). With (q̂, û, ν̂, λ̂) := (q̂R, ûR, ν̂R, λ̂R) in [0, ĉ]

we immediately find

‖q̂(ĉ) − qL(ĉ)‖ ≤ ‖q̂(ĉ) − qR(ĉ)‖ + ‖qR(ĉ) − qL(ĉ)‖ ≤ O(K) + C|ĉ− c| = O(K)

with a constant C > 0, and similarly ‖û(ĉ)− uL(ĉ)‖ = O(K). Now Theorem 3.1 can be

applied again and if K is small enough there exists a unique solution (q̂, û, ν̂, λ̂) of the

perturbed DAE system (30)-(33) with the active set J 0
A\{p} in [ĉ, τ ], where T < τ ≤ Tε.

Furthermore, (q̂, û, ν̂, λ̂) are bounded by a constant KL
s > 0, the bound (62) holds with

Ks := {KR
s ,K

L
s }, and the estimate

‖q̂(t) − qL(t)‖ + ‖û(t) − uL(t)‖ + ‖ν̂(t) − νL(t)‖ + ‖λ̂(t) − λ
L
(t)‖ = O(K) (65)

holds for all t ∈ [ĉ, T ]. By the 3rd and 4th order hidden constraints also

‖ ˙̂u(t) − u̇
L
(t)‖ + ‖¨̂u(t) − ü

L
(t)‖ = O(K) (66)

holds for t ∈ [ĉ, T ], see Remark 3.1.

As in the proof of Lemma 3.4 we show that estimate (65) implies q̂j > θj for j ∈ J0
P and

λ̂j > 0 for j ∈ J0
A\{p} in [ĉ, T ]. For ĉ > c we also find q̂p > θp in [ĉ, T ] by (65) if K is

small enough. If ĉ ≤ c estimate (66) yields ¨̂up > θ(3) in [ĉ, ĉ + ρ′] if K is small enough,

and Taylor expansion gives

q̂p(t) = q̂p(ĉ) + (t− ĉ)ûp(ĉ) +
1

2
(t− ĉ)2 ˙̂up(ĉ) +

1

2

∫ t

ĉ

(t− ξ)2 ¨̂up(ξ)dξ > θp(t)
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for t ∈ [ĉ, ĉ+ ρ′] since q̂
(l)
p (ĉ) = θ

(l)
p (ĉ) for l = 0, 1, 2 by continuity. Estimate (65) finally

yields q̂p > θp in [ĉ+ ρ′, T ], and uniqueness of the piecewise solution is shown as in the

proof of Theorem 3.2.

2

Now we derive error estimates for the position and velocity vectors as in Theorem 3.3.

Notice that in this situation the solution is continuous, and therefore we find pointwise

and uniform estimates for both the position and the velocity vector in the whole time

interval.

Theorem 3.5 Suppose that (q, u, ν, λ) ∈ K2([0, T ],U ;V) is a piecewise solution of the

original system (5)-(8) with T > 0, active and passive sets JA, JP , and event set U =

{c}, 0 < c < T such that assumptions (a1)-(a3) of Theorem 3.4 hold. Furthermore,

suppose that the rank condition (22) holds for all (t, q) ∈ (−ε, Tε) ×
� 3d with ε > 0,

Tε > T .

Then there exist constants K,C∗ > 0 such that for initial values (q̂0, û0, ν̂0, λ̂0) ∈ V

that fulfill the consistency conditions (35) and for perturbations θ ∈ C2([0, Tε],
� d),

η ∈ C2([0, Tε],
� m), δ ∈ C([0, Tε],

� 3d) with (61) there exists a unique piecewise solution

(q̂, û, ν̂, λ̂) ∈ K2([0, T ], Û ;V) of the perturbed system (24)-(27) with the event set Û = {ĉ},

0 < ĉ < T (see Theorem 3.4). Furthermore, the following estimate holds for all t ∈ [0, T ]

with h defined in (43) (see Lemma 3.3) and cmin = min{c, ĉ}, cmax = max{c, ĉ}:
∑

i∈I

(|q̂i(t) − qi(t)| + |ûi(t) − ui(t)|) (67)

≤ C∗

(
∑

i∈I

(
|q̂0

i − q0i | + |û0
i − u0

i |
)

+ h(cmin) +

∫ cmin

0
h(ξ)dξ

+
∑

j∈J0
A
\{p}

∫ cmax

cmin

|θ̈j(ξ)|dξ +
∑

j∈J0
P
∪{p}

∫ cmax

cmin

|δj(ξ)|dξ +

∫ max{cmax,t}

cmax

h(ξ)dξ




Proof

By Theorem 3.4 the piecewise solution of the perturbed system with the desired proper-

ties (p1)-(p4) exists, is bounded, and unique. To simplify notations we set wi := q̂i − qi

with w0
i := wi(0) and ẇi := ûi − ui with ẇ0

i := ẇi(0) for i ∈ I. Since the solutions of

the exact and the perturbed systems are continuous, also wi, ẇi, and

ẅi =
1

mi

[
fi(t, q̂, û) − fi(t, q, u) +

(
G(t, q̂)T ν̂ −G(t, q)T ν

)
i
+
(
HT (λ̂− λ)

)
i
+ δi

]

are continuous and we immediately find

ẇi(T ) = ẇ0
i +

∫ T

0
ẅi(t)dt

wi(T ) = w0
i +

∫ T

0

(
ẇ0

i +

∫ t

0
ẅi(ξ)dξ

)
dt = w0

i + T ẇ0
i +

∫ T

0

∫ t

0
ẅi(ξ)dξdt

Taking absolute values and adding both equations gives

|wi(T )| + |ẇi(T )| ≤ C

(
|w0

i | + (1 + T )|ẇ0
i | + (1 + T )

∫ T

0
|ẅi(t)|dt

)
(68)
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with a constant C > 0 and we proceed by estimating the integral on the right hand side.

Using the active constraints we immediately find

∫ T

0
|ẅi(t)|dt =

∫ T

0
|θ̈i(t)|dt for i ∈ J0

A\{p} and

∫ cmin

0
|ẅp(t)|dt =

∫ cmin

0
|θ̈p(t)|dt.

Since q̂ and û are bounded, they are contained in a compact subset of
� 3d, where f and

g have continuous derivatives and are thus bounded and Lipschitz–continuous. Using

estimate (42) from Lemma 3.3 with α = 0, β = cmin we find for i ∈ J0
P

∫ cmin

0
|ẅi(t)|dt ≤

1

mi

∫ cmin

0
(|fi(t, q̂, û) − fi(t, q, u)|

+|G(t, q̂)T (ν̂ − ν)|i + |(G(t, q̂) −G(t, q))T ν|i + |δi|
)
dt

≤ C1

∫ cmin

0



∑

j∈I

(|wj(t)| + |ẇj(t)|) + h(t)


 dt (69)

with some constant C1 > 0, and similarly, using estimate (42) from Lemma 3.3 with

α = cmax, β = T we find for i ∈ J0
P ∪ {p}

∫ T

cmax

|ẅi| ≤ C2

∫ T

cmax


∑

j∈I

(|wj(t)| + |ẇj(t)|) + h(t)


 dt

with some constant C2 > 0. Estimates (63) from Theorem 3.4, (42) from Lemma 3.3

(with α = 0, β = cmin) and (69) from above lead to

(cmax − cmin) ≤ C1|λ̂p(cmin) − λp(cmin)| ≤ C2


∑

j∈I

(|wj(cmin)| + |ẇj(cmin)|) + h(cmin)




≤ C4



∑

j∈I

(|w0
j | + |ẇ0

j |) +

∫ cmin

0



∑

j∈I

(|wj(t)| + |ẇj(t)|) + h(t)


 dt+ h(cmin)


 .

with C1, C2, C3, C4 > 0 for K small enough. For i ∈ J 0
P ∪ {p} this result leads to

∫ cmax

cmin

|ẅi(t)|dt ≤
1

mi

∫ cmax

cmin

(|fi(t, q̂, û) − fi(t, q, u)|

+|G(t, q̂)T ν̂|i + |G(t, q)T ν|i + |λ̂i| + |λi| + |δi|
)
dt

≤ C1



∫ cmax

cmin



∑

j∈I

(|wj(t)| + |ẇj(t)|) + |δi(t)|


 dt+ (cmax − cmin)




≤ C2

[∑

j∈I

(|w0
j | + |ẇ0

j |) +

∫ cmax

0


∑

j∈I

(|wj(t)| + |ẇj(t)|)


 dt

+

∫ cmin

0
h(t)dt +

∫ cmax

cmin

|δi(t)|dt+ h(cmin)
]
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with some constants C1, C2 > 0, where λ̂i = λi = 0 for i ∈ J0
P and λ̂p, λp are bounded

in [cmin, cmax]. Taking sums on both sides of (68) and substituting the estimates for the

integrals leads to

∑

i∈I

(|wi(T )| + |ẇi(T )|) ≤ C1ψ(T ) + C2

∫ T

0

∑

i∈I

(|wi(t)| + |ẇi(t)|)dt,

where ψ(τ) :=
∑

i∈I

(|w0
i | + |ẇ0

i |) + h(cmin) +
∑

j∈J0
P
∪{p}

∫ cmax

cmin

|δj(t)|dt

+
∑

j∈J0
A
\{p}

∫ cmax

cmin

|θ̈j(t)|dt+

∫ cmin

0
h(t)dt +

∫ max{cmax,τ}

cmax

h(t)dt

is defined for τ ∈ [0, T ] and C1, C2 > 0 are constants. Following the proof we find the

same estimate

∑

i∈I

(|wi(τ)| + |ẇi(τ)|) ≤ C1ψ(τ) + C2

∫ τ

0

∑

i∈I

(|wi(t)| + |ẇi(t)|) dt

for τ ∈ [0, T ]. Gronwall’s inequality gives

∑

i∈I

(|wi(τ)| + |ẇi(τ)|) ≤ C1ψ(τ) + C2

∫ τ

0
ψ(ξ)eC2(τ−ξ)dξ ≤ (C1 + eC2τ − 1)ψ(τ)

with ψ(τ) ≥ ψ(t) for all t ∈ [0, τ ], and this finally leads to the desired estimate (67).

2

Estimates (67) and (56) for t > cmax are quite similar: We find integrals of |θ̈j | in

[cmin, cmax] for all constraints j that always remain active, and integrals of |δj | in [cmin, cmax]

for j = p and all constraints j that always remain passive. The integrals of h in [0, cmin]

and [cmax, T ] result from (42) in Lemma 3.3, where the piecewise solution is smooth.

Derivatives of the perturbations occur up to second order, this agrees with the error

estimates (36) we found in Theorem 3.1 for the equations of motion without unilateral

constraints which have perturbation index 3. Notice that the value h(cmin) in estimate

(67) includes second order derivatives of the perturbations in contrast to the values

|θp(cmin)|, |θ̇p(cmin)|, and |η̇k(cmin)| for k = 1 . . . m in estimate (56). This indicates that

in case of a lift–off the piecewise solution of the system (5)-(8), (21) might be much

more sensitive subject to small perturbations. However, there is no guarantee that the

estimates are sharp, so this conclusion cannot be drawn without further ado.

4 A numerical example

To illustrate the theoretical results we consider a biomechanical application: the hydro-

static skeleton. In physical terms it is realized as an incompressible fluid enclosed by

an elastic body wall. Contraction or relaxation of muscles embedded in the body wall

leads to changes in the shape of the body by means of a pressure applied to the internal

fluid.
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Figure 2: Upper left: Collision of the model with the obstacle H in the unperturbed case. We use the

initial velocity (−10, 0, 0)T for all corners and K = 8 for the obstacle H defined in (2). Upper right:

Distance of the corner Q ∈ � 3 from H, velocity Q̇1 in (horizontal) x–direction, and contact force acting

on Q versus time. Lower left: Horizontal coordinate Q1 in the perturbed case with a = 0.01 and b = 120

versus time. Lower right: Same as lower left diagram, but parameters a = 0.006 and b = 200 are used.

In [1], [2] we developed a mathematical model which consists of a sequence of N = 21

hexahedral segments with elastic edges that act as damped springs. The total mass is

concentrated in the d = 4 ∗ N + 4 corners and the elastic forces are given by the term

f(t, q, u) ∈
� 3d in (6), see [1], [2] for details. The model is based on the assumption that

the total volume remains constant during the motion. This leads to the constraint

g(q) = V tot −

N∑

k=1

Vk(q) = 0,

where V tot > 0 is the prescribed total volume in the entire body (m = 1), and Vk(q) is

the actual volume of the kth segment that can be expressed in terms of the coordinates

of the corners.

The equations of motion are solved by numerical methods implemented in the code

MEXAX, see [15]. Figure 2 shows the collision of the model with the obstacle H defined

in (2). Notice that the complementarity conditions (8) for the distance of the model to

H and the contact force acting on H are fulfilled (see upper right diagram). We find

nearly the same result in the presence of a small perturbation θj(t) = a cos(bt) for all

j ∈ J in the obstacle except for the lift–off time. In the unperturbed case the model

lifts off at t ≈ 0.5 (see upper right diagram), while in the perturbed case with a = 0.01
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and b = 120 it lifts off at t ≈ 0.32, see lower left diagram. Decreasing the amplitude of

the perturbation to a = 0.006 and increasing the frequency to b = 200 leads to a lift–off

at t ≈ 0.29, the model collides again with the obstacle at t ≈ 0.31 and finally lifts off

at t ≈ 0.32, see lower right diagram in Figure 2. This example reflects the theoretical

results in Sect. 3, and it shows the influence of the second derivative of the perturbations

on the solution: ||θ̇j(t)|| = ab remains the same for both parameter configurations, but

||θ̈j(t)|| = ab2 differs in the two perturbed cases.
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