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Abstract. This work continues the investigation of the previously defined angular values (cf. [6]) for linear
nonautonomous dynamical systems in finite dimensions. The s-th angular value measures the
maximal average rotation which the dynamics exerts on s-dimensional subspaces. Our main
theorem relates the angular values to the well-known dichotomy (or Sacker-Sell) spectrum and
its associated spectral bundles. In particular, a reduction theorem is proven which shows that
instead of general subspaces it is sufficient to consider so-called trace spaces which have their
basis in the spectral fibers. The reduction leads to an algorithm for computing angular values
of dimensions one and two. The algorithm is applied to several examples of dimension up to 4,
including a system of coupled oscillators.
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1. Introduction. In the previous paper [6], a concept of angular values was intro-
duced for linear discrete time dynamical systems. The notion aims at measuring the
average rotation of subspaces of arbitrary dimension caused by the dynamical system.
Several notions for quantifying rotations in dynamical systems exist in the literature, no-
tably the rotation number for circle homeomorphisms and more general maps and flows,
see e.g. [2, 10, 23, 24]. However, there is a fundamental difference: while rotation numbers
measure the oriented angle between vectors and image vectors in two-dimensional sub-
spaces, angular values are based on the principal angles between subspaces (which always
lie in [0, π2 ]) rather than vectors, even in the one-dimensional case. In this way one loses
information on orientation but gains applicability to general time discrete systems and to
subspaces of arbitrary dimension. We refer to [6] for a further review of and comparison
with the literature.

While [6] mainly deals with the autonomous case, this article provides deeper insight
into angular values for nonautonomous systems and presents a general numerical algo-
rithm. We consider a nonautonomous linear difference equation of the form

(1.1) un+1 = Anun, An ∈ Rd,d, n ∈ N0

and assume throughout this paper that all matrices are invertible and An as well as
A−1n are uniformly bounded. For the applications we think of (1.1) as the linearization
of a nonlinear (non)autonomous dynamical system along a particular trajectory, see the
coupled oscillator in Section 4.2.7.
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We define the solution operator Φ corresponding to (1.1) by

Φ(n,m) =


An−1 · . . . ·Am, for n > m,

I, for n = m,

A−1n · . . . ·A−1m−1, for n < m.

To keep this paper self-contained, some important definitions and estimates of angles
from [6] are summarized in Section 2. Our different notions of an s-th angular value are
based on the averages

(1.2)
1

n
ak+1,k+n(V ), ak+1,k+n(V ) =

k+n∑
j=k+1

](Φ(j − 1, 0)V,Φ(j, 0)V ), k ≥ 0, n ≥ 1.

Here V is an element of the Grassmann manifold G(s, d) of s-dimensional subspaces of
R
d and ](U, V ) denotes the largest principal angle between two subspaces U, V ∈ G(s, d),

see [15, Ch. 6.4.3]. There are several possibilities to pass to a limit in (1.2) and take the
supremum over V ∈ G(s, d), for example

θ̄s = lim sup
n→∞

1

n
sup

V ∈G(s,d)
a1,n(V ), θ̂s = sup

V ∈G(s,d)
lim sup
n→∞

1

n
a1,n(V ).(1.3)

We call θ̄s the s-inner and θ̂s the s-outer angular value of the system. More precisely,
the angular values will be given the attribute ’upper’ due to the lim sup in (1.3), while
’lower’ will then refer to taking the lim inf. Moreover, analogous uniform angular values
are defined by first taking the supremum of ak+1,k+n(V ) over k ∈ N0 and then proceeding
as above, see Definition 2.6 for details. In general, all these notions turn out to be different
for nonautonomous systems, cf. [6, Section 3.2].

Our numerical methods aim at computing outer angular values. In case system (1.1)
is autonomous, i.e. An = A for n ∈ N0, all eight angular values mentioned above agree
for s = 1 under a weak assumption (see [6, Theorem 5.7]). Moreover, it is shown how to
compute first angular values from orthogonal bases of invariant subspaces which belong to
eigenvalues of A of the same modulus. This reduces the numerical effort substantially to
a series of Schur decompositions and to one-dimensional optimization, see [6, Secton 6].

One major goal of this article is to develop a reduction theorem which generalizes
the autonomous results to nonautonomous systems and to arbitrary subspace dimensions.
We tackle this task in Section 3. It turns out that the dichotomy spectrum, also called
the Sacker-Sell spectrum [27], and its accompanying spectral bundles take over the role
of invariant subspaces from the autonomous case. With every element V ∈ G(s, d) we
associate a subspace, called the trace space, which has the same dimension and which
has a basis composed of vectors from the fibers. Our main reduction result Theorem 3.5
then states that the limit of 1

na1,n(V ) from (1.2) for the given space V agrees with the
corresponding limit for the trace space. Similar results are derived for the inner angular
values (s = 1) and for uniform angular values (s ≥ 1) in Sections 3.3 and 3.4.

The reduction theorem is the basis for the numerical algorithm which we propose in
Section 4. Note that angular values are generally not attained in the most stable or most
unstable directions of the trace spaces. Therefore, algorithms, which use forward iteration
in one or the other way, tend to fail since they follow asymptotic dynamics. Instead, our
algorithm consists of the following steps:
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1. Compute an approximation of the dichotomy spectrum.
2. Compute the corresponding spectral bundles and obtain the trace spaces.
3. Determine the supremum of (1.2) w.r.t. the trace spaces and for large values of n.

The first two tasks are accomplished by using the techniques from [18]. We apply this
algorithm to several models with a view to illustrate various aspects. A comparison
between explicitly known angular values and the output of our algorithm is provided for
cases s = 1 and s = 2. In addition, we present a geometric interpretation. For nonlinear
models, such as a 3-dimensional extension of the Hénon system and a 4-dimensional system
of coupled oscillators, we find that angular values coincide with the average angle between
successive tangent spaces w.r.t. an invariant fiber. Furthermore, we discuss the stability
problems raised by simple forward iteration of matrices and how we circumvent them.
Finally, we observe that the first angular value may be greater equal or less than the
second, depending on the example.

2. Basic definitions and properties. To keep the article self-contained, we summarize
in this section some important notions, definitions and results from [6].

2.1. Angles and subspaces. Let us begin with a useful characterization of the angle
between two subspaces V and W of Rd, both having the same dimension k. Principal
angles between these subspaces can be computed from the singular values of V >B WB, where
the columns of VB and WB ∈ Rd,k form orthonormal bases of V and W , respectively, see
[15, Ch.6.4.3]. The smallest singular value is the cosine of the largest principal angle which
we denote by ](V,W ). We further use the notion

](v, w) = ](span(v), span(w)), v, w ∈ Rd, v, w 6= 0

in case the subspaces are one-dimensional.
The following proposition, cf. [6], gives an alternative characterization of ](V,W ),

which turns out to be essential for the analysis of angular values.

Proposition 2.1. Let V,W ⊆ R
d be two k-dimensional subspaces. Then the following

relation holds

](V,W ) = max
v∈V
v 6=0

min
w∈W
w 6=0

](v, w) = arccos
(

min
v∈V
‖v‖=1

max
w∈W
‖w‖=1

v>w
)
.

The next proposition summarizes some well-known properties of the Grassmannian

G(k, d) = {V ⊆ Rd is a subspace of dimension k},

see [15, Ch.6.4.3], [21].

Proposition 2.2. The Grassmannian G(k, d) is a compact smooth manifold of dimension
k(d− k) and a metric space with respect to

d(V,W ) = ‖PV − PW ‖,

where PV , PW are the orthogonal projections onto V and W , respectively. Moreover, the
formula

d(V,W ) = sin(](V,W )), V,W ∈ G(k, d)
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holds and ](V,W ) defines an equivalent metric on G(k, d) satisfying

2

π
](V,W ) ≤ d(V,W ) ≤ ](V,W ).

The following lemma from [6] is our main tool to estimate angles of vectors and subspaces
in terms of norms.

Lemma 2.3.
i) For any two vectors v, w ∈ Rd with ‖v‖ < ‖w‖ the following holds

tan2](v + w,w) ≤ ‖v‖2

‖w‖2 − ‖v‖2
.

ii) Let V ∈ G(k, d) and P ∈ Rd,d be such that for some 0 ≤ q < 1

‖(I − P )v‖ ≤ q‖Pv‖ ∀v ∈ V.

Then dim(V ) = dim(PV ) and the following estimate holds

](V, PV ) ≤ q

(1− q2)1/2
.

Finally, we state a linear algebra result which will provide the basic reduction step
in Theorem 3.3. By R(P ) and N (P ) we denote the range and kernel of a matrix P ,
respectively.

Lemma 2.4. Let V ∈ G(k, d) and let P be a projector in R
d. Furthermore, let Q be

any projector defined in V and with range V ∩R(P ). Then the linear map

L = I − P +Q : V → (I − P )V ⊕ (V ∩R(P ))(2.1)

is a bijection and there exists a constant ρ > 0 such that

‖P (I −Q)v‖ ≤ ρ‖(I − P )(I −Q)v‖ ∀v ∈ V.(2.2)

Proof. Note that the sum in (2.1) is direct since (I − P )V ⊆ N (P ). For the same
reason, if Lv = 0 for some v ∈ V , then (I − P )v = 0 and Qv = 0 holds. This shows v ∈
V ∩R(P ) = R(Q) and v = Qv = 0. Thus L is one to one. To show that L is onto, take any
u ∈ (I−P )V and w ∈ V ∩R(P ). Then we have u = (I−P )v for some v ∈ V , and defining
ṽ = (I−Q)v+w ∈ V , we obtain Lṽ = (I−P )(v+w−Qv) +Qw = (I−P )v+w = u+w.
To show the estimate (2.2) note that 0 = (I − P )(I − Q)v = (I − P )v for some v ∈ V
implies v ∈ V ∩R(P ) = R(Q) and thus (I −Q)v = 0 = P (I −Q)v. Then we obtain (2.2)
from the elementary fact that two linear maps A,B : V → R

d satisfy N (B) ⊆ N (A) if
and only if there exists a constant C > 0 such that ‖Av‖ ≤ C‖Bv‖ for all v ∈ V .

Remark 2.5. The last step of the proof is a special case of a result from functional
analysis: Let A,B : X → Y be linear bounded operators between Banach spaces X and
Y , then A is called relatively bounded by B if there exists a constant C > 0 such that
‖Ax‖ ≤ C‖Bx‖ for all x ∈ X; see [14, Ch.3.7]. The smallest constant of this type is

(2.3) ρ(A,B) = inf{C > 0 : ‖Ax‖ ≤ C‖Bx‖ ∀x ∈ X} = sup
Bx 6=0

‖Ax‖
‖Bx‖

.

If B is Fredholm one can show that A is relatively bounded by B iff N (B) ⊆ N (A).
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2.2. Definition of angular values. Several different types of angular values have been
proposed in [6]. This reference also contains illustrative examples and existence results,
regarding the limits, defined below. Let us emphasize again that our notion of angular
values avoids to specify any kind of orientation. We are dealing with discrete time systems
and don’t want to make any assumption on how a current subspace is moved to the next
subspace in one time step. From our point of view, orientation based angles are more
meaningful for continuous time dynamical systems.

Definition 2.6. Let the nonautonomous system (1.1) be given. For s ∈ {1, . . . , d} define
the quantities

(2.4) am,n(V ) =
n∑

j=m

](Φ(j − 1, 0)V,Φ(j, 0)V ) m,n ∈ N, V ∈ G(s, d).

i) The upper resp. lower s-th inner angular value is defined by

(2.5) θ̄s = lim sup
n→∞

1

n
sup

V ∈G(s,d)
a1,n(V ),

¯
θs = lim inf

n→∞

1

n
sup

V ∈G(s,d)
a1,n(V ).

ii) The upper resp. lower s-th outer angular value is defined by

θ̂s = sup
V ∈G(s,d)

lim sup
n→∞

1

n
a1,n(V ),

ˆ
θs = sup

V ∈G(s,d)
lim inf
n→∞

1

n
a1,n(V ).

iii) The upper resp. lower s-th uniform inner angular value is defined by

(2.6)

θ̄[s] = lim
n→∞

1

n
sup

V ∈G(s,d)
sup
k∈N0

ak+1,k+n(V ),

¯
θ[s] = lim inf

n→∞

1

n
sup

V ∈G(s,d)
inf
k∈N0

ak+1,k+n(V ).

iv) The upper resp. lower s-th uniform outer angular value is defined by

θ̂[s] = sup
V ∈G(s,d)

lim
n→∞

1

n
sup
k∈N0

ak+1,k+n(V ),

ˆ
θ[s] = sup

V ∈G(s,d)
lim
n→∞

1

n
inf
k∈N0

ak+1,k+n(V ).

We observe the following relations between these angular values for all s = 1, . . . , d.

(2.7) ˆ
θ[s] ≤

ˆ
θs ≤ θ̂s ≤ θ̂[s]≤ ≤ ≤ ≤

¯
θ[s] ≤ ¯

θs ≤ θ̄s ≤ θ̄[s]

3. Relation to the dichotomy spectrum. We discuss in this section relations between
angular values and the dichotomy spectrum. This particularly results in a computational
approach for angular values. We start with a brief introduction, cf. [19], of the dichotomy
spectrum which is also called the Sacker-Sell spectrum.
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3.1. The dichotomy spectrum. The dichotomy spectrum, see [27] is based on the
notion of an exponential dichotomy, cf. [17, 4, 22, 8, 9, 25]. In the following we recall
its general definition for a discrete interval I ⊂ Z which is unbounded above, and for
a linear system (1.1) which is bounded invertible, i.e. there exists a C > 0 such that
‖An‖, ‖A−1n ‖ ≤ C for all n ∈ I.

Definition 3.1. The difference equation (1.1) has an exponential dichotomy (ED for
short) on I, if there exist constants K > 0, αs, αu ∈ (0, 1) and families of projectors P sn,
P un := I − P sn, n ∈ I such that

(i) P s,un Φ(n,m) = Φ(n,m)P s,um for all n,m ∈ I.
(ii) For n,m ∈ I, n ≥ m the following estimates hold:

‖Φ(n,m)P sm‖ ≤ Kαn−ms , ‖Φ(m,n)P un ‖ ≤ Kαn−mu .

The tuple (K,αs,u, P
s,u
I

= (P s,un )n∈I) is called the dichotomy data.

The dichotomy spectrum is constructed, using the scaled equation

(3.1) un+1 =
1

γ
Anun, n ∈ I.

Spectrum and resolvent set are defined as follows:

ΣED := {γ > 0 : (3.1) has no ED on I}, RED := R
>0 \ ΣED.

Assume that An is uniformly bounded w.r.t. n ∈ I. The Spectral Theorem [5, Theorem
3.4] provides the decomposition ΣED =

⋃`
i=1 Ii of the dichotomy spectrum into ` ≤ d

intervals

Ii = [σ−i , σ
+
i ], i = 1, . . . , `, where 0 < σ−` ≤ σ

+
` < · · · < σ−1 ≤ σ

+
1 .

The intervals Ii, i = 1, . . . , ` are called spectral intervals.
Correspondingly, the resolvent set is RED =

⋃`+1
i=1 Ri with resolvent intervals

R1 = (σ+1 ,∞), Ri = (σ+i , σ
−
i−1), i = 2, . . . , `+ 1 with σ+`+1 = 0

see Figure 3.1. In case σ−i = σ+i for an i ∈ {1, . . . , `} the spectral interval Ii is an isolated
point.

Figure 3.1: Illustration of spectral intervals (orange) and of resolvent intervals (blue).

For γ ∈ Ri with i ∈ {1, . . . , ` + 1}, the families of dichotomy projectors of (3.1) are
denoted by P s,u

I,i = (P s,uk,i )k∈I. Note that these projectors are uniquely determined and that
they have a hierarchical structure. For n ∈ I we obtain

(3.2)
{0} = R(P sn,`+1) ⊆ R(P sn,`) ⊆ · · · ⊆ R(P sn,1) = R

d,

R
d = R(P un,`+1) ⊇ R(P un,`) ⊇ · · · ⊇ R(P un,1) = {0}.
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Spectral bundles that correspond to eigenspaces in autonomous systems are defined
as follows (see Figure 3.2):

(3.3) W i
n := R(P sn,i) ∩R(P un,i+1), i = 1, . . . , `.

Note that the dimensions of these spectral bundles di := dim(W i
n) for i = 1, . . . , ` do not

depend on n ∈ I. Alternatively, we may write the ranges of dichotomy projectors in terms
of spectral bundles:

(3.4) R(P un,i) =
i−1⊕
j=1

Wj
n, R(P sn,i) =

⊕̀
j=i

Wj
n, i = 1, . . . , `+ 1.

The fiber projector Pn,i, i = 1, . . . , ` onto W i
n along

⊕`
ν=1,ν 6=iWν

n is given by

(3.5) Pn,i = P sn,iP
u
n,i+1 = P un,i+1P

s
n,i = P sn,i − P sn,i+1 = P un,i+1 − P un,i.

Spectral bundles satisfy for i = 1, . . . , ` and n,m ∈ I the invariance condition

(3.6) Φ(n,m)W i
m =W i

n.

Figure 3.2: Construction of spectral bundles.

For i ∈ {2, . . . , `} and γ ∈ Ri = (σ+i , σ
−
i−1) the system (3.1) has an ED with

(3.7)

solution operator Φγ(n,m) =
1

γn−m
Φ(n,m),

projectors P sn,i, constants αs(γ) =
σ+i
γ
, αu(γ) =

γ

σ−i−1
.

These satisfy for n ≥ m the ED-estimates

‖Φ(n,m)P sm,i‖ ≤ γn−m‖Φγ(n,m)‖ ≤ Kγn−m
(
σ+i
γ

)n−m
= K(σ+i )(n−m),

‖Φ(m,n)P un,i‖ ≤ γm−n‖Φγ(m,n)‖ ≤ Kγm−n
(

γ

σ−i−1

)n−m
= K

(
1

σ−i−1

)n−m
.

Note that these estimates do not depend on the particular choice of γ ∈ Ri.
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Figure 3.3: A subspace V (green) at time k (left) is driven by the dynamics at time j > k
(right) towards the direct sum (orange plane) of its unstable projection (yellow) and the
intersection with the stable subspace (black).

3.2. Outer angular values and spectral bundles. In the remaining part of this section,
we work in the setup I = N0. As a first step, we prove that the dynamics of a dichotomic
system drives a subspace (except for the intersection with its stable projection) towards
its unstable projection, cf. Figure 3.3.

Theorem 3.2. Let the system (1.1) have an exponential dichotomy on N0 with data
(K,αs,u, P

s,u
N0

). For k ∈ N0 and V ∈ G(s, d) let

(3.8) Qsk : V → R(P sk ) ∩ V

denote the orthogonal projector onto R(P sk ) ∩ V . Then the quantity (recall (2.3))

ρsk(V ) = inf{C > 0 : ‖P sk (I −Qsk)v‖ ≤ C‖P uk (I −Qsk)v‖ ∀v ∈ V } <∞

is finite and there exists an index jsk = jsk(V ) such that

(3.9) K2(αsαu)j
s
kρsk(V ) ≤ 1

2
.

For all j ≥ k + jsk the following estimate holds

(3.10) ](Φ(j, k)V,Φ(j, k)(P uk V ⊕QskV )) ≤ 2√
3
K2(αsαu)j−kρsk(V ).

Proof. By Lemma 2.4 the quantity ρsk(V ) is finite, and since αsαu < 1 there exists
an index jsk satisfying (3.9). Our goal is to apply Lemma 2.3 (ii) for j ≥ k to the s-
dimensional subspace Ṽ = Φ(j, k)V and the matrix P̃ = P uj + P sj Φ(j, k)QskΦ(k, j). First
note that Lemma 2.4 and the properties of the solution operator imply

Φ(j, k)(P uk V ⊕QskV ) = Φ(j, k)(P uk +Qsk)Φ(k, j)Φ(j, k)V

= (P uj + Φ(j, k)QskΦ(k, j))Φ(j, k)V = P̃ Ṽ.

The exponential dichotomy yields for all v ∈ V and j ≥ k

‖P uk v‖ = ‖Φ(k, j)P uj Φ(j, k)(P uk v +Qskv)‖
≤ Kαj−ku ‖Φ(j, k)(P uk v +Qskv)‖ = Kαj−ku ‖P̃Φ(j, k)v‖,

‖(I − P̃ )Φ(j, k)v‖ = ‖Φ(j, k)v − (Φ(j, k)P uk v + Φ(j, k)P skQ
s
kv)‖

= ‖Φ(j, k)P sk (I −Qsk)v‖ ≤ Kαj−ks ‖P sk (I −Qsk)v‖.
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Combining these estimates we obtain

(3.11)
‖(I − P̃ )Φ(j, k)v‖ ≤ Kαj−ks ρsk(V )‖P uk (I −Qsk)v‖ = Kαj−ks ρsk(V )‖P uk v‖

≤ K2(αsαu)j−kρsk(V )‖P̃Φ(j, k)v‖.

By condition (3.9) we can apply Lemma 2.3 (ii) with q = K2(αsαu)j−kρsk(V ) ≤ 1
2 for

j ≥ k + jsk,

](Φ(j, k)V,Φ(j, k)(P uk V ⊕QskV )) ≤ 2K2

√
3

(αsαu)j−kρsk(V ).

In a similar way, let

(3.12) Quk : V → R(P uk ) ∩ V

denote the orthogonal projector onto R(P uk ) ∩ V . Then

ρuk(V ) = inf{C > 0 : ‖P uk (I −Quk)v‖ ≤ C‖P sk (I −Quk)v‖ ∀v ∈ V } <∞

holds and there exists an index juk = juk (V ) such that

(3.13) K2(αsαu)j
u
k ρuk(V ) ≤ 1

2
.

Then we obtain the following estimate for all j ≤ k − juk ,

(3.14) ](Φ(j, k)V,Φ(j, k)(P skV ⊕QukV )) ≤ 2√
3
K2(αsαu)k−jρuk(V ).

Theorem 3.2 provides the mechanism for reducing the analysis of angular values for
general subspaces V ∈ G(s, d) to specific ones which have a basis consisting of vectors
from the spectral bundle (3.3). For a fixed starting time k ∈ N and i = 1, . . . , ` we recall
the projectors Pk,i = P sk,iP

u
k,i+1 : Rd → W i

k from (3.5) and define the new projectors (cf.
(3.2), (3.4), (3.8))

(3.15) Qsk,i : V → R(P sk,i) ∩ V, i = 1, . . . , `.

For definiteness we assume the projector Qsk,i to be orthogonal. With each V ∈ G(s, d) we
associate its trace space having a fiber basis and defined by

(3.16) Tk(V ) =
⊕̀
i=1

(Pk,iQsk,iV ) =
⊕̀
i=1

(P uk,i+1(R(P sk,i) ∩ V )).

Below we will show dim Tk(V ) = s and the equality

Tk(V ) =
(∑̀
i=1

Pk,iQsk,i
)
V.(3.17)

The set of all such trace spaces is denoted by

(3.18) Dk(s, d) :=
{⊕̀
i=1

Wi : Wi ⊆ W i
k (subspace) i = 1, . . . , `,

∑̀
i=1

dimWi = s
}
.

Note that the equality Dk(s, d) = {Tk(V ) : V ∈ G(s, d)} holds, since every V =
⊕`

i=1Wi ∈
Dk(s, d) with Wi ⊆ W i

k satisfies Pk,iQsk,iV = Wi, i = 1, . . . , `.
Our main reduction theorem is the following.
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Theorem 3.3. Assume that the difference equation (1.1) has the dichotomy spectrum
ΣED =

⋃`
i=1[σ

−
i , σ

+
i ] with fibers W i

k, i = 1 . . . , ` and projectors Pk,i, i = 1, . . . , `, k ∈ N0.
Then for every k ∈ N0 and V ∈ G(s, d), s = 1, . . . , d there exists an index j = j(k, V ) and
a constant C = C(k, V ) such that for all j ≥ k + j the following estimate holds

(3.19) ](Φ(j, k)V,Φ(j, k)Tk(V )) ≤ C(k, V )
(

max
i=1,...,`−1

σ+i+1

σ−i

)j−k
.

Remark 3.4. Note that several of the spaces Pk,iQsk,iV occurring in the decomposition
(3.16) may be trivial. The following proof will show that one can then omit the correspond-

ing quotients
σ+
i+1

σ−
i

from the maximum in (3.19). Moreover, the proof will provide values

for the index j(k, V ) and the constant C(k, V ).

Proof.
Step1: Let us first discuss a recursive construction that leads to the trace space (3.17).
With every V ∈ G(s, d) we associate subspaces Vi ∈ G(s, d) and further projectors Q̃k,i(i =
1, . . . , `+ 1) defined by V1 = V , Q̃k,1 = Id and then for i = 1, . . . , ` as follows

(3.20)
Q̃k,i+1 : Vi → R(P sk,i+1) ∩ Vi orthogonal projector,

Vi+1 = P uk,i+1Vi ⊕ Q̃k,i+1Vi.

Figure 3.4 illustrates this recursion for two characteristic cases.

Figure 3.4: Recursive construction of subspaces, cf. (3.20) for two characteristic cases.
Upper row: Since V intersects W i

k only in {0} for any i ∈ {1, 2, 3}, the sequence of
subspaces (Vi)i≤4 is constant for i ≥ 3, i.e. V2 6= V3 = V4. Lower row: V has a nontrivial
intersection with W3

k and the sequence of subspaces (Vi)i≤4 is constant for i ≥ 2. In both
cases, the trace space of V is given as Tk(V ) = V3.

10



Note that Lemma 2.4 implies Vi+1 = (P uk,i+1 + Q̃k,i+1)Vi and dimVi = dimVi+1. In
addition, we claim for i = 1, . . . , `

(3.21) P uk,i+1Vi =
( i∑
ν=1

Pk,νQsk,ν
)
V, Q̃k,i+1Vi = Qsk,i+1V.

We proceed by induction. First note that (3.2), (3.20) and (3.15) imply P sk,1 = Id, Qk,1V =

Q̃k,1V1. Further, we have by (3.5), (3.20), (3.15)

P uk,2V1 = Pk,1V, Q̃k,2V1 = R(P sk,2) ∩ V = Qsk,2V.

Assume that (3.21) holds for the index i. Then we obtain from (3.20), (3.4)

Q̃k,i+2Vi+1 = R(P sk,i+2) ∩ Vi+1 = R(P sk,i+2) ∩ (P uk,i+1Vi ⊕ Q̃k,i+1Vi)

= R(P sk,i+2) ∩ Q̃k,i+1Vi = R(P sk,i+2) ∩ (R(P sk,i+1) ∩ V )

= R(P sk,i+2) ∩ V = Qsk,i+2V.

Furthermore,

P uk,i+2Vi+1 = P uk,i+2(P
u
k,i+1Vi ⊕ Q̃k,i+1Vi)

= P uk,i+2

(( i∑
ν=1

Pk,νQsk,ν
)
V ⊕Qsk,i+1V

)
=
( i∑
ν=1

P uk,i+2Pk,νQsk,ν
)
V + P uk,i+2P

s
k,i+1Q

s
k,i+1V.

From (3.2), (3.4) and (3.5) we have the equalities P uk,i+2Pk,ν = Pk,ν for ν ≤ i and

P uk,i+2P
s
k,i+1 = Pk,i+1. With R(Pk,i+1) ∩

⊕i
ν=1Wν

k = {0} this leads to

P uk,i+2Vi+1 =
( i∑
ν=1

Pk,νQsk,ν
)
V ⊕ Pk,i+1Q

s
k,i+1V =

( i+1∑
ν=1

Pk,νQsk,ν
)
V.

The last equality needs an argument. The relation “⊇” is obvious. For the converse we
consider v, w ∈ V and construct ṽ ∈ V such that

(3.22)

i∑
ν=1

Pk,νQsk,νv + Pk,i+1Q
s
k,i+1w =

i+1∑
ν=1

Pk,νQsk,ν ṽ.

For this purpose set ṽ = v + Qsk,i+1(w − v) and verify (3.22) by using the equality
Pk,νQsk,νQsk,i+1(w − v) = Pk,νQsk,i+1(w − v) = Pk,νP sk,i+1Q

s
k,i+1(w − v) = 0 for ν ≤ i.

In this way one also obtains the equality of the representations (3.16) and (3.17) via an
induction w.r.t. the index i.
Step2: We prove the key estimate (3.19). Let us apply Theorem 3.2 for i = 1, . . . , ` to the
scaled operator Φγ with γ ∈ Ri+1 = (σ+i+1, σ

−
i ) and Vi ∈ G(s, d), Q̃k,i as defined by (3.20)

(recall (3.7) and σ+`+1 = 0). The index jsk,i is determined by 2K2
(σ+

i+1

σ−
i

)jsk,iρsk,i(V ) ≤ 1 (cf.

(3.9)) where, due to the second equation in (3.21),

ρsk,i(V ) = inf{C > 0 : ‖P sk,i+1(I −Qsk,i+1)v‖ ≤ C‖P uk,i+1(I −Qsk,i+1)v‖ ∀v ∈ V }.
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Then the estimate (3.10) leads for j ≥ k + jsk,i and i = 1 . . . , ` to

](Φγ(j, k)Vi,Φγ(j, k)Vi+1)) ≤
2√
3
K2

(
σ+i+1

σ−i

)j−k
ρsk,i(V ).

Since angles do not depend on scalings we can replace Φγ by Φ in this estimate. Finally,
observe P sk,`+1 = 0, Qsk,`+1 = 0 and thus V`+1 = P uk,`+1V` = V` = Tk(V ) due to (3.21). The

triangle inequality then yields for j − k ≥ j = maxi=1,...,` j
s
k,i

](Φ(j, k)V,Φ(j, k)Tk(V )) ≤
∑̀
i=1

](Φ(j, k)Vi,Φ(j, k)Vi+1)

≤ 2K2

√
3

(
max

i=1,...,`−1

σ+i+1

σ−i

)j−k ∑̀
i=1

ρsk,i(V ).

Some conclusions of Theorem 3.3 are summarized in Theorem 3.5 below. In particular,
we present an important characterization of outer angular values

ˆ
θ1, θ̂1 if all spectral

bundles are one-dimensional.

Theorem 3.5. Let the assumptions of Theorem 3.3 hold and define the quantities (see
(2.4))

a1,n(V ) =

n∑
j=1

](Φ(j − 1, 0)V,Φ(j, 0)V ) n ∈ N, V ∈ G(s, d).

Then the following holds for all V ∈ G(s, d)

(3.23) lim sup
n→∞

1

n
a1,n(V ) = lim sup

n→∞

1

n
a1,n(T0(V )),

and similarly with lim inf instead of lim sup. The outer angular values satisfy

(3.24) θ̂s = sup
V ∈D0(s,d)

lim sup
n→∞

1

n
a1,n(V ),

ˆ
θs = sup

V ∈D0(s,d)
lim inf
n→∞

1

n
a1,n(V ).

If dim(W i
m) = 1 for all i = 1, . . . , d and m ∈ N0, then the first lower and upper outer

angular values have the form

(3.25)
ˆ
θ1 = max

i=1,...,d
lim inf
n→∞

1

n

n∑
j=1

](W i
j−1,W i

j),

θ̂1 = max
i=1,...,d

lim sup
n→∞

1

n

n∑
j=1

](W i
j−1,W i

j).

Proof. From the triangle inequality (Proposition 2.2) we obtain

(3.26)

|a1,n(V )− a1,n(T0(V ))| ≤
n∑
j=1

{](Φ(j − 1, 0)V,Φ(j − 1, 0)T0(V ))

+ ](Φ(j, 0)V,Φ(j, 0)T0(V ))} ≤ 2

n∑
j=0

](Φ(j, 0)V,Φ(j, 0)T0(V )).

12



Theorem 3.3 shows that the angles decay geometrically for j ≥ j(0, V ), hence the right-
hand side is uniformly bounded by a constant depending on V only. Therefore (3.23)
follows, and (3.24) is an immediate consequence by taking the supremum with respect to
V .

In case s = 1 and dim(W i
m) = 1 for i = 1, . . . , d the set D0(1, d) = {W i

0 : i = 1, . . . , d}
becomes finite. Moreover, we have Φ(j, 0)W i

0 = W i
j by the invariance condition (3.6).

Thus, the formula (3.24) simplifies to (3.25).

In view of Theorem 3.3, we revisit crucial examples from [6, Section 3.2]. The first
model is defined for n ∈ N0 and 0 ≤ ϕ0 < ϕ1 ≤ π

2 by

An =


(

cos(ϕ0) − sin(ϕ0)
sin(ϕ0) cos(ϕ0)

)
, for n = 0 ∨ n ∈

⋃∞
`=1[2

2`−1, 22` − 1] ∩N,(
cos(ϕ1) − sin(ϕ1)
sin(ϕ1) cos(ϕ1)

)
, otherwise.

For this example, upper and lower angular values do not coincide in general, more precisely,
the diagram (2.7) now reads

ˆ
θ[1] <

ˆ
θ1 < θ̂1 < θ̂[1]= = = =

¯
θ[1] <

¯
θ1 < θ̄1 < θ̄[1].

For the second example, defined for n ∈ N0 by

An :=

{(−1 0
0 1

)
, for n ∈

⋃∞
`=1[2 · 2` − 4, 3 · 2` − 5],(

1 0
0 1

2

)
, otherwise

inner and outer angular values differ, i.e. the diagram (2.7) turns into

ˆ
θ[1] =

ˆ
θ1 = θ̂1 = θ̂[1]= < < <

¯
θ[1] <

¯
θ1 < θ̄1 < θ̄[1].

The dichotomy spectrum of the first example is given by ΣED = {1} and for the second
example, we obtain ΣED = [12 , 1]. In both cases W1

k = R
2 for all k ∈ N. Thus one-

dimensional trace spaces agree with the given space. In particular, the detection of angular
values cannot be reduced by Theorem 3.3 and Theorem 3.5 to lower dimensional spaces.

3.3. Inner angular values and spectral bundles. Inner angular values are more diffi-
cult to handle, both numerically and theoretically, since the supremum over all subspaces
is taken before going to the limit. For general dimensions we do not have a result com-
parable to Theorem 3.3. However, for one-dimensional subspaces a reduction is possible
under a uniformity condition. Recall from (2.4) the notion

am,n(v) =
n∑

j=m

](Φ(j − 1, 0)v,Φ(j, 0)v) m,n ∈ N, v ∈ Rd, v 6= 0(3.27)

with am,n(v) = 0 for m > n. For a subspace V ⊆ Rd we introduce the quantity

θ1(V ) = lim sup
n→∞

sup
v∈V,v 6=0

a1,n(v)

n
.
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Theorem 3.6. Let the assumptions of Theorem 3.3 hold. Further assume that the inner
and the uniform inner angular values (cf. (2.5), (2.6) and (2.7)) agree within each fiber,
i.e. for i = 1, . . . , ` the following holds

θ1(W i
0) = lim

n→∞

1

n
sup

v∈Wi
0,v 6=0

sup
k∈N0

ak+1,k+n(v).(3.28)

Then the first inner angular value θ1(R
d) satisfies

θ1(R
d) = max

i=1,...,`
θ1(W i

0).

Proof. The main step is to show for i = 1, . . . , `

(3.29) θ1(R(P s0,i)) ≤ max
(
θ1(W i

0), θ1(R(P s0,i+1))
)
.

Since P s0,1 = Id, P
s
0,`+1 = 0 and sup∅ = 0, we obtain by induction

θ1(R
d) ≤ max

i=1,...,`
θ1(W i

0).

The converse inequality “≥” is obvious, hence our assertion is proved.
In the following we choose j? such that (cf. (3.19))

2K2qj? ≤ 1, where q := max
i=1,...,`

σ+i+1

σ−i
< 1.

For the proof of (3.29) it is enough to consider v ∈ R(P s0,i) with v /∈ R(P s0,i+1) and

v /∈ W i
0. Figure 3.5 illustrates the idea of this proof. We choose γ ∈ Ri+1 and apply

Figure 3.5: Idea of proof for Theorem 3.6. First, we construct a v-dependent index k?,
such that Φ(k?, 0)v is just above the diagonal. Then, we exploit geometric convergence
forward resp. backward in time for proving v-independent estimates.

Theorem 3.2 to Φγ and V = span(v) as in Step 2 of the proof of Theorem 3.3. Note that
the projector Qs0,i+1 : V → R(P s0,i+1)∩ V from (3.15) is trivial since V is one-dimensional
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and v /∈ R(P s0,i+1). Moreover, by (3.5) we have P0,iv = P u0,i+1P
s
0,iv = P u0,i+1v 6= 0.

Therefore, we can invoke inequality (3.11) from the proof of Theorem 3.2 with P̃ = P uk,i+1,

ρsk(v) =
‖P s0,i+1v‖
‖Pu0,i+1v‖

, αsαu ≤ q. This shows

‖P sk,i+1Φγ(k, 0)v‖ ≤ K2qkρsk(v)‖P uk,i+1Φγ(k, 0)v‖ ∀k ∈ N0.

We conclude that the following index, depending on v, exists

k? = k?(v) = min{k ∈ N0 : ‖P sk,i+1Φγ(k, 0)v‖ ≤ ‖P uk,i+1Φγ(k, 0)v‖}.

Applying Theorem 3.2 once more to Φγ and V = span(Φγ(k?, 0)v) then shows for j ≥
k? + j?

](Φ(j, k?)Φ(k?, 0)v,Φ(j, k?)P
u
k?,i+1Φ(k?, 0)v)

= ](Φ(j, 0)v,Φ(j, 0)P u0,i+1v) ≤ 2K2

√
3
qj−k? .

Next we estimate angles for j ≤ k? by invoking (3.14) with k = k? − 1 and V =
span(Φγ(k? − 1, 0)v). Since v /∈ W i

0 the projector in (3.12) is trivial, and (3.13) holds
by the choice of j?. Hence we obtain for 0 ≤ j ≤ k? − 1− j?

](Φ(j, k? − 1)Φ(k? − 1, 0)v,Φ(j, k?)P
s
k?,i+1Φ(k?, 0)v)

= ](Φ(j, 0)v,Φ(j, 0)P s0,i+1v) ≤ 2K2

√
3
qk?−1−j .

Combining these estimates with the triangle inequality we find with suitable constants C
independent of n, j, v,

(3.30)

a1,n(v)

n
=

1

n

n∑
j=1

](Φ(j − 1, 0)v,Φ(j, 0)v)

≤ 1

n

[{ k?−1−j?∑
j=1

+
n∑

j=k?+1+j?

}
](Φ(j − 1, 0)v,Φ(j, 0)v) + (2j? + 1)

π

2

]

≤ 1

n

[4K2

√
3

(

k?−1−j?∑
j=0

qk?−1−j +
n∑

j=k?

qj−k?) + C

+

k?∑
j=1

](Φ(j − 1, 0)P s0,i+1v,Φ(j, 0)P s0,i+1v)

+

n∑
j=k?+1

](Φ(j − 1, 0)P u0,i+1v,Φ(j, 0)P u0,i+1v)
]

≤ 1

n

[
C + a1,k?(P

s
0,i+1v) + ak?+1,n(P u0,i+1v)

]
.
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Given ε > 0, assumption (3.28) yields a number n0 = n0(ε) such that

(3.31)

1

n
sup
k∈N0

sup
v∈Wi

0

ak+1,k+n(v) ≤ θ1(W i
0) + ε, ∀n ≥ n0,

1

n
sup

v∈R(P s0,i+1)
a1,n(v) ≤ θ1(R(P s0,i+1)) + ε, ∀n ≥ n0.

Thus we have

ak?+1,n(P u0,i+1v) ≤

{
(n− k?)(θ1(W i

0) + ε), if n− k? ≥ n0,
n0

π
2 , if n− k? < n0,

a1,k?(P
s
0,i+1v) ≤

{
k?(θ1(R(P s0,i+1)) + ε), if k? ≥ n0,
n0

π
2 , if k? < n0.

Summing up, we obtain for n ≥ n0(ε),

a1,n(v)

n
≤ 1

n

[
min(k?, n)(θ1(R(P s0,i+1)) + ε) + (n−min(n, k?))(θ1(W i

0) + ε)

+C + n0π] ≤ max(θ1(W i
0), θ1(R(P s0,i+1))) + ε+

1

n
(C + n0π).

Finally, the assertion (3.29) follows by taking the supremum over v and making the last
term small for n sufficiently large.

3.4. Uniform angular values and spectral bundles. In this section we extend Theorem
3.5 and Theorem 3.6 to uniform outer and inner angular values. As before, we show that
it is enough to compute angular values for subspaces which have their basis in the fibers
induced by the dichotomy spectrum.

Theorem 3.7. Let the assumptions of Theorem 3.3 hold. Then the uniform outer an-
gular values θ̂[s],

ˆ
θ[s], s = 1, . . . , d, can be represented with the partial sums (2.4) and the

trace space (3.18) as follows:

θ̂[s] = sup
V ∈D0(s,d)

lim
n→∞

sup
k∈N0

1

n
ak+1,k+n(V ),(3.32)

ˆ
θ[s] = sup

V ∈D0(s,d)
lim
n→∞

inf
k∈N0

1

n
ak+1,k+n(V ).(3.33)

With the partial sums from (3.27), the first uniform inner angular value satisfies

(3.34) θ[1] = max
i=1,...,`

θ[1](W i
0), where θ[1](V ) = lim

n→∞
sup
v∈V

sup
k∈N0

1

n
ak+1,k+n(v).

Proof. Recall am,n(V ) from (2.4) and use (3.26), (3.19) to find that V ∈ G(s, d) satisfies
with some constant C depending on V but not on k, n,

(3.35)

|ak+1,k+n(V )− ak+1,k+n(T0(V ))| ≤ 2

k+n∑
j=k

](Φ(j, 0)V,Φ(j, 0)(T0(V )))

≤ 2C(0, V )

k+n∑
j=k

qj−k ≤ C.
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Given ε > 0, choose n0 such that for n ≥ n0∣∣ 1
n

sup
k∈N0

ak+1,k+n(V )− lim
m→∞

1

m
sup
k∈N0

ak+1,k+m(V )
∣∣ ≤ ε.

Then select k(n) ∈ N0 such that 1
n |ak(n)+1,k(n)+n(V )− supk∈N0

ak+1,k+n(V )| ≤ ε holds for
n ≥ n0. This implies∣∣ 1

n
ak(n)+1,k(n)+n(V )− lim

m→∞

1

m
sup
k∈N0

ak+1,k+m(V )
∣∣ ≤ 2ε, n ≥ n0.

With (3.35) we obtain for n ≥ n0

lim
m→∞

1

m
sup
k∈N0

ak+1,k+m(V ) ≤ 1

n
ak(n)+1,k(n)+n(V ) + 2ε

≤ C

n
+

1

n
ak(n)+1,k(n)+n(T0(V )) + 2ε

≤ C

n
+

1

n
sup
k∈N0

ak+1,k+n(T0(V )) + 2ε.

As n→∞ this shows

lim
n→∞

1

n
sup
k∈N0

ak+1,k+n(V ) ≤ 2ε+ lim
n→∞

1

n
sup
k∈N0

ak+1,k+n(T0(V )).

A corresponding inequality with V and T0(V ) exchanged, is proved in the same manner,
and (3.32) follows by taking the supremum over V ∈ G(s, d). The same type of estimate
leads to (3.33). The formula in (3.34) follows by adapting the proof of Theorem 3.6. For
the quantities θ[1](V ) from (3.34) we show

(3.36) θ[1](R(P s0,i)) ≤ max
(
θ[1](W i

0), θ[1](R(P s0,i+1))
)
, i = 1, . . . , `.

The estimate (3.30) for v ∈ R(P s0,i) \ (R(P s0,i+1) ∪W i
0) now reads

1

n
ak+1,k+n(v) ≤ 1

n

[
C + ak+1,k?−j?−1(P

s
0,i+1v) + amax(k,k?+j?+1),n+k(P

u
0,i+1v)

]
.

Recall am,n = 0 for m > n and note that there is no relation between k, k?(v) and n. The
condition (3.31) for n0 turns into

1

n
sup
v∈Wi

0

sup
k∈N0

ak+1,k+n(v) ≤ θ[1](W i
0) + ε, ∀n ≥ n0,

1

n
sup

v∈R(P s0,i+1)
sup
k∈N0

ak+1,k+n(v) ≤ θ[1](R(P s0,i+1)) + ε, ∀n ≥ n0.

This leads to

(3.37)

ak1,n+k(P
u
0,i+1v) ≤

{
(n+ k − k1)(θ[1](W i

0) + ε), if n+ k − k1 ≥ n0,
n0

π
2 , if n+ k − k1 < n0,

ak+1,k2(P s0,i+1v) ≤

{
(k2 − k − 1)(θ[1](R(P s0,i+1)) + ε), if k2 − k − 1 ≥ n0,
n0

π
2 , if k2 − k − 1 < n0,
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where k1 = max(k, k? + j? + 1), k2 = k? − j? − 1. In both cases k ≥ k? + j? + 1 and
k < k? + j? + 1 we find the estimate n+ k− k1 + k2− k− 1 ≤ n for the sum of coefficients
in (3.37). Hence, we can continue

1

n
ak+1,k+n(v) ≤ 1

n

[
C + n0π + n

(
max(θ[1](W i

0), θ[1](R(P s0,i+1))) + ε
)]
.

Taking the supremum over k and v and then letting n→∞ yields the assertion (3.36) as
in the proof of Theorem 3.6.

4. Numerical algorithms and results. The aim of this section is to develop an algo-
rithm for the numerical detection of outer angular values. The previous section provides
the essential reduction result in Theorem 3.5:

θ̂s = sup
V ∈G(s,d)

lim sup
n→∞

1

n

n∑
j=1

](Φ(j − 1, 0)V,Φ(j, 0)V )

= sup
V ∈D0(s,d)

lim sup
n→∞

1

n

n∑
j=1

](Φ(j − 1, 0)V,Φ(j, 0)V ).

The search for the supremum of V in D0(s, d) instead of G(s, d) reduces the computational
effort substantially and, in some cases, one needs to consider only finitely many subspaces.

This observation also illuminates the fact, that various numerical approaches tend to
fail:

• Algorithms that are based on a simple forward iteration cannot provide the largest
angular value. A generic subspace is pushed by the dynamics towards the most
unstable trace space of equal dimension, see the upper row in Figure 3.4. But in
general, the angular value is not attained in this subspace. For finding the correct
angular value, also non-generic subspaces must be considered, as sketched in the
lower row of Figure 3.4.
• Algorithms that are based on the computation of eigenvalues and eigenspaces,

e.g. by applying the Schur decomposition, provide good results for autonomous
systems. This fits well to our theory, since in the autonomous case, spectral bun-
dles w.r.t. the dichotomy spectrum are indeed eigenspaces. The corresponding
analysis for autonomous systems is carried out in detail in [6]. Further note that
for nonautonomous modes, eigenvalues are dynamically irrelevant, which has first
been shown by Vinograd, see [28]. Corresponding algorithms fail in testing all
trace subspaces.

To circumvent these issues, we first detect the dichotomy spectrum and the correspond-
ing spectral bundles. Then all trace subspaces become available, resulting in a numerically
expensive but reliable approximation of θ̂s.

4.1. An algorithm for computing angular values. Based on the results from Section 3,
we propose the following three steps for the numerical approximation of θ̂s.

Step 1: Computation of the dichotomy spectrum. The computation of Bohl expo-
nents leads to an efficient algorithm for the approximation of the dichotomy spectrum.
Upper and lower Bohl exponents of the scalar difference equation

un+1 = anun, n ∈ I, 0 < inf
n∈I
|an| ≤ sup

n∈I
|an| <∞
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are defined as, see [20]

β(aI) := lim
n→∞

inf
κ∈I

κ+n−1∏
j=κ

|aj |

 1
n

, β(aI) := lim
n→∞

sup
κ∈I

κ+n−1∏
j=κ

|aj |

 1
n

.

It follows that ΣED = [β(aI), β(aI)].
For the d-dimensional difference equation (1.1), a corresponding result is more delicate

to obtain. One may first transform the system into upper triangular form, using a qr-
decomposition A = QT of a given matrix A into the product of an orthogonal matrix Q
and an upper triangular matrix T , see [18, Section 4.4] and [11]:

Q0T0 = qr(A0)
for j = 1, 2, . . . do

QjTj = qr(AjQj−1)
end for

Note that Aj = QjTjQ
>
j−1 for j ≥ 1. For non-degenerate models, the Bohl exponents

of the diagonal entries of Tj (denoted by Tj(i, i)) determine the dichotomy spectrum, cf.
[26] for more details on the theoretical background. Fix H ∈ N sufficiently large, compute

(4.1) β(i, κ) :=

κ+H∏
j=κ

|Tj(i, i)|

 1
H

, i = 1, . . . , d, κ = 0, 1, . . .

and obtain with β(i) := minκ β(i, κ), β(i) := maxκ β(i, κ) the approximate spectrum

ΣED ≈
⋃d
i=1[β(i), β(i)].

Step 2: Computation of spectral bundles. Recall for k ∈ N and i ∈ {1, . . . , `} the
representation (3.3), (3.5) of the spectral bundle W i

k = R(Pk,i) = R(P sk,iP
u
k,i+1) with

dim(W i
k) = di. For computing these sets numerically, we apply the ansatz, proposed

in [19, Section 2.5]. Take di random vectors rν ∈ Rd and obtain a basis of W i
k (in a

generic sense) by calculating Pk,irν for ν = 1, . . . , di. For this task, we choose γi ∈ Ri,
γi+1 ∈ Ri+1, 0 ≤ n− � k � n+ and solve for each ν ∈ {1, . . . , di} and n ∈ {n−, . . . , n+−1}
the inhomogeneous linear systems

(4.2) vνn+1 =
1

γi+1
Anv

ν
n + δn,k−1rν , uνn+1 =

1

γi
Anu

ν
n − δn,k−1Ak−1vνk−1

in a least squares sense. Here, δ denotes the Kronecker symbol. For the solutions of (4.2)
one has Pk,irν ≈ uνk, and we refer to [19, Section 2.6] for precise error estimates.

Step 3: Computation of angular values. Assume that the spectral bundles W i
j ,

i = 1, . . . , `, j = k, . . . , k + m have been computed in step 2 for a fixed value of k ∈ N
and for an interval of fixed length m ∈ N. We present a numerical scheme for computing
approximate values of θ̂s in case s ∈ {1, 2}. Assume that dim(W i

k) ∈ {1, 2} and introduce
the balls Bik = {v ∈ W i

k : ‖v‖ = 1} for all i ∈ {1, . . . , `}. For a subspace V ∈ G(s, d)
(respectively a vector v ∈ Rd ) we abbreviate (cf. (2.4))

θs(V ) =
1

n
ak+1,k+n(V ) =

1

n

k+n∑
j=k+1

](Φ(j − 1, k)V,Φ(j, k)V ).
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Starting with s = 1 our scheme reads:

for i = 1, . . . , ` do
wi = max

v∈Bik
θ1(v)

end for
θ̂1 = maxi=1,...,`w

i.

If dim(W i
k) = 1 then θ1(W i

k) is computed for a single one-dimensional subspace. The
detection of maxv∈Bik

θ1(v) is a one-dimensional optimization problem if dimW i
k = 2. For

this task, we apply the Matlab-routine fminbnd that is based on golden section search
and parabolic interpolation.

The corresponding scheme for s = 2 is given by:

κ = 0
for i = 1, . . . , ` do

if dim(W i
k) = 2 then

κ = κ+ 1
wκ = θ2(W i

k)
end if

end for
for i1 = 1, . . . , `− 1 do

for i2 = i1 + 1, . . . , ` do
κ = κ+ 1
wκ = max

x∈Bi1k , y∈B
i2
k

θ2(span(x, y))

end for
end for
θ̂2 = maxi=1,...,κw

i.

Note that the algorithm avoids to distinguish cases. If dim(W i1
k ) = dim(W i2

k ) = 1 then

θ2(W i1
k ⊕ W

i2
k ) is computed for a single two-dimensional subspace. In case dim(W i1

k ) +

dim(W i2
k ) = 3, we solve a one-dimensional optimization problem with the tools, described

in case s = 1. If dim(W i1
k ) + dim(W i2

k ) = 4 then the optimization problem is two-
dimensional, and we apply the Matlab-command fminsearch, which uses a derivative-
free method for finding minima of unconstrained multivariable functions.

In all cases, we avoid numerical errors during the iteration of Φ(j, k)x for x ∈ W i
k (i.e.

convergence towards the most unstable direction) by renormalizing the resulting output
to W i

j after each step.

Details for step 1. Let a sequence of matrices (Aj)j=0,...,M−1 be given, where M =
100µ, µ ∈ N, µ ≥ 2. For computing the Bohl exponents in (4.1), we choose H = M

2 . We
sort the Bohl exponents such that β(1) ≥ · · · ≥ β(d). In step 2, a sufficiently large gap is
needed for detecting spectral bundles accurately. Therefore, we join two spectral intervals
[β(i + 1), β(i + 1)] and [β(i), β(i)] into [β(i + 1), β(i)] if the condition β(i + 1) + 0.1 ≥
β(i) holds for i ∈ {1, . . . , d − 1}. One the one hand, we lose information about the
corresponding trace spaces in the vanishing resolvent interval but on the other hand we
improve numerical stability. Note that the information lost can be recovered in step 3, by
solving an optimization problem.

Details for step 2. Choose n− = 0 and n+ = M . For getting accurate numerical data,
we define a gap-size of length 50 and ensure this gap between k and both sides n± of the
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finite interval. Then, the least squares solution of (4.2) is simultaneously computed for all
k ∈ I = [50,M − 50] ∩Z. One may avoid large least squares problems by subdividing the
system into small problems on subintervals of length 200. In this way, we obtain bases of
W i
k for k ∈ I and i ∈ {1, . . . , `}. If these fiber bundles are two-dimensional, we choose an

orthonormal basis at each time instance.

Details for step 3. This step relies on the fibers which have been computed in step 2
for k ∈ I. Thus, we start the algorithm in step 3 with the settings k = 50 and m = M−100.

4.2. Numerical experiments. We apply our algorithm from Section 4.1 to several
models. First we reconsider some autonomous difference equations from cf. [6]. For this
class of systems the algorithm from [6, Section 6] uses a series of Schur decompositions and
one-dimensional optimization if necessary. Although this is more efficient for autonomous
systems, we still apply in the following our general algorithm to the autonomous case in
order to illustrate its performance. Furthermore, we apply both algorithms in Section
4.2.2 to autonomous systems and compare the results.

4.2.1. Two-dimensional models. We begin with several two-dimensional models for
which angular values are analytically known. For these examples we always find point
spectrum which we approximate by upper and lower Bohl exponents. In some cases
upper and lower exponents coincide up to machine accuracy, while in other models, we
numerically observe intervals of length ≈ 10−3. In the following we denote by Tϕ =(

cosϕ − sinϕ
sinϕ cosϕ

)
a rotation matrix.

An spectral intervals θ̂1,num |θ̂1 − θ̂1,num|

( 2 0
0 3 )

I1 = [3, 3]
I2 = [2, 2]

5 · 10−15 5 · 10−15(
cosϕ sinϕ
sinϕ − cosϕ

)
I1 = [1, 1] π

2−3·10
−5 3 · 10−5

T(n+1)ϕ · ( 2 0
0 3 ) · T−n·ϕ

I1 = [2.996, 3.000]
I2 = [2.000, 2.002]

1
3+6·10−13 6 · 10−13

Tn·ϕ I2 = [1, 1] π
4 +3.1·10−4 3.1 · 10−4

Table 4.1: Spectral intervals and the first angular value for five examples. We set ϕ = 1
3

and use our algorithm with M = 2000 iterates.

The models from the first three rows in Table 4.1 are autonomous and we obtain
approximately the expected results, see [6]. The second example is a reflection which
exhibits the angular value θ̂1 = π

2 with a somewhat smaller error. The third model is
constructed via a nonautonomous similarity transformation with rotation matrices, and
we obtain the angular value θ̂1 = ϕ = 1

3 with high accuracy. Finally, in the last row of
Table 4.1 we consider a rotation by the angle ϕ = 1

3 which is an irrational multiple of π.
The angle ](u, Tn·ϕu) is π

4 on average, in agreement with our numerical experiment.

4.2.2. Two autonomous examples. We apply our algorithm as well as [6, Algorithm
6.2] to autonomous examples and compare the resulting output. For this task we take the
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normal form

A(ρ, ϕ) =

(
cos(ϕ) −ρ−1 sin(ϕ)
ρ sin(ϕ) cos(ϕ)

)
, 0 < ρ ≤ 1, 0 < ϕ ≤ π

2
(4.3)

and consider first the matrix A(17 ,
1
3). The autonomous algorithm uses an in-depth analysis

of the first angular value of (4.3), given in [6, Theorem 6.1]. The resulting angular value
is θ̂1,auto = 0.32106. In coincidence with this result, the algorithm from Section 4.1 yields

the spectral interval I1 = [0.9991, 1.0009] and the angular value θ̂1,num = 0.32175.
Next, we analyze the four-dimensional matrix

A =

(
A(1, 12) I2

0 ηA(12 , 1.4)

)
with η = 1.2. The algorithm from Section 4.1 findes the spectral intervals

I1 = [1.1992, 1.2008] and I2 = [1.0000, 1.0000]

with corresponding angular values

θ̂1,num = θ1(W1
k) = 1.355095 and θ2(W2

k) = 0.500000.

This fits well to the results of the autonomous algorithm. The corresponding analysis is
presented in [6, Section 6.3.2] and provides the angular value θ̂1,auto = 1.355003.

4.2.3. Angular values and tangent spaces. For a geometric interpretation of angular
values, we start with an invertible discrete time dynamical system which is defined on Z.
Let Fn : Rd → R

d, n ∈ Z be a family of C2- diffeomorphisms and let

(4.4) xn+1 = Fn(xn), n ∈ Z.

Denote by Ψ the solution operator of (4.4). With respect to a bounded trajectory ξZ :=
(ξn)n∈Z, we introduce the corresponding variational equation

(4.5) un+1 = DFn(ξn)un, n ∈ Z

with solution operator Φ. Note that (4.5) has the form (1.1) with An = DFn(ξn).
Stable and unstable fiber bundles of ξZ are defined at time ` ∈ Z as

Fs` :=
{
x ∈ Rd : lim

n→∞
|Ψ(n, `)(x)− ξn| = 0

}
,

Fu` :=

{
x ∈ Rd : lim

n→−∞
|Ψ(n, `)(x)− ξn| = 0

}
,

and we denote corresponding tangent spaces by Tξ`F
s,u
` .

We fix k ∈ Z. For two-dimensional systems with dim(Fs` ) = dim(Fu` ) = 1, we observe
that

θ1(W2,1
k ) =

1

n

k+n∑
j=k+1

](Φ(j − 1, k)W2,1
k ,Φ(j, k)W2,1

k )

=
1

n

k+n∑
j=k+1

](Tξj−1
Fs,uj−1, TξjF

s,u
j )
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describes the angle between successive stable resp. unstable tangent spaces on average.
The maximum of these two averages is θ̂1 = max{θ1(W1

k), θ1(W2
k)}.

In higher dimensional systems, a geometric interpretation of angular values is more
involved. If a three-dimensional model, for example, satisfies dim(Fu` ) = 1 and dim(Fs` ) =
2, we get for the one-dimensional unstable direction

θ1(W1
k) =

1

n

k+n∑
j=k+1

](Tξj−1
Fuj−1, TξjF

u
j ).

Next, we consider the two-dimensional stable direction

Ws
k :=

{
W2
k , if dim(W2

k) = 2,

W2
k ⊕W3

k , otherwise.

The first angular value

θ1(Ws
k) = sup

v∈TξkF
s
k

1

n

k+n∑
j=k+1

](Φ(j − 1, k)v,Φ(j, k)v)

describes on average the maximal angle between successive one-dimensional directions in
TξZFsZ. Combining these result gives θ̂1 = max{θ1(W1

k), θ1(Ws
k)}.

For three-dimensional models, also second angular values are of interest. The average
angle between successive two-dimensional stable subspaces is given by

θ2(Ws
k) =

1

n

k+n∑
j=k+1

](Tξj−1
Fsj−1, TξjF

s
j )

and the latter formula provides a nice geometrical interpretation. However, for computing
θ̂2, we have to consider further subspaces:

θ̂2 = max({θ2(Ws
k)} ∪ {θ2(V ) : V =W1

k ⊕ span(u) : u ∈ Ws
k}).

As a consequence, second and higher anglar values are in general not attained within the
stable resp. unstable tangent bundle.

4.2.4. Models of Hénon type. We illustrate the geometric interpretation of angular
values from Section 4.2.3 with two autonomous, nonlinear systems. Of interest are the
two-dimensional Hénon map [16] as well as its three dimensional variant

F 2

(
x1
x2

)
=

(
1 + x2 − 1.4x21

0.3x1

)
, F 3

x1x2
x3

 =

1 + x3 − 1.4x21
x1 + x3

0.2x1 + 0.1x2

 .

The latter model is constructed similar to [7, Example 2], and possesses, like the original
Hénon map, a non-trivial attractor.

We choose M = 2000, k = 50 and compute angular values for the corresponding
variational equation (4.5). Note that we apply the algorithm to these models even though
we do not know whether the hyperbolicity assumptions are satisfied.
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The two-dimensional Hénon model. We choose the initial point close to the Hénon

attractor ξ0 =
(
−1.202 0.3713

)>
and obtain the spectral intervals

I1 = [1.4896, 1.5481] and I2 = [0.1937, 0.2014]

with corresponding angular values

θ1(W1
k) = 0.3644, θ1(W2

k) = 0.7525.

Hence θ̂1 = θ1(W2
k) describes the angle between successive stable tangent spaces on aver-

age. Stable and unstable tangent spaces are shown in Figure 4.1. In addition, we present
approximations of the stable and of the unstable manifold with respect to the fixed point
ξ.

Figure 4.1: Upper panel: Stable (green) and unstable (red) manifolds of the fixed point ξ
of the two-dimensional Hénon model. Lower panel: Successive stable (left) and unstable
(right) tangent spaces.

Finally, we illustrate the dependence of θ̂1 on the length m of the finite interval in
Figure 4.2.

The three-dimensional Hénon model. We choose ξ0 =
(
0.2 0.1 0

)>
as initial point

and obtain the spectral intervals

I1 = [1.3967, 1.4588] and I2 = [0.3113, 0.3919].

The corresponding unstable fibers W1
k = TξkFuk are one-dimensional and the stable fibers

W2
k = TξkFsk are two-dimensional. These subspaces are shown in Figure 4.3 for 81 ≤ k ≤

85.
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Figure 4.2: Angular value θ̂1 in the two-dimensional Hénon model, computed for k = 50
and m ∈ [102, 104] ∩N.

The angular value θ̂1 = 0.8129 is attained in W1
k :

θ1(W1
k) = 0.8129, max

x∈B2k
θ1(x) = 0.7064.

While the first angular value θ̂1 describes the angle between successive unstable tangent
spaces TξkFuk on average, the average angle between successive stable tangent spaces TξkFsk
is given by the second angular value θ̂2 = 0.8432, see Figure 4.3. This is justified by our
numerical computations

θ2(W2
k) = 0.8432, max

x∈B2k
θ2(W1

k ⊕ span(x)) = 0.6352.

Note that generally, angular values are not attained within stable respectively unstable
subspaces. Therefore, the three-dimensional Hénon model seems to be exceptional in this
regard. In general, invariant subspaces (in a nonautonomous sense) in which angular
values are attained, are not characterized by contracting or expanding dynamics, see
Section 4.2.3.

4.2.5. A three-dimensional parameter dependent model. We construct a three-
dimensional nonautonomous model, which allows an explicit study of angular values. It
particularly illustrates that angular values do not necessarily depend on stability properties
of the system.

Consider the parameter dependent model for ϕ = 1
3 and p > 0

(4.6) An = T 1,2
ϕ(n+1) ·

1
2 0 0
0 p 0
0 0 3

 · T 1,2
−ϕ·n with T 1,2

ϕ =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 .

p = 1
2 . We numerically obtain the spectral intervals I1 = [3, 3] and I2 = [12 ,

1
2 ] and the

first angular value

θ1(W1
k) = 0, max

x∈B2k
θ1(x) =

1

3
, θ̂1 =

1

3
,

as well as the second angular value

θ2(W2
k) = 0, max

x∈B2k
θ2(W1

k ⊕ span(x)) =
1

3
, θ̂2 =

1

3
,

cf. Figure 4.4. Note that the subspaces, in which the maximum is attained are not unique.
The component in W2

k can be chosen arbitrarily.

25



Figure 4.3: Upper panel: Stable (green) and unstable (red) manifolds of the fixed point ξ
of the three-dimensional Hénon model. Lower panel: Successive one-dimensional unstable
(left) and two-dimensional stable (right) tangent spaces.

p = 2. In this example, we obtain three spectral intervals I1 = [3, 3], I2 =
[1.9955, 2.0000] and I3 = [0.5000, 0.5011]. We observe that

θ1(W1
k) = 0, θ1(W2

k) =
1

3
, θ1(W3

k) =
1

3
.

Thus θ̂1 = 1
3 , where the maximum is attained for two fibers. In Figure 4.5, the algorithm

chooses W3
k .

The second angular value is also attained for two trace spaces

θ2(W1
k ⊕W2

k) =
1

3
, θ2(W1

k ⊕W3
k) =

1

3
, θ2(W2

k ⊕W3
k) = 0, θ̂2 =

1

3
.
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Figure 4.4: Spectral bundles (blue) of (4.6) for k = 51 and p = 1
2 . The angular values θ̂1,2

are attained at subspaces which are shown in red.

Figure 4.5: Spectral bundles (blue) of (4.6) for k = 51 and p = 2. The angular values θ̂1,2
are attained at subspaces which are shown in red.

4.2.6. A random dynamical system. For ϕ = 0.2, we define

B1 =

2 cos(ϕ) −2 sin(ϕ) 0
2 sin(ϕ) 2 cos(ϕ) 0

0 0 3

 , B2 =

1 0 0
0 1 0
0 0 5


and construct the 3-dimensional random dynamical system

An = Br, where r ∈ {1, 2} is uniformly distributed for each n ∈ N.

This random dynamical system allows an explicit study of the dichotomy spectrum, see
[1, Remark 4.2.9], and of angular values. ΣED = {λ1, λ2} with

λ1 =
√

3 · 5 ≈ 3.872, λ2 =
√

1 · 2 ≈ 1.414

and corresponding trace spaces are

W1
k = span

(
0
0
1

)
, W2

k = span
((

1
0
0

)
,
(

0
1
0

))
.
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First and second angular values are equal to 1, since

θ1(W1
k) = 0, ∀x ∈ B2k : θ1(x) =

0.2 + 0

2
= 0.1

and
θ2(W2

k) = 0, ∀x ∈ B2k : θ2(W1
k ⊕ span(x)) = 0.1.

These analytic results are in coincidence with the output of our numerical algorithm.
One realization gives the spectral intervals I1 = [3.86, 3.92] and I2 = [1.39, 1.42] and the
first angular value

θ1(W1
k) = 0, max

x∈B2k
θ1(x) = 0.099631 = θ̂1.

A numerical computation of the second angular value yields

θ2(W2
k) = 0, max

x∈B2k
θ2(W1

k ⊕ span(x)) = 0.099631 = θ̂2.

4.2.7. Coupled oscillators. We consider a canonical model for two nonlinear oscilla-
tors, where these oscillators are linearly coupled with diffusion-like coupling. This ODE-
model originates from [3], see also [13, 12]:

(4.7) x′ = G(x), G(x) =


x1 + p1x2 − (x21 + x22)x1 − λ(x1 + x2 − x3 − x4)
−p1x1 + x2 − (x21 + x22)x2 − λ(x1 + x2 − x3 − x4)
x3 + p2x4 − (x23 + x24)x3 + λ(x1 + x2 − x3 − x4)
−p2x3 + x4 − (x23 + x24)x4 + λ(x1 + x2 − x3 − x4)


with parameters p1 = 0.1 and p2 = 0.55. Let F : R4 → R

4 be the 1-flow of (4.7).
As in Section 4.2.3 we determine angular values for the variational equation along an
F -orbit. For computing the 1-flow, we apply the explicit Euler scheme with step size

h = 0.01. With initial value ξ0 =
(
1 0 1 0

)>
, we compute F -orbits of length M = 1000

for λ ∈ {0, 0.05, 0.2, 0.5}, see Figure 4.6. For illustrating our algorithm, angular values

Figure 4.6: Orbit segments of length M = 1000 of the 1-flow of (4.7) for various values
of the coupling parameter λ.

are presented for all trace spaces. These trace spaces are depicted in Figure 4.7. In
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both diagrams, we project the R4 to the three-dimensional (x1, x4, x2 + x3) space. This
projection preserves the dimension and the linear structure of the subspaces, displayed in
Figure 4.7.

Figure 4.7: Trace spaces of (4.7), computed for k = 51 and various values of the coupling
parameter λ.

λ = 0. The spectral intervals are I1 = [0.98, 1.00], I2 = [0.132, 0.134], dim(W1
k) =

dim(W2
k) = 2 and the first angular value is

θ̂1 = max
x∈B1k

θ1(x) = 0.550003 = max
x∈B2k

θ1(x).

The second angular value is given by

θ̂2 = θ2(W1
k) = 0.550003 = θ2(W2

k) = max
x∈B1k, y∈B

2
k

θ2(span(x, y)).

Note that for λ = 0, we have the block matrix DG(x) =

(
H1,2(x) 0

0 H3,4(x)

)
with

Hi,j(x) =

(
1− 3x2i − x2j pmin(i,2) − 2xixj

−pmin(i,2) − 2xixj 1− x2i − 3x2j

)
for (i, j) ∈ {(1, 2), (3, 4)}.

But the intuitive conjecture that each Hi,j generates one spectral interval turns out to be
wrong. Indeed, we get for k = 51

W1
k = span




0.352
−0.144
−0.206
0.902

 ,


0.856
−0.350
0.085
−0.370


 , W2

k = span




0.374
0.918
0.128
0.030

 ,


−0.049
−0.121
0.965
0.226


 .
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λ = 0.05. We obtain the spectral intervals I1 = [0.993, 1.001], I2 = [0.146, 0.147],
dim(W1

k) = dim(W2
k) = 2,

θ̂1 = max
x∈B1k

θ1(x) = 0.5389, max
x∈B2k

θ1(x) = 0.5157

and
θ̂2 = θ2(W1

k) = 0.53901 = θ2(W2
k), max

x∈B1k, y∈B
2
k

θ2(span(x, y)) = 0.5262.

λ = 0.2. In this case, we get 3 spectral intervals I1 = [0.99, 1.00], I2 = [0.703, 0.705],
I3 = [0.13, 0.16], dim(W1

k) = dim(W2
k) = 1, dim(W3

k) = 2 with angular values

θ̂1 = θ1(W1
k) = 0.452, θ1(W2

k) = 0.409, max
x∈B3k

θ1(span(x)) = 0.401

and

θ̂2 = θ2(W1
k ⊕W2

k) = 0.443,

max
x∈B3k

θ2(W1
k ⊕ span(x)) = 0.301, max

x∈B3k
θ2(W2

k ⊕ span(x)) = 0.403.

λ = 0.5. For this coupling, we find 4 spectral intervals I1 = [0.99, 1.00], I2 =
[0.342, 0.347], I3 = [0.1683, 0.1698], I4 = [0.0609, 0.0615], dim(W1

k) = dim(W2
k) =

dim(W3
k) = dim(W4

k) = 1 with angular values

θ̂1 = θ1(W2
k) = 0.44, θ1(W1

k) = 0.41, θ1(W3
k) = 0.43, θ1(W4

k) = 0.39

and

θ̂2 = θ2(W1
k ⊕W4

k) = 0.515, θ2(W1
k ⊕W2

k) = 0.453,

θ2(W1
k ⊕W3

k) = 0.333, θ2(W2
k ⊕W3

k) = 0.468,

θ2(W2
k ⊕W4

k) = 0.501, θ2(W3
k ⊕W4

k) = 0.463.

Finally we note that this model particularly illustrates that all cases θ̂1


<
=
>

 θ̂2 may occur.
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