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Abstract

In [2] the LCP-property of a finite set ¥ of square complex matrices
was introduced and studied. ¥ is an LCP-set if all left infinite products
formed from matrices in ¥ are convergent. It had been shown earlier
in [3] that a set ¥ paracontracting with respect to a fixed norm is an
LCP-set. Here we prove a converse statement: If ¥ is an LCP-set
with a continuous limit function then there exists a norm such that all
matrices in ¥ are paracontracting with respect to this norm.

In addition we introduce the stronger property of l-paracontractivity.
It is shown that common l-paracontractivity of a set of matrices has
a simple characterization. It turns out that in the above mentioned
converse statement the norm can be chosen such that all matrices are
l-paracontracting.

It is shown that for ¥ consisting of two projectors the LCP-property
is equivalent to l-paracontractivity, even without requiring continuity.

1 Introduction

In the investigation of chaotic iteration procedures for linear consistent sys-
tems matrices which are paracontracting with respect to some vector norm
play an important role. It was shown in [3], that if A;,..., A, are finitely
many k X k complex matrices which are paracontracting with respect to the



same norm, then for any sequence d;, 1 < d; <m, 1 =1,2,... and any xg
the sequence
zi = Agzi—1 1=1,2,... (1)

is convergent. In particular AW = lim; o Ag; ... Aq, exists for all se-
quences {d;}2; = d. Hence those sets are examples of sets of matrices

all infinite products of which converge. Such sets have been studied in [2].
Following [2], we call them LCP-sets.

In this note we investigate the question of necessity. As our main result
we show that under the additional assumption that the mapping

d={d}, = A9 = lim A4 Aq,_, ... Aqg, (2)
1— 00

is continuous (which is equivalent to the set of fixed points of A; being the
same for all 1 < ¢ < m), an LCP-set is necessarily paracontracting with
respect to some norm. In this sense paracontractivity is equivalent to the
LCP-property. We will show in addition that continuity implies even the
stronger property of l-paracontractiveness.

In the last section we consider the case m = 2. It is shown that for two
projectors the equivalence of LCP-property and l-paracontractivity holds
even without continuity.

Some parts of this paper are contained in [7].

2 Notations and known results

Let || || denote a vector norm in C*. A k x k matrix P is paracontracting
with respect to || ||, if for all z

Pz # ¢ & ||Pz]| < ||z]]. (3)
We denote by N(|| ||) the set of all k¥ x k matrices paracontracting w.r.t.
|| ||. We call P l-paracontracting w.r.t. || ||, if there exists v > 0 such
that

1P| < [a]| —~|[Pz — 2| (4)

holds for all z € C* and denote this set of matrices by A, (|| ||). Obviously

NA (D € NID- (5)



The example of an orthogonal projection P, P # I, P # 0 which is paracon-
tracting w.r.t. the Euclidean vector norm but never l-paracontracting shows
that in (5) equality does not hold in general.
For a bounded set ¥ = ¥; of complex k x k - matrices define ¥y = {I}
and forn >1
Yip = {Ml My ... M, : M; EE},

the set of all products of matrices in ¥ of length n. Let ¥ = {44,...,4An}
be finite. For d = (dy,da,...) € {1,...,m}",ie. 1 <d; <mforie N
define

Al = lim Ay, Ag,_, ... Ag,, (6)

if the limit exists. ¥ is an LCP-set (left—convergent—product), if for all
d € {1,...,m}" the limit A exists. The function d — A® mapping
{1,...,m}" into the space of k x k - matrices is called the limit function.

We note in passing that in [2] also the right—convergent—product property
(RCP) was introduced. For convenience we restrict our considerations to the
left convergence case. Introducing in {1,...,m}" the metric

dist(d,d') =m " r smallest index such that d, # d,

we define the concept of a continuous limit function in the standard way.
3 is product bounded, if there exists A > 0 such that

|Al| <A forall AeX,, n=12...

Here || || denotes any matrix norm. Obviously this concept is independent of
the norm. G. Schechtman has proved that LCP—sets are product bounded
(see [1, Theorem I]). We have the following statement.

Lemma 1 For a set X of k X k - matrices the following are equivalent:
(i) ¥ is product bounded.

(ii) 3 vector norm || || such that ||Az|| < ||z|| for all A€ D, z € C*.
(111) 3 multiplicative matriz norm || || such that ||A|| <1 for all A € X.

Proof As (i1) = (4i%) (the operator norm is multiplicative) and (iii) =
() are obvious, only (i) = (4¢) has to be shown.
For some vector norm v define the norm

||zl = sup{ sup v(Az)} (7)
n>0 A€,



which is finite by (i). Then ||Az|| <||z|| for all A € . O

Remark: This result could also be derived from [5]. For a given matrix

norm || || and bounded ¥ let
Pn = pn(X) = max{||A|, 4 € Z,}

and

~ _ i Al/n

p=p(%) = lim p;/". (8)
p is called the joint spectral radius of ¥. It has been introduced in [5] for
general bounded sets in a normed algebra. In [5] and in [2] the limit is
replaced by lim sup, however, it is implicitly shown in [2] (see there (3.12)),

that the limit exists.
We give a characterization of p(2), which can be found essentially in [5].

Lemma 2 For any bounded set 2 of k X k - matrices

p(x) = inf sup v(A). (9)

v operatornorm gcy

Proof For any € > 0 the set

D = { A, Aex}

1
p+e
is product bounded, as for any B € (Z,),

||B|| < — pn—0 as n—oo.

1
(P +e)
Hence by Lemma 1, (2) there exists a norm v, such that

z) <vx) forall Aex, zeCk

Ve(ﬁ+e

and therefore

ve(Az) < (P(B) + €)ve(x) forall AeX, zeCk.



In the following the subspaces
M, ={z: Az =z} =N - 4) i=1,...,m

play a fundamental role. If 3 has the LCP—property, then in particular
lim,, ;0 A} exist, and hence

Ct=N(I-A4A)®R(I-4;) i=1,...,m.

The same holds if 4; € N(]| ||) for some norm, see [3] and [4]. This is not
surprising in view of the following result, which is just a restatement of the
Theorem in [3].

Theorem 3 Let ¥ C N (|| ||) for some vector norm || ||, £ finite. Then X
has the LCP—property.

We finish this section by pointing out that if in addition £ C N,(]| ||)
for some positive v then the proof of Theorem 3 is very simple. This is
outlined below. It is a consequence of the following characterization of I-
paracontractivity of the set 3.

Let ¥ = {A;}ic; be a set of matrices, not necessarily finite. Let d =
(di,...,d;) € I", v a vector norm. Define

vg(z) = v(z,) + i v(rK — Tg—1) (10)
k=1

where the vectors z; are defined as in (1) and & = z¢. Then obviously, for
any i € I and d' = (i,dy,...,d,)

vi(Aiz) = vy (z) — v(4iz — ). (11)

We define now
vi(z) = sup{yy(z) : d finite} (12)

This is a vector norm provided that v,(z) < oo for all z.

Theorem 4 For a set of k X k - matrices {A;}icr t.f.a.e.
(i) There exists a norm v and a positive v such that

A; € N, (v) forall i€l
(ii) There ezists a vector norm u such that

px(z) < 00 for all zeCk



(iii) For all vector norms p

px(z) < 00 forall zeC*

)

Proof We show (i) = (iii) = (i7) = (7).
Assume that () holds. Then from

v(Aiz — z) <y Hu(z) — v(4diz)} Vie I,Vz (13)

we have, using the notation in (10) and assuming (w.l.o.g.) v <1

va) < via) + v wlen) - vew)
k=1

= v(z,)+ ’)’_1{1/(30) —v(zr)}
< v (o) (14)

If i is a fixed vector norm, then due to the compatibility of any two norms
we have a constant x such that p(z) < kr(z) and hence also pg(z) < Ky (z).
(14) gives that p.(x) exists, hence we have (7i1).

Obviously (i4i) implies (i7).

Now we assume (i7). From (11) we have

px(Aiz) < pie(z) — p(Asz — z) < po(z) — Ya(Aiz — ) (15)
where we have chosen  such that (&) > yu.(§) for all £. Hence (i) holds
with v = p..

a

We indicate now the easy proof of the fact that a finiteset ¥ = {4;,..., 4} C

N,(v) has the LCP-property. It suffices to show that for any zo and

any d = (di,da,...) € {1,...,m}" the sequence {z;}$°; defined by (1)

is convergent. By Theorem 4 we have v,(xzy) < oo, hence the sequence
2, v(x; — zi—1) is convergent. This implies that the sequence of the z}s

is a Cauchy sequence.

3 Main result

It is tempting to conjecture that the converse statement of Theorem 3 also
holds, namely that if ¥ is an LCP-set, then there exists a vector norm || ||
such that ¥ C N(|| ||). We were unable to decide this question in general.



However, the converse is true if ¥ is an LCP-set with a continuous limit
function. More precisely, the following holds:

Theorem 5 Let ¥ = {A4,...,An} be a finite set of k X k - matrices and
M; =N(I—-A4;), i=1,...,m. Then the following are equivalent:
(i) ¥ has the LCP—property and fori,j =1,...,m

M; = M;.

(ii) ¥ has the LCP-property with continuous limit function.
(iii) There ezists a vector norm || || in C* and a positive y such that & C
NAy(I| ) and fori,j=1,...,m

M; = M;.

(iv) There exists a vector norm || || in C* such that ¥ C N(|| ||) and for
,7=1,...,m
M; = M;.

Proof We will show (i) = (i1) = (i41) = (iv) = (7) .
To prove (i) = (ii), we are going to show that

[AD — AD|| < 2+ A)||Agy — AD)| (16)

where || || is a fixed operator norm, (d), (d') € {1,...,m}", di =d, fori <r
and A the bound in the definition of product boundedness. Here we use the
fact that by [1] ¥ is product bounded. Also we use the notation

A(T) = Ad'rAdr—l .- Adla Al(s) == Iéld{‘3 . Ad'l'

Let My = N(I—A4;), i =1,...,m the common pointwise invariant subspace
of the matrices A;.
If i € {1,...,m} occurs infinitely often in the sequence dy,ds,..., then by
the usual reasoning

A; A = 4@

and hence all columns of A(9) are in My. Hence A4;A(4) = A4 for all A; € .
This implies the relation

Ay

r+1

I(H_s) — A(T) = (Ad’ — I)(A(T) — A(d)) s>0

r+s

7



and hence ||A'H_5 — Al £ 1+ A)||Ag) — A@||. Taking s — oo, we get

14 = Al < (1 + A) || Ay — A9,

from which (16) follows. This implies continuity: Given € > 0, as Ay —
A there exists ro such that

14(re) = A9 < 2+ A) 7
Now, if (d') is such that
dist(d,d') < m~"01
then d; = d; for i < ry and hence by (16)
|A@) — AD]| < (24 A)|| Ay — AD|| < e

We remark that this step is not directly contained in [2], we used however
tools and ideas from this paper.

Finally we show (i1) = (ii1).

Assume that (i7) holds. By Theorem 4.2 in [2] the subspaces M; are the
same for 1 = 1,...,m. By a similarity transformation, i.e.

Y= STINS ={S7'AS: i=1,...,m}

which does not change the properties involved, we can assume that M; is

spanned by the first  unit vectors e1,...,e, so that fori=1,...,m
I. C;
A; = S
' ( 0 A >
Obviously & = {A1,..., A} has the LCP—property also and its limit func-

tion is identically zero. Otherwise if A £ 0, for some d € {1,...,m}"
we would have A, AW = A@ for at least one r and A, would have 1 as an
elgenvalue This contradicts our assumptions. But then, from Theorem 4.1

n [2], it follows that 5(3) < 1. We select some ¢ in (3(%),1). By Lemma 2
we find a norm || || on C*~" such that

||Aiz|| < q||z|| forall ze€C*" andall i=1,....,m. (17)



Denoting by || ||2 the Euclidean norm in C”, we introduce for positive € the
following vector norm in C*:

2
pue () =Me< ) = ellz1ll2 + [Jz2|]-
2

Then we observe

1 + Cixo
(Aiz) = u| T
pe(Aiz) u( Az )
= ellz1 + Cizalla + || Aiza||
< effz]lz + (€| Cil[ + @)l |22l (18)
where ||C;|| = max{%,we C’“_T}. Choose € > 0 such that ¢ =

max;(€||Ci|| + ¢) < 1 and let v = (1 — §)/(1 4+ §). Then we get after some
manipulations using (17) and (18) the inequality

pe(Aiz) < pe(z) — Ype(Aix — ).
Hence ¥ C N, () and (éiz) is proved.

(#31) = (4v) is trivial, while (iv) = (¢) is Theorem 3.
a

4 Final remarks

The conjecture at the beginning of the previous section is unsolved even in
the case m = 2. A related result has been proved in [6]:

Theorem 6 For ¥ = {41, Az} the following are equivalent.
(i) £ is an LCP-set.

(ii) (a) there exist a vector norm || || such that
[|Aiz|| < ||z, i=1,2 forall zeC*
||A1 Asz|| = ||z]| = A1z = Asz = .

(b) For i =1,2 if X is an eigenvalue of A;, |A\| =1, then A = 1.



Notice that here we have finitely many conditions characterising the LCP-
property. Nevertheless (ii) seems not to imply paracontractivity of X.

In the case of two projectors F;,7 = 1,2, not necessarily orthogonal, the
conjecture can be proved.

Theorem 7 Let F;,i = 1,2 be projectors, i.e. Pf = P;,i = 1,2. Then the
following are equivalent.
(i) {P1, P2} is an LCP-set.

(ii) There ezists a vector norm || || and a positive y such that

{Pr, o} CNG(I] 1))

The proof is given after the following auxiliary result.

Lemma 8 Let A, B be complex k X k -matrices such that
(i) B is convergent, i.e. the powers of B converge, and

(ii) limy_yo0 AB™ = 0.
Then there ezists a € (0,1) such that for any norm || ||

||AB"|| < Ca™  forall —ne€N.
with C > 0 a constant depending on the norm.

Proof By eventually changing the basis accordingly, we have by (i) that B

is of the form
(L, 0
s-(5 5

with a = ||By|| < 1 for a suitable norm. Here r is the dimension of N(I — B)
and we assume r > 0. Otherwise nothing has to be proved. Partitioning
A = (A1, As), where A; contains the first r columns of A, we get AB™ =
(A1, A9Bj), and we see from (77) that A; = 0. But then clearly

|AB"[| = ||(0, A2 Bg)|| < Ca™

for a suitable C. O
Proof of Theorem 7. Obviously we need only to show the implication

10



Let || || denote a vector norm satisfying ||P;z|| < ||z||,i = 1,2,z € C* (See
Lemma 1, (i7)) and define for n > 0

an(z) = |[(P1—I)(PP1)"=|
bu(z) = |[(P2—I)Pi(PP)"z|
cn(z) = (P2 —I)(P1P2)"z]|
dn(z) = |[(Pr—I)P(PR)"z|

By (i) the sequence
To = T, T2i41 = P1&2;, Toi40 = Pax2i1,1 =0, ..

is convergent, which gives that a,(z) = ||z2n+1 — Z2a|| — 0 and b, (z) =
||Z2n+2 — Zan+1|| = 0. The analogous result holds for ¢, and d,. Similarly
we prove that the matrices PP, and P, P, are convergent. Hence by the
previous Lemma 7, (z) < Ca™ for suitable C > 0, € (0,1) and r = a, b, ¢, d.
This shows that the following expression

zle = [lz]] + max(X52 0 (an (@) + bn(2)), BnZo(cn () + dn(x))

is finite, and it is easy to see that ||z||« = 0 if and only if x = 0. Hence it
is a norm in C*. (This is essentially the same construction as in (12), but
in this special case we can give a closed expression for the norm). By some
simple manipulations we get

1Pralls < lz]]« — ao(x) = [|z][« = [[Prz — =]

and the same result for P,. As there is a v > 0 satisfying ||z|| > 7||z||« we
see that {P1, Po} C N,(]| |[+)- O
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