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Many solutions of nonlinear time dependent partial difféi@d equations show particular
spatio-temporal patterns, such as traveling waves in oaeesgimension or spiral and scroll
waves in higher space dimensions. The purpose of this pafieréview some recent progress
on the analytical and the numerical treatment of such pattdParticular emphasis is put on
symmetries and on the dynamical systems viewpoint that gegend existence, unique-
ness and numerical simulation of solutions for single @hitialue problems. The nonlinear
asymptotic stability of dynamic patterns is discussed andraerical approach (thfeeezing
method is presented that allows to compute co-moving frames irckvbolutions converging
to the patterns become stationary. The results are relatded ttheory of relative equilibria
for equivariant evolution equations. We discuss severaliegtions to parabolic systems with
nonlinearities of FitzHugh-Nagumo and Ginzburg-Landaety
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1 Introduction

Nonlinear wave phenomena are ubiquitous in mathematicdefsdor the dynamics of bio-
logical, chemical, physical or technical systems. Amorgyrost prominent ones are trav-
eling waves that occur in models for the spread of populatiéor neuronal firing or for
excitable chemical reactions (see [30],[44],[42], [5] aseral references). Further dynamical
patterns occuring in two and three space dimensions argn@tnd spiral waves (also called
dissipative solitons in the physics literature [12]) antbavaves [23], but also examples in
technical systems such as buckling modes of long strucfp2g®elong to this category.

For the sake of a common framework we restrict in this papesetilinear parabolic
systems of the type

uy = AAu + f(u), x€R? t>0, (1)

whereu(z,t) € R™, A € R™*™ is a positive definite (not necessarily symmetric) matrid an
the nonlinearityf : R™ — R™ is sufficiently smooth. Several extensions to more differen
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8 W.-J. Beyn and V. Thiimmler: Dynamics of Patterns

types of equations (e.g hyperbolic and coupled hyperhadiabolic systems) and to more
refined phenomena (e.g. multipulses and multifronts) véllnxicated in Section 5.
In dimensiond = 1 traveling wave solutions of (1) are of the form

u(z,t) =v(x —ct), ze€RtER, 2

wherev : R — R™ denotes the profile of the wave and R denotes its speed. For dimension
d = 2 a model case for dynamic patterns is given by rotating waf/dsedorm
u(r,t) =v(R_gx), z€R*tER, Ry= (Cf)se —51n9> 3)
’ s ’ ’ sinf  cosf )’
where again : R?2 — R™ denotes a fixed profile that rigidly rotates about the origithw
angular speed.

Traveling and rotating waves are special cases of so calative equilibriaof the system
(1). This notion originates from the theory efuivariant dynamical systenis which one
studies the influence of symmetries on the longtime behafiatynamical systems. This
theory has been developed to a considerable extent oveashgdars. Some monographs
containing much of the current state are [14],[19],[17] anfbw ingredients of the theory
needed for this paper will be mentioned in Section 3.

The parabolic system (1) is equivariant with respect to ttma of the Euclidean group
SE(d) on functionsy : R? — R™ given by

[a(v)v](z) = v(y"'z), = €RYy e SE(d). (4)

Note that we useyx to denote the action of some group element on a vectar R? (i.e.

vz = Qz + b for some orthogonal matrig and some vectdr € R?) but that we use(~)v

(rather thanyv) to denote the action on functions defined by (4), cf. theamtin [14],[17].
Relative equilibria with respect to the action (4) may thembitten as

u(z,t) =v(y(t) '), zeRLteR, (5)

wherev(t) € SE(d),t € R denotes the motion of the pattern parametrized by the Eeantid
group. Obviously, the traveling and rotating waves from (2) are special cases of (5).

This paper is devoted to various analytical and numerigagets of relative equilibria for
systems that have continuous symmetries such as equa}iovélare particularly interested
in numerical methods that make systematic use of the uridgrlymmetries and in the ana-
lysis of these methods and its relation to the stability tiiéor relative equilibria.

In Section 2 we provide several characteristic exampleslafive equilibria and solutions
of initial value problems that converge to such equilibria.addition to the cases (2), (3)
above we show waves that rotate and travel simultaneousieldss scroll waves in three
space dimensions. The numerical results are based on dinealations of Cauchy prob-
lems for (1) @:(x,0) = ug(x),x € R?), obtained by truncating to a bounded domairRih
using appropriate boundary conditions and then applyiagdsrd space-time discretization
methods.

The central topic of Section 3 are stability problems foatiek equilibria of (1). We intro-
duce the abstract setting of equivariant dynamical systerdgsliscuss the notion of nonlinear
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stability with asymptotic phase for relative equilibrih@main issue here is to infer nonlinear
stability from linear stability, which means that the whelgectrum (or an important part of

it) of a linearized operator lies in the open left half plaki¢hile such results are well known

for equivariant ODEs and for traveling waves in PDEs in orgécspdimension we report on

some recent progress for rotating patterns in two spacerdgiimes.

Section 4 is concerned with thifeeezing methodor solving initial value problems for
equivariant systems as developed in [10], [11]. In this apph we aim at separating shape
dynamics from group dynamics not only for relative equibibout also for solutions of the
Cauchy problem. The form (5) is generalized to

u(z,t) = v(y(t)ta,t), xR t>0,7(t) € SE(d) (6)

and extra phase conditions are imposed in order to compefagahe additional unknowns
~(t) in the group. With this ansatz the PDE (1) transforms intoréigdalifferential algebraic

equation (PDAE) which is then solved numerically. While Bi2E and the PDAE formulation
are essentially equivalent on the unbounded domain, thigitae behavior of solutions differs
dramatically when restricting to a bounded domain. Whike platterns in the original PDE
may rotate for ever or may die out when they reach the bountteyreezing method allows
to compute co-moving frames in which solutions convergig telative equilibrium become
stationary at the target pattern. In Section 4 we discustetimbility and the implications of
this approach and we relate it to the stability problems ictiSa 3.

The final Section 5 indicates several solved and open prabiethe subject area. Numer-
ical experiments indicate that the method works for muchemgmneral evolution equations
than (1) for which the theoretical background is still undervelopment. It even works in
some cases where the underlying symmetry is destroyed ésustochastic evolution equa-
tions with additive noise) and it can be generalized to @ertaultiple patterns that travel at
different speeds and that have weak or strong interactions.

2 Examples

2.1 Traveling and phase-rotating waves in one space dimeiasi

Our first example is the well known FitzHugh Nagumo equati8]j {vhich is a two-dimensional
system foru = (V, R) whereV is voltage across a nerve membrane &hid a phenomeno-
logical parameter

1
Vt:VM+V—§V3—R
R = ¢(V +a —bR)

reR, t>0. @)

The second equation lacks a diffusion term so that the syistert parabolic and does not
satisfy all our assumptions. However, the following sintiolas can be repeated with a small
diffusion terme R,..., £ > 0 without substantial changes in the results.

We use the parameters:= 0.7, b = 0.8, ¢ = 0.08 from [29] and solve the initial value
problem on the intervell = [—60, 60] subject to Neumann boundary conditions. In the fol-
lowing, unless stated otherwise, we use the finite elemekizaee Comsol Multiphysic¢é'[15]
with second order elements in space and a BDF method in tingewrd=1 (a) shows that an
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(a) FitzZHugh-Nagumol” component of traveling wavéb) Quintic Ginzburg-Landau: real part of traveling and
phase-rotating wave

Fig. 1 (online colour at: www.gamm-mitteilungen.org) Moving f&hs in one space dimension.

initial ramp functionuy generates a pulse that travels to the left (with approxirspeed
¢ = —0.812). When the pulse reaches the left boundary it dies out dueagd\ieumann
boundary conditions. Of course, on the whole real line thisewill continue to travel to
—oo. Considered as dynamical systems we see that the longtihevioe of both systems
on the bounded and the unbounded domain will differ subisintin general. While trav-
eling waves are part of the global attractor on the unboundedain they occur as transient
phenomena on any bounded domain.

Our second example is the complex Ginzburg-Landau equétainoccurs as a modula-
tion equation in the study of hydrodynamic instabilitie8][2The quintic Ginzburg-Landau
equation reads

up = Qige + (6 + Blul® + plu[*)u, u(z,t) € C,z €R,t >0, (8)

with complex parameters, 3, 4, p. AssumingRe(«) > 0 one can rewrite (8) as a real two-
dimensional parabolic system. Equation (8) has a two dirnaaksymmetry group
G = S x R, S! = R/(2nZ) with the action given by

[a(71,72)v] (2) = exp(—im)v(z —72), 2 €R,(11,72) € §' xR 9)

Following [36],[40] we take parametets = 1,6 = —0.1,8 = 3 +i,p = —2.75 + 4.
Starting at a ramp function the solution converges to a limyéront with simultaneous phase
rotation, see Figure 1 (b). These relative equilibria mawhten as

u(x,t) = exp(—ipit)v(x — pat), whereus, us € R. (10)
At the same parameter values the system also shows pul$dsatieaa phase rotation only,
i.e. for which (10) holds withs; # 0, u2 = 0, cf. [36],[40].

2.2 Planar spinning solitons
Consider the two-dimensional quintic Ginzburg-Landaueys

u = aAu+ (6 + Blul* + plu/Hu, zeR%4t>0 (12)
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(a) Real parRe(u) of spinning soliton (b) Evolution of Re(u) in the cross-section at, = 0

Fig. 2 (online colour at: www.gamm-mitteilungen.org) Quinticn@burg-Landau: Real part of spin-
ning soliton

with parametersy, 3,9, p € C as above. The symmetry grodp = S' x SE(2) is now
4-dimensional and acts on functions via

[a(v)v] (z) = exp(—im1)v(y 'z), 7= (11,72) € S x SE(2). (12)

According to [16] the system (12) shows so called spinnidgsts, i.e. strongly localized
solutions that are rotating patterns in the sense of (3)s&loecur at parameter values=
(144)/2, § =1/2,  =2.5+1i, p=—1-0.14, see [16]. Figure 3 (a) shows the real part of a
spinning soliton obtained from a simulation on a disc of uadi= 20 (the plot is restricted to

r = 10) with Neumann boundary conditions. In Figure 3 (b) we digple approach toward
the soliton within the cross-sectiarp, = 0 with two Gaussian humps as initial conditions.
The center of the soliton turns out to be the origin due to yimarsetry of initial conditions.
Spinning solitons are rotating patterns as in (3) with a dempalued profilev : R? — C. In
this special case one finds that the profileas an extra symmetry given by

v(R_gx) = exp(—if)v(z), for z€R?* 6 S, (13)
so that (3) may equivalently be written as
u(z,t) = exp(—ict)v(z). (14)

In abstract terms this relative equilibrium has a nonttigetropy subgroup which has impli-
cations for the stability theory as well as for numerical putations, see Sections 3 and 4.
Another class of rotating patterns are spiral waves for tvthiere is an extensive literature,
see e.g. [44], [42], [2]. Usually, spiral waves are not loed (i.e. they do not decay at
infinity) as opposed to spinning solitons. While this prdpeioes not lead to serious problems
with numerical simulations their stability theory turnstéo be rather difficult and is not yet
complete (see [34] and Section 3). In this paper we will nstdss spiral waves in detail.

2.3 A three-dimensional scroll wave

Scroll waves are special patterns that occur in three-dsinaal systems of type (1), cf. [44],
[23]. Usually, scroll waves wind around a flow invariant ceirealled the filament, and they
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(a) IsosurfaceRe(u) = 0 of scroll wave in CGL (b) Spiral pattern oRe(u) = 0 in the slicexs = 0

Fig. 3 (online colour at: www.gamm-mitteilungen.org) Scroll veavin three space dimensions

show spiral patterns in surfaces transversal to the filamargcroll ring is obtained when
the filament is a closed curve; then the number and orientafiootations of the transverse
structure leads to twisted or untwisted scroll rings, c#i][4

In Figure 3 we show a simple scroll wave that has a straiglet ¢in thexs axis as its
filament. The underlying system is the three-dimensionblacGinzburg-Landau equation
(112) (also called the — w system in [30]) with parameters=1,3=1+1i,0 = 1,p = 0.
The computational domain & = [—20,20]*> with Neumann boundary conditions on the
surfacesr; = +£20 andxz, = +20 but periodic boundary conditions in thg direction. This
choice of boundary conditions favors the vertical filamdfigure 3 (a) shows a view of the
isosurfaceRe(u(z)) = 0 and Figure 3 (b) displays the spiral pattern in the slige= 0. The
results are obtained by a modification of Barkley’s finitdefiénce codezscroll  [3]on a
mesh of1252 grid points. We refer to Section 4 for some time-dependentiitions in this
case.

The symmetry groug: = S' x SE(3) now has dimensioff and acts as in (12) with
SE(2) replaced bySE(3). Similar to the two-dimensional case the scroll wave is atiet
equilibrium of the type (5) where(t) denotes rotation about thg-axis. Again the solution
has an extra symmetry of the form

v(Ry g1) = exp(—if)v(z), 0 €S, Ryp— (ff;’ (1)) (15)
which allows to write the scroll wave as a phase-rotatingavav

3 Relative equilibria and their dynamic stability

In this section we first summarize some basic theory on eewligquations that are equi-
variant with respect to a (not necessarily compact) Lie gréu Then we discuss dynamic
stability of relative equilibria for some special casestaf general PDE (1).
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3.1 Equivariance

Consider, more generally than (1), an abstract evolutioraggn

where the vector field” is defined on a dense subspatef some Banach spacé and maps
into X. Further assume that the groGpacts onX via a homomorphism

a:G— GL(X),y — a(v), a7

such thaty — a(v)v is continuous for every € X. We useO¢(v) = {a(y)v : v € G} to
denote the group orbit of some elemert X.

Definition 3.1 The system (16) is calleglquivariantwith respect to the group action (17)
if the following properties hold

() a(y)(Y)=Y forall v €@,
(i) Fla(y)v) =a(y)F(v) foralveY,vyed.

The system (1) is equivariant with respect to the group a¢#din suitable Sobolev spaces,
e.g.

Y = H2(RY,R™), X = L2(RY,R™). (18)

This assertion holds if (0) = 0 and if f satisfies appropriate growth conditions. The case
fus) = 0 for someus, # 0 (as in the FitzZHugh Nagumo system (7)) can be reduced to this
case by writing the equation in terms@f= u — u... The trick does not work for traveling
fronts which typically lie in some affine spaeet++2(R?, R™) with a bounded function that
prescribes the behavior at infinity. For this case it is usefgeneralize the whole approach
from Banach spaces to Banach manifolds using an approfoiateilation of equivariance
(cf. [26], [11]). In this paper we avoid the technicalitiesdlved in this generalization.

Let 1 denote the unit element i and letA = 71 G be the assoiated Lie algebra. Further,
letL, : G — G,g — g be the operation of left multiplication with derivative dead by
dL,(g9) : T,G — T,,G. The exponential(t) = exp(tn) € G,t € R for some element
1 € A can be defined as the unique solution of the initial value lgrab

Yy =dLy(1)p, ~(0)=1. (19)
In general, the map(-)v : v — a(v)v will not be smooth for alb € X, but we assume that
this is the case fov € Y (i.e. Y is in the domain of the infinitesimal generator of the group
action) with derivative denoted ya(vy)v] : T,G — X. For example, in the simple shift
casela(y)v](z) = v(x — ),z € R,y € G = R this holds with

X =L*R,R™),v €Y C H'(R,R™), dla(y)v]p = pv, forpeR. (20)
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3.2 Relative equilibria

Definition 3.2 A solutionu(t) € Y,t € R of (16) is called a relative equilibrium if it is of
the form

a(t) = a(3(t))v forsome v €Y,y <€ C'(R,Q). (21)

There is no loss of generality in assumin@) = 1. Usually, the whole group orb@® ()
is called a relative equilibrium [14], [17], [26], but we pee to include the one-parameter
group#(t) in the definition because it will be part of the numerical agmh in Section 4.

Examples of relative equilibria with respect to the groufiaarc(4) are the traveling waves
from (2) ((¢) = ct) and the rotating waves from (3)(¢) = R.:). For the complex Ginzburg
Landau equation (8) we found a relative equilibrium w.ihe gyroup action of; = S' x R
in (9).

It can be shown (see [14, Th.7.2.4]) that any relative elgiilim of (16) can be written as
a(t) = a(¥(t))v for a suitabler € A such that the following holds

0 = F(v)-da(1)oa, (22)
F(t) = exp(tp), teR. (23)
This is proved by inserting(t) = a(¥(¢))v into (16). If v has a trivial isotropy group
Hy ={v€G:aly)v =10}, (24)

thend[a(1)7] is a one-to-one mapping and hercés unique. In the general case, it is only
unigue up to elements from the Lie algebrai@f, cf. [14, Ch.7.2]. Note that we found
nontrivial isotropy groups for the relative equilibria bitcomplex Ginzburg Landau equation
in dimensionsl > 2 (cf. (13), (15)).

Conversely, ifv € Y, n € A satisfies (22) thea(exp(tiz))v is a relative equilibrium of
(16).

For traveling waves in the cage= 1,G = R we obtain from equation (22) the system
(cf.(20))

0=Avg, + f(v) + pvy, x€R, (25)
and in the two-dimensional case (4) we find

0=AAv + f(v) + usDev + p1 D1v + pa Dov. (26)
For the last equation we used the represent&fibii2) = R? x S with the action given by

a(n, 0)v(z) = v(R_g(z — 1)), (1,0) € SE(2). (27)

The partial derivatives in (26) al®; = aiml,Dg = 8%2, Dy = 22D, — x1 D5, the constants

11, 1o denote the translational velocity apg denotes the rotational velocity. Note that the
pattern (3) rotating about the origin satisfies this systeth w; = ps = 0, u3 = c.

In general, the system (22) does not determim@dz uniquely. Since:(g7(t))v is a rela-
tive equilibrium for everyy € G one finds that (22) has a family of solutiof(g.(¢g)v, Adyf) :
g € G} whereAdg,u = %g exp(ti)g~1]i=o is the adjoint action o&; on A. Therefore one
needs at leastim(G) additional constraints (called phase conditions) in otdeurn (22)
into a well-posed problem fq, i1). This aspect is essential for the numerical computation
of relative equilibria (for a detailed discussion see [18i} it will also play a major role for
the freezing method in the next section.
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3.3 Nonlinear stability

For equivariant evolution equations classical Liapunabity has to be weakened to stability
with asymptotic phase which may be regarded as stabilithénorbit spaceX /G (see [14],
[17]). We consider the Cauchy problem

uy = F(u), u(0)=u €Y (28)

and assume that is a Banach space with respect to some nrnfjy- that is stronger than
the norm inX and with respect to which (28) is well posed. As with relatdepiilibria we
make the dependence on appropriate group orbits explitiginlefinition.

Definition 3.3 A relative equilibriuma(t) = a(5(¢))v is calledasymptotically stabléf
there exists some, > 0 such that for any < g there exists @ > 0 with the following
property. For anyuy — o]y < § equation (28) has a unique solutiaf¢) € Yt > 0 and
there exists an orbif(t) € G,t > 0 such that

<eg forall t¢>0,

() — a(v()7(1)olly { (29)

—0 as t— oo.
If, in addition,~(¢) converges as — oo to an elemeny in thee-neighborhood of theny.,
is called theasymptotic phaseThe relative equilibrium is then callesdable with asymptotic
phase

For applications to PDEs the choice of norms is crucial. Ims@pplications one needs
ug — v to be small in a norm stronger than the one for which (29) hdlttsreover, for certain
patterns it may be useful to measure the distance of profilgsan compact subsets rather
than on the whole space (see [1] for such a discussion). Ifirtie dimensional ODE case
it is well known how to prove asymptotic stability from lingzed stability by invoking the
classical Liapunov stability theorem in a transversaldtion (see [14, Th.7.4.2.]). One of the
difficulties in the PDE case is that essential spectra agpszause linearized PDE operators
on unbounded domains usually lack compactness propdriigee following we will discuss
two cases where such a result holds for the general equdfion (

3.4 Traveling waves

This is one of the best studied cases for stabiliy with asptippphase (see the monographs
[21],[41] and the review [33]). We briefly recall a typicabrdt. Letu(x,t) = v(x — ct) be a
traveling wave solution of (1) fod = 1 wherew is assumed to bé€2-bounded orR such that
the limits

v = lim o(x), vy = lim o(x) (30)

r——00 xr—00

exist. We impose two conditions that allow to control theeessl and the discrete spectrum.
Spectral condition (SC): There exist constanis 3 > 0 such that all solutiona € C of the
guadratic eigenvalue problems

det(AN? + A + f'(ve) —sI) =0 with Re(s) > —f (31)

satisfy|ReA| > p.
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This condition ensures that the essential spectrum of ieatioperator
Lv = Avgy + cvg + f/(0(-))v (32)

lies in the half-plandie(s) < —3 (say with respect té{' (R, R™)), cf. [21].

By differentiating (25) with respect to one finds that is an eigenvalue of, with eigen-
functionv,. € H'(R, R™). This is the eigenvalue caused by equivariance.

The next condition excludes further eigenvalues on or taitjte of the imaginary axis.
Eigenvalue condition (EC): The eigenvalu@ of the operatol in (32) is simple and. has
no further isolated eigenvalues wilte(s) > —f.

Then the traveling wave is stable with asymptotic phase wefipect to the normh - || 1.
More precisely, fof|ug — 9]| sufficiently small one obtains exponential convergence

B -~

—§t)||uo — 0|32 (33)
for a suitable phase shift(t) with lim; .o 7(t) = Yoo, [Voo| < C|luo — 9|31 Note that in
this case the profile itself need not be an element&f!, rather it is sufficient to have initial
values that are small perturbationsigh the#!-norm, i.e. we have stability with asymptotic
phase in the affine space+ H'.

[u(-£) = 0(- = et =y (1)) [l2r < Cexp(

3.5 Rotating patterns

The stability proof for traveling waves in parabolic systein greatly simplified by the fact
that the linearized operators (32) generate analytic semjgs. This is not the case for
the FitzHugh-Nagumo system (7) where (32) is of coupled lpali@ hyperbolic type (if
c # 0) and generates @°-semigroup only. For this case Bates and Jones [4] have -devel
oped an invariant manifold approach that allows to conchktdbility for traveling waves in
the FitzHugh-Nagumo system. More generally, in [35] an @gstapproach is set up that
allows to reduce the dynamics near a relative equilibriur(iLlé) to a center manifold. Also
exponential attraction of the center manifold is provedarrgpectral assumptions. However,
stability with asymptotic phase is not considered in [35].

We review here a recent result [8] that provides nonlineaibty with asymptotic phase
for rotating pattern as in (3).

Assume for the nonlinearity € C*(R™,R™) and letu(z,t) = 9(R_.x) be a rotating
pattern withc # 0 that is localized in the sense

sup |DY0(x)] — 0 as r — oo. (34)
|z|>r,0<|a|<2
This condition implies thaf (0) = 0. The following spectral condition requires stability in
the far field.
Spectral condition (SC): The matrix f'(0) € R™™ is negative definite (not necessarily
symmetric).
Sincev andi = (0, 0, ¢) solve equation (26) the linear operator analogous to (32) is

Lv = AAv + c¢Dgv + f'(v(-))v, (35)

defined in the domait(%,,., = {v € H*(R*,R™) : Dyv € L?(R*,R™)}. One can show that
this operator generates’d-semigroup or#2(R?, R™) and that it has essential spectrum in
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the open left half-plane due to (SC). Moreover, the essesyiiectrum contains the algebraic
set

S ={secC:det(—x*A —incl + f'(0) —sI) =0 forsomen € Z,x € R}.

Note thatS consists of a countable number of algebraic curves that @ues of a single
parabola-shaped curve shifted byc,n € Z in the imaginary direction. There is a fixed
spectral gap betweehand the imaginary axis. We refer to [8] for a proof and sonusitative
pictures of (humerical) spectra for the case of spinningeo.

On the contrary, spiral waves that are asymptotically kcim the radial direction do not
satisfy our assumptions and their essential spectrumiosritdinitely many parabola-shaped
curves that touch the imaginary axis (see [34] for some iihating results on the spectral
behavior of Archimedian spirals and its relation to stapijjuestions).

Applying Dy, Do, Dy to the stationary equation (26) immediately shows that thera-
tor L has three eigenvalu@s+ic on the imaginary axis with corresponding eigenfunctions
Dyv, D10 + iD20. These are the eigenvalues causedy(2)-equivariance. Therefore we
impose the following condition.

Eigenvalue condition (EC): The eigenvalues, +ic of the operator in (35) are simple with
eigenfunctionsirt{3,,., andL has no further isolated eigenvalues with(s) > — for some
8> 0.

Under these assumptions the rotating pattern is stableasitmptotic phase (in the sense
of Definition 3.3) in the function spack?(R?, R™) with the action given by (27). Moreover,
we have exponential convergence as in (33)

1) = Moo +10(8) = boc |+ |ul, ) = 0(R_ci—p(2) (- =1(£))) 22 < C exp(—Zt) [t — 32

—=t

2
The interpretation is that perturbing the initial functieads to a solution which converges to
a pattern rotating about a slightly perturbed center.atwith an angular velocity: and with
a phase shiff,. In the proof one has to carefully split the dynamics negto the dynamics
within the three-dimensional group orltit; (v) and in a transversal direction. The nonlin-
ear remainders can be handledH# by using Sobolev embedding and Gagliardo Nirenberg
estimates. Furthermore, there is an abstract perturbtitémyem onC°-semigroups (see [8,
Appendix]) that allows to conclude exponential decay of@esemigroup generated by the
operatorL in a suitable subspace.

This theorem applies to the spinning solitons of Sectionvih2n we restrict the action
(12) to the subgrou E(2). In this way we avoid the nontrivial isotropy subgroup calise
by (13). Note that the spectral condition (SC) follows frére: 0. The eigenvalue condition
(EC) is hard to prove analytically. Numerical computatioegeal that there is a total &f
additional complex conjugate pairs of simple eigenvaluils veal part strictly between the
algebraic seb and the imaginary axis (cf. [8]). This indicates that (EC3agisfied as well.

Because of the symmetry (13) one can also restrict the a&@to the abelian subgroup
S1 x R? and then study the simpler linearizatibn = AAv+icv+ f'(v(-))v. Note however,
that it is easy to destroy th#'-equivariance from (12) in the real version of (11) by pesing
the factor of the quintic term. Numerical experiments shiat the spinning solitons persist
under such perturbations and that the above stabilitytrbeabmes essential in this case.
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4 The freezing method

The theoretical results for relative equilibria in the pows section suggest to realize a split-
ting into group dynamics and shape dynamics for the geneaxati®y problem (28). Such
an approach was developed in [10],[11] and called the frgemiethod. The same idea was
used independently and earlier in the paper [32] where itapgdied to compute self-similar
solutions of Burgers equation. Another precursor of thigrapch is the work by Marsden
and Scheurle opattern evocatiofior Hamiltonian systems in [27].

4.1 The general principle
We write the solution:(¢) of the equivariant Cauchy problem (28) in the form

u(t) =a(y(@®)o(t), t=0, v(0)=wug,v(0)=1, (36)

where bothu(t) € Y and~(t) € G are considered to be unknown and to be determined
by a numerical process. Clearly, there is some arbitragimeshe representation (36). We
will use this arbitrariness to impose extra conditions §gheonditions) that try to minimize
the temporal change of In this way we want(¢) to converge to a relative equilibrium (if
possible) or at least want to minimize the efforts for mesapaation when solving the PDE
numerically. Inserting (36) into (28) and using equivadateads to

vy = F(v) — a(y~ Y d[a(y)v]ys. (37)

In order to simplify the extra term on the right hand side af)(B is convenient to introduce
u(t) € Aviavy, = dL,(1)p. Then (28) may be rewritten as a systemd@r) € Y, y(t) € G,
u(t) e A

vy = F(v)—da(L)v]p, v(0)=ug (38)
Yo = dLy(1)p, 7(0) = 1. (39)

We refer to [11, Lemma 3.3] for a precise statement about ¢juévalence of (28) and the
system (38),(39). We also note the important fact thatixelaquilibriau(t) = exp(ta)o for
(28) are in one-to-one correspondence with steady stat@s of equation (38).

Equation (39) determines the motion on the group and is géeddrom (38). Therefore,
it can be solved in an a-posteriori process provigéd € A is known. Following [32] we
call (39) thereconstruction equatian

In the next step the remaining= dim G degrees of freedom in (38) are fixed by adding a
set ofp phase conditions

Yo, p) = 0. (40)

Here we assume thditis a given map fronY” x 4 into .A*, the dual of4 which is isomorphic
to RP. Two different choices for) will be discussed below.

Equations (38),(40) comprise a system of differential big& equations (DAES) for the
unknownsu(t) € Y, u(t) € A which, in the applications, will lead to a partial differéait
algebraic equation (PDAE) that is to be solved numerically.

It is useful to derive expressions fgr from minimality conditions in terms of an inner
product(-, -}o that is continuous with respect to the given normXn The first expression
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uses a template functiahe Y (e.g.% = up) and require$ to be the closest point ta(t) on
the orbitO(v). That is, we requirda(y)? — v||2 to have a local minimum a = 1 which
leads to the followindixed phase condition

Yix (V)w = (da(1)d]w,v — D)y =0 forall we A (41)

Another possibility is to choose in (38) such thaf/v, || is minimal at each time instance. A
necessary condition for this is

Ymin(V)w = (d[a(L)v]w,v:)s =0 forall we A (42)

We note that (41) leads to a DAE of (differentiation) indexDifferentiating (41) with respect
to t and using (38) leads to the indéxondition

i (v, p)w = (d[a(1)0]w, F(v) — dla(l)v]p)s =0 forall w e A, (43)

which is a linear system of dimensigrior the unknowng: € A. On the other hand, inserting
v from (38) into (42) directly leads to the second indexondition

Umin(v, p)w = (d[a(1)v]w, F(v) — dla(L)v]u)s =0 forall w e A. (44)
Writing = >"_, pje’ in some basige', ..., e?} for A shows that (43), (44) are linear
systems fofy1, . . ., u1,) With matrices
Bix = ((da(1)d]e’, da(L)v]e?)s)"

ij=1"

Bmin = ({dla(2)]e’, dla(D)v]e’)2)] _, -
We note thatBm, is nonsingular ifv has a trivial isotropy group and the same applieBip
if 0 andv are sufficiently close.

4.2 Examples

In this section we apply the freezing method to the examptes Section 2. For each type of
equation we will write down the explicit form of the PDAE obtad from the abstract system
(38), (43), resp. (44).

4.2.1 FitzHugh-Nagumo system

In this case the abstract approach is of the simple fefm¢) = v(x — v(t)) and using the
fixed phase condition (43) with = uy = (V, Ro) the system (7) leads to the following

1
Vi=Vie +V — gV3 — R+ pVy, V(z,0)="Vy(x)

Ri=&(V +a—bR)+ puR., R(z,0) = Ro(z) (45)
0= VoV —=Vo)z, + (Roer R — Ro)r,-

This is completed by the reconstruction equatien= 1, v(0) = 0. In Figure 4 the solution
of (45) is shown when discretized ¢ = [—60,60] with Neumann boundary conditions.
The initial conditions are the same as in Figure 1(a). Aftehart transient period, both the
wave form (see Figure 4(a)) and the wave speed (see Figuyebgtome stationary. From
the steady states one can directly read off the asymptaifdepas well as the wave speed.
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15 [—u]

0 20 40 60 80 100
t

(a) Frozen solutionw (b) Time evolution ofu

Fig. 4 (online colour at: www.gamm-mitteilungen.org) FitzHubjlagumo system.

4.2.2 Quintic complex Ginzburg-Landau equation

The freezing method now uses the ansdiz, t) = exp(—ivi(t))v(z — v2(¢)) in view of the
group action (9). Combined with a fixed phase condition aedé&gonstruction equations we
obtain from (8) the system

Vg = Qg + (0 + BJv]? + plv|)v + pov, + v,

: (46)

0 = (uo,e, v — uo) £, = (U0, v — Uo)L,-
The motion on the group can be reconstructed by integratiom fy; ; = 11, 71(0) =0,
2.t = p2, 72(0) = 0. Note that in the complex formulation of (46) the inner protshould
be read as

(w1 + dug, v1 + iv2) g, = (U1, 1)z, + (U2, V2)z,.

Solving (46) onQ2 = [—40,40] with Neumann b.c. and starting with the same initial con-
ditions as for the original PDE the solution rapidly stat#k at the desired profile while the
algebraic variables, 12 converge to the values for rotational and translationalaigks, see
Figure 5 and compare Figure 1(b).

In two space dimensions we use for freezing the subg&if2) rather thans! x SE(2)
(see the remarks in Section 3.5). Therefore, we solve thadmlg PDAE on the same com-
putational domain and with the same inital values as in 8B@i2.

vy = alAv + (0 4 Blv|* + plv|M)v + ps(z2Div — 21 Dav) 4 p1 D1v + 1o Dov

47)
0 = (x2D1ug — x1Daug, v — o)z, = (Diuo,v — uo)z, = (Dattg, v — uo)z,.

Figure 6 displays the corresponding solution which becasta®nary in contrast to the non-
frozen solution shown in Figure 2(b). The parametgiconverges to the angular velocity of
the soliton while the translational velocities andy» converge to zero (as they should).
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(a) Frozen solutioRe(v) (b) Time evolution ofuy, 2

Fig. 5 (online colour at: www.gamm-mitteilungen.org) Quintic@burg-Landau: frozen phase-
rotating front in one space dimension.

t s 10 - % 0 10 20 30 40 50
t

(a) Evolution of Re(v) in the cross-sectioms = 0 (b) Time evolution ofuz, p1, po

Fig. 6 (online colour at: www.gamm-mitteilungen.org) Quinticn@burg-Landau: frozen spinning
soliton in two space dimensions.

In three space dimensions we solve a PDAE that has six additsymmetry terms

3

Z MijU + ,LL4(I3D2’U — $2D31}) + /L5(I1D31) — Ingl)) + ,LLG(SCQDlv — xngv)

j=1
and a corresponding number of phase conditions which we tarite down in detail. In
fact, in this case it is convenient to solve the reconstomcéiquation or5 E(3) in terms of
quaternions which form a double covering$®(3) (see [20],[6] for detailed results). Figure
7(a) shows the isosurface of the initial condition that wias aised for the direct simulation
in Section 2.3. With the same boundary conditions as in 8ei3 the freezing is successful
and stabilizes the isosurface shown in Figure 3(a). Thetinue dependence of the freezing
process can only be seen in a movie, but Figure 7(b) gives pression of the behavior by
looking at the evolution in time dRe(v) in the cross-section; = x5 = 0.
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(@) Initial condition: Isosurface dke(v) = 0 (b) Evolution of Re(v) in the cross-section
x1 =23 =0

Fig. 7 (online colour at: www.gamm-mitteilungen.org) Quinticn@burg-Landau: frozen scroll wave
in three space dimensions

5 Conclusions and Perspectives

In this paper we reviewed some recent developments in thencahand analytical treatment
of time dependent PDEs that have continuous symmetrieshetcite posed on a spatially
unbounded domain. Particular emphasis was put on senrilieaation diffusion equations
in R4 which show a variety of dynamic patterns such as travelinbgrase-rotating waves in
one, spinning solitons and spiral waves in two and scrollegam three space dimensions.

These patterns can be identified as relative equilibria wiréting the PDE as an abstract
evolution equation that is equivariant with respect to ttigoa of a Lie group.

Two closely related issues were discussed for these relegjuilibria. First we considered
the property of stability with asymptotic phase and the peobof deriving this property
from linearized or spectral stability. Usually, the difetial operator obtained by linearizing
about the relative equilibrium has as many eigenvalues®mihginary axis as the dimension
of the Lie group. The problem then is to prove stability withy@ptotic phase by using
information on further isolated eigenvalues and on thergegespectrum. This is well known
for traveling waves and in the abstract setting there is agarprinciple of reducing the
dynamics to an exponentially attracting center manifoldirtier, we provided a stability
theorem for localized rotating patterns®3. An important open problem in this area is the
stability of nonlocalized spiral and scroll waves for whitle essential spectrum touches the
imaginary axis at infinitely many points.

Our second topic was the freezing method which numericaliyssshape and group dy-
namics (as it is done in the stability proof for relative éitpuia) for solutions of the general
Cauchy problem. The given PDE is transformed into a PDAE wiltlee extra constraints
(phase conditions) are derived from minimization prineglSolving the PDAE numerically
(on a bounded domain and with space-time discretizatidoyvalto obtain solutions that
converge to the unknown pattern and to obtain algebraicegatinat converge to the veloc-
ities on the group. This approach was demonstrated for akapplications to systems of
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FitzHugh-Nagumo and Ginzburg-Landau type. The methodiiscodarly effective for solu-
tions that converge to a relative equilibrium that is stafid asymptotic phase. Essentially,
our approach transforms such a relative equilibrium intteady state of a PDAE such that it
becomes asymptotically stable in the classical Liapunogee

The question arises whether this can be proved for the asmiequation or, even more
important, for numerical approximations. For traveling/ies (and more general relative equi-
libria in one space dimension) this has been achieved indaperns [37], [39],[38]. In [39] it
is shown that a finite difference discretization of (25) ornu#fisiently large interval has a
unigue solution that approximates the relative equiliforio a certain order. Moreover, if the
stability conditions hold for the traveling wave (see (S@Y4EC) in Section 3.5) then the
approximate relative equilibrium is asymptotically selibr a full space-time discretization
of the PDAE ( see (45) for the FitzHugh-Nagumo case) withgat@form in the discretiza-
tion parameters (see [38]). These results also hold for gereral group actions but are
essentially limited to the one-dimensional case. So farglare no corresponding results for
the higher dimensional cage> 2, such as the two-dimensional rotating patterns in Section
3.5.

It may be no surprise that the freezing method works numiérifca other and more gen-
eral equations than (1).

For example, it can be used for freezing viscous shock wakesrservation laws (see
[32])

up+ f(u)y = Augy, = €R, u(z,0) =up(z).

Stability proofs for strong shocks are quite delicate (c24][[43],[7]), since the essential
spectrum of the linearized operator touches the imagingis; eHowever, some prestudies
indicate that stability can be transfered from the PDE toRB&E formulation in certain
situations [31].

The freezing method seems to even retain its favorable piiepén situations where the
symmetry in (1) is broken. This occurs, for example, withchmstic PDEs. Numerical exper-
iments show that even in this case the freezing ansatz leadasonable results (cf.[25]).

Finally, we mention multiple pulses and multiple frontsttfr@quently occur in systems
of type (1). If these travel at different speeds and intestrcingly or repel each other then
it is clearly impossible to set up a common moving frame inclihall waves become sta-
tionary (see [10] for such a case in the FitzHugh-Nagumo tojpia In the recent paper [9]
we managed to extend the freezing method to cope with suctifronts and multipulses.
Essentially we write the multipulse as a superposition fis pulses each of which has its
own coordinate system and requires its own phase condifio@ vector field is decomposed
by a dynamic partition of unity and the nonlinear interaci@re fully retained. The stability
analysis of this procedure is work in progress. Howevergtheeralization of this '"decompose
and freeze’ approach to higher space dimensions is wide. open
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