
GAMM-Mitt. 32, No. 1, 7 – 25 (2009) /DOI 10.1002/gamm.200910002

Dynamics of Patterns in Nonlinear Equivariant PDEs

Wolf-Jürgen Beyn∗1 andVera Thümmler1
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Many solutions of nonlinear time dependent partial differential equations show particular
spatio-temporal patterns, such as traveling waves in one space dimension or spiral and scroll
waves in higher space dimensions. The purpose of this paper is to review some recent progress
on the analytical and the numerical treatment of such patterns. Particular emphasis is put on
symmetries and on the dynamical systems viewpoint that goesbeyond existence, unique-
ness and numerical simulation of solutions for single initial value problems. The nonlinear
asymptotic stability of dynamic patterns is discussed and anumerical approach (thefreezing
method) is presented that allows to compute co-moving frames in which solutions converging
to the patterns become stationary. The results are related to the theory of relative equilibria
for equivariant evolution equations. We discuss several applications to parabolic systems with
nonlinearities of FitzHugh-Nagumo and Ginzburg-Landau type.
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1 Introduction

Nonlinear wave phenomena are ubiquitous in mathematical models for the dynamics of bio-
logical, chemical, physical or technical systems. Among the most prominent ones are trav-
eling waves that occur in models for the spread of populations, for neuronal firing or for
excitable chemical reactions (see [30],[44],[42], [5] as general references). Further dynamical
patterns occuring in two and three space dimensions are rotating and spiral waves (also called
dissipative solitons in the physics literature [12]) and scroll waves [23], but also examples in
technical systems such as buckling modes of long structures[22] belong to this category.

For the sake of a common framework we restrict in this paper tosemilinear parabolic
systems of the type

ut = A∆u+ f(u), x ∈ Rd, t ≥ 0, (1)

whereu(x, t) ∈ Rm,A ∈ Rm×m is a positive definite (not necessarily symmetric) matrix and
the nonlinearityf : Rm → Rm is sufficiently smooth. Several extensions to more different
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8 W.-J. Beyn and V. Thümmler: Dynamics of Patterns

types of equations (e.g hyperbolic and coupled hyperbolic-parabolic systems) and to more
refined phenomena (e.g. multipulses and multifronts) will be indicated in Section 5.

In dimensiond = 1 traveling wave solutions of (1) are of the form

u(x, t) = v(x − ct), x ∈ R, t ∈ R, (2)

wherev : R→ Rm denotes the profile of the wave andc ∈ R denotes its speed. For dimension
d = 2 a model case for dynamic patterns is given by rotating waves of the form

u(x, t) = v(R−ctx), x ∈ R2, t ∈ R, Rθ =

(

cos θ − sin θ
sin θ cos θ

)

, (3)

where againv : R2 → Rm denotes a fixed profile that rigidly rotates about the origin with
angular speedc.

Traveling and rotating waves are special cases of so calledrelative equilibriaof the system
(1). This notion originates from the theory ofequivariant dynamical systemsin which one
studies the influence of symmetries on the longtime behaviorof dynamical systems. This
theory has been developed to a considerable extent over the last years. Some monographs
containing much of the current state are [14],[19],[17] anda few ingredients of the theory
needed for this paper will be mentioned in Section 3.

The parabolic system (1) is equivariant with respect to the action of the Euclidean group
SE(d) on functionsv : Rd → Rm given by

[a(γ)v](x) = v(γ−1x), x ∈ Rd, γ ∈ SE(d). (4)

Note that we useγx to denote the action of some group element on a vectorx ∈ Rd (i.e.
γx = Qx + b for some orthogonal matrixQ and some vectorb ∈ Rd) but that we usea(γ)v
(rather thanγv) to denote the action on functions defined by (4), cf. the notions in [14],[17].

Relative equilibria with respect to the action (4) may then be written as

u(x, t) = v(γ(t)−1x), x ∈ Rd, t ∈ R, (5)

whereγ(t) ∈ SE(d), t ∈ R denotes the motion of the pattern parametrized by the Euclidean
group. Obviously, the traveling and rotating waves from (2), (3) are special cases of (5).

This paper is devoted to various analytical and numerical aspects of relative equilibria for
systems that have continuous symmetries such as equation (1). We are particularly interested
in numerical methods that make systematic use of the underlying symmetries and in the ana-
lysis of these methods and its relation to the stability theory for relative equilibria.

In Section 2 we provide several characteristic examples of relative equilibria and solutions
of initial value problems that converge to such equilibria.In addition to the cases (2), (3)
above we show waves that rotate and travel simultaneously aswell as scroll waves in three
space dimensions. The numerical results are based on directsimulations of Cauchy prob-
lems for (1) (u(x, 0) = u0(x), x ∈ Rd), obtained by truncating to a bounded domain inRd,
using appropriate boundary conditions and then applying standard space-time discretization
methods.

The central topic of Section 3 are stability problems for relative equilibria of (1). We intro-
duce the abstract setting of equivariant dynamical systemsand discuss the notion of nonlinear
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stability with asymptotic phase for relative equilibria. The main issue here is to infer nonlinear
stability from linear stability, which means that the wholespectrum (or an important part of
it) of a linearized operator lies in the open left half plane.While such results are well known
for equivariant ODEs and for traveling waves in PDEs in one space dimension we report on
some recent progress for rotating patterns in two space dimensions.

Section 4 is concerned with thefreezing methodfor solving initial value problems for
equivariant systems as developed in [10], [11]. In this approach we aim at separating shape
dynamics from group dynamics not only for relative equilibria but also for solutions of the
Cauchy problem. The form (5) is generalized to

u(x, t) = v(γ(t)−1x, t), x ∈ Rd, t ≥ 0, γ(t) ∈ SE(d) (6)

and extra phase conditions are imposed in order to compensate for the additional unknowns
γ(t) in the group. With this ansatz the PDE (1) transforms into a partial differential algebraic
equation (PDAE) which is then solved numerically. While thePDE and the PDAE formulation
are essentially equivalent on the unbounded domain, the longtime behavior of solutions differs
dramatically when restricting to a bounded domain. While the patterns in the original PDE
may rotate for ever or may die out when they reach the boundary, the freezing method allows
to compute co-moving frames in which solutions converging to a relative equilibrium become
stationary at the target pattern. In Section 4 we discuss thefeasibility and the implications of
this approach and we relate it to the stability problems in Section 3.

The final Section 5 indicates several solved and open problems in the subject area. Numer-
ical experiments indicate that the method works for much more general evolution equations
than (1) for which the theoretical background is still underdevelopment. It even works in
some cases where the underlying symmetry is destroyed (suchas stochastic evolution equa-
tions with additive noise) and it can be generalized to certain multiple patterns that travel at
different speeds and that have weak or strong interactions.

2 Examples

2.1 Traveling and phase-rotating waves in one space dimension

Our first example is the well known FitzHugh Nagumo equation [18] which is a two-dimensional
system foru = (V,R) whereV is voltage across a nerve membrane andR is a phenomeno-
logical parameter

Vt = Vxx + V −
1

3
V 3 −R

Rt = φ(V + a− bR)
x ∈ R, t ≥ 0. (7)

The second equation lacks a diffusion term so that the systemis not parabolic and does not
satisfy all our assumptions. However, the following simulations can be repeated with a small
diffusion termεRxx, ε > 0 without substantial changes in the results.

We use the parameters:a = 0.7, b = 0.8, φ = 0.08 from [29] and solve the initial value
problem on the intervalΩ = [−60, 60] subject to Neumann boundary conditions. In the fol-
lowing, unless stated otherwise, we use the finite element package Comsol MultiphysicsTM[15]
with second order elements in space and a BDF method in time. Figure 1 (a) shows that an
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10 W.-J. Beyn and V. Thümmler: Dynamics of Patterns

(a) FitzHugh-Nagumo:V component of traveling wave(b) Quintic Ginzburg-Landau: real part of traveling and
phase-rotating wave

Fig. 1 (online colour at: www.gamm-mitteilungen.org) Moving patterns in one space dimension.

initial ramp functionu0 generates a pulse that travels to the left (with approximatespeed
c = −0.812). When the pulse reaches the left boundary it dies out due to the Neumann
boundary conditions. Of course, on the whole real line the pulse will continue to travel to
−∞. Considered as dynamical systems we see that the longtime behavior of both systems
on the bounded and the unbounded domain will differ substantially, in general. While trav-
eling waves are part of the global attractor on the unboundeddomain they occur as transient
phenomena on any bounded domain.

Our second example is the complex Ginzburg-Landau equationthat occurs as a modula-
tion equation in the study of hydrodynamic instabilities [28]. The quintic Ginzburg-Landau
equation reads

ut = αuxx + (δ + β|u|2 + ρ|u|4)u, u(x, t) ∈ C, x ∈ R, t ≥ 0, (8)

with complex parametersα, β, δ, ρ. AssumingRe(α) > 0 one can rewrite (8) as a real two-
dimensional parabolic system. Equation (8) has a two dimensional symmetry group
G = S1 × R, S1 = R/(2πZ) with the action given by

[a(γ1, γ2)v] (x) = exp(−iγ1)v(x − γ2), x ∈ R, (γ1, γ2) ∈ S1 × R. (9)

Following [36],[40] we take parametersα = 1, δ = −0.1, β = 3 + i, ρ = −2.75 + i.
Starting at a ramp function the solution converges to a traveling front with simultaneous phase
rotation, see Figure 1 (b). These relative equilibria may bewritten as

u(x, t) = exp(−iµ1t)v(x− µ2t), whereµ1, µ2 ∈ R. (10)

At the same parameter values the system also shows pulses that have a phase rotation only,
i.e. for which (10) holds withµ1 6= 0, µ2 = 0, cf. [36],[40].

2.2 Planar spinning solitons

Consider the two-dimensional quintic Ginzburg-Landau system

ut = α∆u+ (δ + β|u|2 + ρ|u|4)u, x ∈ R2, t ≥ 0 (11)
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(a) Real partRe(u) of spinning soliton (b) Evolution ofRe(u) in the cross-section atx2 = 0

Fig. 2 (online colour at: www.gamm-mitteilungen.org) Quintic Ginzburg-Landau: Real part of spin-
ning soliton

with parametersα, β, δ, ρ ∈ C as above. The symmetry groupG = S1 × SE(2) is now
4-dimensional and acts on functions via

[a(γ)v] (x) = exp(−iγ1)v(γ
−1
2 x), γ = (γ1, γ2) ∈ S1 × SE(2). (12)

According to [16] the system (12) shows so called spinning solitons, i.e. strongly localized
solutions that are rotating patterns in the sense of (3). These occur at parameter valuesα =
(1+i)/2, δ = 1/2, β = 2.5+i, ρ = −1−0.1i, see [16]. Figure 3 (a) shows the real part of a
spinning soliton obtained from a simulation on a disc of radiusr = 20 (the plot is restricted to
r = 10) with Neumann boundary conditions. In Figure 3 (b) we display the approach toward
the soliton within the cross-sectionx2 = 0 with two Gaussian humps as initial conditions.
The center of the soliton turns out to be the origin due to the symmetry of initial conditions.
Spinning solitons are rotating patterns as in (3) with a complex valued profilev : R2 → C. In
this special case one finds that the profilev has an extra symmetry given by

v(R−θx) = exp(−iθ)v(x), for x ∈ R2, θ ∈ S1, (13)

so that (3) may equivalently be written as

u(x, t) = exp(−ict)v(x). (14)

In abstract terms this relative equilibrium has a nontrivial isotropy subgroup which has impli-
cations for the stability theory as well as for numerical computations, see Sections 3 and 4.

Another class of rotating patterns are spiral waves for which there is an extensive literature,
see e.g. [44], [42], [2]. Usually, spiral waves are not localized (i.e. they do not decay at
infinity) as opposed to spinning solitons. While this property does not lead to serious problems
with numerical simulations their stability theory turns out to be rather difficult and is not yet
complete (see [34] and Section 3). In this paper we will not discuss spiral waves in detail.

2.3 A three-dimensional scroll wave

Scroll waves are special patterns that occur in three-dimensional systems of type (1), cf. [44],
[23]. Usually, scroll waves wind around a flow invariant curve, called the filament, and they
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12 W.-J. Beyn and V. Thümmler: Dynamics of Patterns

(a) IsosurfaceRe(u) = 0 of scroll wave in CGL (b) Spiral pattern ofRe(u) = 0 in the slicex3 = 0

Fig. 3 (online colour at: www.gamm-mitteilungen.org) Scroll waves in three space dimensions

show spiral patterns in surfaces transversal to the filament. A scroll ring is obtained when
the filament is a closed curve; then the number and orientation of rotations of the transverse
structure leads to twisted or untwisted scroll rings, cf. [44].

In Figure 3 we show a simple scroll wave that has a straight line on thex3 axis as its
filament. The underlying system is the three-dimensional cubic Ginzburg-Landau equation
(11) (also called theλ − ω system in [30]) with parametersα = 1, β = 1 + i, δ = 1, ρ = 0.
The computational domain isΩ = [−20, 20]3 with Neumann boundary conditions on the
surfacesx1 = ±20 andx2 = ±20 but periodic boundary conditions in thex3 direction. This
choice of boundary conditions favors the vertical filament.Figure 3 (a) shows a view of the
isosurfaceRe(u(x)) = 0 and Figure 3 (b) displays the spiral pattern in the slicex3 = 0. The
results are obtained by a modification of Barkley’s finite difference codeezscroll [3] on a
mesh of1253 grid points. We refer to Section 4 for some time-dependent simulations in this
case.

The symmetry groupG = S1 × SE(3) now has dimension7 and acts as in (12) with
SE(2) replaced bySE(3). Similar to the two-dimensional case the scroll wave is a relative
equilibrium of the type (5) whereγ(t) denotes rotation about thex3-axis. Again the solution
has an extra symmetry of the form

v(R3,θx) = exp(−iθ)v(x), θ ∈ S1, R3,θ =

(

Rθ 0
0 1

)

(15)

which allows to write the scroll wave as a phase-rotating wave.

3 Relative equilibria and their dynamic stability

In this section we first summarize some basic theory on evolution equations that are equi-
variant with respect to a (not necessarily compact) Lie group G. Then we discuss dynamic
stability of relative equilibria for some special cases of the general PDE (1).
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3.1 Equivariance

Consider, more generally than (1), an abstract evolution equation

ut = F (u), (16)

where the vector fieldF is defined on a dense subspaceY of some Banach spaceX and maps
intoX . Further assume that the groupG acts onX via a homomorphism

a : G→ GL(X), γ → a(γ), (17)

such thatγ → a(γ)v is continuous for everyv ∈ X . We useOG(v) = {a(γ)v : γ ∈ G} to
denote the group orbit of some elementv ∈ X .

Definition 3.1 The system (16) is calledequivariantwith respect to the group action (17)
if the following properties hold

(i) a(γ)(Y ) = Y for all γ ∈ G,

(ii) F (a(γ)v) = a(γ)F (v) for all v ∈ Y, γ ∈ G.

The system (1) is equivariant with respect to the group action (4) in suitable Sobolev spaces,
e.g.

Y = H2(Rd,Rm), X = L2(Rd,Rm). (18)

This assertion holds iff(0) = 0 and if f satisfies appropriate growth conditions. The case
f(u∞) = 0 for someu∞ 6= 0 (as in the FitzHugh Nagumo system (7)) can be reduced to this
case by writing the equation in terms ofũ = u − u∞. The trick does not work for traveling
fronts which typically lie in some affine spacew+H2(Rd,Rm) with a bounded functionw that
prescribes the behavior at infinity. For this case it is useful to generalize the whole approach
from Banach spaces to Banach manifolds using an appropriateformulation of equivariance
(cf. [26], [11]). In this paper we avoid the technicalities involved in this generalization.

Let 1 denote the unit element inG and letA = T1G be the assoiated Lie algebra. Further,
let Lγ : G → G, g 7→ γg be the operation of left multiplication with derivative denoted by
dLγ(g) : TgG → TγgG. The exponentialγ(t) = exp(tµ) ∈ G, t ∈ R for some element
µ ∈ A can be defined as the unique solution of the initial value problem

γ̇ = dLγ(1)µ, γ(0) = 1. (19)

In general, the mapa(·)v : γ → a(γ)v will not be smooth for allv ∈ X , but we assume that
this is the case forv ∈ Y (i.e. Y is in the domain of the infinitesimal generator of the group
action) with derivative denoted byd[a(γ)v] : TγG → X . For example, in the simple shift
case[a(γ)v](x) = v(x− γ), x ∈ R, γ ∈ G = R this holds with

X = L2(R,Rm), v ∈ Y ⊂ H1(R,Rm), d[a(γ)v]µ = µvx for µ ∈ R. (20)
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14 W.-J. Beyn and V. Thümmler: Dynamics of Patterns

3.2 Relative equilibria

Definition 3.2 A solutionū(t) ∈ Y, t ∈ R of (16) is called a relative equilibrium if it is of
the form

ū(t) = a(γ̄(t))v̄ for some v̄ ∈ Y, γ̄ ∈ C1(R, G). (21)

There is no loss of generality in assumingγ̄(0) = 1. Usually, the whole group orbitOG(v̄)
is called a relative equilibrium [14], [17], [26], but we prefer to include the one-parameter
groupγ̄(t) in the definition because it will be part of the numerical approach in Section 4.

Examples of relative equilibria with respect to the group action (4) are the traveling waves
from (2) (̄γ(t) = ct) and the rotating waves from (3) (γ̄(t) = Rct). For the complex Ginzburg
Landau equation (8) we found a relative equilibrium w.r.t. the group action ofG = S1 × R
in (9).

It can be shown (see [14, Th.7.2.4]) that any relative equilibrium of (16) can be written as
ū(t) = a(γ̄(t))v̄ for a suitablēµ ∈ A such that the following holds

0 = F (v̄) − d[a(1)v̄]µ̄, (22)

γ̄(t) = exp(tµ̄), t ∈ R. (23)

This is proved by insertinḡu(t) = a(γ̄(t))v̄ into (16). If v̄ has a trivial isotropy group

Hv̄ = {γ ∈ G : a(γ)v̄ = v̄}, (24)

thend[a(1)v̄] is a one-to-one mapping and henceµ̄ is unique. In the general case, it is only
unique up to elements from the Lie algebra ofHv̄, cf. [14, Ch.7.2]. Note that we found
nontrivial isotropy groups for the relative equilibria of the complex Ginzburg Landau equation
in dimensionsd ≥ 2 (cf. (13), (15)).

Conversely, ifv̄ ∈ Y, µ̄ ∈ A satisfies (22) thena(exp(tµ̄))v̄ is a relative equilibrium of
(16).

For traveling waves in the cased = 1, G = R we obtain from equation (22) the system
(cf.(20))

0 = Avxx + f(v) + µvx, x ∈ R, (25)

and in the two-dimensional case (4) we find

0 = A∆v + f(v) + µ3Dθv + µ1D1v + µ2D2v. (26)

For the last equation we used the representationSE(2) = R2 × S1 with the action given by

a(η, θ)v(x) = v(R−θ(x− η)), (η, θ) ∈ SE(2). (27)

The partial derivatives in (26) areD1 = ∂
∂x1

,D2 = ∂
∂x2

, Dθ = x2D1 − x1D2, the constants
µ1, µ2 denote the translational velocity andµ3 denotes the rotational velocity. Note that the
pattern (3) rotating about the origin satisfies this system with µ1 = µ2 = 0, µ3 = c.

In general, the system (22) does not determinev̄ andµ̄ uniquely. Sincea(gγ̄(t))v̄ is a rela-
tive equilibrium for everyg ∈ G one finds that (22) has a family of solutions{(a(g)v̄, Adgµ̄) :

g ∈ G} whereAdgµ = d
dt
g exp(tµ)g−1|t=0 is the adjoint action ofG onA. Therefore one

needs at leastdim(G) additional constraints (called phase conditions) in orderto turn (22)
into a well-posed problem for(v̄, µ̄). This aspect is essential for the numerical computation
of relative equilibria (for a detailed discussion see [13])and it will also play a major role for
the freezing method in the next section.
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3.3 Nonlinear stability

For equivariant evolution equations classical Liapunov stability has to be weakened to stability
with asymptotic phase which may be regarded as stability in the orbit spaceX/G (see [14],
[17]). We consider the Cauchy problem

ut = F (u), u(0) = u0 ∈ Y (28)

and assume thatY is a Banach space with respect to some norm‖ · ‖Y that is stronger than
the norm inX and with respect to which (28) is well posed. As with relativeequilibria we
make the dependence on appropriate group orbits explicit inthe definition.

Definition 3.3 A relative equilibriumū(t) = a(γ̄(t))v̄ is calledasymptotically stableif
there exists someε0 > 0 such that for anyε ≤ ε0 there exists aδ > 0 with the following
property. For any‖u0 − v̄‖Y ≤ δ equation (28) has a unique solutionu(t) ∈ Y, t ≥ 0 and
there exists an orbitγ(t) ∈ G, t ≥ 0 such that

‖u(t) − a(γ(t)γ̄(t))v̄‖Y

{

≤ ε for all t ≥ 0,

→ 0 as t→ ∞.
(29)

If, in addition,γ(t) converges ast→ ∞ to an elementγ∞ in theε-neighborhoodof1 thenγ∞
is called theasymptotic phase. The relative equilibrium is then calledstable with asymptotic
phase.

For applications to PDEs the choice of norms is crucial. In some applications one needs
u0 − v̄ to be small in a norm stronger than the one for which (29) holds. Moreover, for certain
patterns it may be useful to measure the distance of profiles only on compact subsets rather
than on the whole space (see [1] for such a discussion). In thefinite dimensional ODE case
it is well known how to prove asymptotic stability from linearized stability by invoking the
classical Liapunov stability theorem in a transversal direction (see [14, Th.7.4.2.]). One of the
difficulties in the PDE case is that essential spectra appearbecause linearized PDE operators
on unbounded domains usually lack compactness properties.In the following we will discuss
two cases where such a result holds for the general equation (1).

3.4 Traveling waves

This is one of the best studied cases for stabiliy with asymptotic phase (see the monographs
[21],[41] and the review [33]). We briefly recall a typical result. Letu(x, t) = v̄(x− ct) be a
traveling wave solution of (1) ford = 1 wherev̄ is assumed to beC2-bounded onR such that
the limits

v− = lim
x→−∞

v̄(x), v+ = lim
x→∞

v̄(x) (30)

exist. We impose two conditions that allow to control the essential and the discrete spectrum.
Spectral condition (SC):There exist constantsρ, β > 0 such that all solutionsλ ∈ C of the
quadratic eigenvalue problems

det(Aλ2 + cλI + f ′(v±) − sI) = 0 with Re(s) ≥ −β (31)

satisfy|Reλ| ≥ ρ.
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16 W.-J. Beyn and V. Thümmler: Dynamics of Patterns

This condition ensures that the essential spectrum of the linear operator

Lv = Avxx + cvx + f ′(v̄(·))v (32)

lies in the half-planeRe(s) ≤ −β (say with respect toH1(R,Rm)), cf. [21].
By differentiating (25) with respect tox one finds that0 is an eigenvalue ofL with eigen-

functionv̄x ∈ H1(R,Rm). This is the eigenvalue caused by equivariance.
The next condition excludes further eigenvalues on or to theright of the imaginary axis.

Eigenvalue condition (EC):The eigenvalue0 of the operatorL in (32) is simple andL has
no further isolated eigenvalues withRe(s) ≥ −β.

Then the traveling wave is stable with asymptotic phase withrespect to the norm‖ · ‖H1 .
More precisely, for‖u0 − v̄‖H1 sufficiently small one obtains exponential convergence

‖u(·, t) − v̄(· − ct− γ(t))‖H1 ≤ C exp(−
β

2
t)‖u0 − v̄‖H1 (33)

for a suitable phase shiftγ(t) with limt→∞ γ(t) = γ∞, |γ∞| ≤ C‖u0 − v̄‖H1 . Note that in
this case the profilēv itself need not be an element ofH1, rather it is sufficient to have initial
values that are small perturbations ofv̄ in theH1-norm, i.e. we have stability with asymptotic
phase in the affine spacēv + H1.

3.5 Rotating patterns

The stability proof for traveling waves in parabolic systems is greatly simplified by the fact
that the linearized operators (32) generate analytic semigroups. This is not the case for
the FitzHugh-Nagumo system (7) where (32) is of coupled parabolic hyperbolic type (if
c 6= 0) and generates aC0-semigroup only. For this case Bates and Jones [4] have devel-
oped an invariant manifold approach that allows to concludestability for traveling waves in
the FitzHugh-Nagumo system. More generally, in [35] an abstract approach is set up that
allows to reduce the dynamics near a relative equilibrium of(16) to a center manifold. Also
exponential attraction of the center manifold is proved under spectral assumptions. However,
stability with asymptotic phase is not considered in [35].

We review here a recent result [8] that provides nonlinear stability with asymptotic phase
for rotating pattern as in (3).

Assume for the nonlinearityf ∈ C4(Rm,Rm) and letu(x, t) = v̄(R−ctx) be a rotating
pattern withc 6= 0 that is localized in the sense

sup
|x|≥r,0≤|α|≤2

|Dαv̄(x)| → 0 as r → ∞. (34)

This condition implies thatf(0) = 0. The following spectral condition requires stability in
the far field.
Spectral condition (SC): The matrixf ′(0) ∈ Rm,m is negative definite (not necessarily
symmetric).

Sincev̄ andµ̄ = (0, 0, c) solve equation (26) the linear operator analogous to (32) is

Lv = A∆v + cDθv + f ′(v̄(·))v, (35)

defined in the domainH2
Eucl = {v ∈ H2(R2,Rm) : Dθv ∈ L2(R2,Rm)}. One can show that

this operator generates aC0-semigroup onH2(R2,Rm) and that it has essential spectrum in
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the open left half-plane due to (SC). Moreover, the essential spectrum contains the algebraic
set

S = {s ∈ C : det(−κ2A− incI + f ′(0) − sI) = 0 for somen ∈ Z, κ ∈ R}.
Note thatS consists of a countable number of algebraic curves that are copies of a single
parabola-shaped curve shifted byinc, n ∈ Z in the imaginary direction. There is a fixed
spectral gap betweenS and the imaginary axis. We refer to [8] for a proof and some illustrative
pictures of (numerical) spectra for the case of spinning solitons.

On the contrary, spiral waves that are asymptotically periodic in the radial direction do not
satisfy our assumptions and their essential spectrum contains infinitely many parabola-shaped
curves that touch the imaginary axis (see [34] for some illuminating results on the spectral
behavior of Archimedian spirals and its relation to stability questions).

Applying D1, D2, Dθ to the stationary equation (26) immediately shows that the opera-
tor L has three eigenvalues0,±ic on the imaginary axis with corresponding eigenfunctions
Dθ v̄, D1v̄ ± iD2v̄. These are the eigenvalues caused bySE(2)-equivariance. Therefore we
impose the following condition.
Eigenvalue condition (EC): The eigenvalues0,±ic of the operatorL in (35) are simple with
eigenfunctions inH2

Eucl andL has no further isolated eigenvalues withRe(s) ≥ −β for some
β > 0.

Under these assumptions the rotating pattern is stable withasymptotic phase (in the sense
of Definition 3.3) in the function spaceH2(R2,Rm) with the action given by (27). Moreover,
we have exponential convergence as in (33)

|η(t)−η∞|+ |θ(t)−θ∞|+‖u(·, t)− v̄(R−ct−θ(t)(·−η(t)))‖H2 ≤ C exp(−
β

2
t)‖u0− v̄‖H2 .

The interpretation is that perturbing the initial functionleads to a solution which converges to
a pattern rotating about a slightly perturbed center atη∞ with an angular velocityc and with
a phase shiftθ∞. In the proof one has to carefully split the dynamics nearv̄ into the dynamics
within the three-dimensional group orbitOG(v̄) and in a transversal direction. The nonlin-
ear remainders can be handled inH2 by using Sobolev embedding and Gagliardo Nirenberg
estimates. Furthermore, there is an abstract perturbationtheorem onC0-semigroups (see [8,
Appendix]) that allows to conclude exponential decay of theC0-semigroup generated by the
operatorL in a suitable subspace.

This theorem applies to the spinning solitons of Section 2.2when we restrict the action
(12) to the subgroupSE(2). In this way we avoid the nontrivial isotropy subgroup caused
by (13). Note that the spectral condition (SC) follows fromδ < 0. The eigenvalue condition
(EC) is hard to prove analytically. Numerical computationsreveal that there is a total of8
additional complex conjugate pairs of simple eigenvalues with real part strictly between the
algebraic setS and the imaginary axis (cf. [8]). This indicates that (EC) issatisfied as well.

Because of the symmetry (13) one can also restrict the action(12) to the abelian subgroup
S1×R2 and then study the simpler linearizationLv = A∆v+ icv+f ′(v̄(·))v. Note however,
that it is easy to destroy theS1-equivariance from (12) in the real version of (11) by perturbing
the factor of the quintic term. Numerical experiments show that the spinning solitons persist
under such perturbations and that the above stability result becomes essential in this case.
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4 The freezing method

The theoretical results for relative equilibria in the previous section suggest to realize a split-
ting into group dynamics and shape dynamics for the general Cauchy problem (28). Such
an approach was developed in [10],[11] and called the freezing method. The same idea was
used independently and earlier in the paper [32] where it wasapplied to compute self-similar
solutions of Burgers equation. Another precursor of this approach is the work by Marsden
and Scheurle onpattern evocationfor Hamiltonian systems in [27].

4.1 The general principle

We write the solutionu(t) of the equivariant Cauchy problem (28) in the form

u(t) = a(γ(t))v(t), t ≥ 0, v(0) = u0, γ(0) = 1, (36)

where bothv(t) ∈ Y andγ(t) ∈ G are considered to be unknown and to be determined
by a numerical process. Clearly, there is some arbitrariness in the representation (36). We
will use this arbitrariness to impose extra conditions (phase conditions) that try to minimize
the temporal change ofv. In this way we wantv(t) to converge to a relative equilibrium (if
possible) or at least want to minimize the efforts for mesh adaptation when solving the PDE
numerically. Inserting (36) into (28) and using equivariance leads to

vt = F (v) − a(γ−1)d[a(γ)v]γt. (37)

In order to simplify the extra term on the right hand side of (37) it is convenient to introduce
µ(t) ∈ A via γt = dLγ(1)µ. Then (28) may be rewritten as a system forv(t) ∈ Y , γ(t) ∈ G,
µ(t) ∈ A

vt = F (v) − d[a(1)v]µ, v(0) = u0 (38)

γt = dLγ(1)µ, γ(0) = 1. (39)

We refer to [11, Lemma 3.3] for a precise statement about the equivalence of (28) and the
system (38),(39). We also note the important fact that relative equilibriau(t) = exp(tµ̄)v̄ for
(28) are in one-to-one correspondence with steady states(v̄, µ̄) of equation (38).

Equation (39) determines the motion on the group and is decoupled from (38). Therefore,
it can be solved in an a-posteriori process providedµ(t) ∈ A is known. Following [32] we
call (39) thereconstruction equation.

In the next step the remainingp = dimG degrees of freedom in (38) are fixed by adding a
set ofp phase conditions

ψ(v, µ) = 0. (40)

Here we assume thatψ is a given map fromY ×A intoA∗, the dual ofA which is isomorphic
to Rp. Two different choices forψ will be discussed below.

Equations (38),(40) comprise a system of differential algebraic equations (DAEs) for the
unknownsv(t) ∈ Y, µ(t) ∈ A which, in the applications, will lead to a partial differential
algebraic equation (PDAE) that is to be solved numerically.

It is useful to derive expressions forψ from minimality conditions in terms of an inner
product〈·, ·〉2 that is continuous with respect to the given norm onX . The first expression
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uses a template function̂v ∈ Y (e.g. v̂ = u0) and requireŝv to be the closest point tov(t) on
the orbitO(v̂). That is, we require‖a(γ)v̂ − v‖2 to have a local minimum atγ = 1 which
leads to the followingfixed phase condition

ψfix(v)ω = 〈d[a(1)v̂]ω, v − v̂〉2 = 0 for all ω ∈ A. (41)

Another possibility is to chooseµ in (38) such that‖vt‖2 is minimal at each time instance. A
necessary condition for this is

ψmin(v)ω = 〈d[a(1)v]ω, vt〉2 = 0 for all ω ∈ A. (42)

We note that (41) leads to a DAE of (differentiation) index2. Differentiating (41) with respect
to t and using (38) leads to the index1 condition

Ψfix(v, µ)ω = 〈d[a(1)v̂]ω, F (v) − d[a(1)v]µ〉2 = 0 for all ω ∈ A, (43)

which is a linear system of dimensionp for the unknownsµ ∈ A. On the other hand, inserting
vt from (38) into (42) directly leads to the second index1 condition

Ψmin(v, µ)ω = 〈d[a(1)v]ω, F (v) − d[a(1)v]µ〉2 = 0 for all ω ∈ A. (44)

Writing µ =
∑p

j=1 µje
j in some basis{e1, . . . , ep} for A shows that (43), (44) are linear

systems for(µ1, . . . , µp) with matrices

Bfix =
(

〈d[a(1)v̂]ei, d[a(1)v]ej〉2
)p

i,j=1
, Bmin =

(

〈d[a(1)v]ei, d[a(1)v]ej〉2
)p

i,j=1
.

We note thatBmin is nonsingular ifv has a trivial isotropy group and the same applies toBfix

if v̂ andv are sufficiently close.

4.2 Examples

In this section we apply the freezing method to the examples from Section 2. For each type of
equation we will write down the explicit form of the PDAE obtained from the abstract system
(38), (43), resp. (44).

4.2.1 FitzHugh-Nagumo system

In this case the abstract approach is of the simple formu(x, t) = v(x − γ(t)) and using the
fixed phase condition (43) witĥv = u0 = (V0, R0) the system (7) leads to the following

Vt = Vxx + V −
1

3
V 3 −R+ µVx, V (x, 0) = V0(x)

Rt = φ(V + a− bR) + µRx, R(x, 0) = R0(x)

0 = 〈V0,x, V − V0〉L2
+ 〈R0,x, R−R0〉L2

.

(45)

This is completed by the reconstruction equationγt = µ, γ(0) = 0. In Figure 4 the solution
of (45) is shown when discretized onΩ = [−60, 60] with Neumann boundary conditions.
The initial conditions are the same as in Figure 1(a). After ashort transient period, both the
wave form (see Figure 4(a)) and the wave speed (see Figure 4(b)) become stationary. From
the steady states one can directly read off the asymptotic profile as well as the wave speed.
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(a) Frozen solutionv
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(b) Time evolution ofµ

Fig. 4 (online colour at: www.gamm-mitteilungen.org) FitzHugh-Nagumo system.

4.2.2 Quintic complex Ginzburg-Landau equation

The freezing method now uses the ansatzu(x, t) = exp(−iγ1(t))v(x − γ2(t)) in view of the
group action (9). Combined with a fixed phase condition and the reconstruction equations we
obtain from (8) the system

vt = αvxx + (δ + β|v|2 + ρ|v|4)v + µ2vx + iµ1v,

0 = 〈u0,x, v − u0〉L2
= 〈iu0, v − u0〉L2

.
(46)

The motion on the group can be reconstructed by integration from γ1,t = µ1, γ1(0) = 0,
γ2,t = µ2, γ2(0) = 0. Note that in the complex formulation of (46) the inner product should
be read as

〈u1 + iu2, v1 + iv2〉L2
= 〈u1, v1〉L2

+ 〈u2, v2〉L2
.

Solving (46) onΩ = [−40, 40] with Neumann b.c. and starting with the same initial con-
ditions as for the original PDE the solution rapidly stabilizes at the desired profile while the
algebraic variablesµ1, µ2 converge to the values for rotational and translational velocities, see
Figure 5 and compare Figure 1(b).

In two space dimensions we use for freezing the subgroupSE(2) rather thanS1 × SE(2)
(see the remarks in Section 3.5). Therefore, we solve the following PDAE on the same com-
putational domain and with the same inital values as in Section 2.2.

vt = α∆v + (δ + β|v|2 + ρ|v|4)v + µ3(x2D1v − x1D2v) + µ1D1v + µ2D2v

0 = 〈x2D1u0 − x1D2u0, v − u0〉L2
= 〈D1u0, v − u0〉L2

= 〈D2u0, v − u0〉L2
.

(47)

Figure 6 displays the corresponding solution which becomesstationary in contrast to the non-
frozen solution shown in Figure 2(b). The parameterµ3 converges to the angular velocity of
the soliton while the translational velocitiesµ1 andµ2 converge to zero (as they should).
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(a) Frozen solutionRe(v)
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(b) Time evolution ofµ1, µ2

Fig. 5 (online colour at: www.gamm-mitteilungen.org) Quintic Ginzburg-Landau: frozen phase-
rotating front in one space dimension.

(a) Evolution ofRe(v) in the cross-sectionx2 = 0

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

 

 

µ1
µ2

µ3

(b) Time evolution ofµ3, µ1, µ2

Fig. 6 (online colour at: www.gamm-mitteilungen.org) Quintic Ginzburg-Landau: frozen spinning
soliton in two space dimensions.

In three space dimensions we solve a PDAE that has six additional symmetry terms

3
∑

j=1

µjDjv+ µ4(x3D2v− x2D3v) + µ5(x1D3v− x3D1v) + µ6(x2D1v− x1D2v)

and a corresponding number of phase conditions which we do not write down in detail. In
fact, in this case it is convenient to solve the reconstruction equation onSE(3) in terms of
quaternions which form a double covering ofSO(3) (see [20],[6] for detailed results). Figure
7(a) shows the isosurface of the initial condition that was also used for the direct simulation
in Section 2.3. With the same boundary conditions as in Section 2.3 the freezing is successful
and stabilizes the isosurface shown in Figure 3(a). The truetime dependence of the freezing
process can only be seen in a movie, but Figure 7(b) gives an impression of the behavior by
looking at the evolution in time ofRe(v) in the cross-sectionx1 = x3 = 0.
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(a) Initial condition: Isosurface ofRe(v) = 0 (b) Evolution of Re(v) in the cross-section
x1 = x3 = 0

Fig. 7 (online colour at: www.gamm-mitteilungen.org) Quintic Ginzburg-Landau: frozen scroll wave
in three space dimensions

5 Conclusions and Perspectives

In this paper we reviewed some recent developments in the numerical and analytical treatment
of time dependent PDEs that have continuous symmetries and that are posed on a spatially
unbounded domain. Particular emphasis was put on semilinear reaction diffusion equations
in Rd which show a variety of dynamic patterns such as traveling and phase-rotating waves in
one, spinning solitons and spiral waves in two and scroll waves in three space dimensions.

These patterns can be identified as relative equilibria whenwriting the PDE as an abstract
evolution equation that is equivariant with respect to the action of a Lie group.

Two closely related issues were discussed for these relative equilibria. First we considered
the property of stability with asymptotic phase and the problem of deriving this property
from linearized or spectral stability. Usually, the differential operator obtained by linearizing
about the relative equilibrium has as many eigenvalues on the imaginary axis as the dimension
of the Lie group. The problem then is to prove stability with asymptotic phase by using
information on further isolated eigenvalues and on the essential spectrum. This is well known
for traveling waves and in the abstract setting there is a general principle of reducing the
dynamics to an exponentially attracting center manifold. Further, we provided a stability
theorem for localized rotating patterns inR2. An important open problem in this area is the
stability of nonlocalized spiral and scroll waves for whichthe essential spectrum touches the
imaginary axis at infinitely many points.

Our second topic was the freezing method which numerically splits shape and group dy-
namics (as it is done in the stability proof for relative equilibria) for solutions of the general
Cauchy problem. The given PDE is transformed into a PDAE where the extra constraints
(phase conditions) are derived from minimization principles. Solving the PDAE numerically
(on a bounded domain and with space-time discretization) allows to obtain solutions that
converge to the unknown pattern and to obtain algebraic values that converge to the veloc-
ities on the group. This approach was demonstrated for several applications to systems of
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FitzHugh-Nagumo and Ginzburg-Landau type. The method is particularly effective for solu-
tions that converge to a relative equilibrium that is stablewith asymptotic phase. Essentially,
our approach transforms such a relative equilibrium into a steady state of a PDAE such that it
becomes asymptotically stable in the classical Liapunov sense.

The question arises whether this can be proved for the continuous equation or, even more
important, for numerical approximations. For traveling waves (and more general relative equi-
libria in one space dimension) this has been achieved in the papers [37], [39],[38]. In [39] it
is shown that a finite difference discretization of (25) on a sufficiently large interval has a
unique solution that approximates the relative equilibrium to a certain order. Moreover, if the
stability conditions hold for the traveling wave (see (SC) and (EC) in Section 3.5) then the
approximate relative equilibrium is asymptotically stable for a full space-time discretization
of the PDAE ( see (45) for the FitzHugh-Nagumo case) with rates uniform in the discretiza-
tion parameters (see [38]). These results also hold for moregeneral group actions but are
essentially limited to the one-dimensional case. So far, there are no corresponding results for
the higher dimensional cased ≥ 2, such as the two-dimensional rotating patterns in Section
3.5.

It may be no surprise that the freezing method works numerically for other and more gen-
eral equations than (1).

For example, it can be used for freezing viscous shock waves of conservation laws (see
[32])

ut + f(u)x = Auxx, x ∈ R, u(x, 0) = u0(x).

Stability proofs for strong shocks are quite delicate (cf. [24],[43],[7]), since the essential
spectrum of the linearized operator touches the imaginary axis. However, some prestudies
indicate that stability can be transfered from the PDE to thePDAE formulation in certain
situations [31].

The freezing method seems to even retain its favorable properties in situations where the
symmetry in (1) is broken. This occurs, for example, with stochastic PDEs. Numerical exper-
iments show that even in this case the freezing ansatz leads to reasonable results (cf.[25]).

Finally, we mention multiple pulses and multiple fronts that frequently occur in systems
of type (1). If these travel at different speeds and interactstrongly or repel each other then
it is clearly impossible to set up a common moving frame in which all waves become sta-
tionary (see [10] for such a case in the FitzHugh-Nagumo equation). In the recent paper [9]
we managed to extend the freezing method to cope with such multifronts and multipulses.
Essentially we write the multipulse as a superposition of single pulses each of which has its
own coordinate system and requires its own phase condition.The vector field is decomposed
by a dynamic partition of unity and the nonlinear interactions are fully retained. The stability
analysis of this procedure is work in progress. However, thegeneralization of this ’decompose
and freeze’ approach to higher space dimensions is wide open.
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