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Abstract

In this paper we prove the existence of transversal heteroclinic
orbits for maps that are obtained from one-step methods applied to
a continuous dynamical system. It is assumed that the continuous
system exhibits a heteroclinic orbit at a specific value of a parame-
ter. While it is known that analytic vector fields lead to exponentially
small splittings of separatrices in the discrete system, we analyze here
the case of a continuous system that is smooth of finite order only.
Assuming that a certain derivative has a jump discontinuity at a spe-

cific hyperplane we show that the discretized systems have transversal
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heteroclinic orbits. The essential step in deriving such a result is a re-
finement of a previously developed error analysis which applies expo-

nential dichotomy and Fredholm techniques to the discretized system.
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1 Introduction

It is well-known that transversal homoclinic orbits for maps entail a certain
type of chaotic dynamics, for corresponding results see for example [12, 15,
16, 11] and the references therein. An immediate question then is how to
prove the existence of transversal homoclinic orbits for a given map. In this
paper we investigate this question for maps that arise from one-step methods
applied to continuous dynamical systems for which a connecting orbit, either
heteroclinic or homoclinic, is known.

The discretization of continuous dynamical systems near homoclinic and
heteroclinic orbits has been analyzed by several authors [6, 17, 1, 18]. A
fundamental result was derived by Fiedler and Scheurle in [6]. They consider

a homoclinic orbit Z(¢) (—oo < ¢ < 00) at A = A of a parameterized system
i=f(x,)), 7R VR (1.1)

and an associated one-step method
Tpt1 = Y(Ty, Ay €), € = step — size. (1.2)

Assuming analyticity of f and ¢ and of Z(¢) in some complex strip |Imt| < n
they proved that the discrete system has homoclinic orbits =, = z,(¢), n € Z

that occur in an exponentially narrow sector in the (), e)-plane

A= Xe)| < ce™e. (1.3)



Here A\(e) = A + O(e%) is a smooth function of ¢, and d is the order of the
one-step method. It is also pointed out in [6] that transversal intersections
of the stable and unstable manifolds occur in a generic sense.

The method of proof in [6] is to interpret the one-step method (1.2) as
the e-time map of a non-autonomous, rapidly forced perturbation of (1.1)
given by

&= f(z,\) +e%(z, A\ t/e,€), (1.4)

where g(z, A, -, ) is smooth and 1-periodic with respect to the third variable.
This system is then analyzed by a combination of Liapunov-Schmidt and
Fourier techniques.

In the paper [18] we developed an alternative, somewhat more direct
approach to the difference equation (1.2) which applies to general connecting
orbits and which also works for vector fields f of finite smoothness. To both

equations (1.1) and (1.2) we add a scalar phase condition (cf. (3.3))
II(z,e,t*) =0, (1.5)

where t* acts as a phase parameter. Then we prove the existence of connect-
ing orbits for both systems (1.1),(1.5) and (1.2),(1.5) by using a quantitative
implicit function theorem. More precisely, we show that close to the continu-
ous connecting orbit the one-step method has a curve of discrete connecting
orbits z,(¢,t*), n € Z at parameter values A(e,t*). At fixed step-size ¢ this
curve is parameterized by the phase parameter t*, and it is closed in the

following sense

Tn(e,t") = zuoi(e,t"+¢), neL,
Ae, t*) = Ae, t" +e).
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this family of connecting orbits (cf. [3] for a numerical illustration of this

Furthermore at least two tangencies, characterized by = 0, occur within
phenomenon).

In [18] we also derived error estimates of type O(g?) for the differences
T, (g,t*) — Z(ne +t*) and A(e,t*) — A assuming C™*! (r > d) smoothness for
the function f.



The purpose of this paper is to prove that transversal connecting orbits
for the one-step map occur if the function f looses its smoothness at a fixed
hyperplane. Transversality is equivalent to finding values ¢* at which g% #0,
see [18]. Our basic tools for achieving this are refined estimates (w.r.t an L;-
norm) for the linearization of the time-¢ flow around the sampled connecting
orbit Z(t*+ne),n € Z. This will be combined with Fredholm operator theory
and exponential dichotomy techniques.

In order to avoid complicated discussions of finite smoothness for a gen-
eral one-step method and to stress the basic idea in the proof, we restrict
to the explicit Euler method, i.e. ¥(z,\, ) =  + ef(x, ). In this case we
find an explicit criterion which involves the jump discontinuity of the second
derivative (see (H5) in section 2) and which guarantees transversal hetero-
clinic orbits for the Euler mapping. We also find that the splitting distance
maxo<y, <e |A(t1) — A(t2)] is at most of the order O(g?).

At the end of section 3 we indicate how this result can be extended to
more general one-step methods. In particular the splitting distance is then
found to be at most of order O(e"*!) if fU"*1) is assumed to be piecewise
continuous.

In the analytic case, apart from the genericity result in [6], it seems ex-
tremely difficult to give explicit criteria that guarantee transversal hetero-
clinics for (1.2). A substantial theory for analyzing the coefficients of expo-
nentially small terms has been developed by Gelfreich, see [8] for a survey.
Compared to our simple criterion (H5), however, it is still difficult to verify
his assumptions for the discretization problem of connecting orbits.

In the following section 2, we describe our basic assumptions and collect
some results from [18] which will be used for the subsequent analysis. Then
our main result is proved in section 3. It is based on a refined a-priori
estimate and a reparametrization of the connecting orbits summarized in

two key lemmata the proof of which will be given in section 4.



2 Basic assumptions

In this section, we introduce the basic regularity conditions for continuous
connecting orbits and collect some preliminary results from [18]. Then we
describe the finite smoothness assumption which ensures the existence of
transversal heteroclinic orbits for the numerical methods.

Consider a parameterized dynamical system
i=f(z,)\), z€R NeRP (2.1)

and let ¢(x, A\, t) be its solution flow with ¢(z, A,0) = z. The parameter \ is
used to set up a well-posed equation for connecting orbits. Our assumptions
are

(H1) f is C' smooth in all variables and its first order derivative is

Lipschitz, i.e. there exists a constant L > 0 such that for z, y € R¥, \, p € RP

1 fwn (@A) = fan (W W)l < L(llz = yll + [A = pl).

(H2) Z. are hyperbolic equilibria of equation (2.1) at A = .

According to these assumptions, there exist constants A\; > 0 and a C*
function z+()\) with z+()\) = Z4, such that for all |A — A| < A\;, 22()\) are
hyperbolic equilibria of equation (2.1). By a A-dependent shift in phase space,
we can assume without loss of generality Z()\) = 7 for all |A — A| < A;.

By kisu, we denote the numbers of stable (resp. unstable) eigenvalues
(counting multiplicity) of the matrix f,(Z4,\) and we have that k., , are
constant for all |\ — \| < A;.

(H3) At the parameter A = ), equation (2.1) possesses a connecting orbit
Z(t), which satisfies

== tEI—noox(t)’ T+ = tE—Il—noox(t)

We call (Z(-), \) a connecting orbit pair (COP for short).
(H4) The COP (Z,)) is nondegenerate with respect to parameter \ (cf.
[2, Definition 2.1], [10, Definition 3.1] and [18]) in the following sense



(i) the numbers of stable and unstable eigenvalues are related to the
number of parameters A\ by p=k+1—-k_, — ks =k_s— ks + 1,

(ii) any bounded solution z(t), u € RP of the equation & = f,(Z, \)z +
r(Z, M) satisfies p = 0 and z = ¢z for some ¢ € R.

A COP (Z(-), A) is said to be regular if (H1), (H2) and (H4) are satisfied.
Define Banach spaces for £ = 0, 1

Xt = {z € CYR,R¥) : 20)(¢) is bounded for j =0, ---, £},

¢
|||, = E sup ||ac(j)(t)||, with || - || some norm in R*.
— R
j=0

Consider the linear operator
L: X' X Lr=i— f.(z(:), Nz, (2.2)

and denote its solution operator by S(t, s), i.e. z(t) = S(¢, s)£ solves Lz =0

with z(s) = €. From the semigroup property we have
S(t,s)™t = S(s,1). (2.3)

According to [5, 12], [2, Lemma 2.1], L has an exponential dichotomy on
R* and on R™. More precisely, we have the following lemma (cf. [13], [10,
Lemma2.3] and [4])

Lemma 2.1 [18, Lemma 2.2] Assume (H1)-(H4). Then L has an ezpo-
nential dichotomy on R, i.e. there exist data (K*,a*, P*(t)), where K=,

a® > 0 are constants, such that for all t > s in RT the following holds

S(t,s)P%(s) = P*(t)S(t,s), (2.4)
1S(t, s)PE(s)|| < KFe @ (t=9), (2.5)
1S(s,t)(I — PE(t))|| < Kre o™=, (2.6)

From (2.3) and (2.4) we see that the projectors P*(t) are uniquely deter-
mined by P*(0) as follows

PE(t) = S(t,0)P%(0)S(0,1). (2.7)
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Define the adjoint operator of L by
L : X' = XY L's=a+ f.(2(-), )z,

and denote its solution operator by S*(¢, s). Then we have S*(t,s) = S(s,t)”.

The Fredholm properties are summarized in the following lemma.

Lemma 2.2 [18, Lemma 2.3] Assume (H1)—(H4), then the adjoint operator
L* has an exponential dichotomy on RE with data (CoK=,a*, I — PE(t)7),

where Cy only depends on the norm in R¥. Moreover,

N (L) = {S(t,0)xq : 2o € R(PT(0)) NN(P(0))}, (2.8)
dimN (L) = dim N (L*) + kys — k_, (2.9)
z € R(L) & [(2yT(H)x(t)dt =0, Vy(-) € N(L¥), (2.10)

and L : X' — X is Fredholm of index kyy —k_ s =k_o — kyy.

With the aid of Lemma 2.2, we have the following characterization of the

regularity, see also [2, Proposition 2.1].

Lemma 2.3 [18, Lemma 2.4] Assume (H1)-(H3). Then (z, ) is reqular if
and only if the linear operator L has the properties
(1) dim N (L) =1, dimN(L*) = p,
(2) the p x p matrix
+oo
B= [ Y050

o0

is nonsingular, where the columns y*(-) € X! of

form a basis of N'(L*).

Using the exponential dichotomy of the operator L* and Lemma 2.3, we

obtain the rate of convergence of Y (¢) as t — +oo.



Corollary 2.4 ||Y (t)]| < CKe M ast — +oo, with K = max{K*+, K~ }.

In the following we specify our finite smoothness assumptions for the func-
tion f(x,\) along the connecting orbit Z(t). For simplicity, we assume that
non-smoothness of the function f(z,A) occurs only in the highest derivative
at some hyperplane passing through z(0). Let Q be a small open ball in R*
centered around Z(0), and let 3 be the hyper-plane that passes through the
point Z(0) and has normal vector 73y = z(0)/||Z(0)||. The region Q is divided
by the hyper-plane ¥ into two parts, 2_ and €2, (see Figure 2.1 below)

Q= {ze Gl (@ - 2(0) <0}, = {z e L@ —2(0)) > 0}.

We denote the restriction of the function f(-, A) to the region Q4 by f£(-, \)
for all \. Let £ = X N Q, where Q is the closure of Q.

r_
Figure 2.1 Illustration of the finite smoothness property near
the heteroclinic orbit.
Our main assumption then is
(H5) The connecting orbit Z(t) (t € R) intersects the segment X only
at the point Z(0). The second derivatives f;y and f, are continuous and
bounded in the whole space and f,, is continuous and bounded in the region
(RF/Q) x RP. Finally, the second derivative f exists and is continuous and

bounded in Q. X R? and satisfies the following jump condition

Y(0)" (£7(2(0), ) — f4a(7(0), A))Z(0)* # 0,
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where Y (t) is defined in Lemma 2.3.
In order to simplify the analysis in this paper, we restrict ourselves to the

explicit Euler method, i.e.
Tn1 = V(Tn, Ay €) = Xy + £ (T, A). (2.11)

Then (-, A, €) satisfies the same finite smoothness assumption in (H5).
As a final prerequisite we will need a lemma on the convergence of Rie-

mann sums which will be used frequently in the next sections.

Lemma 2.5 [18, Lemma 2.6] Assume g : R — R* is a continuous function
and satisfies the estimate ||g(t)|| < Ce™P* for some C,p > 0. Then

ll_r)r(l)ezog(ne—kt ) :/O g(t+t")dt

uniformly for t* in any compact set.

3 Transversal connecting orbits for systems

of finite smoothness

In this section, we first summarize the existence results for heteroclinic orbits
under discretization developed from [18]. Then we study the existence of
transversal heteroclinic orbits under the finite smoothness property (H5).

Since equation (2.1) is an autonomous system, its solution permits a phase
shift. If z(¢) is a solution of equation (2.1) passing through a point z; at time
t = 0 then for any value t* € R the function z(t + ¢*) is also a solution of
equation (2.1) passing through the point zy at time ¢ = —¢*.

For J = Z. define the Banach space

Sy ={2; = (Tp)nes : Tn € RF ||z,]| = su? |zn]| < oo}
ne

The following operators and functions are used for the investigations in [18].

f‘- Szx:RpXR—)SZ

(3.1)
(xZn )‘79) ('xn—kl - ¢($m )" ‘5))716%
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Sy, XxRP x R — Sy

(3.2)
('TZ; /\79) ('xn-f—l - gD(:L‘n, A, 5))7162’
Sz xRxR—=R
IT: = . 3.3
(w6, t") = Y ed (" +ne)(wn — Tt + ne)), (3:3)
P SZXRPXRXIE§—>SZXR (3.4)

(xz, A\, e, t*) = (T(2z, A\, €), (27,8, %)),
SzXRP XRXxR— Sz xR
F: £ £ (3.5)
(xz, A\ e, t%) = (T(zz, A, €), [I(27, €, t¥)).
It is clear that the zeroes zz of F' = 0 yield connecting orbits of the
discrete map (-, A, ) that satisfy the phase condition II(zy,¢€,t*) = 0 for

some A, € and ¢*. The basic existence result from [18] is as follows.

Theorem 3.1 [18, Theorem 4.3 and 4.4] Assume (H1)—(H4). Then there
exists a constant g > 0, such that for 0 < € < g9, t* € R, the function
F defined in (3.3) has a unique zero (Zz(e,t*), Mg, t*)) in a neighborhood of

(Zz(e,t%),A) = (Z(t* + n€))nez, A). Moreover,it satisfies the estimates

sup ||Zn (e, t*) —z(t* + ne)|| = O(e),
nez ~ - (3.6)
||)‘(‘Sat*) - )‘” = O(S),

and has the following periodicity property for alln € Z

Tn(e,1") = Zn_1(e, t™ +¢), (3.7)

Ae, t*) = Ae, t" +¢). (3.8)

In the next theorem, we state the criterion for detecting the tangential
or transversal property of a heteroclinic orbit within the family (e, t*). To
simplify the notation, we remove the explicit dependence on the variable &
in all expressions where no confusion should occur. We also denote by #(t*),

Z(t*), A(t*) etc. the derivatives with respect to the phase variable ¢*.
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Theorem 3.2 [18, Theorem 4.6] Assume (H1)-(H4) and 0 < € < €y. If the
derivative j\(to) # 0, then Tz(to) is a transversal connecting orbit for the map
¥ (-, Mto), €); while in case );\(to) = 0, the orbit Tz(ty) is nondegenerate and
1-tangential for the map (-, :\(to),e) with respect to the parameter ).

An easy consequence of the periodicity (3.8) and Theorem 3.2 is the

following Corollary.

Corollary 3.3 [18, Corollary 4.7] Assume (H1)-(H4) and 0 < € < eg. Then
there exist at least two nondegenerate 1-tangential heteroclinic orbit among

the family of heteroclinic orbits Tz (t*) for the one-step map (-, A(t*),€).

We are going to verify the transversality condition from Theorem 3.2 by
using the finite smoothness assumption (H5). The following two lemmata
play a key role in the proof of our main result and we leave their proofs to
the next section.

In the following, for any yz € Sz that is absolutely summable we use the
Li-norm defined by ||yz|l1 = >_,c; ||lyn|l- For an abbreviation, denoted by

F'(Zz, ) the derivative of the function F(zz, A) with respect to (zz, A) at

the point (Zz, A).

Lemma 3.4 Assume (H1)—(H4). Then there exist constants g > 0 and
B > 0, such that for all 0 < & < gy, t* € R and (vg, u) € Sz x RP, there hold

1Yzl + |l = Bll(vz, p)l (3.9)

for all summable yz € Sz, and

lyzll + |w| = Bel|(vz, W] (3.10)

for all yz € Sz, where (yz,w) = F'(Iz, \)(vz, ).

The following Lemma specifies in which way the discrete connecting orbits

pass the section Xq.
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Lemma 3.5 Assume (H1)-(Hb5). Then there exist constants t§ > 0, g > 0

and C > 0 such that for 0 < e < &g the functions (Tz(e,t*), A&, t*)) satisfy
sup |5 (€, ) — Fa(e, )] + AE)| < Ce  for all £,
neZ
Moreover, there erists a continuous function t*(¢) with lim t*(e) = 0 such
e—0
that for 0 < € < gy we have Ty(e,t*(€)) € Lq but T,(e,t* () ¢ Lq for
n # 0. Likewise, T,(e,t*) & Yq for alln € Z if t* # t*(e) + le (£ € Z).
Furthermore, we have To(e,t*) € Qy if 0 < t* —t*(e) < t§ and Zo(e,t*) € Q_
if0<t(e) —t* <t

We are now ready to state and prove our main result.

Theorem 3.6 Assume (H1)-(H5). Then there ezists a constant g > 0 such
that for any 0 < € < gy there exists at least one t* such that iz(t*) is a
transversal heteroclinic orbit for the one-step map (-, 5\(5*),6) from (2.11)

and we have the estimate

_ By 2
s nax [A(1) = Miz)| = <

Proof. Let the open ball €2 centered at Z(0) be of radius r; and let {2y be
the open ball centered at z(0) with radius 2r;. We may assume 71 > 0 so

small that 7. € (. See Figure 3.1 below.

Figure 3.1 The illustration of positive distance from homoclinic

to the segment %q.
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For any 0 < € < gg, define T = {t*;t* # le,t*(¢) + Le for all £ € Z}. We
will prove that the COPs (Z5(¢*), A(t*)) are C? smooth in t* € T.

For any ti € T, it follows from Lemma 3.5 that Z,(t}) ¢ Yo for all
n € Z. Since ngrfoo T,(t7) = T+ ¢ Qy there exist at most finitely many
points Z,(t%) € € (cf. Figure 3.1). Hence we find a constant 7o € (0,71)
such that if [z — Z,(t%)| < ro for some integer n € Z, then = ¢ 3.

Define the ball B(t%) C Sz by
BI#) = {e € S lles — 220l = sup e — 2a(£1)] < ro}.
ne

Then for any zz € B(t%), we have z, ¢ Yo and the function f(z,\) is C?
continuous at (z,,A) for all n. From the definition (3.1), we obtain that
the function I'(2z, A, €) is C? smooth with respect to (zz, ) for (zz, A, ) €
B(t% ) xRP x R*. Because Z(t% +ne) ¢ g for all n it follows from equations
(3.1) and (3.3) that the function II(xz,e,t*) is C? smooth with respect to
(22, t*) for all (zg,¢,t*) € B(t}) x Rt x T. Therefore F(zz, ), ,t*) is also
C? smooth with respect to (zz, A, t*) € B(t*) x RP x T for 0 < € < &.

It has been proved in Theorem 3.1 that (Zz(t%), A(t*)) is a regular solution
of the equation F' = 0 at t* = % . Applying an implicit function theorem
(cf. [18, Lemma 4.2]) to the equation F' = 0 at the point (Zz(t%), \(¢%), %),
we obtain a constant 0 < h < ¢ such that t* € T holds for |t* — ¢} | < h,
and the equation F = 0 has a unique C? smooth solution (Zz(t*), A(t*)) near

(@z(t1), A(t%)), which also satisfies 25(t*) € B(¢}) . From the uniqueness
we know (Zz(t*), \(t*)) = (&2(t), \(t*)) for |¢* — t*| < h. Therefore the
functions (Zz(t*), A(t*)) are C? smooth with respect to t* € T.

By the definition of T there exists a constant hq > 0 such that t* € T
holds for any 0 < [t* — t*(¢)| < ho. Thus, the function F(&z(t*), \(t*), t*) is
C? continuous with respect to t* for 0 < |t* — t*(g)| < hy.

Differentiating the equation F = 0 twice with respect to t* € T, we obtain

forneZ

B (1) = (E (£7), ME)) 0 (87) — 0 (B (1), A )AE) = g2(t7), (3.11)
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D exn ()i (1) = (), (3.12)

where
G = =& Faa(Ealt"), MENEn(E)2 =22 faa En(t), AE DA (DAE)
—e S (@ (), AEDAE)?, (3.13)
PH) = Y e (t) En(t")=2) e(fol@a(t?), NEa ()" (Fn(t") —2n(t")
= Y el faa(@n(t), Nan () + f2(@n(t?), N)En ()" (#n(t) —2a (7).

n=—oo

We will solve equations (3.11) and (3.12) for (Z,(*), 5\(75*)) and study its
one-sided limit as t* — ¢*(¢)*. According to the estimate (3.10) in Lemma
3.4, we need to analyze the behavior of || g} (¢*)|| and |g?(t*)| as t* — t*(¢)*.

Notice that terms of different smoothness with respect to t* € R appear
in these expressions: the functions Z, (t*) and A(¢*) are C" , Z,(t*) is C? and
the compositions with the functions 1,, and 15, are C° for all n € Z.

For any [t* — t*(¢)| < hg, we know that the orbit Zz(t*) intersects the
segment Y only at n = 0 and t* = t*(¢). For n # 0 and [t* — t*(¢)| < ho,
we have Z,(t*) € Sq and the function fuq(Z,(t*), A(t*)) is continuous with
respect to t*. For n = 0 and 0 < £(t* — t*(g)) < ho we know Zy(t*) € Q4
by Lemma 3.5 and therefore fo(Zo(t*), A\(t*)) = f&(Zo(t*), A(t*)). Using
condition (H5) we then obtain the existence of the one-sided limits

o lm  fo(Z0(E7), At) = faa(@o(t(€)), At (€)))-
Hence the one-sided limit g.(#*(e)*) = ﬂ_l)itzr(lg)i g (t*) exists uniformly in
n € 7.
In a similar way, we obtain the existence of the one-sided limit
im | P() = 200 ).

Rewrite equations (3.11) and (3.12) as an operator equation

F (@ (1), M) (), M) = (63(t), 6°(1"))- (3.14)

14



It is clear that F'(&z(t*), A(t*)) is continuous w.r.t. the max norms for all
t* € R and has a bounded inverse (see Lemma 3.4 and [18, Theorem 3.7]
for max norms on both sides), therefore has a continuous inverse. Taking

one-sided limits in (3.14) we can deduce the existence of

lim  (F5(t%), \(£)) = (B2 (t"(€)%), At ()%)).

t—t*(e)E

Subtracting the two one-sided limits of equation (3.14) from each other

we obtain

F'(22(t*()), Mt (€))) (va(e), A*(€)) = (eci(e), 9"(¢)) (3.15)

where

= in(t*(s)+)—$n(t*(5) );

vn(e) .

Ne) = At(e)T) = At (e)),
eci(e) = g,(t°(e)") — ga(t"(e)"),
g'(€) = g(t"(e)") - (" (e)7).

Notice that by (H5) either z,(t*(¢)) ¢ Xq for all n € Z, then g*(¢) = 0,
or Zy(t*(€)) € Xq for exactly one N € Z and then

g'(€) = el(fm@n(t(e)),A) — £ @En (), V) Zn ()"
(@n(t"(e)) = zn ("(e)))-

In any case, the estimate |g*(¢)| < Ce? holds due to (3.6).
According to Lemma 3.5 we know that Z,(t*(¢)) € Xq for n # 0, and
hence the function fg, (&, (t*), A(t*)) is continuous in ¢*. Therefore, ¢ () =0

for n # 0. On the other hand

co(€) = [faa(@o(t*(£)), A(t*(€))) = f(@0(£" (), At (€))]Z0 (¢ (€))*  (3.16)

Applying the estimates from Theorem 3.1 and Lemma 3.5 we find

c5(0) = lim c5(e) = [fz(2(0), A) = £, (2(0), M)]z(0), (3.17)

e—0t
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hence ||c;,(e)||s £ C for 0 < e < .
From the estimate (3.9) in Lemma 3.4 and equation (3.15) it follows that

lvzll + ] < B~ (ellez (@)l + lg™(e)]) < Ce. (3.18)

We take the inner product of (3.15) from the left with (Y (), 0), where
Y,(e) =Y (t*(e) + (n+1)e) and Y is the matrix from Lemma 2.3. According
to [18, Lemma3.5] we have Y/ T',, (77, A) = 0 (this uses the relation between
the solution operator of the linearized equation and its adjoint) and therefore

we obtain
Y7 (e)TA(#2(t(€)), A(t*(€)) A" (€) =€ Y5 (e)ch(e) + Y4 (e) Az(e)vale), (3.19)

where

Ag(e) = Ty (B2(t°()), A) = Tay (@2 (), At (€)))-
Clearly we have
1YZ Azval| =11 ) 0 Yo Anvall <D NV 1 100(@ns A €) =0 (s Xy )| [|on]
nez nez
From Corollary 2.4 we obtain
1Y =D Il <D CKe " < C/e.
nez nez

Using the estimates (3.6) from Theorem 3.1 and the well known fact that for
Euler’s method ||o.(+, -, &) — ¥:(+, -, €)|| = O(¢?) holds uniformly in compact

domains, we have

||(Pw(jn75‘a ) = ©u(Zn, ;\a e)|l + ”%v(jm;\ag) - ww(jna:\ag)“
< Ce. (3.20)

IN
)
81

Collecting estimates we obtain

1Yz Azvzll < 1Y |ls - | Azl - [Jvzl] < Ce”. (3.21)
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According to (2.11) and the estimates (3.6) in Theorem 3.1 we get

YIT (22, A ZY Va(En, N, €) ZYRT(ef)\(a_En,E\,E) + O(g%))
nez nez
and from Lemma 2.5 it follows that
Y, (e)TA(Zz,A) = M + O(¢), where M = YT (t) fr(z(t), N dt
The matrix M is nonsingular due to Lemma 2.3 and so is YZ T'5(Zz, \) for ¢
small enough. According to (H5) the vector d = M 1Y (0)T¢(0) is nontrivial

and together with (3.17), (3.21) equation (3.19) leads to the expansion

N (#(2)) = At (€)T) — Mt (e)7) = ed + o(e).

In particular A*(¢*(¢)) # 0 for € > 0 small, and thus :\(t*) is strictly monotone
for t* > t*(g) or t* < t*(¢). This guarantees S\(t*) # 0 on some open t* interval
and hence transversal connecting orbits for the one-step method (-, \(t*), €)
according to Theorem 3.2. Finally, the lower estimate in Theorem 3.6 follows

from a one-sided Taylor expansion of the function A(t*) at t* = t*(c). W

Remark 3.7 We concentrated on the explicit Euler method and a simple
discontinuity, because the proof then shows clearly how the discontinuity of
the continuous system creates discrete transversal heteroclinic orbits for the
numerical method. This can be generalized in various ways.

1) Instead of assumption (H1) we can assume that the function f is C*
(r > 1) smooth, and its (r + 1)-th order derivatives satisfy the assumption
(H5) with f£()(0)? replaced by fi™ W ()z(0)+ in the inequality. Then

we expect a result with a higher order estimate

max  |[A(t) — A(ta)] > Ce™.

0<t1,t2<e

2) The segment 3q of discontinuity can be replaced by a smooth manifold
and we require that the heteroclinic orbit T(t) (t € R) transversely passes

through ¥q exactly once, then Theorem 3.6 still holds.
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3) One can extend Theorem 3.6 to other one-step methods by carefully
analyzing the discontinuity of the numerical methods and modifying the tech-

niques of our proof. For example, consider the mid-point Fuler method

Tp4+1 — Tn — f(xn+12+ mn,A), (322)
13

which uniquely determines a one-step method x, 1 = Y (x,, A, €). In addition
assume the discontinuity of f occurs on the line Xq as in (H5). Then the

discontinuity of v must satisfies %(x + Y(z, A\ €)) € X which leads to

AT (W - a‘:(o)) — 0. (3.23)

Solving the coupled equations (3.22) and (3.23) we obtain a discontinuity of ¥
on some parametrized (k—1) dimensional manifold Yo (A, €) which in contrast
to the case 2 above depends on A and €. Next we show that for any small
e > 0 the corresponding heteroclinic manifold Zo(e,t*) (t* € R) of the map ¢
uniquely and transversely intersects the manifold Yo (\(e,t*),€) at the value
t* = t*(e), and the function t*(¢) is obtained as in Lemma 3.5. In this way
one can extend Theorem 3.6 to the mid-point Fuler method.

4) For general d-th order one-step methods 1, e.g. Runge-Kutta methods,

r+1)

the discontinuity of the function fé may cause very complicated discon-

tinuity properties of the function w;(crﬂ). We have not followed the technical
details of such a generalization, but we think that Theorem 3.6 applies to this

case as well.

4 Proof of two Lemmata
In the following we study the difference equation
Ups1 = Aplln, n€J (4.1)
and its perturbation
Upt1 = (Ap + Ep)ug,, n€J, (4.2)

18



where J = Z as in section 3, |A4,,!|| < C4 and E; = (E,)nes with E,, € RFF,
We formulate a perturbation lemma with sharp estimates of the data for the

exponential dichotomy (see [9, Lemma 1.1.9]).

Lemma 4.1 [9, Lemma 1.1.9] Assume the difference equation (4.1) has an
exponential dichotomy on J with data (K, «, Py). For any given & € (0, «),
there exist constants Cl,d, Ko, K1 > 0 such that the following holds.

(1) For any E; with ||E;||c < & the perturbed difference equation (4.2) has
an exponential dichotomy on J with data (Ko, &, Qs(Ey)), Qu(Ey) is

a projector with the same rank as P, and it satisfies the estimate

|Qn(E)) = P,|| < C.||Es|lsc for n e J. (4.3)

(2) The solution operator W(E;,n,m) of equation (4.2) is C' smooth for
IEs||o < 6 and satisfies

Bt

d(Ey)

Kie~®m=m)  for n > m,

VAN

(¥(Es,n,m)Qm(E))) |

0 -
Hi(xp(EJ, n,m)(I — Qm(EJ)))H < K 8m ) forn < m.
O(Ey)
Remark 4.2 In the proof of Lemma 4.1 ([9]) it is shown that the constants
above can be taken as C, = 2Km, Ky =2K+1, K; =471, 6 = %min{cﬁ, %}
and

1 1 1
~}+

_6704’604_6(1

n = K( ), (4.4)

—— + max{—
—x e*a ea — e*a

e*—e
Proof of Lemma 3.4 Clearly Zz(e,t*) is a heteroclinic orbit of the map

©(+, A\, t*). The difference equation

Un+1 = SD-T(jn(‘sa t*)a j\a S)Un (45)

has an exponential dichotomy on Z. with data (K=, ea®, P*(t* + ne)) (cf.
Lemma 2.1 and [18, Lemma 3.4]). Let

Eo(e,t*) = Uy (Fn(e, 1), Me, t¥), &) — 0a(Tnle, t¥), A, €).
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It follows from equation (3.20) that |E,|| < Ce? for some constant C' > 0.
Applying Lemma 4.1 we obtain that the difference equation

Un+1 = ¢m(~%n(5’ t*)a 5‘(55 t*)a E)U'n = (pr(jn(eﬁ t*), 5‘} ‘S) + Eﬂ)un (4'6)

has an exponential dichotomy on Z. with data (K*, ea*, Q:Zti(e, t*)). Here
K* =2K*+1,0< a* < oF and Qz, (e,t*) are projectors with the same
rank as P*(t* 4+ ne) and they satisfy the estimate (cf. (4.3))

Q7 (e,¢") = PE(t" + ne)|| < K*7i°|| Bz |,

where 73 is defined as in (4.4) replacing o and & by ae and e, respectively.
Direct computation gives 7i- < C/e for some constant C' > 0. Thus, there
holds

sup ||PE(t* 4+ ne) — QF (e, t")|| = O(e) as € — 0. (4.7)

nezy

Denote the solution operator of equation (4.6) by ®(e,t*,n,m). Accord-
ing to [18, Lemma 3.3], S(e,t*,n,m) = S(t* + ne,t* + me) is the solution
operator of equation (4.5).

To simplify the notations, sometimes we drop the explicit dependence on
¢ and/or t* in the following discussions.

In order to apply the second assertion of Lemma 4.1 to equations (4.5)
and (4.6), we relate the quantities ®,S to those as in Lemma 4.1 by setting
U(E;,n,m) = ®(e,t*,n,m) and ¥(0,n,m) = S(e, t*,n, m).

First we consider the case J = Z,, by virtue of mean value theorem and

the estimates in Lemma 4.1 we obtain for any n > m > 0

15 (n, m) P (t* + me) — @(n, m)Qy,||

< sup [|===(Y(E,n,m)Q0) - [1Es]ls
1Es)<s O(E)
< Arfem M| Byl < Ceem (™o (4.8)

for some constant C' > 0. Similarly, we obtain for m > n > 0
1S(n, m)(I — P*(t* + me)) — ®(n,m)(I — Q)| < Cee M ™Ma (4.9)
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In the case J = Z_, estimates similar to (4.8) and (4.9) hold.
Consider the linearization of equation F = 0 at (Zz, ). For any given
rz € Sz and w € R we try to find a solution (vgz, ) of the following linear

equations

Unp1 — ApUp — gt = Th, nNEZL, (4.10)

ET,Up = W, (4.11)

where A, = 9y(Zn, N, €), gn = ¥x(Zn, A, €) and Z, = Z(t* + ne). For any
yz € Sz, define

EJ(yZ) = Z(D(naZ)ijz—l - Z (I)(nal)(l - Qj)y’i—la for n 2 07
i=1 i=n-+1

0

v, (yz) = ié(n,i)Q;yiq - Z &(n,i)(I —Q; )yi—1, forn <O0.

i=n-+1

Then T)%E . are the unique bounded solutions of equation v, 1 = A,v, + ¥, in
Sz with initial properties Q3 vy = 0 and (I — Q; )7, = 0, respectively, and
satisfy the following estimates for K = max{K*, K~}

1 (z)ll < Kllyzll,, n € Zs. (4.12)

To obtain the general solution of the inhomogeneous equation (4.10), we
add solutions of the homogeneous equation as follows. For € R(Qg) and
§€RI —Qy), let

vt = ®(n,0n+ 0 (rz + gzp), n >0,

(4.13)
v, = ®(n,0£+7v,(rz+gzn), n<O0.

Then we set v, = v if n > 0 and v, = v, if n < —1. Therefore, the pair

(vz, ) solves equations (4.10) and (4.11) if and only if

=, Z EX vy = w. (4.14)
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Equation (4.14) reads

f -n + Q(ga t*):u’ = Q(gv t*)a

(4.15)
O, )+ Ale, t")n+ E(e, )p = w—0(e,t"),

where
0 o)
Qe,t") = Z ®(0,4)Q; gi—1 + Z‘D(O,i)(f — Q) gi-1,
i=—oo0 i=1
1
O, t") = Y e5,(n, 00 — Qp),

Ae, ) = Zgi:d)(n, 0)Q4,

Ee, t*) = Z av v, (92 —{—st vt (9z2),

— 0
Q(E,t*) - ( Z (I)(O,Z)Q;Tzfl + Z(I)(O,Z)(I — Q:—)T11> s
i(e, t*) = Z i v, (rg —l—Zex vt (rg).

In the following we study the limit properties of the items above. For
an illustration we analyze the second item of (e, ¢*). The definition of ¢ in
(2.11) and estimate (3.6) in Theorem 3.1 give g; = £ f1(Z;, A) + O(¢?) and

Z ®(0,i)(I - Q; )gi
- gz (0,9)(I — Q) — S(0,t" +ie)(I — PT(t* +ie))] fr(@iz1,\)
+eZSOt*+zs V(I = PH(t" +ie)) [fa(Zic1, A) — fa(Zs, N)]

+e Z S(0,t* +ie)(I — PH(t* +ie)) fr(Z(t* + i), \)

+> (0,4 - Q) -0

=1

= B+ By + Bs + Ba.
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It follows from the assumption (H1) that f)(-,-) is bounded. Noticing the

estimate in (4.9) we obtain

|Bi]| < Ce*) e < Ce.

i=1
Since | fa(Zi 1, A) — fA(Zi, N)| < Clz(t*+ (1 — 1)e) — Z(t* +1ig)| < Ce, together
with the estimate in (2.6) we obtain ||By|| < Ce. Applying Lemma 2.5 we
have

lim B, = / (0,8 +0)(I = P (t" + 1)) fr(&(° + ), N)dt

uniformly for ¢* in any compact set. Therefore, we have shown

lim Z@ 0,9)(I — Q) gi- 1—/OOOS(O,t)(I—PJF(t))f)\(t)dt

&,t*—0

where fy(t) = fr(Z(t), ).
In a similar way, the remaining items in (4.15) can be investigated and

we end up with

Q) = lim Qe t")

£,t*—0

= [ sonp-@pwas [ so.00 - Promno

o0

6(0) = _lim 6t = / 0 F&)TS(t,0)(I — Py)dt,

A(0) = lim A(e,t*) = / oo:'z(t)TS(t,o)Pngt,

£,t*—0

g,t*—0

~ [ st - P s } dt

o[ swar o

—/tsu (I = P (5)fr(s))d ]dt

Hence, as ¢ and t* small enough the functions Q(e, t*), ©(e,t*), A(e, t*) and
E(e, t*) are uniformly bounded. From the expression of (o(e,t*),d(e,t*)) and

20) = lim (et = /0 i [ /0 S(t.5) P (5) o (0)ds
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using Lemma 2.5 we can prove
I(e(e, ), (e, )l < CK]lrzll: (4.16)

for some constant C' > 0.

Rewrite equation (4.15) in a short form M ¥ (£,n, u) = (o, w + &), where
M&% isa (kys+k s+p)x (k+1) = (k+1) x (k+ 1) matrix. We will prove
the matrix M is invertible and its inverse is uniformly bounded for ¢ and
t* small.

According to the estimates above, we see that M®*" converges to some
limit matrix M as ¢ — 0 and t* — 0. We only need to prove that the matrix
M is nonsingular. Assume M (£,m, u) = 0, where n € R(Qg), £ € R(I —Qy)
and pu € RP. Define

o) = S0+ / S(t,5)P* (5) f(s)uds

- [ 890~ P A@Ods, it =0

(1) = S(LO)E+ / S(t, )P (s) fa(s) uds

— o0

0
—/ S(t,s)(I — P~(s))fa(s)uds, if t <O0.
¢
Clearly v*(-) is a bounded solution of the following equation in R*

() = fo(Z(t), N2 (t) = fr(Z(2), Mp (4.17)

with initial properties P*(0)v*(0) = n and (I — P~(0))v=(0) = &, respec-
tively.
Let v(t) = v (t) if t > 0 and v(t) = v (¢t) if ¢ < 0. Similar to the

arguments above for the discrete case, we find that v(¢) solves equation (4.17)
+00

for t € R and satisfies / ' (t)o(t)dt = 0 iff M(&,m,p) = 0. From the

nondegenerate assumptio;l (H4) it follows that = 0 and v(t) = cz(t) for
+oo

some constant c. Therefore / cz(t)"z(t)dt = 0 which yields ¢ = 0 and

—0o0
implies that n = 0 = £&. By now, we have proved that the matrix M is
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invertible. Then there exist constants 9 > 0 and ¢ > 0 such that for all
le| < ¢ and [t*| < t§, the matrices M*" are nonsingular and their inverses
are uniformly bounded. Thus we can uniquely solve the equation (4.15) from
which we construct a unique bounded solution (vz, u) of equations (4.10) and
(4.11). Noticing the definition for o7, in equation (4.13), the estimates in
(4.12) and (4.16), we get for |e] < &g and [t*| < t§

[(vn, )] < CK(llrzlly + wl) < Z(llrzlly + |w)) (4.18)

™| =

for some constant 5 > 0. If we require €y < ¢j, using the periodic property
with respect to t* in (3.7) and (3.8), we can extend this estimate (4.18) to
le] < gp and t* € R. [

Proof of Lemma 3.5 Differentiating equations F/(&z(t*), \(t*),t*) = 0
and F(Zz(t*), \,t*) = 0 with respect to t* gives, respectively

F'(@(t), At9) Ga(t), A(t*) + B = 0,
FI(jZ(t*)’j‘)(iZ(t*LO)+B* = 0

Subtract these two equations from each other we obtain

B, ) [(Fa(t), \(t")) — (F2(t), 0)]
= [(F'(T2,\) = F'(T2, \) + (F' (22, A) = F" (%2, \)))(#2(t"), 0) + (Fy- — Fy)
= (A1 + Ag)(z2(t7),0) + As. (4.19)

It is clear that ||z, (¢*)|| < CKe=ee"l then Y [laz(t")|| < C/e.

n=-—oo

According to the definition F in (3.4), F in (3.5) and [18, Lemma 4.1] we
find for € > 0 small

1AL @2(), 0l < D 9a(@a(t), %) = Yul@a(t?), NI - 122(27)]]

n=—oo

< 3 ezt < Ce.

n=—oo
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It follows from the assumption (H1) that f, is Lipschitz continuous, then

142 - @2(), 0l < D IWa(@a(t), X) = al@a(t?), AEDI - 12 ()

< Y Le(llEa(t?) = & ()] + (X = AE) D1 ()]
< g—(;oo

Noticing the definition of the phase condition II in (3.3) we have

o0

Ht* (527 €, t*) _Ht* (j% g, t*) = Z 6(fx(~fn(t*)7 5‘)-fn(fk))T(i'n(t*) _fn(t*))'

n=—oo

Since the functions I in (3.1) and T in (3.2) do not depend on t* explicitly,

we conclude that for € > 0 small
l4sll < 3 )l < Ce.

By now we have proved that the right-hand side of equation (4.19) is the
order of O(e) as € > 0 small, together with the estimates for £’ in Lemma
3.4 we obtain that there exist constants C > 0 and gy > 0 such that for
0 < e < gp there holds

sup ||F,(£%) — Za(t)]| + [A| < Ce for t* € R. (4.20)
nez

Next we prove the existence of the function ¢*(¢) by using a qualitative

implicit function theorem (cf. [18, Lemma 4.2]). Define a function
p(t*,€) = il (Zo(e, ") — 2(0)).
It is easy to see lim pu(0,€) = lim 7ig Zo(e,0) = g 2o(0) > 0. Let o =
e—07+ e—07t

it z(0)/2 > 0, then o < pp(0,¢) for 0 < € < gy (we may reduce g if
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necessary). Let k = /2 and because for 0 < € < g

e (7€) = pre (0, €)| = [ (T (e, ) — Tole, 0)]

Zo(e, %) — Zo(e, t*)| + |Zo (e, t*) — Fole, 0)| + |To(e, 0) — Zo (s, 0)]
Ce +[f(z(t"), A) — f(2(0), A)]

< Cle+t7)

IN

IN

then there exists a constant tj > 0 such that for |¢*| <t} and 0 < e < gy (we

may reduce & if necessary) there holds
|pt* (t*a 8) — P (076)| <Kk<o< |,0t* (0a8)|

Since |p(0,¢)| < |Zo(e,t*) —z(0)| < Ce, we know that there exists a constant
€o > 0 such that

1p(0,e)| < (0 — k)t; for 0 < e < ey.

Applying a qualitative implicit function theorem of [18, Lemma 4.2] to equa-
tion p(t*,e) = 0, then we obtain a unique continuous solution t* = t*(¢)
(0 < & < gg), which implies Zy(e, t*(¢)) € Xq.
It is easy to see  lim  p(t*,e) = 0, which implies lim t*(¢) = 0.
t*—0,e—0t e—0t+
For |t* — t*(¢)| > 0 small, using Taylor formula we calculate

fig (Zo(e,t*) — 2(0)) = 7§ (Zo(e, t*) — Zo(e,t*(€)))
= 7l 7o(e,0(e, 1) (t* —t*(e)), (4.21)

where 0(e,t*) is a number between t* and t*(¢). As t* — 0 and ¢ — 07,
there hold 0(e,t*) — 0 and g %o (e, O(e, t*)) — 7idiy > 0. Therefore the
sign of the left-hand side in equation (4.21) is determined only by the sign of
t* — t*(¢) and this ensures that Zy(e,t*) locates in the desired region of
while £(¢* — t*(¢)) > 0 and [t*| < t§.

Now, we start to prove for n # 0, Z,(¢,t*(¢)) ¢ Xq. As preparation we

define a manifold
M(tg) = {Z(t"); [t*'] = to} U {4}
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which is bounded and compact. Due to the assumption in (H5), the distance
between this manifold M(t;) and the segment g is positive. From the

estimates in (3.6) and the periodic property in (3.7) and (3.8) it follows that
|Zo(e,t*) — Z(t*)|| = O(e) for t* € R

Hence for € > 0 small and [t*| > ¢§ there holds Zy(e,t*) & Xq.

For contradiction we assume there exist 0 < £ < gy and ng # 0 such that
Ty (€,17(€)) € X with Ty, (€,1%(€)) = To(€,t*(€) + noé). If [t*(€) + noé| > ¢,
then Zo(€,1*(€) + noé) € Xq, thus there must be [t*(€) + noé| < ¢, which
together with the assumption above, implies p(t*(£) 4+ n¢é,é) = 0. From
the uniqueness of the solution of the equation p(t*,¢) = 0 it follows that
t*(€) + noé = t*(¢) which implies either ng = 0 or £ = 0. This is impossible.
Hence Z,(g,t*(¢)) € Xq for n # 0.

Similarly we can prove that Zy(e,t*) € g for 0 < € < gy and t* #
t*(e) + Lz (¢ € Z). This, together with the periodic property in (3.7), implies
that Z,,(e,t*) € Xq for all n and t* # t*(e) + le (L € Z). [
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