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Abstract. In this paper we develop numerical methods for integrating general evolution equa-
tions ut = F (u), u(0) = u0, where F is defined on a dense subspace of some Banach space (generally
infinite dimensional) and is equivariant with respect to the action of a finite dimensional (not nec-
essarily compact) Lie group. Such equations typically arise from autonomous PDE’s on unbounded
domains that are invariant under the action of the Euclidean group or one of its subgroups. In our
approach we write the solution u(t) as a composition of the action of a time dependent group ele-
ment with a ’frozen solution’ in the given Banach space. We keep the ’frozen solution’ as constant as
possible by introducing a set of algebraic constraints (phase conditions) the number of which is given
by the dimension of the Lie group. The resulting PDAE (Partial Differential Algebraic Equation) is
then solved by combining classical numerical methods, such as restriction to a bounded domain with
asymptotic boundary conditions, half-explicit Euler methods in time and finite differences in space.
We provide applications to reaction diffusion systems that have traveling wave or spiral solutions in
one and two space dimensions.
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1. Introduction. We consider the numerical solution of general evolution equa-
tions

ut = F (u), u(0) = u0, (1.1)

that are equivariant with respect to the action of a finite-dimensional, not necessarily
compact Lie group. Equation (1.1) is considered on a Banach space X where the
mapping F has a dense domain. Equivariance means that we have a finite dimensional
Lie group G which acts on X via a representation a : G 7→ GL(X) such that F is
equivariant in the sense F (a(γ)v) = a(γ)F (v) for all γ ∈ G and for all v in the domain
of F .

The main application we have in mind are reaction-diffusion systems on un-
bounded domains Ω ⊂ Rd such as the semilinear system

ut = ∆u + f(u), x ∈ Ω, u(0) = u0, (1.2)

where u(x, t) ∈ Rm and f : Rm 7→ Rm is sufficiently smooth. If the domain Ω is
invariant with respect to the action of a Lie Group G ⊂ GL(Rd) then this induces an
equivariance of (1.2) via the action

[a(γ)v](x) = v(γx), x ∈ Ω

where v is in some suitable function space. In case Ω = Rd equivariance holds with
respect to the Euclidean group G = SE(d). Further symmetries may be induced by
special equivariance properties of the linear and nonlinear part in (1.2).

∗Supported by DFG research group ’Spectral analysis, asymptotic distributions and stochastic
dynamics’, University of Bielefeld.
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Up to now there is a well developed bifurcation theory for equivariant dynamical
systems that covers the infinite dimensional case of PDE’s and certain aspects of
noncompact Lie groups, see the monographs [12],[6]. In particular, we refer to [13],
[23] and the remarkable series of papers [10],[28],[29],[11]. One of the underlying ideas
in the latter papers is to transform the flow of (1.1) into so called skew product form.
One part is orthogonal to the group orbit (of the initial value) and the other part acts
within the group orbit and depends upon the position in the orthogonal direction,
compare [10]. Combining this decomposition with center manifold reductions (see
[28],[29]) leads to a powerful tool for studying equivariant bifurcations in PDE’s. In
this way, various bifurcations of spiral waves, observed and interpreted in [1],[3], could
be put into a mathematically rigorous framework.

In this paper we propose a numerical method for solving the initial value problem
that makes use of the equivariance by extending the system (1.1) rather than reducing
it as in bifurcation analysis. More precisely, we write the solution u(t) of (1.1) as

u(t) = a(γ(t))v(t), (1.3)

where γ(t) ∈ G and v(t) ∈ X are to be determined. The extra degrees of freedom
γ(t) are compensated for by phase conditions

ψ(v, γ) = 0, (1.4)

the number of which is given by the dimension of the Lie group. The resulting system
for (v(t), γ(t)) (see equation (2.18)) is an abstract differential algebraic equation which
will be set up and analyzed in some detail in section 2. The choice of phase condition
is crucial for our approach since it determines the parametrization of the v-orbits.

In section 2.3 we discuss several choices for the function ψ in (1.4) that are based
on minimization or orthogonality principles. In particular, near relative equilibria of
(1.1) (i.e. solutions of the form u(t) = a(γ(t))v) the phase condition should force the
v-part of the solution to become stationary. For this reason we will sometimes call
v(t) the frozen solution and the transformed system the frozen system.

Applications to parabolic systems (1.2) in one and two space dimensions will be
discussed in sections 2 and 3. The frozen system in this case turns out to be a PDAE
(Partial Differential Algebraic Equation) which will be solved in a straightforward
manner by a half-explicit Euler method. For numerical computations one has to
restrict the infinite to a finite domain and use appropriate boundary conditions. After
this truncation the original and the frozen system are no longer equivalent. For
example, when a traveling wave (or a drifting spiral) reaches a finite boundary in
the given system it will usually die out, while in the frozen system it is expected to
become stationary.

In section 3 we will discuss several two-dimensional systems from the literature
(e.g. Barkley’s spiral system [1],[3], the λ − ω-system [18] and the quintic Ginzburg
Landau equation [7],[8]) that show rigidly rotating spiral waves. Freezing such waves
can be delicate because it depends on the precise choice of phase condition (with or
without weighted L2-norms), the type of numerical discretization (rectangular or polar
grid) and on the right choice of the underlying group. Note that a related approach
to ours was developed in [5] with the intention to use the side constraint in order to
fix the tip of a spiral wave. Also in [2] Barkley mentions the use of a pinning or phase
condition in order to compute the spiral wave from a time-independent boundary
value problem.
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While there have been quite a few numerical bifurcation methods that employ
equivariance with respect to compact and mostly discrete groups (see [14, Ch.8] for a
recent survey) it seems that equivariance with respect to general Lie groups has not
been systematically used for solving equivariant systems numerically. We expect that,
apart from the evolution system (1.1), our general approach will also be useful for the
numerical bifurcation analysis of relative equilibria and relative periodic orbits.

Note added in proof: After preparation of the manuscript we learnt of the
related work of Rowley, Kevrekidis, Marsden and Lust [24] which builds on previous
work by Rowley and Marsden [25]. In [25] the idea of splitting the solutions in the
form (2.16) and adding a minimization condition like (2.26), appears in the context of
Karhunen-Loève expansion for systems with symmetry. Equation (2.18) is then called
the reconstruction equation. In [24] the authors generalize this approach to dynamical
systems with self-similar symmetries, which, in addition to the equivariance used in
this paper, allow rescalings of the time variable. Applications to traveling waves in
one space dimension (Kuramoto-Shivashinsky, Burgers) are presented in [25],[24].

2. The general approach.

2.1. Equivariant evolution equations. In this section we set up the technique
of decomposing the solutions of the evolution equation (1.1) in an abstract setting.
Simultaneously, we treat two important examples (parabolic systems on the line and
in the plane) in a formal way with the details of a proper functional analytic setting
given in the subsequent sections. We assume that (X, || · ||) is a Banach space and Y
is a dense subspace on which the operator F from (1.1) is defined, i.e.

F :
Y ⊂ X → X

u 7→ F (u)
, Y = X. (2.1)

Example 2.1. Consider the parabolic system

ut = Auxx + f(u, ux) =: F (u), −∞ < x < ∞, (2.2)

where u(x, t) ∈ Rm, A is a positive definite m × m matrix and f : R2m → Rm is
assumed to be sufficiently smooth. If f(0) = 0 and if f and its first derivative are
globally bounded then (2.1) holds for the choice

Y = H2(R,Rm), X = L2(R,Rm). (2.3)

Clearly, this excludes solutions that do not decay at ±∞ and a more general setting
will be discussed in sections 2.4 and 3. In this example and in what follows we
use Hk(R,Rm), k ≥ 2 to denote the standard Sobolev space of functions that have
generalized derivatives in L2 up to order k ≥ 2.

As a second example we mention the semilinear equation

ut = A∆u + f(u) =: F (u), x ∈ R
2 (2.4)

where u(x, t) and A are as above and f : Rm → Rm satisfies appropriate smoothness
and boundedness assumptions (see section 4).

We further assume that a finite dimensional (not necessarily compact) Lie group
(G, ◦) is given that acts on X via a representation in GL(X), that is we have a
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homomorphism
(cf.[6, Ch.4.3.1])

a :
G → GL(X)

γ 7→ a(γ)
(2.5)

satisfying

a(1) = I, a(γ1 ◦ γ2) = a(γ1)a(γ2). (2.6)

Here 1 and I denote the unit elements in G and GL(X) respectively.
Our main assumption is that the mapping F from (2.1) is equivariant under the

action of G in the following sense.
Hypothesis 2.2. For all γ ∈ G

a(γ)(Y ) ⊆ Y, (2.7)

F (a(γ)u) = a(γ)F (u) ∀u ∈ Y. (2.8)

In the last equation we restrict the equivariance condition to the dense subspace Y .
Equation (2.7) is included to ensure that a(γ) maps the domain of F into itself. Note
that (2.7) implies a(γ)(Y ) = Y since for every γ ∈ G

Y = a(γ)a(γ−1)(Y ) ⊆ a(γ)(Y ) ⊆ Y.

Example 2.3. Consider Example 2.1 with the additive group (G, ◦) = (R,+)
and the action a(γ) defined by the shift

[a(γ)u] (x) := u(x − γ), x ∈ R, γ ∈ G. (2.9)

With the spaces from(2.3) equations (2.7) and (2.8) are satisfied .
In case (2.4) we take the two dimensional Euclidean group (see [6], [28], [29], [10])

G = SE(2) = S1
n R

2,

where the semi-direct product S1
n R2 is defined topologically by the direct product

γ = (θ, b) ∈ S1 ×R
2

and the group operation is given by

γ1 ◦ γ2 = (θ1, b1) ◦ (θ2, b2) = (θ1 + θ2, b1 + %θ1
b2). (2.10)

Here the unit element is 1 = (0, 0) and we write rotations in R2 as

%θ =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

. (2.11)

The action on functions is given by (see [6],[29],[10])

[a(γ)u] (x) := u(%−θ(x − b)), x ∈ R
2. (2.12)

One easily verifies the property (2.6) and the equivariance condition (2.8) with the
help of the Euclidean equivariance of the Laplacian

∆x [u(%θx)] = ∆u(%θx), ∆x [u(x − b)] = ∆u(x − b).
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2.2. Separating the group motion. A well known problem in the infinite
dimensional setting is differentiability of the group action (see [28],[29], [10] for a
detailed discussion). Neither can we expect the mapping a to be differentiable from
G into GL(X) nor can we assume that the mapping γ 7→ a(γ)u is differentiable for
any fixed u ∈ X. Our assumption is

Hypothesis 2.4. For any v ∈ X the mapping

a(·)v :
G → X

γ 7→ a(γ)v
(2.13)

is continuous and for any v ∈ Y it is continuously differentiable with derivative

aγ(γ)v :
TγG → X

λ 7→ [aγ(γ)v] λ
(2.14)

We use Aγ = TγG to denote the tangent space of G at γ. Note that A := A1 is the
Lie algebra associated with G which has the same dimension as G. A general principle
of constructing spaces that satisfy Hypothesis 2.4 will be discussed in section 2.4.

For the example 2.3 continuity is satisfied for v ∈ L2(R,Rm) and continuous
differentiability holds for functions v ∈ H1(R,Rm) ⊃ Y = H2(R,Rm) with

[aγ(γ)v]λ = −vx(· − γ)λ. (2.15)

Consider a solution u(t) of (1.1) and a function γ ∈ C1(R, G), γ(0) = 1 and define
v(t) via (see Figure 2.1)

u(t) = a(γ(t))v(t). (2.16)

Then by differentiating formally and using the equivariance condition we obtain

u0

v(t)

a(γ(t)) u(t) = a(γ(t))v(t)

O(v(t))

O(u0) = {a(γ)u0 : γ ∈ G}

Fig. 2.1. Splitting off the group dynamics by extension

ut = [aγ(γ)v] γt + a(γ)vt = F (u) = F (a(γ)v) = a(γ)F (v). (2.17)

Applying a(γ−1) = a(γ)−1 to both sides we end up with the equation for the ’frozen
solution’ v(t)

vt = F (v) − a(γ−1)aγ(γ)vγt, v(0) = u0. (2.18)

In order to make the equivalence of (1.1) and (2.18) rigorous we use a working defini-
tion for solutions which shares at least some properties of strong solutions for evolution
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equations with C0 semigroups (see [17],[28],[29],[10] for the standard solution concept
in fractional order spaces when F = A + f with a sectorial operator A).

Definition 2.5. A function u ∈ C([0, T ),X)∩C1((0, T ),X) is called a solution
of the initial value problem (1.1) on [0, T ) if u(0) = u0, u(t) ∈ Y for 0 < t < T and
if the differential equation holds in the open interval (0, T ).
With this notion we obtain the following Theorem.

Theorem 2.6. Suppose that the Hypotheses 2.2 and 2.4 hold and let γ ∈
C1([0, T ), G) satisfy γ(0) = 1. Then u is a solution of (1.1) if and only if v, given by
(2.16), is a solution of (2.18).

Proof. We may write (2.16) equivalently as v(t) = a(γ(t)−1)u(t) where γ−1 ∈
C1([0, T ), G) and γ−1(0) = 1. Therefore, it is sufficient to show that u(t) inherits
the smoothness from v(t) and that the first equality in (2.17) holds. As in semigroup
theory one concludes from Hypothesis 2.4 and the uniform boundedness principle that
the operator norms |a(γ)| are uniformly bounded when γ varies in a compact set. This
implies continuity of the map (γ, u) 7→ a(γ)u on G×X and thus continuity of u(t) for
t ∈ [0, T ). Differentiability in (0, T ) and the desired formula follow from Hypothesis
2.4 by a careful look at the standard proof of chain and product rule:

u(t + h) − u(t) = a(γ(t + h))(v(t + h) − v(t) − vt(t)h) + a(γ(t))vt(t)h+

(a(γ(t + h)) − a(γ(t)))vt(t)h + (a(γ(t + h)) − a(γ(t)))v(t)

= a(γ(t))vt(t)h + [aγ(γ(t))v(t)] γt(t)h + o(h).

In (2.18) the path γ(t) in the group is still arbitrary. We fix these degrees of
freedom by so called ’phase conditions’ the number of which equals the dimension of
the group. We assume that we are given a map

ψ :
X × G → A∗

(u, γ) 7→ ψ(u, γ),
(2.19)

that satisfies the consistency relation ψ(u0,1) = 0. In (2.19) we use A∗ to denote
the dual of the Lie algebra A. Further introducing the variable λ = γt we finally
arrive at the following PDAE (Partial Differential Algebraic Equation) for the time-
dependent variables γ(t) ∈ G,λ(t) ∈ Tγ(t)G, v(t) ∈ Y

vt = F (v) − a(γ−1)aγ(γ)vλ, v(0) = u0 (2.20)

γt = λ, γ(0) = 1 (2.21)

0 = ψ(v, γ). (2.22)

In general (2.20) is a PDE, (2.21) an ODE system on a manifold and (2.22) is an
algebraic constraint. In our example (2.2),(2.3) the PDAE reads

vt = Avxx + f(v, vx) + vxλ, v(0) = u0 (2.23)

γt = λ, γ(0) = 0 (2.24)

0 = ψ(v, γ). (2.25)

Remark 2.7. Decomposing the solution as in (2.16) is also the underlying idea
in the center manifold reduction in [28],[29],[10] as well as in the slice theorem, see
[6, Ch.6]. However, rather than using it to derive a reduced system which contains
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global terms from elimination, we set up an extended system that keeps most of the
structure of the original problem. This will be better suited for numerical methods.
We extend Definition 2.5 by saying that the tuple (v, γ, λ) is a solution of the PDAE
on [0, T ) if v ∈ C([0, T ),X) ∩ C1((0, T ),X) and (γ, λ) ∈ C1([0, T ), TG) such that
v(t) ∈ Y for 0 < t < T and such that the differential equation in (2.20) holds in (0, T )
and the equations in (2.21),(2.22) hold in [0, T ). Note that the tangent bundle TG
consists of pairs (γ, λ) with λ ∈ TγG.

For the phase condition we use the following
Hypothesis 2.8. ψ ∈ C1(X × G,A∗), ψ(u0,1) = 0 and the linear map

ψγ(u0,1) − ψv(u0,1)aγ(1)u0 : A 7→ A∗

is nonsingular.
The first part of the following theorem is an immediate consequence of Theorem 2.6.

Theorem 2.9. If (v, γ, λ) is a solution of (2.20)-(2.22) on [0, T ) then u(t) =
a(γ(t))v(t) solves (1.1). Conversely, assume that u(t) solves (1.1) on some interval
[0, T ) and that ψ satisfies Hypothesis 2.8. Then there exists an interval [0, τ) ⊂ [0, T )
and a function γ ∈ C1([0, τ), G) such that (v = a(γ−1)u, γ, λ = γt) is a solution of
(2.20)-(2.22) on [0, τ).

Proof. For the second part apply the implicit function theorem to the equation

ϕ(γ, t) := ψ(a(γ−1)u(t), γ) = 0.

Note that ϕ(1, 0) = 0 and that ϕγ(1, 0) = ψγ(u0,1) − ψv(u0,1)aγ(1)u0 is invertible
by Hypothesis 2.8.

2.3. Phase conditions. Let us assume that we have an inner product 〈·, ·〉 on
X that is continuous with respect to the given norm || · ||, i.e. |u| =

√

〈u, u〉 ≤ C||u||.
For equation (2.3) in Example 2.1, the two norms are identical and X is a Hilbert
space, but we do not assume this is general. In later applications we will use weighted
and locally uniform norms for which the two norms differ.

One way to set up a phase condition is to minimize the distance of the frozen
solution v from the group orbit of the starting value

O(u0) = {a(γ)u0 : γ ∈ G}

i.e. minimize e1(γ) = |a(γ)u0 − v|2. If we require u0 to be the point on the orbit that
is closest to v we obtain from Hypothesis 2.4 the necessary condition

ψ1(v, γ)µ := 〈aγ(1)u0µ, u0 − v〉 = 0 ∀µ ∈ A. (2.26)

Similarly, we may require that v is the point of minimal distance from u0 on O(v), i.e.
we minimize e2(γ) = |u0 − a(γ)v|2. This leads to (see Figure 2.2 for an illustration)

ψ2(v, γ)µ := 〈aγ(1)vµ, u0 − v〉 = 0 ∀µ ∈ A. (2.27)

Proposition 2.10. If the isotropy subgroup (or stabilizer) of u0, given by

Stab(u0) = {γ ∈ G : a(γ)u0 = u0}

is trivial, then both phase conditions (2.26) and (2.27) satisfy Hypothesis 2.8.
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v
vu0

u0

Tu0
O(u0)

O(u0)

TvO(v)

O(v)

Fig. 2.2. Minimizing the distance of v to O(u0) (left) or of u0 to O(v) (right)

Proof. It is well known (see [6, Th.4.3.4]) that

dim(O(u0)) = dim(Tu0
O(u0)) = dim(G) − dim(Stab(u0)).

Let d be the dimension of G. Then we can choose elements gi ∈ A, i = 1, . . . , d such
that Si = [aγ(1)u0]gi form a basis of Tu0

O(u0). By a direct calculation we have for
λ, µ ∈ A

−[ψ1,v(u0,1)aγ(u0)λ]µ = 〈aγ(1)u0µ, aγ(1)u0λ〉. (2.28)

Therefore, ψ1,v(u0,1)aγ(u0)λ : A 7→ A∗ is nonsingular iff the d×d-matrix with entries
〈Si, Sj〉 is nonsingular. Clearly this holds if and only if the Si are linearly independent.
For the second phase condition (2.27) note that we obtain the same expression (2.28).

Remark 2.11. If the inner product is G-invariant then e1(γ) = e2(γ
−1) and the

two minimization problems are equivalent. Moreover, the two necessary conditions
(2.26) and (2.27) are identical, since we have 〈aγ(1)v, v〉 = 0 for v ∈ Y . The last
equation follows by differentiating 〈a(γ)v, a(γ)v〉 = 〈v, v〉 at γ = 1.

In equivariant bifurcation theory interesting phenomena arise when the isotropy
group of some relative equilibrium is nontrivial, see [10],[6]. For an initial value
problem with some ’generic’ u0, however, it seems reasonable to assume a trivial
isotropy subgroup.
The remark applies to the parabolic system (2.23)-(2.25) with spaces (2.3). In this
case the phase conditions (2.26) and (2.27) yield the integral constraint

0 = ψ(v) =

∫ ∞

−∞
uT

0,x(u0 − v) dx = −
∫ ∞

−∞
uT

0,xv dx (2.29)

Hypothesis 2.8 requires the map λ → λ
∫ ∞
−∞ uT

0,xu0,x dx to be nonsingular which is
satisfied if u0 is nonconstant.

The phase conditions developed so far depend on the initial value u0 and seem
to be useful only for short times, see Theorem 2.9. During numerical computations
one could update the phase condition by using v(t1), v(t2), . . . at later times instead
of u0.

A condition that is applicable in a more global sense is to minimize the temporal
change of v, i.e.

|vt|2 = |F (v) − a(γ−1)aγ(γ)vλ|2. (2.30)

This is a d-dimensional least squares problem in λ ∈ Aγ . We introduce the operators

S(v, γ) = a(γ−1)aγ(γ)v : Aγ 7→ X (2.31)
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and S∗(v, γ) : X 7→ A∗
γ by

[S∗(v, γ)u]λ = 〈S(v, γ)λ, u〉 for λ ∈ Aγ . (2.32)

If the stabilizer of a(γ)v is trivial then S(v, γ) is one to one and S∗S(v, γ) ∈ L(Aγ ,A∗
γ)

is nonsingular. Therefore, (2.30) has a unique minimizer given by the solution of the
linear d × d system

ψmin(v, γ, λ) := (S∗S)(v, γ)λ − S∗(v, γ)F (v) = 0. (2.33)

Note that in contrast to (2.25) this phase condition depends also on the derivative
γt = λ so that Theorem 2.9 does not apply. Nevertheless, a given solution u(t), t ∈
[0, T ) of (1.1) may be written as u(t) = a(γ(t))v(t) with v satisfying (2.20) and (γ, λ)
satisfying (2.33) if we determine γ(t) from the following initial value problem on G

γt(t) = [(S∗S)−1S∗](a(γ−1)u(t), γ) a(γ−1)F (u(t)), γ(0) = 1. (2.34)

In order to ensure a unique solution of this problem we need more regularity for
F (u(t)), t ∈ [0, T ) than in Theorem 2.9, such that the right hand side of (2.34) is
continuous in (γ, t) and locally Lipschitz in γ.

More details on the implementation of the phase condition (2.33) will be given
in the next sections. The condition turns out to be particularly useful near relative
equilibria of (1.1) where we expect vt to tend to zero.

A final alternative is to require that at any time instance, vt is orthogonal to the
group orbit O(u) = O(a(γ)v) at v, (see Figure 2.3).

v(·, t1)

v(·, t2)
v(·, t3 )

v t
(·,

t 1
)

v t
(·,

t 2
)

vt(·, t3)

O(v(·, t1))

O(v(·, t2))

O(v(·, t3 ))

Fig. 2.3. Orthogonality of time and group orbit at successive times

This leads to the condition

0 = 〈S(v,1)µ, vt〉 ∀µ ∈ Aγ .

Using the differential equation (2.20) we rewrite the phase condition as

ψorth(v, γ, λ) = S∗(v,1)S(v, γ)λ − S∗(v,1)F (v) = 0. (2.35)

Note that this condition is identical with (2.33) if a(γ−1)aγv does not depend on γ.
For example, it is true for the parabolic system (2.23)-(2.25) (and for most of the

examples in sections 3 and 4). Conditions (2.33) and (2.35) both lead to the explicit
formula

〈vx, vx〉L2λ = 〈vx, Avxx + f(v, vx)〉L2 = 〈vx, f(v, vx)〉L2 , (2.36)

which works whenever the function v is nonconstant. Note that the last equality
follows from v ∈ H2(R,Rm) if A = AT .
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2.4. Construction of spaces. In [29, Theorem 4.5] the authors set up a general
principle for constructing spaces that satisfy the differentiability condition in Hypoth-
esis 2.4. In the following proposition we slightly extend their result by constructing
a sequence of nested spaces on which the group acts with increasing smoothness. We
use the exponential map exp : A 7→ G, cf. [6, Ch. 4.2].

Proposition 2.12. Let (X0, || · ||0) be a Banach space and let a : G 7→ GL(X0)
be a homomorphism. Then

X1 = {u ∈ X0 : ||u||1 := sup
γ∈G

||a(γ)u||0 < ∞}

is a Banach space with respect to the norm || · ||1 and the operators a(γ)|X1
are isome-

tries in GL(X1). Further, the space

X2 = {u ∈ X1 : γ 7→ a(γ)u is continuous in G}

is a closed subspace of (X1, || · ||1) such that a(γ)|X2
∈ GL(X2) acts strongly continu-

ously. Finally,

X3 = {u ∈ X2 : γ 7→ a(γ)u is continuously differentiable in G}

is a dense subspace of X2 and can be written as

X3 =
⋂

λ∈A
D(λ), (2.37)

where D(λ) is the domain of the infinitesimal generator of the C0−semigroup
a(exp(λt)), t ≥ 0.

Proof. If un ∈ X1 is a Cauchy sequence with respect to || · ||1 then a(γ)un is a
Cauchy sequence in X0 for each γ ∈ G and hence converges to some v(γ) ∈ X0. By
continuity of a(γ) we have v(γ) = a(γ)v(1) and using the Cauchy property again we
obtain ||un − u||1 → 0 for u = v(1) as well as u ∈ X1. The isometric property of
a(γ)|X1

is obvious and the closedness of X2 with respect to || · ||1 is an easy exercise.
The main result in [29, Theorem4.5] states that

⋂

λ∈A D(λ) is contained in X3 and
is a dense subspace of X2. But the opposite inclusion X3 ⊂ ⋂

λ∈A D(λ) follows from
the chain rule applied to a(exp(λt))u, u ∈ X3 and this finishes the proof.

Remark 2.13. Under the assumptions of the proposition we can satisfy Hypoth-
esis 2.4 by taking X = X2 and Y = X3. However, in the applications the right hand
side of (1.1) may contain differential operators that require an even smaller (but still
dense) domain Y .

Example 2.14. For γ ∈ G = RN consider the shift (see (2.9))

[a(γ)u](x) = u(x − γ), x ∈ R
N .

If we take X0 = C0
b (RN ,Rm) (continuous bounded functions) with || · ||0 as the sup-

norm in Proposition 2.12 then we obtain X1 = X0, || · ||1 = || · ||0 and the spaces of
uniformly contiuous functions X2 = C0

unif(R
N ,Rm),X3 = C1

unif(R
N ,Rm).

Another choice are locally uniform spaces as proposed in [20], [19]. Take a positive
and integrable weight function η ∈ C1(RN , (0,∞)) ∩ L1(RN ) that satisfies |∇η(x)| ≤
Cη(x),∀x ∈ RN . For p ≥ 1 consider the weighted Lp space

X0 = Lp
η(RN ) = {u ∈ Lloc(R

N ,Rm) : ||u||Lp
η

< ∞}, (2.38)

||u||Lp
η

=

(
∫

RN

η(x)|u(x)|pdx

)
1

p

. (2.39)
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From the estimate η(x + γ) ≤ eC|γ|η(x) one finds that a(γ) : X0 7→ X0 is a bounded

operator with bound e
C|γ|

p . The construction in Proposition 2.12 then yields the locally
uniform spaces (using the notation from [20],[19] )

X0 ⊃ X1 = L̃p
ul(R

N ) ⊃ X2 = Lp
ul(R

N ). (2.40)

Here the norm ||u||Lp

ul
= supγ∈RN ||u(· − γ)||Lp

η
in X1 is stronger than || · ||0 and

all inclusions are strict. Finally, the intersection of the domains of the infinitesimal
generators ∂

∂xj
, j = 1, . . . , N leads to the weighted Sobolev space

X3 = W 1,p
ul (RN ) = {u ∈ Lp

ul(R
N ) :

∂u

∂xj

∈ Lp
ul(R

N ), j = 1, . . . , N}. (2.41)

3. Waves in one space dimension.

3.1. Relative equilibria. Following [10],[6] we define relative equilibria as so-
lutions that stay in the group orbit of the initial value (see also [10] and [28] for the
further notions of a relative periodic orbit and meandering solutions)

Definition 3.1. A solution u(t), t ∈ [0, T ) of equation (1.1) is called a relative
equilibrium if there exist v ∈ Y, γ ∈ C1([0, T ), G) such that γ(0) = 1 and

u(t) = a(γ(t))v, 0 ≤ t < T. (3.1)

In view of (2.20),(2.21) this implies the following equations

0 = F (v) − S(v, γ(t))λ(t), where S(v, γ)λ = a(γ−1)aγ(γ)vλ (3.2)

γt(t) = λ(t), γ(0) = 1. (3.3)

In the applications we will frequently have relative equilibria for which the operator
S(·, γ(t))λ(t) : Y 7→ X is independent of t.

For example, a traveling wave

[u(t)](x) = v(x − λt), γ(t) = λt (3.4)

is an equilibrium of the system (2.23) with constant λ and a relative equilibrium of
(2.2) (take any of the spaces from Example 2.14). Conversely, if u(t) = a(γ(t))v is a
relative equilibrium of (2.2), then with λ = γt we have

0 = Avxx + f(v, vx) + vxλ(t).

Taking the inner product with vx and assuming that v is nonconstant we conclude
that λ(t) is in fact time independent. Hence, traveling waves are the only nontrivial
relative equilibria of (2.2).

As a second example consider the complex valued system

ut = Auxx + f(u, ux), x ∈ R, u(x, t) ∈ C
m, (3.5)

where f : C2m 7→ Cm is assumed to be equivariant with respect to phase factors

f(eiθu, eiθv) = eiθf(u, v), θ ∈ S1 = R/2πZ. (3.6)

Well known special cases are equations of Ginzburg-Landau type

f(u, v) = au + bu|u|2 + cu|u|4, u ∈ C, a, b, c ∈ C. (3.7)
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In this case the Lie group is G = S1 ×R with

(θ1, τ1) ◦ (θ2, τ2) = (θ1 + θ2, τ1 + τ2) (3.8)

and the action is given by

[a(θ, τ)v] (x) = e−iθv(x − τ). (3.9)

The system (2.20),(2.21) now reads

vt = Avxx + f(v, vx) + ivλ1 + vxλ2, v(0) = u0, (3.10)

θt = λ1, τt = λ2 θ(0) = 0, τ(0) = 0. (3.11)

The phase condition (2.26) has the form

ψ1(v, θ, τ) = (〈iu0, v − u0〉, 〈u0,x, v − u0〉) = (0, 0), (3.12)

where 〈·, ·〉 is the inner product in the real system of doubled dimension, i.e.

〈u + iv, w + iz〉L2
=

∫

R

uT w + vT z dx. (3.13)

Hypothesis 2.8 is satisfied if the functions iu0 and u0x are linearly independent over
R. Relative equilibria of (3.5) are rotating waves

u(x, t) = e−iλ1tv(x − λ2t), x ∈ R, t ∈ R, (3.14)

where v is in one of the spaces H2(R,Cm), C2
unif(R,Cm) or H2

ul(R,Cm) = W 2,2
ul (R,Cm),

cf. Example 2.14. Similar to the previous example we obtain that these are the only
relative equilibria for which iv and vx are linearly independent.

3.2. Numerical computations. For the discretization in time and space we
consider a system (2.2) that is equivariant under a Lie group of dimension d and that
- with a proper choice of coordinates in G and TG - leads to a PDAE (2.20), (2.21)
of the form

vt = F (v) − S(v)λ, S(v)λ =
d

∑

j=1

Sj(v)λj , v(0) = u0, (3.15)

γt = λ, γ(0) = 0. (3.16)

Here F is given by (2.2) and the Sj are linear differential operators of order ≤ 1 with
bounded continous coefficients

Sj(v) = Bj(x)vx + Cj(x)v, Bj , Cj ∈ C0
b (R,Rm,m).

For the phase condition we use the orthogonality constraint (2.35), which in this case
is the same as (2.33)

ψorth(v, λ) = (〈Sν(v),

d
∑

j=1

Sj(v)λj − F (v)〉)1≤ν≤d = 0, (3.17)

where 〈·, ·〉 is the inner product in either L2 or in L2
η.
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We choose a step size ∆t in time and an equidistant spatial grid

J = {xj = j∆x : 0 ≤ j ≤ M}, ∆x =
x+ − x−

M
,

where [x−, x+] is some large interval. At time tn = n∆t we compute the approxima-
tions γn, λn ∈ Rd and vn : J 7→ Rm by a half-explicit Euler method, i.e. a method
that is explicit in the state variable vn but implicit in the algebraic variable λn (see
[15],[16] for such methods)

1

∆t
(vn+1 − vn) = F∆x(vn) − S∆x(vn)λn+1, (3.18)

1

∆t
(γn+1 − γn) =

1

2
(λn+1 + λn), (3.19)

0 = (〈Sν,∆x(vn),
d

∑

j=1

Sj,∆x(vn)λn+1
j − F∆x(vn)〉)1≤ν≤d. (3.20)

Here F∆x and S∆x are standard finite difference approximations

F∆x(v) = D+D−v + f(v,D0v), Sj,∆x(v) = BjD0v + Cjv,

where D± denote forward/backward and D0 = 1
2 (D+ + D−) centered difference quo-

tients. In any time step one first solves the linear d × d system (3.20) for λn+1 and
then determines vn+1, γn+1 from (3.18),(3.19). Standard stability restrictions such as
∆t ≤ 1

2 (∆x)2 are taken into account.
Equation (3.18) has to be completed by boundary conditions. We choose Neu-

mann and projection boundary conditions.
For traveling waves (more generally relative equilibria) projection boundary con-

ditions are in common use as asymptotic boundary conditions at x± in order to have
higher order approximations of wave form and speed (see [4],[26]). We adapt them to
the time-dependent case as follows. Assume that the limits limx→±∞ Cj(x) = Cj,±
exist and the solution satisfies

lim
x→±∞

v(x, t) = w±, lim
x→±∞

vx(x, t) = 0, f(w±, 0) −
d

∑

j=1

Cj,±w± = 0. (3.21)

The idea behind projection b.c. is to control the growing resp. decaying spatial modes
obtained by linearizing at ±∞. We write the conditions in the form

V±(v(x±) − w±) + W±vx(x±) = 0, (3.22)

where V±,W± ∈ Rm,m. These matrices can be obtained by setting W± = Z±A, V± =
−Λ−1

± Z±C± where Λ+,Λ− ∈ Rm,m have only eigenvalues with real part positive resp.
negative and where Z± ∈ Rm,m form a corresponding invariant subspace of the ’left
quadratic eigenvalue problem’

Λ2
±Z±A + Λ±Z±B± + Z±C± = 0, (3.23)

B± = D2f(w±, 0) +

d
∑

j=1

Bj,±λj , C± = D1f(w±, 0) +

d
∑

j=1

Cj,±λj . (3.24)

In the n-th time step one has to set λ = λn in (3.24) and so the projection boundary
conditions (3.22) depend on time.
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3.3. Numerical Examples. In the following we test our method on several well
known examples of parabolic systems that show traveling or rotating waves.

3.3.1. Nagumo wave. The Nagumo equation [21], [22]

ut = uxx + u(1 − u)(u − α), u(x, 0) = u0(x), α ∈ (0,
1

2
) (3.25)

has an explicit traveling wave solution u(x, t) = v̄(x − ct) given by

v̄(x) =
1

1 + exp(− x√
2
)
, c = −

√
2 ( 1

2 − α).

For the numerical computations we use parameters α = 1
4 , J = [−30, 30], ∆x = 0.1,

∆t < 1
2∆x2 and Neumann boundary conditions.
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Fig. 3.1. Traveling vs. frozen Nagumo wave and evolution of velocity λ(t).

In Figure 3.1 we compare the time evolution of a piecewise linear initial profile
for the unmodified equation with its frozen counterpart computed from (3.18)-(3.20).
The frozen profile stabilizes after short time and the parameter λ(t) converges to a
fixed value λ∞ = −0.353555, which is in good agreement with the velocity of the
exact solution on R. In contrast to this, the solution of the original equation becomes
constant when the wave reaches the left boundary. The reason is, of course, that the
constants 0, 1 and α are the only solutions of the stationary boundary value problem on
the finite interval. While the evolution problems (3.25) and (3.15),(3.16) are equivalent
on the whole real line (compare Theorem 2.6) they become different when truncated
to a finite interval. In Figure 3.2 we compare two frozen equations with different
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boundary conditions (Neumann and asymptotic) on a rather short interval J = [−4, 4].
While asymptotic boundary conditions still admit a stationary profile close to the
original wave, Neumann b.c. allow only constant stationary profiles as solutions of
the corresponding frozen equation in the limit t → ∞.

On the larger interval J = [−8, 8] Neumann b.c. are acceptable again, see Figure
3.3. The solutions for both boundary conditions differ by an amount of the order 10−3

which cannot be seen in the scale of Figure 3.3(a). Therefore, we show in Figure 3.3(b)
the difference in λ as a function of time. Summarizing, the pictures demonstrate that
the advantages of projection b.c. for the computation of stationary profiles carry over
to the time-dependent case.
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(b) Asymptotic b.c.

Fig. 3.2. Frozen Nagumo wave on J = [−4, 4]
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(b) Difference to asymptotic b.c. in λ

Fig. 3.3. Frozen Nagumo wave on J = [−8, 8], Neumann boundary conditions
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3.3.2. FitzHugh-Nagumo wave. A well-known two-component system with
traveling wave solutions is given by the FitzHugh-Nagumo equations [21], [22]

Vt = ∆V + V − 1

3
V 3 − R,

Rt = φ(V + a − bR)

with parameters a = 0.7, b = 0.8, φ = 0.08. As in the Nagumo case, the equa-
tion is equivariant with respect to translation. The numerical parameters are J =
[0, 130], ∆x = 0.5 and ∆t = 0.01 with Neumann boundary conditions.
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0
1

u
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x

Fig. 3.4. FHN, traveling wave

In Figure 3.4 the time evolution of the V -component of a given initial profile (R
has been set initially to the stationary value R̄ = −0.62426) is shown. The initial
hump splits into two traveling components and after some time only the left moving
pulse exists and leaves the computational window. Figure 3.5 shows the solution of
the frozen equation starting from the same profile. As before the initial profile splits
into a left and a right traveling pulse. When the right moving solution has left J ,
the remaining pulse stabilizes and takes the shape of the well known stable pulse (see
[21]). The parameter λ(t) converges after a transition phase to λ∞ = −0.816848. As
we see in this example, our method can only freeze one wave at a time. Which one is
selected, depends on the type of phase condition used.

In Figure 3.5(a) the adaptive phase condition (3.17) is used and the left moving
pulse is frozen. If we use the fixed phase condition (2.26) as shown in Figure 3.5(b)
the right moving pulse stabilizes at the position of the initial hump.
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(a) Phase condition (3.17)
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(b) Phase condition (3.12)

Fig. 3.5. FHN, frozen wave
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3.3.3. The complex Ginzburg-Landau equation. We consider a special nor-
malization of the complex Ginzburg Landau equation discussed in [19]

ut = (1 + iα)(uxx − (1 + iω)2u + (1 + iω)(2 + iω)|u|2u), u = u1 + iu2. (3.26)

Here α and ω are real parameters. As described in section 3.1 this equation is equiv-
ariant under the action of the symmetry group G = S1 ×R.

One finds rotating wave solutions of the form u(x, t) = eiφtu0 with a profile u0

which is constant in x. Inserting this ansatz into (3.26) one obtains for the absolute
value of the solution u0 and for the angular velocity φ the formulas

|u0|2 =
ω2 + 2αω − 1

ω2 + 3αω − 2
, φ = (α(2 − ω2) + 3ω)|u0|2 + α(ω2 − 1) − 2ω.

For the numerical computations we choose parameters ω = −2, α = 1
4 , J = [−30, 30],

∆x = 0.5, ∆t = 0.001 and Neumann boundary conditions. We start from an initial
profile which consists of small Gaussian pulses for the components u1 and u2.
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(b) Frozen solution

Fig. 3.6. Complex Ginzburg-Landau system, rotating vs. frozen solution.

In Figure 3.6 the time evolution of the point u(0, t) of the solution for the rotating
and the frozen system are compared. The frozen solution stabilizes after some time
at a fixed value whereas the solution of the original system continues rotating.
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Fig. 3.7. Complex Ginzburg-Landau equation.

As shown in Figure 3.7(a) the parameter λ1(t) = θ̇(t) converges to the exact
angular velocity φ = 21.25 and the translational speed λ2(t) = τ̇(t) stays at zero,
as expected. The evolution of the whole profile of the u1 component of the rotating
solution is depicted in Figure 3.7(b).

Figure 3.8 demonstrates the advantage of the half-explicit scheme for the frozen
system over the explicit scheme for the original system. We compare the discretized

analog of the normalized L2 norm of the solution ‖u(·, t)‖n =
√

1
|J|

∫

J
‖u(x, t)‖2 dx

for the frozen and the rotating system. Since the parameter λ is computed implicitly
from the phase condition (3.20) the norm ‖u(·, t)‖n converges for the frozen system
to the exact value of 2 whereas in the rotating system the norm is overestimated due
to the use of the explicit Euler method.
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Fig. 3.8. ‖u(·, t)‖n, rotating vs. frozen system.
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4. Spiral waves in two dimensions.

4.1. The PDAE for Euclidean symmetry. Consider the semilinear parabolic
system (2.4), i.e.

ut = A∆u + f(u), x ∈ R
2, t ≥ 0, u(·, 0) = u0, (4.1)

where A ∈ Rm,m is positive definite and f ∈ C∞(Rm,Rm). The system is equivariant
with respect to the action (2.12) of the Euclidean group SE(2) and satisfies (2.1) with
the spaces (see [28],[29])

Y = C2
unif(R

2,Rm), X = C0
unif(R

2,Rm). (4.2)

It is proved in [20] that this is also true for certain cubic nonlinearities for the uniformly
local spaces (compare Example 2.14)

Y = H2
ul(R

2,Rm), X = L2
ul(R

2,Rm). (4.3)

Formally differentiating the action (2.12) with respect to γ = (θ, b) ∈ S1
n R2 yields

the expression

S(v, θ)λ := a(γ−1) [aγ(γ)vλ] = −vx

[

%π
2
xλ1 + %−θ

(

λ2

λ3

)]

, (4.4)

for λ1 ∈ S1, λ2, λ3 ∈ R.
This formula can be shown rigorously and Hypothesis 2.4 is satisfied if the function

v lies in the space

Ỹ = {v ∈ Y : Pv ∈ X},

where

(Pv)(x) = vx(x)%π
2
x = −x2vx1

+ x1vx2
. (4.5)

Note that this follows from Proposition 2.12 since the domain of P corresponds to
D(λ1) in (2.37) and since Y is contained in the domain of the other two infinitesimal
generators ∂

∂x1

and ∂
∂x2

.
The system (2.20) is of the form

vt = A∆v + f(v) − S(v, θ)λ, v(0) = u0, (4.6)

with S(v, θ) defined in (4.4) and equation (2.21) reads

θt = λ1, bt =

(

λ2

λ3

)

, θ(0) = 0, b(0) = 0. (4.7)

In contrast to (3.15) the forcing term on the right hand side of (4.6) depends on the
group variable θ. We can eliminate this dependence by choosing new coordinates
(θ, α) on G and µ on A as follows:

α = %−θb, µ1 = λ1,

(

µ2

µ3

)

= %−θ

(

λ2

λ3

)

.

This transforms (4.6),(4.7) into

vt = A∆v + f(v) − S(v)µ, v(0) = u0, S(v)µ = −vx

[

%π
2
xµ1 +

(

µ2

µ3

)]

, (4.8)
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θt = µ1, αt = µ1%π
2
α +

(

µ2

µ3

)

, θ(0) = 0, α(0) = 0. (4.9)

Note that the second equation in (4.9) is no longer trivial, but describes, in case of
constant µ, a rotation on a circle of radius |µ1| about the center 1

µ1

(−µ3

µ2

)

. In this

version the two phase conditions (2.33) and (2.35) coincide.
Both systems (4.6) and (4.8) introduce a convection term Pv which becomes large

on large domains. The numerical discretization will take this into account, see section
4.2 below.

We write system (4.6) in polar coordinates which are particularly well suited for
spiral waves. With w(r, ϕ) = v(r cos ϕ, r sin ϕ) we obtain

wt = A∆r,ϕw + f(w) + λ1wϕ +
(

wr
1
r
wϕ

)

%−ϕ−θ

(

λ2

λ3

)

(4.10)

with the Laplacian ∆r,ϕw = wrr + 1
r
wr + 1

r2 wϕϕ. In the numerical experiments below
we use a rectangular grid for (4.10) which corresponds to a polar grid for the original
equation (4.6). The numerical experiments show that the influence of the geometry
of the domain is much stronger for the frozen system. Using a cartesian grid on a
rectangular domain shows strong negative effects of the boundary. In particular, we
were not able to freeze non localized spirals in this situation.

An appropriate inner product that is continuous with respect to the topology of
the space X in both cases (4.2),(4.3) (compare section 2.3) is

〈u, v〉η =

∫

R2

u(x)T v(x)η(x)dx, (4.11)

where the weight function satisfies (see Example 2.14)

η ∈ C1(R2, (0,∞)) ∩ L1(R2), |∇η(x)| ≤ Cη(x), x ∈ R
2. (4.12)

In some numerical examples below the choice of inner product actually makes a dif-
ference because it enters into the phase condition.

4.2. Numerical method. We consider the polar system (4.10) on a rectangle
[0, R]× [0, 2π) and use periodic boundary conditions in the ϕ-direction and Neumann
boundary conditions vr = 0 at r = R. So far we have not yet set up appropriate
projection boundary conditions that generalize the one dimensional case (3.22). These
will require to solve a linearized exterior boundary value problem and is expected to
be quite expensive. Note that in [9] a simple type of mixed boundary conditions is
proposed in order to create spiral solutions for a scalar equation.

For the discretization we choose a rectangular grid on [0, R]×[0, 2π) with step-sizes
∆r and ∆ϕ. Second order derivatives vrr and vϕϕ are replaced by centered difference
quotients; at the origin we use the standard cartesian five-point formula. For the
examples in 4.3.1, 4.3.2 below we also use centered differences for the first derivatives.
However, for the last example the artificial convection introduced in (4.10) dominates
diffusion so that it was necessary to use an upwind-downwind scheme (see 4.3.3 for
details) Time is again discretized by a half-explicit Euler method as in (3.18)-(3.20)
with S∆x(vn)λn+1 replaced by the corresponding discretization of the forcing terms
in (4.10). Stability restrictions caused by the use of the half-explicit method

∆t ≤ C min{(∆r)2, (∆ϕ)2}
are taken into account. Finally, integrals are replaced by trapezoidal sums.
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4.3. Examples. The following computations are performed with a version of
Barkley’s code ezspiral [1] that has been adapted to the discretization described in
the previous section. In all examples we used the phase condition ψmin from (2.33)
which minimizes the temporal change of v. In fact, the numerical values showed no
substantial difference between ψmin and the phase condition ψorth from (2.35) which
guarantees orthogonality of time and group orbit.

As a general remark concerning all of our computations we note that the λ-values
after one time step jump to a consistent value λ = λ1 according to the algebraic
condition (3.20). This is the normal behavior for DAE’s and our λ-plots start after
this first step.

Movies are linked to some of the figures for better illustration, their color code is
identical to the code used in the corresponding figures. The time development of the
λ variables is shown in an extra diagram and the behavior of the group variables θ
and b is indicated by a black bar and a white trace.

4.3.1. λ-ω-system. Our first example is a λ−ω system [18] in the complex form

ut = ∆u + (λ(|u|) + iω(|u|))u, u(x, t) ∈ C (4.13)

where λ and ω are functions of |u|. We take λ(|u|) = 1 − |u|2, ω(|u|) = −|u|2 for
which rigidly rotating waves are known to exist [18]. As shown in section 4.1 equation
(4.13) is equivariant with respect to the action of the group SE(2) defined in (2.12).
We solve the frozen system (4.10),(4.7) together with the phase condition defined by
ψmin using the L2 inner product. The numerical parameters are R = 50, ∆r = 0.5,
∆ϕ = π

40 , ∆t = 1.5421 · 10−4. Starting from the initial function

u0(r, ϕ) = r
R

(cos(ϕ) + i sin(ϕ)) (4.14)

a counter-clockwise rotating spiral develops.
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(a) Spiral solution
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(b) Evolution of λ(t)

Fig. 4.1. λ − ω-system.

In Figure 4.1(a) a color scale plot of a snapshot of the real part of the spiral
solution is shown at a fixed time instance.
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(b) Frozen spiral

Fig. 4.2. Time evolution of a slice for the rotating and the frozen spiral for the λ − ω-system.
Clicking on the movie shows the corresponding animation.

In Figure 4.2 the time evolution of a slice along the x-axis of the spiral is compared
for the rotating and the frozen system. As initial condition we chose the centered
spiral shown in Figure 4.1. Figure 4.1(b) shows the corresponding evolution of the
λ parameters of the frozen system. The rotational velocity λ1 instantly jumps to a
fixed value of λ̄ ≈ 0.9, while the translational speeds λ2 and λ3 stay at zero.
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(b) Frozen spiral

Fig. 4.3. Time evolution of a slice for the λ− ω-system started far away from the spiral wave.
Clicking on the movie shows the corresponding animation.

Figure 4.3 compares the time evolution for the frozen and the non-frozen system
starting at the initial value u0 defined in (4.14) far away from relative equilibria. In
both cases eventually a spiral of the same shape develops (faster for the rotating wave
than for the frozen wave).

http://www.mathematik.uni-bielefeld.de/fgweb/Preprints/movies/fg03022_01.mpg
http://www.mathematik.uni-bielefeld.de/fgweb/Preprints/movies/fg03022_02.mpg
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Fig. 4.4. λ − ω-system started with a shifted spiral, G = SE(2).

If we start with a slightly shifted spiral we get the results shown in Figure 4.4.
Near the boundary the spiral broadens slightly, an effect that decreases with growing
size of the domain. The (λ2, λ3)-variables in 4.4(b) show that the center of the spiral
now rotates on a circle.
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(b) Evolution of λ(t)

Fig. 4.5. λ − ω-system started with a shifted spiral, G = SE(2) × S1.
Clicking on the movie compares the evolution of the frozen system for both groups, the φ variable is
indicated by a white bar.

In fact the system (4.13) shows equivariance with respect to the larger group
SE(2)×S1. Denoting group elements by γ = (θ, b, φ) ∈ (S1

nR2)×S1 the action on

http://www.mathematik.uni-bielefeld.de/fgweb/Preprints/movies/fg03022_03.mpg


SOLVING EQUIVARIANT EVOLUTION EQUATIONS 25

real valued functions and the forcing term in (2.31) are given by

[a(γ)v] (x) = %−φv(%−θ(x − b)),

S(v, γ)λ = −vx

[

%π
2
xλ1 + %−θ

(

λ2

λ3

)]

− %π
2
v λ4.

(4.15)

In polar coordinates this leads to the term

S(w, γ)λ = −λ1wϕ −
(

wr
1
r
wϕ

)

%−ϕ−θ

(

λ2

λ3

)

− %π
2
w λ4.

Using the full symmetry group SE(2) × S1 immediately freezes the spiral wave in
the shifted position. Also the velocities λ1 = θ̇, (λ2, λ3) = ḃ, λ4 = φ̇ stabilize at
the stationary values λ̄1, λ̄2, λ̄3 ≈ 10−3, λ̄4 > 0 (see Figure 4.5) and there are no
boundary effects as for G = SE(2) above.

It seems surprising that the smaller group G = SE(2) is sufficient to freeze this
spiral wave as shown in Figure 4.4. The reason is as follows: The relative equilibrium
u(x, t) has a special symmetry u(%θx, t) = eiθu(x, t) (i.e. the stabilizer is nontrivial).
This makes it possible to transfer a rotation in the image of u to a rotation in the
argument. The slight differences between Figures 4.4(a) and 4.5(a) seem to result
from the fact that the coefficient λ1 of the convective term wϕ in (4.10) is very small
for the larger group whereas it is of order one for the smaller group.

4.3.2. Quintic Ginzburg-Landau system. The quintic Ginzburg Landau sys-
tem (QGL) given by

ut = (β +
i

2
)∆u − δu + (ε + i)|u|2u − (µ + iν)|u|4u, u(x, t) ∈ C

posseses strongly localized solutions, so called spinning solitons. These occur at pa-
rameter values β = δ = 1

2 , ε = 2.5, µ = 1, ν = 0.1, see [7],[8]. The symmetry group
is again the four dimensional group SE(2) × S1, cf. (4.15). We choose the following
numerical parameters R = 20, ∆r = 1

6 , ∆ϕ = π
40 , ∆t = 0.771 · 10−4. We start at

an initial profile that is obtained by shifting u0(r, ϕ) = 0.2 eiϕre−( r
7
)2 slightly to the

right on the x-axis. Then a localized vortex solution develops the real part of which
is displayed in Figure 4.6.
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Fig. 4.6. Quintic Ginzburg-Landau system.

We take this solution as initial data for the comparison of the rotating wave and
its frozen counterpart. Figure 4.7 shows the corresponding time evolution of a slice
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along the x-axis. The behavior of the λ parameters for the frozen system is displayed
in Figure 4.8(a).
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Fig. 4.7. Time evolution of a slice for the rotating and the frozen vortex for the QGL-system.
Clicking on the movie shows the corresponding animation of the original and the frozen system in
the transformed variables (see Fig. 4.8(b)).

Their asymptotic behavior is better revealed by solving the reparametrized equa-
tion (4.8), (4.9) (see Figure 4.8(b)). While the v-part is identical for both systems
the time plot of the parameters λ and µ shows a clear difference (see Figure 4.8).
The values µ2, µ3 for the system (4.8),(4.9) stabilize after some time showing that
the center of rotation in (4.9) becomes constant. In contrast, the values λ2, λ3 for
(4.6),(4.7) rotate according to

(

λ2

λ3

)

= %θ ( µ2

µ3
). The initial phase of this rotation is

shown in Figure 4.8(a). The rotational velocities λ1, µ1 and λ4, µ4 are identical and
rapidly stabilize at specific negative values.
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Fig. 4.8. Frozen Quintic Ginzburg-Landau system, evolution of parameters.

Even for an initial value far away from any relative equilibrium the longtime

http://www.mathematik.uni-bielefeld.de/fgweb/Preprints/movies/fg03022_04.mpg
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behavior of the frozen system and the non-frozen system is similar. To this end we
compare in Figure 4.9 the time evolution of both systems started with the shifted
initial profile mentioned before. This initial function leads to a rotating vortex for
the non frozen (see [7]), as well as for the frozen system.
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Fig. 4.9. Time evolution of a slice for the QGL-system with initial data u0 shifted to the right.
Clicking on the movie shows the corresponding animation of the original and the frozen system in
the transformed variables.

4.3.3. Barkley’s spiral system. Barkley’s well known system [3] is given by

ut = ∆u +
1

ε
u(1 − u)(u − v + b

a
)

vt = u − v.

The equation is equivariant with respect to the action of SE(2), cf. (2.12),(4.4).
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Fig. 4.10. Barkley system.

http://www.mathematik.uni-bielefeld.de/fgweb/Preprints/movies/fg03022_05.mpg
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We test our method in the parameter regime of rigidly rotating waves with ε = 1
50

and a = 0.75, b = 0.01. The numerical parameters are R = 40, ∆r = 0.5, ∆ϕ = π
40 ,

∆t = 1.5421 · 10−4.
In Figure 4.10(a) we show a snapshot of the u component of the spiral solution and

in Figure 4.10(b) the time evolution of a slice through u along the x-axis is displayed.
Since the system is of mixed hyperbolic-parabolic type, discretizing the convective

terms with an upwind/downwind scheme becomes essential. In the previous exam-
ples diffusion was strong enough to dominate convection introduced by the freezing
procedure. For this example the contributions to first order derivatives are assembled
in b1(r, ϕ)wr resp. b2(r, ϕ)wϕ and approximated by

bj(r, ϕ)D±w = bj(r, ϕ)[χ(bj(r, ϕ))D+w + (1 − χ(bj(r, ϕ)))D−w], j = 1, 2.

The symbols D+,D− denote forward and backward difference quotients in the r or ϕ
direction and the switching function χ is defined by

χ(b) = (1 + exp(−β b))−1, β = 0.2.

The value of β has been chosen in order to balance oscillations introduced by using
centered diffences for the convective terms (β = 0) and artificial diffusion introduced
by a strict switching rule (β large).
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The linked movie compares the rotating
and the frozen system.
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Fig. 4.11. Frozen Barkley system, time evolution of a slice and of parameters µ.
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We start at a spiral wave which rigidly rotates in the non-frozen case. As Figure
4.10(b) shows, the spiral core still exhibits a slight oscillatory motion.

Figure 4.11(a) shows the result for the frozen system with a weighted L2 norm,
where the weight in equation (4.11) is η(x) = e−0.5|x|. After some small initial oscil-
lations the wave eventually freezes and the parameters µ of the transformed system
stabilize.

The importance of the weight in the phase condition is demonstrated in Figure
4.11(b) which shows the results for the L2 inner product without weight. Now the
spiral is perturbed by an oscillatory motion of the spiral core and finally drifts out
of the region. The corresponding µ variables oscillate and drift away as well. These
results suggest that the use of the weighted inner product for the phase condition keeps
the continous spectrum in the left half plane while the L2 inner product destabilizes
the spectrum. Stabilization by the phase condition only, seems to be different from
shifting the whole spectrum to the left by considering the differential equation in
a weighted function space as in [27]. The details of this mechanism need further
investigation.

Initial values that are far away from relative equilibria, lead to large differences
of the time evolution for the frozen and the non-frozen system. While the non-frozen
system develops a rigidly rotating spiral, we were not able to stabilize a corresponding
frozen solution in a large time interval.

In summary, it turns out that freezing the spiral in Barkley’s system is much more
sensitive than in the previous examples. This is probably due to the mixed hyperbolic-
parabolic type of the equation which requires more sophisticated numerical methods
than our simple half-explicit scheme. Moreover, it seems quite a challenging task to
freeze drifting spirals or recognize meandering spirals as periodic orbits.

Acknowledgements. The authors thank both referees for their useful sugges-
tions which considerably helped in improving the first version of the paper.
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