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Abstract

In this paper we perform a bifurcation analysis for a discrete time dynam-
ical system, describing the behavior of a virtual fly, developed by Böddeker
and Egelhaaf in [2]. Like real blowflies, the virtual counterparts exhibit a
dichotomous behavior: they catch small targets but follow big objects in a
constant distance. We consider this model for targets on linear and on circular
trajectories. Then we transform the system into a ”frozen” form, such that
the position of the target is fixed. It turns out that the loss of stability of a
fixed point in the frozen system due to a Neimark-Sacker bifurcation, explains
the dichotomous behavior of the virtual fly.

Keywords: Discrete time dynamical systems, bifurcation analysis, pursuit be-
havior of blowflies.

1 Introduction

Male blowflies chase and catch female flies in the context of mating behavior. The
authors of [3] perform the following biological experiment in order to understand
the underlying system, controlling the artistic movements of male flies during high
speed pursuits.

First the female fly is replaced by a black dummy target and the trajectory is
simplified to a circular track on which the target flies with constant speed. Then it
was observed whether male flies succeed in catching the target. As it turns out, the
success of catching depends essentially on the size and on the speed of the target.

∗Supported by Forschungsschwerpunkt Mathematisierung (FSPM) ’Dynamik und Struktur
komplexer Systeme’
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Surprisingly, male flies do not catch big targets; instead they follow them in a
constant distance, while small objects are caught easily.

Böddeker and Egelhaaf conjecture that there is no extra circuit inside the brain
of the fly needed, to explain this dichotomous behavior. To test this hypothesis, the
model of a virtual fly is introduced in [2] and extended in [1]. Numerical simulations
for this model confirm this conjecture. The virtual fly shows the same characteristics
as real flies, without having an instance that decides whether the fly catches the
target or follows it in a constant distance.

In this paper, we formulate the model of the virtual fly using the notation of a
discrete time dynamical system. We perform a bifurcation analysis to understand
the change of behavior from a mathematical point of view.

In Section 3, we consider a target, flying on a linear trajectory. For the analysis,
it is convenient to ”freeze” the system, such that the position of the target is fixed.
A fixed point in the frozen system corresponds to a trajectory on which the fly
follows the target in a constant distance. Therefore we analyze the stability of these
fixed points to understand the described dichotomous behavior.

In Section 4 a similar approach is applied for targets, flying on circular trajecto-
ries.

2 Virtual fly as dynamical system

First, we write the model of the virtual fly in mathematical terms. It is our aim to
explain the dichotomous behavior of flies that follow big targets on rigid trajectories
but catch small targets on virtuous paths. For the analysis, we consider this model
as a discrete time dynamical system of the form

Yn+1 = F (Yn), n ∈
�

, (1)

where Yn is the state at time n. The vector Y = (s, a, σ, v, x, z) ∈ �9 contains
six state variables, introduced in Table 1. In every time step, the actual state is
transformed by the map F into the next one. For the length of one time step
we choose the minimal processing time of neuronal activities which is δt = 1ms.
Velocities are measured in [m/s] and positions in [mm].

s ∈ � internal guess of the speed of the fly
a ∈ � internal guess of the error angle
σ ∈ � angle of body orientation of the fly w.r.t. the (1, 0)-axis
v ∈ �2 course and speed of the fly
x ∈ �2 position of the fly in global coordinates
z ∈ �2 position of the target in global coordinates

Table 1: Variables in the model of the virtual fly.
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The map F also depends on several parameters, outlined in Table 2.

parameter value dim. interpretation
T 3 – 15 mm size of the target
Sm 0.8 m/s minimal speed of the fly
G 0.125 1 describes the gain of the orientation change
Ts 80 1 parameter for a low-pass filter, realizing a

neuronal reaction time of 80ms for the speed
control

Ta 15 1 parameter for a low-pass filter, realizing a
neuronal reaction time of 15ms for the target
fixation

q 0.0865 1 parameter for speed control
Sv 67 m/s parameter for speed control
M 0.0455 1 kinematic constant

Table 2: Parameters and their typical settings in the model of the virtual
fly.

error angle (ω)

position of the target (z)

position of the fly (x)

body orientation (σ)

velocity (v)

Figure 1: Settings in the model of the virtual fly.

First, two functions used to locate the target are introduced. The angular (or
retinal) size ρ = ρ(x, z, T ) of the target is given by

ρ(x, z, t) = 2 arccos

(

‖x − z‖2
√

‖x − z‖2
2 + T 2/4

)

. (2)
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Let α(x) be the angle, between the vector x and the (1, 0) axis. Then

ω = α(z − x) − σ (3)

defines the error angle ω (see Figure 1).
The speed of the virtual fly is controlled by the retinal size of the target. In case

the retinal size is small the speed should increase, whereas the fly has to slow down
when the retinal size of the target is big. Since the fly cannot measure all input data
precisely, the following nonlinear characteristic curve is used to calculate a guess of
the speed in the n + 1-th time step:

s̃n+1 = ρ(xn, zn, T )Sve
−ρ(xn,zn,T )

q + Sm.

Here Sm is the minimal speed of the fly and Sv and q are parameters used to fit the
model to the biological data. In the next step we use a first order low-pass filter
(see Appendix A) to take neuronal reaction time into account and get

sn+1 =
s̃n+1 + Tssn

1 + Ts

=
ρ(xn, zn, T )Sve

−ρ(xn,zn,T )
q + Sm + Ts sn

1 + Ts

.

Since the reaction time for movement control is 80ms, we choose Ts = 80.
To compute the heading of the virtual fly, the error angle ω (see Figure 1) is

superposed with some uncertainty to get realistic results. With some constant G
that we fit to biological data, we get

ãn+1 = G sin(ωn) = G sin
(

α(zn − xn) − σn

)

,

where σn is the body orientation of the fly at time n. Applying a low-pass filter to
these data (Ta = 15 is the neuronal time for object fixation) leads to

an+1 =
ãn+1 + Ta an

1 + Ta

=
G sin

(

α(zn − xn) − σn

)

+ Ta an

1 + Ta

.

The body orientation of the fly changes in every time step and can simply be
modeled by

σn+1 = σn + an.

Due to kinematic restrictions, the virtual fly cannot correct the trajectory di-
rectly towards the target. The new velocity vector v, containing speed and flight
direction, is determined by:

vn+1 = (1 − M)vn + Msn

(

cos(σn)
sin(σn)

)

.

Since one time step is 1ms, kinematic restrictions on this time scale are quite strong
(M = 0.0455).
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Then the new position of the fly is

xn+1 = xn + δtvn.

Recall that δt = 1ms is the length of one time step.
Finally, the position of the target is defined by

zn+1 = f(zn),

where f : �2 → �2 is a continuous map.
We summarize the construction by writing our system in a compact form. For

Y = (s, a, σ, v, x, z) we define a smooth map F : �9 → �9 by

F (Y ) = F

















s
a
σ
v
x
z

















=





























1

1+Ts

(

ρ(x, z, T )Sve
−ρ(x,z,T )

q + Sm + Ts s
)

1

1+Ta

(

G sin
(

α(z − x) − σ
)

+ Ta a
)

σ + a

(1 − M)v + Ms

(

cos(σ)
sin(σ)

)

x + v

f(z)





























. (4)

Then the behavior of the virtual fly is determined by (1).
Note that capturing is not implemented into the model, thus the virtual fly can

pass through the target. One the one hand, this makes no sense from a biological
point of view. But as we will see, the long time behavior of this model reflects the
probability of catching the target. On the other hand one can stop the simulation
in case

‖xn − zn‖2 ≤ catching distance.

3 Targets on linear trajectories

In this section, we consider the chasing of targets, flying on linear trajectories with
constant speed: f(z) = z + γ, where γ is a constant vector. For the analysis, we
freeze this system, i.e. we shift the whole system after every time step, such that
the position of the target stays constant, see Figure 2.

The correctness of this approach guarantees the following lemma.
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original system frozen system

t = 0

t = 1

t = 2

Figure 2: Original and frozen system.

Lemma 1 Let f(z) = z + γ, then

F

















s
a
σ
v

x + γ
z + γ

















= F

















s
a
σ
v
x
z

















+

















0
0
0
0
γ
γ

















. (5)

Proof: Obviously, the first 4 components stay invariant w.r.t. this transformation,
since ρ and ω depend only on the length ‖x − z‖2 = ‖x − γ − z + γ‖2, see (2), (3).
Furthermore, the x and z component are linear, thus (5) holds. �

Therefore, we consider the ”frozen” map F̃ , defined by

F̃

















s
a
σ
v
x
z

















:= F

















s
a
σ
v
x
z

















−

















0
0
0
0
γ
γ

















for the forthcoming analysis. Note that a fixed point ξ of F̃ leads in the origi-
nal system to a trajectory on which the fly follows the target with constant dis-
tance and speed, see Figure 3. We call these trajectories rigid. Formally, let
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Y0 = (s̄, ā, σ̄, v̄, x̄, z̄) be a fixed point of F̃ . Using Lemma 1 we get by induction

Y1 = F (Y0) =

















s̄
ā
σ̄
v̄
x̄
z̄

















+

















0
0
0
0
γ
γ

















=

















s̄
ā
σ̄
v̄

x̄ + γ
z̄ + γ

















=⇒ Yn =

















s̄
ā
σ̄
v̄

x̄ + nγ
z̄ + nγ

















, n ∈
�

.

This situation arises in our model, for example, if we choose γ = (`, 0), ` = 1.5,
and T = 14mm. Then the target flies with a constant speed of 1.5m/s in the
direction of the x1-axis; the other parameters are chosen according to Table 2. A
simulation for this setup is illustrated in Figure 3. Here the fixed point ξ of F̃ is

−140 −120 −100 −80 −60 −40 −20 0
−5

0

5

10

15

20

25

−100 0 100 200 300 400 500 600 700 800 900
−5
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starting point: target

starting point: fly

target

fly

ξ

x1 x1

x2x2

Figure 3: Original (left) and frozen system (right) for T = 14, ` = 1.5.
600 time steps of the simulation are displayed and every 50 time steps
the position of the fly is marked with a circle. For this parameter setup,
the fixed point ξ of the frozen system is stable.

stable (i.e. all multipliers of the matrix F̃ ′(ξ) lie inside the unit circle). The virtual
fly is attracted by this fixed point and will follow the target forever. Note that due
to the choice of γ = (1.5, 0), the target moves in the original system from (0, 0) to
(900, 0) in 600 simulation steps, but in the frozen system, the position stays constant.
Therefore the x1-axes in the left and right picture of Figure 3 (and Figure 4) have
different scales.

When one parameter varies, the fixed point can lose its stability, for example,
via a fold or Neimark-Sacker bifurcation (see [4], [7]). The size of the target is one
suitable bifurcation parameter. As it turns out, a Neimark-Sacker bifurcation occurs
when the parameter T decreases. Beyond this bifurcation the fixed point is unstable
but additionally, a stable invariant curve exists.

For a target size of 6.5mm a stable invariant curve is displayed in Figure 4. On
trajectories, converging toward the invariant curve, the fly will catch the target,
therefore instability of the rigid trajectory is a desirable feature.

7



−100 0 100 200 300 400 500 600 700 800 900
−80

−60

−40

−20

0

20

40

60

−140 −120 −100 −80 −60 −40 −20 0 20 40
−80

−60

−40

−20

0

20

40

60

replacemen

starting point:
target

starting
point:
fly

target

fly

invariant curve
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Figure 4: Original (left) and frozen system (right) for T = 6.5, ` = 1.5.
600 time steps of the simulation are displayed and every 50 time steps
the position of the fly is marked with a circle. At this parameter setup,
the fixed point ξ is unstable, but a stable invariant curve that comes close
to the target exists. Note that it takes more than 600 time steps, until
the fly approaches the invariant curve.

The success of catching also depends essentially on the speed (`) of the target.
It is in addition to the size (T ) a second bifurcation parameter of our system. We
search for parameter constellations of T and `, where a stable fixed point of the frozen
system exists (all other parameters are chosen according to Table 2). Consequently,
we find at these parameter setups a rigid trajectory for the original system, on which
the fly follows the target forever.

We perform the computations along the following steps, using the software-
package Content [5]. First we fix T = 14, ` = 1.5 and compute a fixed point of F̃
which is stable (Figure 3). Then we continue the fixed point w.r.t. the parameter T
and obtain a branch of fixed points ξ(T ). We monitor the eigenvalues of F̃ ′

(

ξ(T ))
)

on this branch. Indeed a complex conjugated pair of eigenvalues leave the unit circle
at T̃ ≈ 8.49. At this parameter the fixed point loses its stability via a Neimark-
Sacker bifurcation and for T < T̃ it is unstable, see Figure 5 (i.e. rigid trajectories
do not exist for the original system).
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Figure 5: Continuation of fixed points for ` = 1.5 w.r.t. the parameter T .
At T̃ ≈ 8.40 and T̂ ≈ 6.77 the fixed point undergoes a Neimark-Sacker
bifurcation. There is also a second branch of unstable fixed points.

Furthermore, at T̂ ≈ 6.77 the fixed point undergoes a second Neimark-Sacker
bifurcation, such that it has four unstable eigenvalues for T < T̂ . There is also a
second branch of fixed points, undergoing a Neimark-Sacker bifurcation. But this
branch is of less interest, since the fixed points are unstable.

In the next step, we continue the two Neimark-Sacker bifurcations at the param-
eter T = T̃ and T = T̂ , ` = 1.5, see Figure 5 w.r.t. the parameters T and ` to find
an area in the (T, `)-parameter plane, where stable fixed points exist, see Figure 6.

We discuss the results of this analysis for the original system. At a parameter
constellation inside the area ➊, a rigid trajectory exists on which the fly follows the
target forever. When parameters vary such that we cross the border to the area ➋,
the rigid trajectory loses its stability via a Neimark-Sacker bifurcation. Note that an
unstable trajectory still exists, but since the fly can only follow stable trajectories, it
is not visible in simulations. In the frozen system, a stable invariant curve emanates
at the bifurcation point, cf. Figure 4. On a trajectory that converges towards this
invariant curve, the fly necessarily approaches the target.

For a parameter setup inside the area ➌, the fixed point has four unstable eigen-
values, since it undergoes a second Neimark-Sacker bifurcation. The stable invariant
curve, emanating at the first bifurcation is not affected by the second bifurcation
and therefore this bifurcation does not influence the long-time behavior of the fly
essentially.
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Figure 6: Continuation of the two Neimark-Sacker bifurcations, displayed
in Figure 5, w.r.t. the parameters T and `. At ¯̀≈ 2.932 the fixed point
undergoes a fold bifurcation (independent of T ). Thus for ` > ¯̀ a fixed
point cannot exist. In the area ➊ a stable fixed point exists, which be-
comes unstable when moving into the region ➋ and ➌. The cross-section,
analyzed in Figure 5 is indicated by a dotted line.

4 Targets on circular trajectories

The authors of [3] investigate in their biological experiments the chasing of targets,
flying on circular trajectories with constant speed. For a bifurcation analysis, we
freeze the system by applying in every time step a rotation, such that the position
of the target is fixed (cf. Section 3). In Figure 7 this idea is illustrated for a fly,
following the target on a rigid circular trajectory. Thus in this situation, the position
of both insects is fixed in the frozen system.

The following lemma shows the validity of this idea.

Lemma 2 Let f(z) = Dϕ(z), with the rotation matrix Dϕ =

(

cos ϕ − sin ϕ
sin ϕ cos ϕ

)

. De-

note by Fs, Fa, Fσ, Fv, Fx and Fz the components of F and let Y = (s, a, σ, v, x, z).
Then

F

















s
a

σ + ϕ
Dϕv
Dϕx
Dϕz

















=

















Fs(Y )
Fa(Y )

Fσ(Y ) + ϕ
DϕFv(Y )
DϕFx(Y )
DϕFz(Y )

















. (6)
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original system frozen system

ϕ

t = 0
t = 1

t = 2

Figure 7: Original and frozen system in case of a fly following the target
on a rigid circular trajectory.

Proof: Since
‖Dϕx − Dϕz‖2 = ‖Dϕ(x − z)‖2 = ‖x − z‖2

and
α(Dϕz − Dϕx) − (σ + ϕ) = α

(

Dϕ(z − x)
)

− σ − ϕ = α(z − x) − σ

hold, we get

Fs(s, a, σ + ϕ, Dϕv, Dϕx, Dϕz) = Fs(Y ),

Fa(s, a, σ + ϕ, Dϕv, Dϕx, Dϕz) = Fa(Y ).

Furthermore,

Fσ(s, a, σ + ϕ, Dϕv, Dϕx, Dϕz) = σ + ϕ + a = ϕ + Fσ(Y ),

Fv(s, a, σ + ϕ, Dϕv, Dϕx, Dϕz) = (1 − M)Dϕv + Ms

(

cos(σ + ϕ)
sin(σ + ϕ)

)

= (1 − M)Dϕv + Ms

(

cos ϕ cos σ − sin ϕ sin σ
sin ϕ cosσ + cos ϕ sin σ

)

= (1 − M)Dϕv + Ms

(

cos ϕ − sin ϕ
sin ϕ cos ϕ

)(

cos σ
sin σ

)

= Dϕ

(

(1 − M)v + Ms

(

cos σ
sin σ

))

= DϕFv(Y ),

Fx(s, a, σ + ϕ, Dϕv, Dϕx, Dϕz) = Dϕx + Dϕv = Dϕ(x + v) = DϕFx(Y ),

Fz(s, a, σ + ϕ, Dϕv, Dϕx, Dϕz) = Dϕ(Dϕz) = DϕFz(Y ).

�
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The ”frozen” system F̂ is defined by

F̂ (Y ) := F

















s
a

σ − ϕ
D−ϕv
D−ϕx
D−ϕz

















=

















Fs(Y )
Fa(Y )

Fσ(Y ) − ϕ
D−ϕFv(Y )
D−ϕFx(Y )
D−ϕFz(Y )

















.

Let Y0 = (s̄, ā, σ̄, v̄, x̄, z̄) be a fixed point of F̂ . Then we get, using Lemma 2
inductively

Y1 = F (Y0) =

















s̄
ā

σ̄ + ϕ
Dϕv̄
Dϕx̄
Dϕz̄

















=⇒ Yn =

















s̄
ā

σ̄ + nϕ
Dnϕv̄
Dnϕx̄
Dnϕz̄

















, n ∈
�

.

This gives a rigid trajectory for the original system.
Parallel to the analysis in Section 3 we simulate a trajectory of the fly for the

original and for the frozen system in case the rigid trajectory is stable (Figure 8)
and in case it is unstable (Figure 9). We choose z = (100, 0) as starting point of the
target and a rotation angle ϕ = 0.0125 (radius 0.1m). In one second the target flies
1000ϕ

2π
loops (note that one time step is 1ms). Since the circumference is 2π

10
m, the

speed of the target is ` = 100ϕm/s.
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Figure 8: Original (left) and frozen system (right) for T = 14, ` = 1.25.
500 time steps of the simulation are displayed and every 100 time steps
and the position and orientation of the fly is symbolized in the left picture
by ”�”. At this parameter setup, the fixed point ξ of the frozen system
is stable.
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Figure 9: Original (left) and frozen system (right) for T = 7, ` = 1.25.
500 time steps of the simulation are displayed and every 100 time steps
and the position and orientation of the fly is symbolized in the left picture
by ”�”. At this parameter setup, the fixed point ξ is unstable, but a stable
invariant curve that comes close to the target exists.

We continue the stable fixed point w.r.t. the parameter T (the size of the target)
using Content [5], see Figure 10. One branch of fixed points undergoes a Neimark-
Sacker bifurcation, thus the behavior of this system is almost the same as for linear
trajectories, analyzed in Section 3. But there is a second stable branch of fixed
points, existing only for small T , which also gives a rigid trajectory for the original
system. From a biological point of view this branch is less important since female
flies (the targets) have an average size of 8mm. Note that on this branch the fixed
point loses its stability via a fold bifurcation (cf. [4], [7]).
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Figure 10: Continuation of fixed points for ` = 1.25 w.r.t. the parameter
T . At T̃ ≈ 8.40 and T̂ ≈ 6.77 the fixed point undergoes a Neimark-
Sacker bifurcation. For small T , a second branch of fixed points exists,
undergoing a fold bifurcation.
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Figure 11: Continuation of the two Neimark-Sacker bifurcations, dis-
played in Figure 10, w.r.t. the parameters T and `. In the area ➊ the
fixed point is stable. The cross-section, analyzed in Figure 10 is indicated
by a dotted line.

Figure 11 shows the result of the continuation of the two Neimark-Sacker and
of the fold bifurcation w.r.t. the parameters T and `. Since we have two branches
of fixed points, this bifurcation diagram seems to be more complicated, but in the
area ➊ a stable fixed point and thus a stable rigid trajectory exists. But when we
choose a parameter outside ➊ the rigid trajectory is unstable and as described in
Section 3 the fly will succeed in catching the target. Again these instabilities are a
welcome effect.

Appendix A First order low-pass filters

To simulate neuronal reaction times and the smoothing property of neuronal net-
works, so called low-pass filters are useful, cf. [6]. Consider the differential equation

τu′ + u = w, (7)

where w is the input, u the output and τ the delay time. A discretization of (7)
leads to the difference equation

un+1 =
wn+1 + τun

τ + 1
.

Note that this approach does not lead to delay difference equations.
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