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Abstract In this paper we present a mechanical model of the hydrostatic skeleton and simulate

the collision with an obstacle. The model is based on the worm–like shape of the medicinal leech

and consists of a sequence of hexahedral segments with elastic edges and constant internal

volume. Lagrange’s equations of motion with holonomic constraints for the volume lead to

a differential–algebraic system (DAE). The contact of the model with an obstacle including

tangential friction is realized by Coulomb’s law, this leads to unilateral constraints in the system.

A switching algorithm is set up to detect impact and lift–off events as well as sliding/sticking

transitions during contact. In periods of smooth motion the DAE system is solved by semi–

explicit numerical methods implemented in the code MEXAX.

1 Introduction

The constructional principle of the hydrostatic (or fluid) skeleton is found in many soft–

bodied animals as well as in reptilian tongues, tentacles of squid, and trunks of elephants,

see e.g. [7], [21], [35], [36]. In physical terms, it is realized as an incompressible fluid

enclosed by an elastic body wall. Contraction or relaxation of muscles embedded in the

body wall leads to changes in the shape of the body by means of a pressure applied to

the internal fluid. In 1950 Garth Chapman discussed the basic biomechanical principles

of antagonistic muscle activation in hydrostatic skeletons in an intuitive way (see [6]),

and in order to get an integrative insight in the complex functioning a simulation–

based approach was chosen in [37] as well as in [7] and [32]. We consider a specific

animal, the medicinal leech (Hirudo medicinalis L.). Much is already known about its

morphology, the structure of its nervous system, and the neuronal control of muscles
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during motions like swimming and crawling (see e.g. [24], [33]). However, the interaction

of muscle activity and the complex functioning of the body during the motion can only

be studied in a simulation–based approach. The dynamic model consists of a sequence

of hexahedral segments with lumped masses in the corners and damped elastic springs

as edges. The relation between length, tension, and velocity in these elastic elements

represents the viscoelastic properties of the muscles. The system is stabilized by the

constraint of constant volume either in the whole body or in prescribed compartments,

and the equations of motion lead to a DAE system for the mass–points in the corners. In

this paper, we restrict the mobility of the model by an obstacle, this leads to additional

unilateral constraints. Each mass–point in the system is either distant from the obstacle

(passive) or in contact with the obstacle (active) and we find a unilateral constraint

for the relative distance. Furthermore, in a non–adhesive contact situation there is a

contact force acting in the direction of the outward normal of the obstacle. It has to

vanish as soon as the mass–point lifts off and this leads to a unilateral constraint for the

contact force. These two unilateral constraints of “no penetration” and “no adhesion”

are connected by a complementarity condition that is added to the DAE system. During

the motion some mass–points might collide with the obstacle or lift off, this leads to

jump discontinuities in the solution.

We consider the DAE system with all active constraints and solve the system numeri-

cally by the extrapolation code MEXAX (see [11], [27], [28]). A modified half–explicit

Euler method is used to discretize the equations on velocity level and projections en-

sure the original constraints on position level. We set up a switching algorithm with

a constraint addition–deletion technique (see [15]), where roots of switching functions

indicate a collision or a lift–off. If such an event occurs the integration is interrupted,

the corresponding constraint is added or deleted, and new initial values are determined

by jump conditions and “hidden” constraints. Furthermore, for all active constraints the

switching algorithm accounts for the transitions from sticking to sliding friction using

Coulomb’s law.

2 The dynamic model

The model consists of N connected hexahedral segments with d = 4N+4 corners, elastic

edges, and constant total volume, see Fig. 1. The elastic edges resemble the longitudinal

and circular musculature of the hydrostatic skeleton of the leech. There are longitudinal

and circular elastic elements (LEs and CEs). The dorsoventral muscles of the leech
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Figure 1: Sketch of a model with N = 5 segments and d = 24 corners. Dissepiments are introduced by

compartmentalization of the body, see Sect. 2.2.

are included as part of the CLs and oblique muscles are neglected at present. See e.g.

Fig. 1A in [32] for a schematic sketch of the muscle layers in the body wall of the leech.

The shape of the model at time t ∈ [0, T ], T > 0 is determined by the coordinate vector

q(t) ∈
� 3d of the corners with components Qi(t) ∈

� 3 for i = 1 . . . d. The velocities

are given by Ui(t) = Q̇i(t) with u(t) = q̇(t) ∈
� 3d and we assume the total mass to be

distributed over the whole body with lumped masses mi > 0 in the corners.

2.1 The elastic edges

We assume that every elastic element acts as a combination of a spring and a dashpot

arranged in parallel. This mechanical model (Voigt body) simulates the viscoelastic

material of muscles, we refer to Sect. 2.11 in [12] for more details on the properties of

this model like hysteresis, creep, and stress relaxation. In general, the length–tension

relation of muscles is nonlinear, and in [38] the active and passive length–tension curves

(LTCs) are fitted to experimental data of the activated and relaxed longitudinal muscle

of the medicinal leech. However, as a first approximation we use Hooke’s law combined

with a linear damping term. Consider first a single elastic element between two adjacent

corners Qi, Qj ∈
� 3 with velocities Ui, Uj ∈

� 3 for i 6= j and 1 ≤ i, j ≤ d. At time t the

force exerted at Qi by this elastic element is of the form

fij(t, q, u) =
(
Fij(Qi, Qj) − dijDij(Qi, Qj, Ui, Uj)

)
nij, nij =

Qj −Qi

‖Qj −Qi‖2
(1)

with the elastic and damping terms given by

Fij(Qi, Qj) = aij(t)
(
‖Qj −Qi‖2 − Lmin

ij

)
, Dij(Qi, Qj , Ui, Uj) = (Ui − Uj)

Tnij. (2)

For every single elastic element the minimum length Lmin
ij , the damping parameter

dij ≥ 0, and the level of activation aij(t) ∈ [0, 1] at time t are to be prescribed. So

far only the elastic and damping properties in the direction nij of the muscles are
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incorporated into the model, shear forces are not yet taken into account. Obviously,

nonlinear length–tension relations of the muscles can be built into the model by an

appropriate choice of the functions Fij .

Depending on the position there are 3 or 4 elastic elements acting on each corner (see

Fig. 1), so the total force acting on Qi at time t results to

fi(t, q, u) :=
∑

j∈I(i)

fij(t, q, u), (3)

where the set I(i) ⊂ {1 . . . d} contains the indices of the corners adjacent to Qi.

2.2 The constraint of constant volume

The model is based on the assumption that the total volume, which is the sum of the

volumes of all segments, remains constant during the motion. In order to prevent volume

exchanges, adjacent segments can also be grouped to compartments, so that in a model

with m compartments we find the constraints

βk∑

j=αk

Vj(q(t)) = V tot
k , for k = 1 . . . m. (4)

Here V tot
k is the given volume of the kth compartment, Vj(q(t)) expresses the volume

of the jth segment in terms of the coordinate vector q(t), and αk and βk denote the

numbers of the first and the last segment in the kth compartment. In general, we also

allow the volumes of the compartments to vary in time and finally find the constraints

gk(t, q(t)) = 0, k = 1 . . . m, where gk(t, q) :=

βk∑

j=αk

Vj(q) − V tot
k (t). (5)

Notice that the given volume of the kth compartment is now time–dependent. The

volume exchanges are assumed to be frictionless, therefore the constraints in (5) are

holonomic. In [37] a formula for the volume Vj(q) = Vj(Q4(j−1)+1, . . . , Q4(j−1)+8) of a

single hexahedral segment j ∈ {1 . . . N} is derived using a trilinear transformation.

2.3 The equations of motion

The motion of the model is described by the coordinates and velocities of the cor-

ners, and the inner pressures in the compartments. Newton’s second law together with

d’Alembert’s principle lead to Lagrange’s equations of motion (see e.g. [13])

miQ̈i(t) = fi(t, q(t), u(t)) +
m∑

k=1

νk(t)
∂gk

∂Qi

(
t,Q1(t), . . . , Qd(t)

)
, i = 1 . . . d (6)

0 = gk(t, q(t)), k = 1 . . . m (7)
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Here the total force acting on the corner Qi is composed of the inner force (3) exerted by

the elastic elements and the forces of constraint which arise from the volume constraints

(5). The absolute value of the Lagrange multiplier νk(t) corresponds to the inner pressure

in the kth compartment at time t (cf. Sect. 2 in [37]). Even though the model is

geometrically simplified, the system contains 3d+3d+m = 549 unknowns when a fully

compartmentalized model (m = N) with N = 21 segments is used.

2.4 Collision with an obstacle

We consider the special case that the motion of the system of mass–points is constrained

by an obstacle which is given by the hyperplane

H := {Q ∈
� 3 : Q1 = K}, K > 0. (8)

With the set J := {1, 4, 7, . . . , 3d−2} ⊂ I := {1 . . . 3d} we find the unilateral constraints

qj(t) −K ≥ 0 for all j ∈ J (9)

and a constraint j ∈ J is called “active” at time t if the corresponding mass–point qj(t)

is in contact with the obstacle H, i.e. (qj(t) −K) = 0. We define the “active set” by

JA(t) := {j ∈ J : qj(t) = K}, a(t) := #JA(t), (10)

and the corresponding “passive set” JP (t) := J\JA(t) contains the indices of all “pas-

sive” constraints, i.e. (qj(t)−K) > 0 for all j ∈ JP (t). Notice that every active constraint

corresponds to a holonomic constraint of the form (7). With the settings

f(t, q, u) :=




f1(t, q, u)
...

fd(t, q, u)


 , g(t, q) :=




g1(t, q)
...

gm(t, q)


 , ν :=




ν1

...

νm


 ,

and G(t, q) := (∂g/∂q)(t, q) ∈
� m,3d we arrive at the DAE system

q̇(t) = u(t) (11)

Mu̇(t) = f(t, q(t), u(t)) +G(t, q(t))T ν(t) +HTλ(t) (12)

0 = g(t, q(t)) (13)

with the complementarity conditions (Hertz–Signorini–Moreau 1963, see [29])

(qj(t) −K) ≥ 0, λj(t) ≥ 0, (qj(t) −K)λj(t) = 0 for all j ∈ J, (14)
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see e.g. [9], [25], [30] for a general discussion. Here HTλ are the contact forces, where

λ =
(
λ1, λ4, λ7, . . . , λ3d−2

)T
∈

� d, H ∈
� d,3d, Hji =





1, if i = 3j − 2

0, otherwise
.

The vector ν ∈
� m in (12) contains the m Lagrange multipliers that correspond to the

global holonomic constraints (13). The fact that the masses mi might vary if consider-

able variations in the segmental volumes occur is not yet incorporated into the model.

Therefore we find a constant diagonal mass–matrix

M := diag(m1,m2, . . . ,m3d) ∈
� 3d,3d (15)

that contains the lumped massesm3i−2 = m3i−1 = m3i > 0 of the mass–points i = 1 . . . d

as diagonal entries. In (12) the applied forces are given by f(t, q, u) and the forces of

constraint that maintain the global holonomic constraints (13) are given by G(t, q)T ν.

The complementarity conditions (14) can be explained as follows: The frictionless con-

tact of a single mass–point with the obstacle H is characterized by the three facts that

the mass–point cannot penetrate the obstacle, the mass–point cannot pull on the ob-

stacle, and either the mass-point presses on the obstacle or it is separated from the

obstacle. The geometric condition of “no penetration” is given by the first inequality

in (14), and the second inequality in (14) expresses the “no adhesion” condition. The

equality condition of complementarity in (14) refers to the fact that at time t the mass–

point is either distant and there is no contact force, i.e. (qj(t) −K) 6= 0 and λj(t) = 0,

or it is in contact with the obstacle and there is an interaction by a contact force, i.e.

(qj(t) −K) = 0 and λj(t) 6= 0. When the mass–point “touches” the obstacle, i.e. both

(qj(t) −K) and λj(t) are zero, we find a more complicated contact situation, see e.g.

[2], [23], [30] for a detailed discussion. We will use K = 0 in the following, and we state

a well–known result which will be used frequently (see e.g. [14] for a proof):

Lemma 2.1 Let M ∈
� 3d,3d and G ∈

� s,3d be given such that rank(G) = s and M is

positive definite. Then the block matrix

N :=


 M GT

G 0


 ∈

� 3d+s,3d+s

as well as its Schur complement −GM−1GT ∈
� s,s is invertible.
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2.5 Smooth motion

In time intervals where the active and passive sets are constant the equations of motion

(11)-(13) together with the active constraints in (14) result to

q̇(t) = u(t) (16)

Mu̇(t) = f(t, q(t), u(t)) +G(t, q(t))T ν(t) +A(t)T (A(t)HTλ(t)) (17)

0 = g(t, q(t)) (18)

0 = A(t)q(t) (19)

A(t) ∈
� a(t),3d, Aji(t) =





1, if i = kj ∈ JA(t) = {k1, . . . , ka(t)}

0, otherwise
. (20)

The a(t) active constraints are included as holonomic constraints with Lagrange mul-

tipliers Λ(t) := A(t)HTλ(t) ∈
� a(t), and (16)-(19) is a semi–explicit DAE system for

(q, u, ν,Λ), see e.g. [3], [5], [9], [17]. The remaining components of λ(t) are obtained

from the complementarity conditions (14) as λj(t) = 0 for j /∈ JA(t). Differentiating

(18), (19) once and twice w.r.t. t yields the first and second order “hidden” constraints

which are also fulfilled by a smooth solution of the system (16)-(19):

0 = gt(t, q) +G(t, q)u, 0 = A(t)u, and (21)

0 = g̃(t, q, u) +G(t, q)M−1
[
f(t, q, u) +G(t, q)T ν +A(t)T (A(t)HTλ(t))

]
,

0 = A(t)M−1
[
f(t, q, u) +G(t, q)T ν +A(t)T (A(t)HTλ(t))

]
,

(22)

where g̃(t, q, u) := gtt(t, q) + 2Gt(t, q)u+Gq(t, q)(u, u). (23)

For (t, q) fixed we have gtt(t, q) ∈
� m, Gt(t, q) ∈

� 3d,m, and Gq(t, q) :
� 3d ×

� 3d →
� m

is a bilinear mapping. We assume that the functions f and g have a sufficient number

of continuous derivatives, and we set V :=
� 3d ×

� 3d ×
� m ×

� d. For a < b and s ≥ 1

we denote the left and right limits of a function ψ ∈ C((a, b),
� s) at time c ∈ (a, b) by

ψ−(c) and ψ+(c), respectively. Furthermore, J−

A (c) and J+
A (c) denote the active sets

before and after a collision or a lift–off. The corresponding passive sets are defined by

J−

P (c) = J\J−

A (c) and J+
P (c) = J\J+

A (c).

2.6 The jump conditions

It turns out that the model (11)-(14) is not yet complete: The active and passive sets are

time–dependent and can alter in the course of motion. In case of a collision a passive
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constraint suddenly becomes active, and an active constraint becomes passive if the

corresponding mass–point lifts off the obstacle. Events like this can cause discontinuities

in the system and the equations of motion are no longer valid. Therefore jump conditions

have to be derived that describe the behavior of the system if such an event occurs.

In order to approximate a rigid collision we use Newton’s impact law, which relates the

normal velocity u+
p (c) after the impact of a mass–point p ∈ J−

P (c) at time c > 0 to the

normal velocity u−p (c) before the impact:

qp(c) = 0, u−p (c) < 0 =⇒ u+
p (c) = −εu−p (c) (24)

The constant ε ∈ [0, 1] is the coefficient of restitution. The value ε = 1 corresponds

to the completely elastic case, and only for ε = 0 the collision is inelastic and we have

p ∈ J+
A (c). The jump discontinuity in the normal velocity of the colliding mass–point, i.e.

in the direction normal to the obstacle, is caused by an impulsive force (δ–distribution)

which is applied at t = c, it approximates a large force with a short duration. At the

time of impact there is not only an impulsive contact force I p = Ip(c) ∈
�

in the

constraint p ∈ J−

P (c) that suddenly becomes active, we also have impulsive constraint

forces Iλ = Iλ(c) ∈
� a−(c) and Iν = Iν(c) ∈

� m caused by the constraints in J−

A (c)

that are already active as well as the global holonomic constraints (13). These impulses

lead to jump discontinuities in the velocities of all mass–points in the system, and by

local conservation of impulses we find the jump condition

M
(
u+(c) − u−(c)

)
= G(c, q(c))T Iν +A−(c)T Iλ + epI

p, (25)

where ep ∈
� 3d is the pth unit vector. This equation is used at t = c instead of the

equations of motion (11)-(14), for a derivation of (25) see e.g. [15]. In [2] it is shown

that (12) is still valid at t = c in the sense of distributions if (25) holds.

Additional conditions are derived by the fact that the first order hidden constraints (21)

have to be fulfilled after the impact, i.e. consistent initial values are needed. For the

global holonomic constraints (13) and the constraints in J−

A (c) that are already active,

equations (21) leads to

gt(c, q(c)) +G(c, q(c))u+(c) = 0, A−(c)u+(c) = 0. (26)

Obviously, there might be a whole subset of indices in J−

P (c) such that all mass–points

with indices in this subset collide with the obstacle at the same time. Newton’s impact

law (24) for inelastic collisions (ε = 0), the condition for the impulses (25), and the
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conditions for the first order hidden constraints (26) lead to the system




M G(c, q(c))T A+(c)T

G(c, q(c)) 0 0

A+(c) 0 0







u+(c)

−Iν

−Iλ
C


 =




Mu−(c)

−gt(c, q(c))

0


 (27)

with the impulses Iλ
C = Iλ

C(c) ∈
� a+(c). If the rank condition

rank


 G(t, q)

H


 = m+ d (28)

is fulfilled at (t, q) = (c, q(c)), Lemma 2.1 implies that (27) can be solved uniquely for

u+(c), Iν , and Iλ
C . After the collision the Lagrange multipliers are determined uniquely

by the second order hidden constraints (22) with the new active set J+
A (c). These also

involve u+(c) and A+(c), and therefore we also find jump discontinuities in the Lagrange

multipliers, see [2] for details.

During a lift–off the solution (q, u, ν, λ) ∈ V is continuous, but discontinuities in ν̇ and

λ̇ are possible. Usually, the contact force λp of an active constraint p ∈ J−

A (c) becomes

zero at t = c with λ̇−p (c) < 0 and the corresponding mass–point lifts off the obstacle.

Because of the complementarity conditions (14) the contact force has to be zero after

the lift–off, so there is a jump discontinuity in λ̇p and this also affects ν̇ and λ̇j for

j ∈ J+
A (c) = J−

A (c)\{p} (details can be found in [2]):


 ν̇+(c) − ν̇−(c)

A+(c)HT (λ̇+(c) − λ̇−(c))


 = D(c, q(c))−1


 −G(c, q(c))M−1epλ̇

−

p (c)

−A+(c)M−1epλ̇
−

p (c)


 ,

where D(t, q(t)) :=


 G(t, q)

A(t)


M−1


 G(t, q)

A(t)




T

. (29)

2.7 Contact with tangential friction

An active constraint j ∈ JA prevents the corresponding mass–point from penetrating

the obstacle, this is done by a constraint force λj ≥ 0 that acts in direction normal to the

obstacle. However, the mass–point might slide on the obstacle in tangential direction

and we have to model the friction forces which depend on the material of the obstacle,

the roughness of the surface, and the normal contact force.

We assume that there is no grease or fluid between the sliding mass–points and the

obstacle and therefore we use a model of dry friction. Coulomb’s friction law states

that during sliding the tangential friction force is proportional to the normal contact
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force, the relative tangential velocity, and the coefficient µ > 0 of sliding friction (see

e.g. [9], [15], [26], [30]). The friction force acts in direction opposite to the tangential

velocity, and when the tangential velocity becomes zero the mass–point starts to stick

on the obstacle. During sticking (or lock–up) the tangential friction force is bounded

by the coefficient µ0 > 0 of static friction times the normal contact force λj , and the

mass–point starts to slide again if this bound is violated.

We introduce a new set which contains the indices of all active constraints that corre-

spond to mass–points that stick on the obstacle:

JS(t) := {j ∈ JA(t) | ut
j(t) = 0}, s(t) := #JS(t),

where ut
j := (u2

j+1 + u2
j+2)

1/2 is the relative tangential velocity. The friction forces in

y– and z–direction on the hyperplane H defined in (8) are denoted by rj+1 and rj+2,

respectively. For j ∈ JP there is no friction force and we set rj+1 = rj+2 = 0. In case

j ∈ JA we have

sticking, ut
j = 0 =⇒

√
r2j+1 + r2j+2 ≤ µ0

jλj, j ∈ JS (30)

sliding, ut
j 6= 0 =⇒


 rj+1

rj+2


 = −

1

ut
j


 uj+1

uj+2


µj(u

t
j)λj, j /∈ JS (31)

where (r2
j+1+r

2
j+2)

1/2 is the absolute value of the tangential friction force during sticking.

During sliding the friction forces are defined by (31) and have to be added to the right

hand side of (12). The coefficient µ :
�

→
�

+ of sliding friction usually depends on the

relative tangential velocity. In most applications Stribeck curves which coincide with

the coefficient µ0 of static friction at zero velocity are used, see Figure 2. During sticking

they are given by Lagrange multipliers that correspond to constraints that fix the actual

position and prevent tangential movement. This will be described in detail in Sect. 3.4

when we present the numerical methods.

During a sliding/sticking transition the solution (q, u, ν, λ) ∈ V of (11)-(14) is continuous,

but jump discontinuities in the accelerations and the friction forces rj+1, rj+2 for j ∈ JS

might occur: If a sliding mass–point starts to stick we find jump discontinuities in the

friction forces and therefore also in the accelerations (see also the numerical experiments

in Sect. 2.4, Fig. 4D).

Notice that the sticking/sliding condition for a constraint j ∈ JA is given by the relative

tangential velocity ut
j and not by the velocities uj+1 and uj+2 in y– and z–direction.
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Figure 2: Stribeck curve µ with µ(0) = µ0 (left) and corresponding friction force r (right).

Therefore Coulomb’s friction law cannot be incorporated into the system (11)-(14) by

simple complementarity conditions as in the case of the collision/lift–off conditions. In

the numerical methods (see Sect. 3) we assume uj+1 ≡ 0 for all j ∈ JA and include only

the friction forces in z–direction (one–dimensional case). This simplifies the conditions

in (30),(31) considerably since the relative tangential velocity ut
j is replaced by |uj+2|.

See [23] and [30] for a discussion of several two–dimensional friction models and Stribeck

curves with hysteresis effects (µ0 > µ(0)).

3 Numerical methods

In this chapter we describe the numerical methods that are used to solve the equations

of motion (11)-(14) with global holonomic and unilateral constraints. In time intervals

where no collision or lift–off occurs the DAE (16)-(19) with the current active set is solved

by standard numerical methods implemented in the code MEXAX, see [28]. In case of

a collision or a lift–off the integration of the DAE is interrupted, the active and passive

sets are modified, and new initial values are determined by the jump conditions (27) in

case of an impact. Similarly, in the presence of tangential friction forces the integration

is interrupted when a sticking/sliding transition occurs, and the stiction set has to be

modified. We present a switching algorithm which controls the event localization during

the integration and the modification of the active/passive/stiction sets.

3.1 Discretization of the equations of motion

We start by describing the basic discretization method which is used to solve the DAE

system (16)-(19) with the current active set in time intervals where no collision or lift–off

occurs. We consider first the frictionless case, the incorporation of the friction forces
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will be described later on in Sect. 3.4.

In the code MEXAX a modified half–explicit Euler method is used which is explicit in

the differential part and implicit in the algebraic part of the DAE. Applying the standard

half–explicit Euler method directly to the system (16)-(19) leads to a large nonlinear

system which has to be solved in every time step, see e.g. [27]. This is avoided if we

replace (18),(19) by the first order hidden constraints, and we find the system

q̇ = u (32)

Mu̇ = f(t, q, u) +G(t, q)T ν +A(t)T
(
A(t)HTλ

)
(33)

0 = gt(t, q) +G(t, q)u (34)

0 = A(t)u (35)

for t ∈ [0, T ], where λj(t) = 0 for j ∈ JP (t) by the complementarity conditions (14).

Using the fixed step size h = (T/N) > 0 withN ∈ � we are looking for an approximation

(qn+1, un+1, νn+1, λn+1) ∈ V at tn = nh ∈ [0, T ] for n = 0 . . . N . Given consistent initial

values (q0, u0) the standard half–explicit Euler method for the above system yields

qn+1 = qn + hun (36)

Mun+1 = Mun + hf(tn, qn, un) + hG(tn, qn)T νn+1 + hA(tn)T
(
A(tn)HTλn+1

)
(37)

0 = gt(t
n+1, qn+1) +G(tn+1, qn+1)un+1 (38)

0 = A(tn+1)un+1 (39)

for n = 0 . . . N − 1. The special structure of the system allows to calculate the position

vector qn+1 directly from (36). Notice that A(tn) = A(tn+1) since we only consider time

intervals where the active set is constant. Replacing G(tn, qn) by G(tn+1, qn+1) in (37)

leads to the linear system

Γ(tn+1, qn+1)




un+1

−hνn+1

−hA(tn+1)HTλn+1


 =




Mun + hf(tn, qn, un)

−gt(t
n+1, qn+1)

0


 (40)

where Γ(t, q) :=




M G(t, q)T A(t)T

G(t, q) 0 0

A(t) 0 0


 (41)

Together with λn+1
j = 0 for j ∈ JP (tn+1) this system has a unique solution (un+1, νn+1, λn+1)

by Lemma 2.1 if the rank condition (28) holds.
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3.2 Projections and jump conditions

An analytical solution of the system (32)-(35) on velocity level also fulfills the original

constraints (18),(19) on position level if the initial values are consistent, but this is in

general not true for an approximate solution of (36)-(39). To enforce the original con-

straints after each times step, qn+1 is projected orthogonally onto the position manifold

defined by (18),(19) for t = tn+1, i.e. we look for a q̃n+1 such that ||qn+1 − q̃n+1||M is

minimized. This leads to a nonlinear system which is solved by a simplified Newton

method with iteration matrix Γ(tn+1, qn+1) defined in (41). Next, we have to adapt the

velocity vector un+1 to the projected position vector q̃n+1 by an orthogonal projection

onto the velocity manifold defined by (21), where t = tn+1 and q = q̃n+1. As above we

choose ũn+1 such that ||un+1 − ũn+1||M is minimized. In contrast to the projection onto

the position manifold this leads to the linear system

Γ(tn+1, q̃n+1)




ũn+1

b1

b2


 =




Mun+1

−gt(t
n+1, q̃n+1)

0


 (42)

with Γ defined in (41) and vectors b1 ∈
� m and b2 ∈

� a(tn+1). We refer to [2], [11], [28]

for details.

The above projection methods are used in intervals where the active set is constant. If

a collision of a mass–point with the obstacle occurs at tn+1 ∈ [0, T ] the active set is

modified and the matrix A−(tn+1) is replaced by A+(tn+1). Furthermore, new initial

values for the velocities have to be determined and the jump conditions (27) read




M G(tn+1, qn+1)T A+(tn+1)T

G(tn+1, qn+1) 0 0

A+(tn+1) 0 0







u∗

−Iν

−Iλ
C


 =




Mun+1

−gt(t
n+1, qn+1)

0




(43)

with the impulses Iν ∈
� m and Iλ

C ∈
� a+(tn+1), the position vector qn+1, and the velocity

vectors un+1 and u∗ before and after the impact, respectively. New initial values for the

Lagrange multipliers after the collision are not needed in the half–explicit discretization

method presented in Sect. 3.1. They are calculated by (40) in the next step after the

collision using the new initial values for the position and velocity vectors.

Notice that (43) coincides with (42). This is no surprise since after an inelastic impact

among all admissible velocities in the velocity manifold the nearest one is chosen and
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this is simply the orthogonal projection. In MEXAX various linear algebra options are

included and we decided to use the sparse direct matrix solver MA28 from the Harwell

Sparse Matrix Library (NAG Ltd.). Notice that all linear systems that arise in the

discretization procedure, the projection steps, and the jump conditions have the same

block diagonal structure.

3.3 Extrapolation, dense output, and event localization

To improve the accuracy of the numerical solution adaptive extrapolation methods with

order and step size control are used in MEXAX, a detailed description can be found in

[11].

While extrapolation methods are important to improve the accuracy of the numerical

solution, the combined order and step size control usually leads to large step sizes during

the integration. For the purpose of a graphical representation as well as for event

localization problems the solution has to be determined at prescribed points. Decreasing

the step size would increase the computational cost and interfere with the combined order

and step size control. Therefore a suitable dense output method has to be used which

yields a functional description of the numerical solution rather than approximations at

discrete points. See [11], [16], [19], [28] for a detailed description of the method and the

implementation in MEXAX, the basic idea is as follows: In addition to the numerical

solution at the endpoints of the time interval [tn, tn +H], approximations of the solution

derivatives are computed by divided forward and backward differences. Again, these

approximations can be improved by extrapolation methods as above. Finally, Hermite–

interpolation (see e.g. Sect. 2.1.5 in [34]) yields a polynomial which coincides with the

numerical solution and the approximations of the solution derivatives at tn and tn +H.

The error of the polynomial approximation is of the same order as the global error of

the numerical method provided that sufficiently many approximate solution derivatives

with a high accuracy are used to generate the polynomial.

The dense output method is used to localize zeroes of switching functions between two

integration points tn and tn +H, i.e. the nonlinear root–finding problem

Φ(t) = 0 with Φ : [tn, tn +H] →
�

has to be solved. The occurrence of a root is indicated by a sign change

Φ(tn)Φ(tn +H) < 0, (44)
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and the first (leftmost) root is computed by a modified Newton method. It is included

as integration point tn+1. To avoid problems with switching functions that are zero for

a certain period of time the conditions

|Φ(tn)| ≥ Φ, |Φ(tn +H)| ≥ Φ

with a given residual Φ > 0 are used in addition to (44). Switching functions with an even

number of zeroes or a zero with an even multiplicity in the time interval [tn, tn +H] can

be handled by performing additional sign checks similar to (44) in certain subintervals

of [tn, tn +H]. We refer to [28] for further details.

3.4 Friction forces

For all active constraints j ∈ JA(tn+1) we have to add tangential friction forces to the

system, see Sect. 2.7. We consider only the one–dimensional case and assume un+1
j+1 = 0,

this simplifies the sticking/sliding conditions in (30) and (31), see Sect. 2.7. For every

element of the stiction set

JS(tn+1) = {j ∈ JA(tn+1) | un+1
j+2 = 0} with s(tn+1) = #JS(tn+1)

we have to add a constraint that fixes the actual position qn+1
j+2 . The corresponding

Lagrange multiplier rn+1
j+2 is bounded by the coefficient of static friction µ0

j times the

contact force λn+1
j , i.e.

|rn+1
j+2 | ≤ µ0

jλ
n+1
j ,

see (30). During sliding the tangential velocity un+1
j+2 is nonzero, we have j /∈ JS(tn+1)

and the external force

rn+1
j+2 =





−µn+1
j λn+1

j , if un+1
j+2 > 0

µn+1
j λn+1

j , if un+1
j+2 < 0

with µn+1
j := µj(|u

n+1
j+2 |) (45)
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acting in opposite sliding direction is added, see (31). In time intervals where the active,

passive, and stiction sets are constant the linear system (40) therefore extends to




M G(tn+1, qn+1)T A(tn+1)T S(tn+1)T

G(tn+1, qn+1) 0 0 0

A(tn+1) 0 0 0

S(tn+1) 0 0 0







un+1

−hνn+1

−hA(tn+1)HTλn+1

−hS(tn+1)HT rn+1




=




Mun + hf(tn, qn, un) + hR(tn)TR(tn)HT rn

−gt(t
n+1, qn+1)

0

0




(46)

S(t) ∈
� s(t),3d, Sji(t) :=





1, if i = kj ∈ JS(t) = {k1, . . . , ks(t)}

0, otherwise
, rn :=




rn
3

rn
6
...

rn
3d




R(t) ∈
� a(t)−s(t),3d, Rji(t) :=





1, if i = kj ∈ JA(t)\JS(t) = {k1, . . . , ka(t)−s(t)}

0, otherwise
.

In addition, we set λn+1
j = rn+1

j+2 = 0 for all j ∈ JP (tn+1). The projection methods as

well as the jump conditions in Sect. 3.2 are extended analogously and linear systems

with block matrices similar to that in the above system (46) have to be solved. The

rank condition (28) holds for (t, q) = (tn+1, qn+1) since G(tn+1, qn+1), A(tn+1), and

S(tn+1) have linear independent row vectors, and therefore the matrix is invertible by

Lemma 2.1. Notice that the forces rn
j+2 of sliding friction that occur on the right hand

side of (46) for j ∈ JA(tn)\JS(tn) involve the Lagrange multipliers λn
j . Since we do not

explicitly determine the values of λn
j after a collision at tn by the second order hidden

constraints we simply keep the values of rn
j+2 from the previous step. This is reasonable

for small coefficients µn
j of sliding friction.

Remark 3.1

The external forces of sliding friction defined in (45) involve the Lagrange multipliers,

therefore existence and uniqueness of a solution of the DAE system (16)-(19) with friction
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forces introduced as above can only be guaranteed if the matrix




M G(t, q)T (A(t) +Rµ(t))T S(t)T

G(t, q) 0 0 0

A(t) 0 0 0

S(t) 0 0 0




is invertible, where

Rµ(t) ∈
� a(t)−s(t),3d, Rµ

ji(t) =





−µj(t), if i = kj ∈ JA(t)\JS(t), and uj+2(t) > 0

µj(t), if i = kj ∈ JA(t)\JS(t), and uj+2(t) < 0

0, otherwise

.

The nonsingularity of this matrix is needed to uniquely determine the Lagrange mul-

tipliers from the 2nd order hidden constraints (see also Lemma 2.1). However, if the

coefficients µj(t) of sliding friction are small enough it can be shown by a perturbation

Lemma (see e.g. [31]) that the above matrix is still invertible if the rank condition (28)

holds. In [11], [28] a modified discretization method is proposed for applications with

large coefficients of sliding friction.

3.5 The switching algorithm

The techniques presented in the previous sections are now combined to an algorithm

that controls the event localization and the modifications of the active/passive/stiction

sets during the integration, see Fig. 3. The basic idea is to use the discretization method

described in Sect. 3.1 and 3.4 for the integration of the DAE in time intervals where the

active set is constant. During the integration switching functions

φj(t
n+1, qn+1, un+1, λn+1, rn+1) =





qn+1
j , if j ∈ JP (tn+1)

λn+1
j , if j ∈ JA(tn+1)

un+1
j+2 , if j ∈ JA(tn+1)\JS(tn+1)

|rn+1
j+2 | − µ0

jλ
n+1
j , if j ∈ JS(tn+1)

for all j ∈ J indicate events like collision, lift–off, or sticking/sliding transition. Between

two integration steps the arguments of φj are taken from the values of the interpolation

polynomial generated by the dense output method, see Sect. 3.3. In addition, these val-

ues are projected onto the position– and the velocity manifold as described in Sect. 3.2.

If a root for one of the switching functions is found, the integration is interrupted, the

sets are modified, and new initial values are calculated by the jump conditions (43) in

case of a collision. Then the integration is continued until another event occurs or the

end of the time interval [0, T ] is reached. During the integration a variable step size
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is used (see Sect. 3.5). In addition, the dense output method yields a solution output

for a given equidistant grid with step size h̃ > 0. However, the roots of the switching

functions are not known a priori, so if a root is found at an integration point tn+1 the

next step of the dense output method is performed with size h̃− (tn+1 − tn).

After a collision of one or more mass–points at tn+1 we might find a negative Lagrange

multiplier which corresponds to an active constraint. Furthermore, in the case of a lift–

off as well as a transition from sticking to sliding we might find inconsistencies in the

active/passive/sticking sets. For these problems the solution of an LCP is proposed in

[2] and [30] to determine consistent sets that remain constant at least in infinitesimal

time. However, it turns out that in the simulations such incompatibilities seldom occur.

Therefore we do not solve an LCP and simply check if λn+2
j > 0 for all j ∈ JA(tn+2)

and |rn+2
j+2 | < µ0

jλ
n+2
j for all j ∈ JS(tn+2) in the next step tn+2 after such an event.

The integration is aborted if an inconsistency occurs, see Fig. 3 for an overview of the

algorithm.

4 Numerical results

We simulate the collision of the non–compartmentalized model in the maximally short-

ened state (LEs maximally activated and CEs at rest) with the obstacle H, see Fig. 4.

The coefficients of static and sliding friction are set to constant and equal values for

all corners (µ = 0 and µ = 0.3) and the simulation is started with initial velocity

Ui(0) = (−10, 0,−10)T for i = 1 . . . d. At t ≈ 0.24 the corners Q1 . . . Q4 collide with

H and in the frictionless case (µ = 0) the model starts to slide until all 4 corners lift

off simultaneously at t ≈ 0.5 (see Fig. 4, diagram A and left picture). In the presence

of tangential friction (µ = 0.3) the 4 corners start to stick on the obstacle at t ≈ 0.36.

The whole body bends, Q2 and Q4 lift off at t ≈ 0.375, and Q1 and Q3 finally lift off

at t ≈ 0.4 (see diagram A and right picture in Fig. 4). The jump discontinuities in the

internal pressure |ν|, the contact force λ2, and the (horizontal) x–velocity U21 of the

corner Q2 at the time t ≈ 0.24 of impact are shown in Fig. 4B&C. Furthermore, Fig. 4D

shows the friction force acting on Q2 in case µ = 0.3: When the (vertical) z–velocity U23

becomes zero the corner Q2 starts to stick on the obstacle and we find forces of static

friction, i.e. constraint forces that fix the actual z–position Q23. Notice that the friction

force acting on Q2 shows jump discontinuities when a transition from sliding to sticking

occurs at t ≈ 0.36 and when Q2 lifts off during sticking at t ≈ 0.375.
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PSfrag replacements

Initialization (n = 0):

q0, u0, JA = JS = {}

Compute qn+1, un+1, νn+1, λn+1, rn+1 by (36),(46) and the

projections onto position– and velocity manifold (Sect. 3.2).

Is tn+1 root of a switching function ?

j ∈ JA ?

j ∈ JS ?

λn+1
j = 0 ? qn+1

j = 0 ?

no

no
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no
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yes

yes

New initialization: In case of a collision

determine u∗ by (43) and update un+1 = u∗

Consistency check: λn+1
j > 0 for all j ∈ JA

and |rn+1
j+2 | < µ0

jλ
n+1
j for all j ∈ JS ?

JS := JS\{j} JS := JS\{j} JS := JS ∪ {j}

JA := JA\{j}

JA := JA ∪ {j}|rn+1
j+2 | = µ0

jλ
n+1
j ? un+1

j+2 = 0 ?

next step

n := n+ 1

Abort the

integration.

j := j + 3

j := 1

j ≤ 3d− 2 ?

Figure 3: The switching algorithm. For simplicity we omit the arguments of the active/passive/sticking

sets.
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Figure 4: Collision of the non–compartmentalized model with the obstacle H in cases µ = 0 (frictionless

contact, left picture) and µ = 0.3 (contact with tangential friction, right picture). We use Hooke’s law

combined with a linear damper (1),(2) for all elastic elements. The parameters of the LTCs in the steady

state case are adapted to experimental data of the leech and the damping parameters are set to the value

0.1 as a first approximation. A: Distance of the corner Q2 from the obstacle in both cases. B: Internal

pressure in both cases. C: Velocity of the corner Q2 in (horizontal) x–direction and contact force λ2

acting on Q2 in the frictionless case (for µ = 0.3 we get a similar result). D: Velocity of the corner Q2

in (vertical) z–direction and tangential friction force acting on Q2 during both sliding and sticking.
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