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Abstract

In this paper, we extend the two-dimensional discrete time model of the virtual fly,
developed by Boddeker and Egelhaaf in [Boddeker & Egelhaaf, 2003], into three space
dimensions, and introduce its continuous time analog. Like real blowflies, the virtual
counterparts exhibit a dichotomous chasing behavior: depending on size, velocity and
the course of the targets, they catch the targets or pursue them at constant distance.
Here, we analyze this behavioral characteristic with respect to the course of the target,
in particular, we choose trajectories, spiraling upwards. After setting up the three-
dimensional model, we transform it into the local coordinates of the pursuer, using
equivariance properties. Then bifurcation tools apply, and it turns out that depending
on the gradient and the curvature of the spiraling trajectory, a fixed point in the
transformed system can lose or gain stability. A stable fixed point corresponds in the
original system to a trajectory, on which the virtual fly follows the target at constant
distance. In this way, we explain the dichotomous behavior through the occurrence of
bifurcations.

Keywords: Bifurcation analysis, equivariant systems, pursuit behavior of blowflies.

1 Introduction

Male blowflies chase and catch the female flies in the context of mating behavior on vir-
tuous trajectories. These high speed chases require a fast, visually guided control system,
cf. [Land & Collett, 1974]. The question arises, how these insects are able to control their
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artistic movements. In order to understand the underlying control mechanism, biologi-
cal experiments are performed in which the female fly was replaced by a black ball, see
[Collett & Land, 1978, Boddeker et al., 2003], that moves on a circular trajectory. As it
turns out, male flies still chase these targets and, depending on size and velocity, they either
pursue the targets at a nearly constant distance or they follow an oscillatory or even chaotic
trajectory that enables them to catch the target. This leads to the question, whether ex-
plicit decision making is needed to generate the observed dichotomous behavior or if these
characteristics are generated automatically by the dynamics of the control mechanism.

For finding an answer, the model of the virtual fly was developed by Boddeker and
Egelhaaf in [Boddeker & Egelhaaf, 2003, Boddeker & Egelhaaf, 2005]. This model was con-
structed in two space dimensions, since biological experiments showed that male blowflies
tend to fly in planes parallel to the circular trajectory of the target.

The mathematical equivalent of the observed change of behavior from catching to chasing
is a bifurcation, and bifurcation theory enables the detection of critical parameter values,
where the dynamics of the system changes structurally, see [Kuznetsov, 2004, Wiggins, 2003].
In [Hiils, 2005], this powerful tool is applied to the two-dimensional model of the virtual fly.
As it turns out, some simple control mechanisms are capable of generating the dichoto-
mous behavior. Therefore explicit decision making is not needed to explain the observed
characteristics.

Though the experimental setup favors two dimensional trajectories, it is clear that real
trajectories of female blowflies are truly three-dimensional. Therefore we extend in this paper
the model of the virtual fly to three space dimensions and analyze whether this still supports
dichotomous behavior. This generalization is introduced in Sec. 2. We put special emphasis
on the fact that it should reproduce the two-dimensional results, when the movement is
restricted to the two-dimensional zy-plane.

For the forthcoming analysis, it is essential to eliminate a common movement of the
system. Formally, we transform the model, written in global coordinates, into the local
coordinates of the pursuer, using equivariant transformations. We first translate the position
of the pursuer to the origin and by two rotations in xy- and zz-direction, we fix its orientation
to the z-axis. As it turns out, these transformations are quite involved, since rotation
matrices in ry and zz-direction do not commute. Alternatively, one can interpret this
approach as follows: In each time step, a comoving coordinate system is introduced in which
position and orientation of the pursuer is fixed. Note that this ansatz works for general
trajectories of the target and is thus more general than the ansatz, proposed in [Hiils, 2005],
that only works for linear and circular trajectories, respectively. We refer to the transformed
system as frozen system, cf. [Beyn & Thiimmler, 2004] where equivariant transformations
are applied to PDEs, exhibiting traveling wave or spiral solutions.

In [Hiils, 2005], depending on velocity and size of the target, the occurrence of rigid
trajectories on which the pursuer follows the target at constant distance was analyzed. Ob-
viously, also the chosen course of the target influences the success of catching. As a prototype
we take trajectories, spiraling upwards, where parameters are curvature and gradient. Then,
a stable fixed point of the frozen system corresponds to a trajectory, on which the pursuer
follows the target at constant distance. Varying parameters, the fixed point may lose its sta-
bility. We detect these changes of stability, using bifurcation tools cf. [Dhooge et al., 2003].



Note that male flies cannot follow unstable trajectories. Therefore, they will switch to other
stable objects like periodic orbits or invariant curves. Doing so, they will probably meet and
catch the target.

In Sec. 3 we introduce the continuous time analog of this model and transform it into
local coordinates, using the techniques from Sec. 2. The model exhibits the same type of
bifurcations, but at slightly different parameters. The bifurcation toolbox MATCONT, see
[Dhooge et al., 2003], supports for continuous time systems numerical branch switching from
equilibria to periodic orbits, occurring via Hopf-bifurcations. Although these curves exist
for the discrete time model as well, we only shown them in continuous time.

2 A 3D model of the virtual fly in discrete time

In [Boddeker & Egelhaaf, 2003, Boddeker & Egelhaaf, 2005, Boddeker et al., 2003] the two-
dimensional model of the virtual fly was developed by Boddeker and Egelhaaf, and its dy-
namics were analyzed in [Hiils, 2005].

In this section, we first revisit this two-dimensional model, and introduce an extension
into three space dimensions. Doing so, we gain a model that describes the positions of the
male fly and of the target in global coordinates with some additional internal coordinates.
For the analysis, it is useful to transform the system into the local coordinates of the male
fly, see Sec. 2.3.

As an example, we analyze a three-dimensional trajectory, spiraling upwards. The critical
parameters are the gradient and the curvature of these trajectories. We detect parameter
regions, using bifurcation tools cf. [Dhooge et al., 2003], for which stable fixed points in the
transformed system exist. These fixed points correspond to rigid trajectories, on which the
male fly follows the target at constant distance.

2.1 The 2D model of the virtual fly revisited

The two-dimensional model, see [Hiils, 2005] has seven state variables Y = (s, a, 0,v,, 2, 3)T
as illustrated in Fig. 1. The dynamics can be written as follows

Yo = f(Y,), neN,

where
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Figure 1: Settings in the two-dimensional model of the virtual fly.

The components of f are denoted by f*, f%, ..., and one time step corresponds to 1ms. Here

D, is the rotation matrix
cosy —sinvy
Dy = (sin ) ’ @)
v cosy

0(y) denotes the angle between the vector y and the (1,0) axis:

o(y) = {sign arcsin (ﬁ)} ATCCos (ﬁ) , (3)

and the retinal size p is computed as

|z — 2|2
x,z,T) = 2arccos . 4
= 1) <¢Hx—zr|%+ir2/4 @

Note that the course of the target in each time step is defined by ¢ and ¢, which may
depend on time. Following [Boddeker & Egelhaaf, 2003], relevant parameter values are listed
in Table 1.

2.2 Extension into three space dimensions

In three space dimensions, each direction is defined by two Euclidean angles 6, 5, see Fig. 2.
Two angles are needed to describe the body orientation of the male fly (the pursuer) (o?)
as well as for the course of the target (5%?).

We assume that the male fly is capable of separately measuring two error angles; one
angle w! in left-right direction and a second angle w? in up-down direction. The responses
to these exact angles are a' and a?. An illustration of the settings in the three dimensional
model is given in Fig. 3. The virtual fly in three space dimensions is defined by the 16
dimensional model

Xpi1 = F(X,), néeN,
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parameter value dim. interpretation

T 3—-15 mm size of the target

Sim 0.8 m/s minimal speed of the fly

G 0.125 1 describes the gain of the orientation change

T, 80 1 parameter for a low-pass filter, realizing a
neuronal reaction time for speed control

T, 15 1 parameter for a low-pass filter, realizing a
neuronal reaction time for target fixation

q 0.0865 1 parameter for speed control

Sy 67 m/s parameter for speed control

M 0.0455 1 kinematic constant

Table 1: Parameters and their typical settings in the model of the virtual
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Figure 2: Illustration of the Euclidean angles 0, 5.
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Figure 3: Settings in the three-dimensional model of the virtual fly.

Here ¢, o' and ? are external variables that determine the velocity and the course of the
target and may depend on time. D;, and D;3 are rotations around the x3- and the x,-axis,
respectively, which are formally defined as

cosp —singp 0 cosp 0 —singp
Dis(p) = | sinp  cosp 0], Diz(p)= 0 1 0
0 0 1 sinp 0 cose

The functions 6; and 6, compute the angle of a vector z € R? w.r.t. the (xy,x3)- and the
(21, z2)-planes, cf. Fig. 2 :

IR (CECLOD)
0(2) = 0 <z2> , Ba(2) =10 <D12( _ 91(2’))2)

with 6(y) as in Eq. (3). Since error angles in left-right and up-down direction are computed
separately, we introduce two constants 7,1 and 7,2 for the corresponding low-pass filters to
realize (possibly different) neuronal reaction times in left-right and up-down direction. Since
different values for these parameters are not known from experiments, we take T,1 = T,2 =
T, = 15.
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2.2.1 Invariant planes

The three-dimensional model exhibits several planes in R? that are invariant for specific
values of the internal variables, see Fig. 4.
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Figure 4: Invariant planes in the three-dimensional model of the virtual

fly.

If, for example, x and z in (5) are restricted to a plane P that is parallel to the (z1, z5)-
plane, v lies in the (z,xs)-plane and additionally 0 = a®> = ¢? = % hold, then the v-
component of F(s,a',0,0',0,v,z,z, 3%, 0) lies in the (z1, z2)-plane while the x and z com-
ponents lie in P. In this sense, the plane P is invariant (left of Fig. 4).

On the other hand, the plane " having the angle #; w.r.t. the xj-axis, cf. the right of
Fig. 4, is invariant in the following sense: For z,z € ', v € Q and a' = 0, 0! = B! = 6,
the image under F' lies in the same areas.

From the first invariance, we conclude that the three-dimensional model is a natural
extension of the two-dimensional one, since it generates (see Proposition 1) the same trajec-
tories, under the restrictions given above.

Proposition 1 Let T, = T,:, 3 = 3', ©*> = 0 and for a given v € R let

(s (1) (1) (2) 0,

U1 X1 21
X3 = s a* 0 ot 0 | X9 x| BP0
0 g g

Then
f2(X?)
fH(X?)
0
f7(X?)
0
(f”(X2)
0
f7(X?)
Y
fA(X?)

fr(x?)
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Proof: It holds that

and therefore F*(X3) = f¢(X?). Since

91 (Dlg(O)Dlg(—O'l)(Z — l’)) = 9 (EZ N x;l) — O'l,
92 ((Dlg(O)Dlg(—O'l)(Z — ZL’)) = 0

we get F* (X3) = f*(X?) and F*(X?) = 0.
Furthermore, F(X?); = 0 since 0 = 0 and as a consequence F*(X?); = ~. Finally, it
follows from (32 = 0 that F*(X3)3 = ~.
|

2.3 Transformation into local coordinates

The model (5) of the virtual fly is formulated in global coordinates in R? (with additional
internal coordinates). We analyze the existence of stable rigid trajectories, on which the male
fly pursues the target at constant distance. For the target, we choose a three-dimensional
trajectory that spirals upwards, see Fig. 5. In this case, the dynamics cannot be reduced to
one of the invariant planes. However, we will show that, after suitable transformations, the
system is still amenable to bifurcation analysis.
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Figure 5: 1500 iterates of (5) for T =8, £ = 1.25, o' = 0.0125, ¢? = 0,
By = The trajectories of the target (in red) and of the pursuer (in
black) are shown. The projection onto the (x1,x2)-plane is given in the
right diagram.
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For the forthcoming analysis, it is essential to transform the system into the local co-
ordinates of the pursuer. In the transformed system, the position = of the pursuer is the
origin and the heading is the direction of the w;-axis, i.e. ! = 0 = 0. We will call this the



frozen form. Note that this goal can also be achieved by fixing the position of the target z,
cf. [Hiils, 2005].
Let
X=(s a" a® o' 0> v z z f ﬁz)T.

The system (5) is transformed in the following three steps. First, the position of the pursuer
x is shifted to zero. Then the rotation o' of the body w.r.t. the (1, z2)-plane is compen-
sated and finally, the rotation o2 is corrected. As a consequence, the target takes over the
movement of the pursuer in this coordinate system.

In the first step, we carry out simultaneous translations of x and z. Define the special
translation I'y by

()X =X+(0 0000006060 0)", (6)
then the equivariance relation, see Appendix A,
F(I1(0)X) =1 (0)F(X)

holds. Transforming to the variables Y = I';(—v)X (cf. Appendix A, Proposition 2) we see
that the x-variable stays at 0 if zyp = 0. Hence it is sufficient to write the dynamics in terms
of the reduced set of variables

X=(s a' a® o' o> v z BZ)T

as follows
o (p(0,2,T)S,e 0210 4 S 4 T,s)
o (Gsin(6: (Dig(=0?) Dig(—0")z)) + Tora')
1 (Gsin(a(Dis(—0?) Diz(—0')2)) + T2a?)
ot +al
0%+ a?
- 1
F(X) = (1 — M)v+ MsDys(0V) Dis(0?) [ 0 (7)
0
1
Z+ £D12(61)D13(ﬂ2) 0 — v
0
B+ !
B+ ¢°



The second transformation I's is taken from the family

La(v)

=
I
—_
S
+

O O OO OO O
=®

which satisfies the equivariance relation
F(Ta(y)X) = Da(7) F(X).

Applying Proposition 2 from Appendix A, we transform the variables Y = FQ(_QI)X . For
initial value o} = 0 one sees that the o'-value is constantly zero, thus we can reduce the
dynamics to the smaller set of variables

X=(s a* a® 0> v z ﬁz)T,

and gain the system

L (p(0,2,T)S,e?0=1/1 1+ G+ T,s)

14T
1+§1a1 (G sin(@l (Dlg(—0'2)2)) + Talal)
1_,_;(12 (G Sil’l(eg(Dlg(—O'2)Z)) + Ta2a2)
0%+ a?
1
F(X) = D12(—CL1> (1 - M)U + MSD13(0'2) 0 . (9)
0
1
Dlg(—al) zZ 4+ EDlg(ﬁl)Dlg(ﬁ2) 0 — U
0
/61 + ()01 _ al
B+ ¢?

The main difficulty for the third transformation lies in the non-commutativity of the
rotation matrices D15 and Dq3. A transformation via a general conjugacy is always possible
but the resulting system is particularly simple in the equivariant case. We define the change
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of coordinates

Dis(a) (10)

Dlg(a)
1
1

and note that the equivariance technique, introduced in Appendix A, does not apply. Instead,
it holds that

OO O OL OO O

T3(0) " F(T3(0) X) = Ga(X), (11)

where

L (p(O, 2, T)S,e=P0xD/a g 1 Tss)

1+%Fa1 (G'sin(0,(D13(—0?)2)) + Tpat)
L (Gsin(fy(D13(—0?)z2)) + Ty2a?)

1+Ta2
o? + a?

Ga(X) = Dlg(—Oé)Dlg(—a,l)Dlg(Oé) (1 — M)’U + MSD13(0'2)

O O =

D13(—oz)D12(—a1) D13(OK)Z + ngg(ﬂl)D13(62) 0 — Dlg(a)v
0
ﬁl + 801 _ CLl
B+ ¢?

For X,, = I's(a,)Y,, we get
Ps(ns1) Vs = Xopr = F(X,) = F(Is(0)Yn) = Is(0n)Ga, (V)
and consequently the frozen system is
Yoi1 = Da(=an1)Ts(n) Ga, (Vo) (12)

Let (ay)nen be the solution of the difference equation

Qpy1 =02 +a,, neEN, a=0, (13)
then

1 0

1 0

1 0

. 1 - —a?

[3(—an1)3(0n)Ga,(Ya) = D13(—ai) Gon(Yn) + On (14)

Diy3(—a?) 0

1 0

1 0
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For the initial value 02 = 0, the iterates o2 stay zero. Eliminating the o2 variable and
including (13), we finally arrive at

i (p(0, 2, T)S,e PO D/a 4 S, 4 Ts,)

1;[ - (Gsin(01(z,)) + T a,ll)
Sni1 1;[ 5 (G sin(Oy(z,)) + Tz ai)
al ‘ 1
n+1
aiﬂ Dlg(—&i)Dlg(—Oén)Dlg(—a%)Dlg(Oén) (1 — M)'Un +Ms |0
Un+1 0
= 15
Zntl Dy3(—aZ)Dyi3(—an)Dia(—ay,) (15)
i1 1
Br | Dis(an)zn + £D12(8)) D13(52) | 0| — Dis(an)v,
(77| 0
By + o' —a,
By +¢°
az + oy,

2.4 A 2D frozen model in discrete time

We find the frozen form of the two-dimensional model (1) by reducing the model from Sec.
2.3 to the (z1,x)-plane. Choose T, = T,1, f = (31, and 0 = ¢* = a® = v3 = 23 in the
three-dimensional model. By Proposition 1, movement in xs-direction cannot occur and
consequently, the last transformation from (9) to (15) which compensates this movement, is
not needed. Thus, we get the frozen form of (1) by inserting the values from above into (9):

—p(2,T)

ﬁ (p(O,z,T)Sve a + S, + T, s)
1+1Ta (G sin (G(z)) + T, a)

B D, <(1 _ Mo+ Ms (é)) | (16)

b (1) )

B+e—a

QNS 2 ®»

Note that due to our construction, linear trajectories as well as circular trajectories
are transformed for time-independent parameters ¢, ¢ into fixed points. This generalizes
the approach, proposed in [Hiils, 2005, where linear and circular trajectories are treated
separately.

2.5 Analysis of three-dimensional trajectories

The transformation of the system of the virtual fly into a frozen form, enables a formal
analysis of the dichotomous behavior, whether the pursuer catches the target or follows it
at constant distance. This change of behavior depends on the size and on the velocity (see

12



[Hiils, 2005]) as well as on the chosen trajectory of the target. We analyze the latter de-
pendence, using bifurcation tools, see [Dhooge et al., 2003, Kuznetsov, 2004, Wiggins, 2003].
For the forthcoming computations, we fix the speed of the target by choosing ¢ = 1.25.

Here, we only consider targets on trajectories, spiralling upwards. In Fig. 6, 1500 iterates,
with same initial value, of the original system (5) and of the transformed systems (9) and
(15) are shown.

20

40 T3 o
Zs3
20 _fg
. °
100
18 = ° o 100 To o
0 s 0% T
X9 Iy

Figure 6: 1500 iterates of (5) for T =15, £ = 1.25, ' = 0.0125, p? = 0,
(3?2 = Z. The trajectories of the target (in red) and the trajectory or fized
position of the pursuer (in black) are shown for the original system (left),
(9) (middle) and (15) (right). The arrows indicate the position of fized

points in the frozen systems.

As one can see, a rigid trajectory on which the pursuer follows the target at constant
distance (left diagram) corresponds to a fixed point in (9) as well as in (15). Note that we
choose p? = 0 and as a consequence, see (9), the course of the target in x3-direction is linear.
In this special case, only the first two transformations are necessary, in order to transform
rigid trajectories (Fig. 6, left), into fixed points (Fig. 6, middle).

From the construction of our model (5), one sees that ¢! influences the curvature of the
trajectory of the target, while 32 defines its gradient. We show that for certain values of these
two parameters, stable fixed points of (9) exist, that correspond to rigid trajectories in the
original system (5). For a fixed size T' = 7.5, we choose 3% = 0.1 and continue the fixed points
of (9) w.r.t. the parameter p'. Fig. 7 shows the resulting bifurcation diagram, where stable
fixed points are black, while unstable fixed points are plotted in red. The change of stability
is caused by Neimark-Sacker bifurcations (NS), cf. [Kuznetsov, 2004, Wiggins, 2003], which
are the discrete time analog of Hopf bifurcations in continuous time systems. Also fold-
or limit point bifurcations (LP) occur, but only for fixed points that are already unstable.
The bifurcation diagrams, shown in this article are computed, using the bifurcation toolbox
MATCONT, see [Dhooge et al., 2003].

At Neimark-Sacker bifurcations, stable invariant curves are born. The computation of
these curves in discrete time systems is quite involved and not supported by the current
version of MATCONT. In Sec. 3, we introduce a continuous time model of the virtual fly,
exhibiting the same type of bifurcations at slightly different parameters. For continuous
time systems MATCONT supports the computation of invariant curves, i.e. periodic orbits,
see Sec. 3.3, Fig. 12.

The bifurcation diagram in Fig. 7 depends strongly on the chosen target size 7. For
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/_(/ stable fixed points

21

-0.1 -0.05 0 0.05 0.1 0.15

Figure 7: Continuation of fived points for fized T = 7.5, 3% = 0.1 w.r.t.
the parameter ©'. A black line indicates stable and a red line unstable
fixed points.

T € {5, 8, 8.1, 9}, parts of the corresponding bifurcation diagrams are plotted in the upper
part of Figs. 8 and 9. A refined picture of the dependence on the target size T is given in
Fig. 10, where these bifurcation diagrams are plotted in 3D for T" € [3, 13].

In a second computation, the Neimark-Sacker bifurcations, by which the fixed points
gain or lose stability, are continued w.r.t. the parameters ¢! and 3%. Doing so, we find
regions in the (¢!, 3%)-parameter plane, where stable fixed points exist. These computations
are illustrated in the lower diagrams of Figs. 8 and 9. For parameter values in the stable
regions, marked with (§), a rigid trajectory exists for the original system (5), on which the
pursuer follows the target at constant distance. In the complementary areas, the numerical
computations from Sec. 3 suggest that there exist stable invariant curves. The way, these
curves influence the behavior of the pursuer is discussed in Sec. 3.
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Figure 8: The upper diagrams show the continuation of fixed points w.r.t.
the parameter o' for fized 3> = 0.1, T =5 (left) and T =8 (right). The
change of stability (red: unstable, black: stable) is caused by Neimark-
Sacker bifurcations, cf. Fig. 7. The continuation of Neimark-Sacker bi-
furcations w.r.t. the parameters ' and (5% is shown in the lower diagrams.
Regions in which stable fixed points exist have been marked with ().

T =281 T=9
60! 60!
40/ 40/
21 21
20! 20!
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Figure 9: The same illustration as in Fig. 8 for T'= 8.1 (left) and T =9
(right).
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Figure 10: Bifurcation diagram for fivzed 3* = 0.1, cf. Fig. 7, with
T € [3,13]. Stable and unstable fized points are plotted in black and
red, respectively. The diagram on the plane T = 8 is separately drawn

(right).

3 A continuous time model of the virtual fly

In this section, we introduce a continuous time version of the virtual fly that is modelled after
the discrete time system, introduced in Sec. 2. A bifurcation analysis for this model shows
the same phenomena that we already observed in the discrete time model at slightly different
parameter values. We illustrate this by computing the bifurcation diagram from Fig. 10 also
for the continuous time model. Note that it is well known, see e.g. [Hofbauer & Iooss, 1984],
that Hopf bifurcations in continuous time systems lead under discretization to Neimark-
Sacker bifurcations, where the value of the bifurcation parameter changes slightly.

The computation of periodic orbits that emerge from Hopf bifurcations is for continuous
time systems supported by MATCONT, cf. [Dhooge et al., 2003]. The corresponding pictures
are given in Sec. 3.3. We indicate the relevance of these periodic orbits on the behavior of
the pursuer.

3.1 Setup of the model

First, we apply the first order low-pass filter Uj = %(UI —Up) with the setting 7 = Ty, Uy = s,
Ur = p(x,2,T)S,e P@=1/a 1 G and get

1
s = T (,0(:17, 2, T)Se P@sD/a L g s) )
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The error angles a', a® are defined as (see [Hiils, 2005] for more details)

(@) — Ti (Gsin(0:(Dis(—0®) Drs(—)(z — 7)) — @),
(@) = Ti (Gsin(B(Dis(—0%) Drs(—0") (= — 2))) — a?)

The remaining equations are constructed, such that a discretization with the explicit
Euler-method with step-size 1 leads to the discrete time system (5). The resulting continuous
time model of the virtual fly is:

7 (p(, 2, T)S,e~ @D/ G — s)
TLl (G sin(91(Dlg(—a2)D12(—al)(z — .TL’)))
(G Sil’l(QQ(Dlg(—0'2)D12(—O'1)(Z — .TL’)))

a

a2

a’)

1
a?)

V)

i
T,»

N =N

9 9 2 2

— M —’U+8D12(O'1)D13(0'2)

OO =

(17)

v

ISR TN

—

1
(D12(B)Di3(6%) | 0
0

Sol
302

ey
no

3.2 Transformation into local coordinates

As in the discrete time case, we transform (17) in three steps into local coordinates. The
first two steps are equivariant transformations with the same operators I'y, I's, defined in
(6) and (8). The resulting system in the reduced set of variables

X = (S7 a17a270-27lu7 Z? /617/62>T7
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which corresponds to (9), has the form

T%,- (p(ou Z,T)Sve_p(OvaT)/q 1+ 8, — S)

Til (Gsin(0y(D13(—0?)z2)) — at)
!
s Tl (Gsin(fy(D13(—0?)z2)) — a?)
al a? 2
) a
a 1
2
01-) — | M| —-v+ SD13(0'2) 0 — CL1L12U , (18)
0
< 1
1
g2 KDlg(ﬂl)D13(62) 0 — vV — a1L12z
0
o — a!
o
where
0 -1 0 00 —1
L12 = 1 0 0 s L13 =10 O 0
0 0 O 1 0 O

In the third step, we define the change of variables Y = I's(—
satisfies o' = a?, we finally get the system

)X, with I's as in (10). If

7, (0(0,2,1)Spe 00D/ 4 5, — )
f (G 81:(1(91( )) al)
s\’ TL (Gsin(By(2)) — a?)
1 (L
a
0,2
v M| —v + s — a,lDlg L12D13( )U — 0,2L13U
z 1 ’
ﬂl
52 D13(—a)€D12( D13 62 O — UV — CLlDlg( )L12D13(OZ)Z — a2L132
0

e 901 _ CLl

302

a2

which is the continuous time equivalent of (15).

3.3 Analysis of three-dimensional trajectories

The analysis of upwards spiralling trajectories of the target gives similar results to the one,
introduced in Sec. 2.5 for the discrete time case.

A bifurcation diagram for fixed 3% = 0.1, T' € [3,13] w.r.t. the parameter ¢!, see Fig.
10, exhibits the same type of bifurcations as in the continuous time case. Comparing Figs.
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Figure 11: Bifurcation diagram for fized 3* = 0.1 with T € [3,13]. Stable
and unstable equilibria are plotted in black and red, respectively. The
diagram on the plane T = 8 is separately drawn (right).

10 and 11, one sees that the value of the parameter T, where these bifurcations occur in
discrete and continuous time, is slightly shifted.

20

Figure 12: Continuation of equilibria for fized T = 7, % = 0.1 w.r.t.
the parameter @', cf. Fig. 7. The periodic orbits that are born at Hopf

bifurcations (H) are also shown. Stable and unstable objects are plotted
in black and red, respectively.

In Fig. 12, the continuous time version of Fig. 7 is given, where periodic orbits that emerge
from Hopf bifurcations are also displayed. Note that these orbits take over the stability, the
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black equilibria lose at Hopf bifurcations. Periodic orbits lead to trajectories in the original

system, on which the male fly pursues the target at a periodically fluctuating distance, see
Fig. 13.

40

2] 20

0 500 1000 1500 2000 2500 3000 3500 4000
t

Figure 13: For T = 7, ? = 0.1, ¢' = 0.0272 and a starting point in
a neighborhood of the periodic orbit, the distance between pursuer and
target, ||z(t)|| in (18), is plotted over t [ms]. The dotted line denotes the
catching distance.

When the fixed point or a periodic orbit lose stability at a bifurcation, the attraction to
this object in a neighborhood of the bifurcation is quite weak. For parameters close to the
bifurcation, the pursuer will probably meat (and catch) the target on its way to the weakly
stable state.

The occurrence of these bifurcations depends strongly on the choice of the parameter 7.
For T' = 6.5, see Fig. 14, the periodic orbits became much larger. Furthermore, they lose
their stability via a Neimark-Sacker bifurcations (change of color from black to red).

20

Figure 14: Continuation of equilibria and periodic orbits for fixed T =
6.5, 8% = 0.1 w.r.t. the parameter p'. The periodic orbits lose their
stability via Neimark-Sacker bifurcations. Stable and unstable objects are

plotted in black and red, respectively.
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Starting close to an unstable periodic orbit, the distance between pursuer and target is
shown in Fig. 15. For the chosen initial point close to the periodic orbit, the distance gets
after a short time less than S5mm, which means that the pursuer catches the target. Thus
for decreasing T catching instead of pursuing becomes more likely.

0 500 1000 1500 2000 2500 3000 3500 4000
t

Figure 15: For T = 6.5, 2 = 0.1, ¢! = 0.0163 and a starting point close
to the periodic orbit, the distance between pursuer and target, ||z(t)|| in
(18), is plotted overt [ms]. The dotted line denotes the catching distance.

4 Conclusion

In this paper, a three-dimensional blow-fly model is introduced in discrete as well as in
continuous time. These insects exhibit a dichotomous behavior in biological experiment.
Either they catch the target or pursue it at constant distance on a rigid trajectory.

After a transformation in the local coordinates of the pursuer, using equivariance prop-
erties, bifurcation tools can be applied. We put special emphasis on the influence of the
course of the target on the pursuit behavior of male flies.

For upwards spiralling trajectories of the target, we analyze the existence of rigid trajec-
tories, which correspond to stable fixed points of the frozen system. The parameters for our
analysis are gradient and curvature of the trajectory of the target. Furthermore, we detect
areas in the parameter plane, for which stable fixed points exist.

Note that this analysis gives only local results. The occurrence of a stable fixed point does
not exclude the coexistence of other stable objects, like invariant curves or stable attractors,
which do not correspond to rigid trajectories in the original system. On a periodic orbit, for
example, the pursuer takes up a larger part of the space, thus catching becomes more likely.
Furthermore, when the parameters in the two-parameter diagram are close to the boundary
of the stable region, the attraction of the corresponding fixed point is quite weak. Therefore,
it will take a long time, until this fixed point attracts the pursuer and consequently, the
pursuer may catch the target on its way to this stable state.

Summarizing this, the above described analysis can only provide existence results of rigid
and of time periodic trajectories in continuous time as well as of rigid and quasi-periodic
trajectories in discrete time. Furthermore, the analysis shows that the simple control system
of the virtual fly in 3D is capable to generate complicated dynamics. Explicit decision making
is not needed in order to generate dichotomous behavior.
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For our analysis, we choose regular trajectories, for which the resulting model is au-
tonomous. The question arises, whether similar results can also be derived for more arbitrary
trajectories of the target, that lead to non-autonomous dynamical systems. This is a mathe-
matically challenging area, since notions of non-autonomous bifurcations and corresponding
bifurcation results are currently under development, see for example [Langa et al., 2006,
Rasmussen, 2006, Hiils, 2007].
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Appendix A Equivariant dynamical systems

Consider the discrete time dynamical system
Tpr1 = F(x,), neN (19)

where F': R¥ — R¥ is a sufficiently smooth diffeomorphism.

F may represent, for example, the model of the virtual fly. If the target moves on a linear
trajectory, the pursuer also flies along this direction and additionally performs complicated
moves in order to catch the target. To analyze the occurrence of rigid trajectories and
their stability, the movement along the linear trajectory is unimportant and for the analysis
it is even disturbing, since fixed states cannot exist. A way out of this dilemma lies in a
transformation into a comoving coordinate system. Formally, this can be archived as follows.

Denote by I'(u) some transformation, e.g. a rotation (where u is the angle, u € U =
St = R/2.z) or a translation (where u is the shift, u € U = RF), fulfilling

D(ug)T(uq) =T(ug +uq) for all uy, us € U. (20)
Assume that the so called equivariance relation
F(L(u)z) = T'(u)F(z) (21)

holds for all u € U, see [Chossat & Lauterbach, 2000, Golubitsky & Stewart, 2002]. Let
(un)nen be a sequence in U. Define a second dynamical system by

Yns1 = H(yn) == F(D(uny1)yn), n€N. (22)

The following proposition shows that orbits of (22) can be transformed into orbits of the
original system (19). Thus the two systems exhibit the same dynamical phenomena. There-
fore, one chooses a transformation I'(w), fulfilling (20), such that that the system (22) is as
simple as possible.

Proposition 2 Let (2,)nen be an orbit of (19). Then
Yn = D(uy,) ... T(ug)x,, néeN
defines an orbit of (22).
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