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Abstract

Relative equilibria are special solutions of partial differential equations
(PDEs), which are stationary in an appropriate comoving frame of reference.
Such solutions occur frequently in biological and chemical models, e.g. when
describing pattern formation of reaction-diffusion equations. Examples are
traveling waves in 1d, planar and spiral waves in 2d and scroll waves in 3d.
If the equation has a special symmetry property - equivariance, then one can
transform the equation into the comoving frame during the computation of
the solution. We will show that this can be very convenient for numerical
computations. We have implemented the resulting “frozen equation” in Fem-
lab and conducted several numerical experiments for different examples in
1d and 2d such as traveling waves and spirals in the FitzHugh-Nagumo and
the complex Ginzburg-Landau system. Moreover, we describe some of the
problems which arise because of the additional convective terms which have
been introduced by the freezing transformation.

1 Introduction

The simplest examples of relative equilibria are traveling wave solutions of parabolic
PDEs (e.g. reaction-diffusion equations)

ut = Duxx + f(u), u(·, 0) = u0, x ∈ R, u(x, t) ∈ R
m, D ∈ R

m,m.

These are solutions of the form u(x, t) = v̄(x− λ̄t), where the waveform v̄ does not
depend on time and λ̄ ∈ R is the velocity of the wave. Via the ansatz u(x, t) =
v(x − γ(t), t), λ(t) = γ′(t) and by adding a phase condition which compensates
for the additional degree of freedom, the PDE can be transformed into a partial
differential algebraic equation (PDAE) of the form

vt = Dvxx + f(v) + λvx, v(·, 0) = u0, λ(0) = λ0

0 = ψ(v, λ).
(1)
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Note, that there are different possible choices for the phase condition ψ, which
we will discuss later. In this framework the traveling wave (v̄, λ̄) is a stationary
solution and the method is a transient method, i.e. during time evolution, the
solution of (1) converges to (v̄, λ̄).
Using this method of “freezing” makes it possible to observe phenomena which are
visible after a transient phase only, whereas by direct numerical simulation e.g. a
traveling wave leaves the finite domain of computation after short time.

2 Methods

The general approach [2],[8] is not restricted to traveling waves, but includes for ex-
ample rotating waves in 1d or spiral waves in 2d. We will be describe this approach
using the more abstract setting of an evolutionary equation in a Banachspace X
(e.g. X = L2, X = BCunif)

ut = F (u), u(0) = u0, (2)

which satisfies the equivariance relation F (a(γ)u) = a(γ)F (u), where a denotes
the action of a finite dimensional Lie group G on X

a : G → GL(X), γ 7→ a(γ), where

a(γ1 ◦ γ2) = a(γ1)a(γ2), a(e) = I, e = unit element in G.

Examples are

G = R, [a(γ)u](x) = u(x − γ) (3)

G = R × S1, γ = (τ, ω), [a(γ)u](x) = exp(−iω)u(x − τ) (4)

G = SE(2) = S1
⋉ R

2, γ = (ρ, τ), γ1 ◦ γ2 = (ρ1 + ρ2, τ1 + Rρ1
τ2), (5)

[a(γ)u](x) = u(R−ρ(x − τ))

where Rρ =
(

cos(ρ) − sin(ρ)
sin(ρ) cos(ρ)

)

is a rotation matrix.

Again, we use a separation ansatz u(t) = a(γ(t))v(t), which decouples the motion
of the solution form (e.g. the wave form) from the motion which is due to the
group operation (e.g. translation). In order to single out a unique solution from
the whole family of solutions an additional constraint - a so called phase condition
- is added and equation (2) is transformed into

vt = F (v) − [da(e)v]λ

γt = dLγ(e)λ

0 = ψ(v),

(6)
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where da(e) denotes the derivative of the action a w.r.t. γ at the unit element
e ∈ G and dLγ denotes the derivative of the left multiplication with γ (for more
details see [10]). The equation for the group element γ describes the motion along
the group and is decoupled from the other equations.
To be more specific, for a parabolic equation ut = D∆u+f(u,∇u) we obtain from
the first and the second equation of (6) the form:

vt = D∆v + f(v,∇v) − S(v,∇v)λ, x ∈ Ω, t ≥ 0

0 = ψ(v,∇v)
(7)

where S(v,∇v)λ =
∑d

i=1 Si(v,∇v)λi, d = dim(G) and where we denoted the
realization of the phase condition again with ψ. We assume that the Si are linear
differential operators of order ≤ 1 which can be written as

Si(v,∇v)(x) = S0
i (x)v(x) + S1

i (x)∇v(x), S0,1
i (x) ∈ R

m,m.

The phase condition leaves some freedom of choice. We consider the following two
possibilities

ψfix(v) =

∫

Ω
S(v0,∇v0)T (v − v0)dx and ψorth(v,∇v) =

∫

Ω
vT
t S(v,∇v)dx.

The first condition fixes the solution w.r.t. the initial value v0. This requires that
the initial value has to be chosen in such a way that the regularity of the phase
condition is guaranteed. Alternatively one can use a given template function
instead of v0. The second condition enforces the minimization of the temporal
change of the shape ‖vt‖L2

.

3 Implementation

The PDAE (7) is implemented in Femlab by coupling a general PDE mode to
a to a boundary mode (in 1d) or a weak point mode (in 2d) which enforces the
phase condition. For ψfix another mode is added for the template function. The
coupling between the constraint and the other equations is implemented by using
coupling integration variables. In all computations we used quadratic lagrange
elements (linear elements give similar results).

4 Numerical Results

We illustrate the method on different examples in 1d and 2d FitzHugh-Nagumo
and the complex Ginzburg-Landau system. These systems describe different as-
pects of signal propagation in heart tissue and exhibit different patterns such as
traveling waves, spirals and rotating vortices. [4], [3].
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4.1 QCGL, 1d

The cubic quintic Ginzburg Landau equation [9],[11]

ut = αuxx + δu + f(u), f(u) = β|u|2u + γ|u|4u, δ ∈ R, α, β, γ ∈ C (8)

in one space dimension shows a variety of coherent structures, like stable pulse
solutions, fronts, sources, sinks, etc. . Moreover, the equation has regimes where
the behavior is intrinsically chaotic. For certain parameter values this equation
exhibits stable rotating pulses [9] and unstable pulses, as well as rotating and
traveling fronts. All these solutions can be written in the form

u(x, t) = exp(−iλ̄ρt)v̄(x − λ̄τ t).

The equation (8) is equivariant w.r.t. the group G = S1×R given in (4). Therefore
using the Ansatz u(x, t) = exp(−iγρ(t))v(x − γτ (t)), γ′

τ = λτ , γ′

ρ = λρ and
adding e.g. the fixing phase condition ψfix we obtain

vt = αvxx + δv + f(v) + λτvx + iλρv,

0 = 〈v0
x, v − v0〉L2

, 0 = 〈iv0, v − v0〉L2

(9)

i.e. the additional symmetry terms are given by S(v)λ = λτvx + iλρv, λ =
(λτ , λρ). For the parameter set a = 1, d = −0.1, b = 3 + i, g = −2.75 + i [9], one
can see on the left of Figure 1 a stable rotating pulse evolve due to equation (8)
(the real part is shown). On the right you see the computation for equation (9).
After a short transient time, the wave form stabilizes and the rotional velocity λρ

and the translational velocity λτ become constant, as shown in Figure 2.

Figure 1: QCGL, rotating vs. frozen wave, real part
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Figure 2: QCGL, time evolution of λ

4.2 FHN 1d

The well known FitzHugh-Nagumo system

ut = ∆u + u −
1

3
u3 − v,

vt = φ(u + a − bv)

which models nerve conduction, is equivariant w.r.t. translation and possesses
traveling wave solutions [6], [7]. Thus the transformed equation is given by (7).
We used the parameters a = 0.7, b = 0.8, φ = 0.08 and Neumann boundary
conditions on an interval [0, 130] with hmax = 0.5.
In Figure 3 the time evolution of the u-component of a given initial profile (v
has been set initially to the stationary value -0.62426) is shown. The initial hump
splits into two traveling components and after some time only the left moving pulse
exists which finally leaves the computational window. In Figure 4 the results of
the “freezing method” with the two different phase conditions are compared. If the
orthogonality phase condition ψorth is used, then the left moving pulse is frozen,
whereas the right moving pulse stabilizes at the position of the initial hump if the
fixing phase condition ψfix is used. Correspondingly λ converges to velocities of
opposite sign.
As we see in this example, our method can only freeze one wave at a time. Which
one is selected, depends on the type of phase condition used.
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Figure 3: FHN, initial values, traveling wave
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Figure 4: FHN, different phase conditions, time evolution of u and λ
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4.3 QCGL 2d

The 2d quintic Ginzburg Landau system (8) posseses strongly localized solutions,
so called spinning solitons. These occur at parameter values a = (1 + i)/2, d =
1/2, b = 2.5 + i, g = −1 − 0.1i, see [5]. This equation is equivariant w.r.t. to the
action a of the four dimensional group SE(2) × S1 ∋ γ = (ρ, τ, ω), τ = (τx, τy),
given by

[a(γ)v] ( x
y ) = exp(iω)v(R−ρ((

x
y ) − ( τx

τy
)))

leading to the symmetry terms S(v)λ = λ1(xvy − yvx) + λ2vx + λ3vy + λ4iv.

Figure 5: QCGL, rotating vs. frozen wave

With the numerical parameters R = 20, hmax = 1, we start at an initial profile
that is given in polar coordinates (r, ϕ) by u0(r, ϕ) = 0.2 exp(iϕ)r exp(−(r/7)2).
Then solving (8) directly, a localized vortex solution develops the real part of which
is displayed in the left of Figure 6. On the left of Figure 5 the corresponding time
evolution of a slice along the x-axis is shown. On the right you see the same for
the computation of the frozen system.
After a short transient time the algebraic variables stabilize at fixed values, the
translational velocities becoming zero.
A similar computation has been carried out for a slightly different value of b =
2.6 + i. Here a rotating spiral develops, the time evolution of which is shown
in Figure 8. Since here we started from the spiral profile, the algebraic variables
converge to the stationary values very fast, where again the translational velocities
are zero.
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Figure 6: QCGL, real part of rotating wave at t=150, time evolution of λ

Figure 7: QCGL, rotating vs, frozen wave
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Figure 8: QCGL, real part of initial value, time evolution of λ
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4.4 Barkley 2d

The last example is the well known Barkley system which is a variant of the FHN
system [1] given by

ut = ∆u +
1

ǫ
u(1 − u)(u −

v + b

a
)

vt = d∆v + u − v.

The equation is equivariant with respect to the action of SE(2), (see (5)), and we
have S(v)λ = λ1(xvy − yvx) + λ2vx + λ3vy.
We test our method in the parameter regime of rigidly rotating spirals with ǫ = 1

50
and a = 0.75, b = 0.01, d = 0.1.
Since the diffusion term in the second equation is relatively small, leading to a
system of mixed hyperbolic-parabolic type for d = 0, the use of a stabilization
method is essential. Thus we coupled two convection-diffusion modes for u and v
with a weak point mode which enforces the phase condition. As shown in Figure
9, after some initial oszillations the solution stabilizes for the frozen system. The
time evolution of the corresponding algebraic variables is shown in Figure 10. We

Figure 9: Barkley, rotating vs. frozen wave

observed difficulties when decreasing d further to zero. Then the large convective
terms at the boundary become effective and destroy the solution after a short
time.

9



0 20 40 60 80
0

0.5

1

1.5

2

2.5

t
λ

 

 

λ
1

λ
2

λ
3

Figure 10: Barkley, u-component of inital value, time evolution of λ

5 Conclusions

We have presented a method which enables to compute relative equilibria as sta-
tionary solutions of a transformed system via a transient method. Using the time
dependent solver for the “freezing” one can obtain initial values for the station-
ary solver. These stationary solutions can then be continued w.r.t. to a system
parameter by using the parametric solver.
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