
Spectral Analysis of Localized Rotating Waves
in Parabolic Systems

Wolf-Jürgen Beyn1,3

Department of Mathematics
Bielefeld University
33501 Bielefeld
Germany

Denny Otten2,3

Department of Mathematics
Bielefeld University
33501 Bielefeld
Germany

Date: January 7, 2018

Abstract. In this paper we study spectra and Fredholm properties of Ornstein-Uhlenbeck operators

Lv(x) := A4v(x) + 〈Sx,∇v(x)〉+Df(v?(x))v(x), x ∈ Rd, d > 2,

where v? : Rd → Rm is the profile of a rotating wave satisfying v?(x) → v∞ ∈ Rm as |x| → ∞, the
map f : Rm → Rm is smooth, the matrix A ∈ Rm,m has eigenvalues with positive real parts and
commutes with the limit matrix Df(v∞). The matrix S ∈ Rd,d is assumed to be skew-symmetric
with eigenvalues (λ1, . . . , λd) = (±iσ1, . . . ,±iσk, 0, . . . , 0). The spectra of these linearized operators
are crucial for the nonlinear stability of rotating waves in reaction diffusion systems. We prove under
appropriate conditions that every λ ∈ C satisfying the dispersion relation

det
(
λIm + η2A−Df(v∞) + i〈n, σ〉Im

)
= 0 for some η ∈ R and n ∈ Zk, σ = (σ1, . . . , σk)

> ∈ Rk

belongs to the essential spectrum σess(L) in Lp. For values Reλ to the right of the spectral bound for
Df(v∞) we show that the operator λI −L is Fredholm of index 0, solve the identification problem for
the adjoint operator (λI − L)∗, and formulate the Fredholm alternative. Moreover, we show that the
set

σ(S) ∪ {λi + λj : λi, λj ∈ σ(S), 1 6 i < j 6 d}

belongs to the point spectrum σpt(L) in Lp. We determine the associated eigenfunctions and show
that they decay exponentially in space. As an application we analyze spinning soliton solutions which
occur in the Ginzburg-Landau equation and compute their numerical spectra as well as associated
eigenfunctions. Our results form the basis for investigating nonlinear stability of rotating waves in
higher space dimensions and truncations to bounded domains.
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1. Introduction
In the present paper we study operators obtained from linearizing reaction-diffusion systems

(1.1)
ut(x, t) = A4u(x, t) + f(u(x, t)), t > 0, x ∈ Rd, d > 2,

u(x, 0) = u0(x), t = 0, x ∈ Rd,

where A ∈ Rm,m has eigenvalues with positive real part, f : Rm → Rm is sufficiently smooth, u0 : Rd → Rm
are initial data and u : Rd × [0,∞)→ Rm denotes a vector-valued solution.
Our main interest is in rotating wave solutions of (1.1) of the form

(1.2) u?(x, t) = v?(e
−tSx), t > 0, x ∈ Rd, d > 2

with space-dependent profile v? : Rd → Rm and skew-symmetric matrix S ∈ Rd,d. The term e−tS

describes rotations in Rd, and hence u? is a solution rotating at constant velocity while maintaining
its shape determined by v?. In general, this motion will be periodic only if the eigenvalues of S are
rationally dependent but quasiperiodic otherwise. The profile v? is called (exponentially) localized, if it
tends (exponentially) to some constant vector v∞ ∈ Rm as |x| → ∞.
Transforming (1.1) via u(x, t) = v(e−tSx, t) into a co-rotating frame yields the evolution equation

(1.3)
vt(x, t) =A4v(x, t) + 〈Sx,∇v(x, t)〉+ f(v(x, t)), t > 0, x ∈ Rd, d > 2,

v(x, 0) =u0(x), t = 0, x ∈ Rd.
The diffusion and drift term are given by

(1.4) A4v(x) := A

d∑
i=1

∂2v

∂x2i
(x) and 〈Sx,∇v(x)〉 :=

d∑
i=1

d∑
j=1

Sijxj
∂v

∂xi
(x).

The pattern v? itself appears as a stationary solution of (1.3), i.e. v? solves the rotating wave equation

(1.5) A4v?(x) + 〈Sx,∇v?(x)〉+ f(v?(x)) = 0, x ∈ Rd, d > 2.

We write (1.5) as [L0v?](x) + f(v?(x)) = 0 with the Ornstein-Uhlenbeck operator defined by

(1.6) [L0v] (x) := A4v(x) + 〈Sx,∇v(x)〉 , x ∈ Rd.
When proving nonlinear stability of the rotating wave, a crucial role is played by the linearized operator

(1.7) [Lv] (x) := [L0v] (x) +Df (v?(x)) v(x), x ∈ Rd.
The aim of this paper is to analyze Fredholm properties and spectra of the Lp-eigenvalue problem associated
with the linearization L,
(1.8) [(λI − L) v] (x) = 0, x ∈ Rd.
As usual, the Lp-spectrum σ(L) of L is decomposed into the disjoint union of point spectrum σpt(L) and
essential spectrum σess(L), cf. Definition 2.6,

(1.9) σ(L) = σess(L) ∪̇σpt(L).

In Section 3 we evaluate the dispersion relation associated with the limit operator,

(1.10) L∞ = L0 +Df(v∞)

and show that its solutions belong to σess(L). For every λ ∈ C with Reλ larger than Reσ(Df(v∞))
we prove in Section 4 that the operator λI − L is Fredholm of index 0 in Lp-spaces. Finally, in Section
5 we compute those eigenvalues on the imaginary axis which are caused by Euclidean equivariance of
the underlying equation, and we prove exponential decay in space for the corresponding eigenfunctions.
The whole approach makes extensive use of our previous results on the identification problem and on
exponential decay estimates for the wave itself and for solutions of the linearized equation, see [5, 30, 31].
While there is a well-developed theory of stability of closed operators and their spectra under small and
relatively compact perturbations [24, Ch.4], [15, Ch. IX], the main work in this paper is to identify suitable
perturbations of the Ornstein-Uhlenbeck operator (1.6) which allow to determine parts of the essential
spectrum and of the point spectrum for the general linear operator (1.7). Let us finally note that the
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results of the paper are extensions of the PhD thesis [29], in particular concerning the Fredholm properties
of the linearized operator in Section 4.

2. Assumptions and main results
2.1. Assumptions. The following conditions will be needed in this paper and relations among them will
be discussed below. The conditions are essential for applying previous results from [5, 29, 30, 31].

Assumption 2.1. For A ∈ Km,m with K ∈ {R,C}, 1 < p <∞ and q = p
p−1 consider the conditions

A is diagonalizable (over C),(A1)
Reσ(A) > 0,(A2)

Re 〈w,Aw〉 > βA|w|2 ∀w ∈ Km, for some βA > 0,(A3)

|z|2Re 〈w,Aw〉+ (p− 2)Re 〈w, z〉Re 〈z,Aw〉 > γA|z|2|w|2 ∀w, z ∈ Km, for some γA > 0,(A4p)

|z|2Re 〈w,AHw〉+ (q − 2)Re 〈w, z〉Re 〈z,AHw〉 > δA|z|2|w|2 ∀w, z ∈ Km, for some δA > 0,(A4q)

Assumption (A1) is a system condition and ensures that all results for scalar equations can be extended
to system cases. This condition is independent of all other conditions and is used in [29, 30] to derive
an explicit formula for the heat kernel of L0. A typical case where (A1) holds, is a scalar complex-
valued equation when transformed into a real-valued system of dimension 2. The positivity condition (A2)
guarantees that the diffusion part A4 is an elliptic operator. The strict accretivity condition (A3) is more
restrictive than (A2). In (A3) we use 〈u, v〉 := uHv with uH := ū> to denote the standard inner product
on Km. Recall that condition (A2) is satisfied iff there exists an inner product [·, ·] and some βA > 0
such that Re [w,Aw] > βA for all w ∈ Km with [w,w] = 1. Condition (A3) ensures that the differential
operator L0 is closed on its (local) domain Dp(L0), see [29, 31]. The Lp-dissipativity condition (A4p) is
more restrictive than (A3) and imposes additional requirements on the spectrum of A. This condition
originating from [11, 12], is used in [29, 31] to prove Lp-resolvent estimates for L0. A geometric meaning
of (A4p) can be given in terms of the first antieigenvalue of A (see [21, 22]), defined by

µ1(A) := inf

{
Re 〈w,Aw〉
|w||Aw|

: w ∈ Km, w 6= 0, Aw 6= 0

}
.

It is shown in [29, 32] that conditions (A4p), (A4q) are equivalent to lower bounds for µ1(A)

A is invertible and pµ1(A) > |p− 2| (to be read as A > 0 in case m = 1, K = R),(A5p)

A is invertible and qµ1(AH) > |q − 2| (to be read as AH > 0 in case m = 1, K = R).(A5q)

The first antieigenvalue µ1(A) can be considered as the cosine of the maximal (real) turning angle of vectors
mapped by the matrix A. Some special cases in which the first antieigenvalue can be given explicitly are
treated in [29, 32]. However, we emphasize that Lp-dissipativity (A4p) and Lq-dissipativity (A4q) for the
conjugate index q are generally unrelated except in case p = q = 2 and A = AH.
We continue with the rotational condition (A6) and a smoothness condition (A7).

Assumption 2.2. The matrix S ∈ Rd,d satisfies

S is skew-symmetric, i.e. S = −ST .(A6)

Assumption 2.3. The function f : Rm → Rm satisfies

f ∈ C2(Rm,Rm).(A7)

Later on in Section 6 we apply our results to complex-valued nonlinearities of the form

(2.1) f : Cm → Cm, f(u) = g
(
|u|2
)
u,

where g : R→ Cm,m is a sufficiently smooth function. Such nonlinearities arise for example in Ginzburg-
Landau equations, Schrödinger equations, λ−ω systems and many other equations from physical sciences,
see [29] and references therein. Note, that the real-valued version of f in R2m satisfies (A7) if g is in C2.
For differentiable functions f : Rm → Rm we denote by Df the Jacobian matrix in the real sense.
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Assumption 2.4. For v∞ ∈ Rm consider the following conditions:

f(v∞) = 0,(A8)
A,Df(v∞) ∈ Rm,m are simultaneously diagonalizable (over C),(A9)
Reσ (Df(v∞)) < 0,(A10)
Re 〈w,Df(v∞)w〉 6 −β∞ ∀w ∈ Km, |w| = 1 for some β∞ > 0.(A11)

Condition (A8) requires v∞ to be a steady state of the nonlinear equation while condition (A9) extends
Assumption (A1). As above, the coercivity condition (A11) is more restrictive than the spectral condition
(A10).
For matrices C ∈ Km,m with spectrum σ(C) we denote by ρ(C) := maxλ∈σ(C) |λ| its spectral radius and
by s(C) := maxλ∈σ(C) Reλ its spectral abscissa (or spectral bound). With this notation, we define the
following constants which appear in the linear theory from [5, 29, 30, 31]:

(2.2) amin =
(
ρ
(
A−1

))−1
, amax = ρ(A), a0 = −s(−A), a1 =

(
a2max

amina0

) d
2

, b0 = −s(Df(v∞)).

Recall the relations 0 < a0 6 βA and 0 < b0 6 β∞ to the coercivity constants from (A3) and (A11).
The theory in this paper is partially developed for more general differential operators, see (2.7) below.
For this purpose we transfer Assumption 2.4 to general matrices B∞. Later on, we apply the results to
B∞ = −Df(v∞).

Assumption 2.5. For B∞ ∈ Km,m consider the conditions

A,B∞ ∈ Km,m are simultaneously diagonalizable (over C) with transformation Y ∈ Cm,m,(A9B∞)
Reσ(B∞) > 0,(A10B∞)
Re 〈w,B∞w〉 > β∞ ∀w ∈ Km, |w| = 1 for some β∞ > 0.(A11B∞)

Let us recall for closed, densely defined operators A : D(A) ⊆ X → X on a complex Banach space X
the standard notions of resolvent set res(A) and spectrum σ(A) := C\res(A), see [24, Ch.III.6]. For the
essential spectrum there is quite a variety of definitions, see [24, 23, 15]. From the hierarchy of 5 versions
studied in [15, Ch.I.4,IX.1], we choose σe,4(A) which refers to the complement of the set of values where
the operator is Fredholm of index 0.

Definition 2.6. The point spectrum of A is defined by

σpt(A) := {λ ∈ σ(A) | λI −A is Fredholm of index 0},
and the essential spectrum of A by

σess(A) = C \ (σpt(A) ∪ res(A)) .

In Theorem 3.2 we will identify points λ ∈ σess(A) by constructing a singular sequence vn ∈ D(A) , i.e.
‖vn‖ = 1, (λI −A)vn → 0 and vn has no convergent subsequence, see [15, Ch.IX, Def.1.2]. According to
[15, Ch.IX, Thm.1.3] this information guarantees λ to be even in σe,2(A) which is a subset of our σess(A).
However, this is not sufficient to conclude that λ belongs to σe,1(A) in the terminology [15, Ch.IX] which
agrees with the essential spectrum used in [24, Ch.IV.6].

2.2. Outline and main results. In Section 3 we investigate the essential spectrum σess(L) of L from
(1.7), which is determined by the limiting behavior of v? at infinity. By a far-field linearization and
an angular Fourier decomposition, bounded eigenfunctions of the problem (1.8) are obtained from the
m-dimensional eigenvalue problem (Section 3.1)

(2.3)
(
λIm + η2A+ i〈n, σ〉Im −Df(v∞)

)
z = 0 for some η ∈ R and n ∈ Zk, σ = (σ1, . . . , σk)>

where ±iσ1, . . . ,±iσk are the nonzero eigenvalues of S and 1 6 k 6 bd2c. Obviously, (2.3) has a solution
0 6= z ∈ Cm if and only if λ ∈ C satisfies the dispersion relation for localized rotating waves

(2.4) det
(
λIm + η2A−Df(v∞) + i〈n, σ〉Im

)
= 0, σ = (σ1, . . . , σk)>
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for some η ∈ R, n ∈ Zk. Therefore, we define the dispersion set as follows:

(2.5) σdisp(L) := {λ ∈ C : λ satisfies (2.4) for some η ∈ R and n ∈ Zk}.

Theorem 2.7 (Essential spectrum at localized rotating waves). Let f ∈ Cmax{2,r−1}(Rm,Rm) for some
r ∈ N and let the assumptions (A4p), (A6), (A8), (A9) and (A11) be satisfied for K = C and for some
1 < p < ∞ with d

p < r if r 6 2 and d
p 6 2 if r > 3. Moreover, let ±iσ1, . . . ,±iσk denote the nonzero

eigenvalues of S. Then there is a constant K1 = K1(A, f, v∞, d, p) > 0 with the following property: For
every classical solution v? ∈ Cr+1(Rd,Rm) of

A4v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ Rd,

satisfying

sup
|x|>R0

|v?(x)− v∞| 6 K1 for some R0 > 0,

the dispersion set σdisp(L) from (2.5) belongs to the essential spectrum σess(L) of the linearized operator
L from (1.7) in Lp(Rd,Cm).

For the proof of Theorem 2.7, we consider differential operators

(2.6) LQ :
(
Dp(L0), ‖·‖L0

)
→
(
Lp(Rd,Cm), ‖·‖Lp

)
, 1 < p <∞

of the form

(2.7) [LQv](x) = A4v(x) + 〈Sx,∇v(x)〉 −B∞v(x) +Q(x)v(x), x ∈ Rd, d > 2,

where Q ∈ L∞(Rd,Cm,m) and Dp(L0), 1 < p < ∞ is the domain of the Ornstein-Uhlenbeck operator L0

from (1.6)

(2.8) Dp(L0) =
{
v ∈W 2,p

loc (Rd,Cm) ∩ Lp(Rd,Cm) : L0v ∈ Lp(Rd,Cm)
}
.

which becomes a Banach space with respect to the graph norm

(2.9) ‖v‖L0
= ‖L0v‖Lp(Rd,Cm) + ‖v‖Lp(Rd,Cm) , v ∈ Dp(L0).

If Q vanishes at infinity, i.e.

(2.10) ess sup
|x|>R

|Q(x)| → 0 as R→∞,

then [31, Thm. 5.1] asserts that LQ has the same maximal domain Dp(L0). According to [31, Thm. 6.1])
it even agrees with

Dpmax(L0) =
{
v ∈W 2,p(Rd,Cm) : 〈S · ,∇v〉 ∈ Lp(Rd,Cm)

}
,

and the graph norm ‖·‖L0
is equivalent to ‖·‖W 2,p + ‖〈S · ,∇〉‖Lp , see [29, Cor. 5.26]. Such a strong

characterization of the domain is rather involved to prove, but will not be needed here. The differential
operator LQ is a variable coefficient perturbation of the (complex-valued) Ornstein-Uhlenbeck operator
L0, which is studied in depth in [5, Sec. 3] and [29, Sec. 7]. In Section 3.2 we continue this study and
determine the essential spectrum σess(LQ) in Lp (see Theorem 3.2). An application of Theorem 3.2 to
−B∞ = Df(v∞) and Q(x) = Df(v?(x))−Df(v∞) completes the proof of Theorem 2.7. For the proof of
the decay (2.10) we use [5, Cor. 4.3] to deduce that v?(x)→ v∞ as |x| → ∞.
In Section 4 we analyze Fredholm properties of the linearized operator

(2.11) λI − L : (Dp(L0), ‖·‖L0
)→ (Lp(Rd,Cm), ‖·‖Lp)

with L given by (1.7), and of its adjoint operator

(2.12) (λI − L)∗ : (Dq(L∗0), ‖·‖L∗0 )→ (Lq(Rd,Cm), ‖·‖Lq ), q =
p

p− 1
,

defined by

(2.13) [L∗v] (x) = AH4v(x)− 〈Sx,∇v(x)〉+Df (v?(x))
H
v(x), x ∈ Rd, d > 2,
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For values Reλ > −b0, with b0 the spectral bound from (2.2), we show that the operator λI−L is Fredholm
of index 0. Moreover, we prove that its formal adjoint operator (λI − L)∗ from (2.13) and its abstract
adoint operator (see Definition A.1), coincide on their common domain

(2.14) Dq(L∗0) =
{
v ∈W 2,q

loc (Rd,Cm) ∩ Lq(Rd,Cm) : L∗0v ∈ Lq(Rd,Cm)
}
.

Then the Fredholm alternative applies and leads to the following result.

Theorem 2.8 (Fredholm properties of the linearization L). Let the assumptions (A4p) and (A6)–(A9)
be satisfied for K = C and for some 1 < p < ∞. Moreover, let λ ∈ C with Reλ > −b0 + γ for
some γ > 0, where −b0 = s(Df(v∞)) denotes the spectral bound of Df(v∞). Then there is a constant
K1 = K1(A, f, v∞, γ, d, p) > 0 such that for every classical solution v? ∈ C2(Rd,Rm) of

A4v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ Rd,(2.15)

satisfying

sup
|x|>R0

|v?(x)− v∞| 6 K1 for some R0 > 0,(2.16)

the following statements hold:
a) (Fredholm properties of L). The linearized operator

λI − L : (Dp(L0), ‖·‖L0
)→ (Lp(Rd,Cm), ‖·‖Lp)

is Fredholm of index 0.
b) (Eigenvalues of L). In addition to a), let Assumption (A4q) be satisfied for q = p

p−1 , and let λ ∈ σpt(L)

with geometric multiplicity 1 6 n := dimN (λI − L) < ∞. Then N ((λI − L)∗) ⊆ Dq(L∗0) also has
dimension n and the inhomogenous equation

(2.17) (λI − L)v = g ∈ Lp(Rd,Cm)

has at least one (not necessarily unique) solution v ∈ Dp(L0) iff g ∈ (N ((λI − L)∗))⊥, i.e.

(2.18) 〈ψ, g〉q,p = 0, for all ψ ∈ N ((λI − L)∗).

If the orthogonality condition (2.18) is satisfied, then one can select a solution v of (2.17) with

(2.19) ‖v‖L0
6 C ‖g‖Lp , ‖v‖W 1,p 6 C ‖g‖Lp ,

where C denotes a generic constant which does not depend on g.

An extension of Theorem 2.8 shows exponential decay of eigenfunctions and of adjoint eigenfunctions for
eigenvalues λ ∈ C with Reλ > −b0 + γ (Theorem 4.6), cf. [5, Thm. 3.5] for the case of eigenfunctions.
The idea of proof for Theorem 2.8 is to write λ = λ1 + λ2 with λ2 := −b0 + γ, λ1 := λ − λ2, and
to decompose the variable coefficient Q = Qs + Qc into the sum of a function Qs which is small with
respect to ‖·‖L∞ and a function Qc which is compactly supported on Rd. This allows us to decompose the
differential operator λI − LQ as follows

(2.20) λI − LQ = (I −Qc(·)(λ1I − L̃s)
−1)(λ1I − L̃s),

where L̃s := Ls − λ2I and Ls denotes a small variable coefficient perturbation, defined by

(2.21) [Lsv](x) = A4v(x) + 〈Sx,∇v(x)〉 −B∞v(x) +Qs(x)v(x), x ∈ Rd.
For a similar decomposition under more restrictive assumptions on B∞ see [4, 5, 29]. Then we show that
Qc(·)(λ1I−L̃s)

−1 is compact and λ1I−L̃s is Fredholm of index 0, which implies λI−LQ to be Fredholm of
index 0. A crucial ingredient for the proof of these two statements is the inclusion Dp(L0) ⊂W 1,p(Rd,Cm),
proved in [29, Thm. 5.8 & 6.8], [30, Thm. 5.7]. Further, it is essential to solve the identification problem
for the adjoint operator of LQ in Lq(Rd,Cm) along the lines of [31] (Lemma A.2). We show the existence
and uniqueness of a solution ṽ ∈ Dq(L∗0) of the resolvent equation (λI − LQ)∗ṽ = g ∈ Lq(Rd,Cm), using
the corresponding result from [5, Thm. 3.1]. For this we employ the Lq-dissipativity condition (A4q) for
the adjoint operator. Finally, the Fredholm alternative is applied to λI − LQ and (λI − LQ)∗ (Theorem
4.3) and exponential decay of (adojoint) eigenfunctions is shown (Theorem 4.4). These results hold for
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−B∞ = Df(v∞) and Q(x) = Df(v?(x)) − Df(v∞) and thus complete the proof of Theorem 2.8 (and
Theorem 4.6). Note that a similar reasoning is used in [5, 29] to prove exponential decay of the wave
profile v? itself.
In Section 5 we investigate the point spectrum σpt(L) of L, which is determined by the symmetries of
the underlying SE(d)-group action of dimension d(d+1)

2 . By the ansatz v = (Dv?)(Ex + b) for E ∈ Cd,d,
E> = −E and b ∈ Cd, eigenfunctions of the problem (1.8) (in the classical sense) are obtained from the
d(d+1)

2 -dimensional eigenvalue problem (Section 5.1)

λE = [E,S], λb = −Sb,
which is to be solved for (λ,E, b) with λ ∈ C, E ∈ Cd,d, E> = −E and b ∈ Cd. Let λSj , j = 1, . . . , d be
the eigenvalues of S repeated according to their multiplicity. Then we define the symmetry set

(2.22) σsym(L) := σ(S) ∪ {λSi + λSj : 1 6 i < j 6 d},
and show that σsym(L) belongs to the point spectrum σpt(L) of L in Lp. We determine their associated
eigenfunctions and show that they decay exponentially in space.

Theorem 2.9 (Eigenvalues on the imaginary axis and the shape of eigenfunctions). Let f ∈ C1(Rm,Rm),
S ∈ Rd,d be skew-symmetric, and let U ∈ Cd,d denote the unitary matrix satisfying ΛS = UHSU with
diagonal matrix ΛS = diag(λS1 , . . . , λ

S
d ) and eigenvalues λS1 , . . . , λSd ∈ σ(S). Moreover, let v? ∈ C3(Rd,Rm)

be a classical solution of (1.5), then the function v : Rd → Cm given by

v(x) = 〈Ex+ b,∇v?(x)〉 = (Dv?(x))(Ex+ b)(2.23)

is a classical solution of the eigenvalue problem (1.8) if E ∈ Cd,d and b ∈ Cd either satisfy

λ = −λSl , E = 0, b = Uel(2.24)

for some l = 1, . . . , d, or

λ = −(λSi + λSj ), E = U(Iij − Iji)UT , b = 0(2.25)

for some i = 1, . . . , d− 1 and j = i+ 1, . . . , d. Here, Iij ∈ Rd,d denotes the matrix having the entries 1 at
the i-th row and j-th column and 0 otherwise. All the eigenvalues above lie on the imaginary axis.

Theorem 2.10 (Point spectrum at localized rotating waves). Let f ∈ Cr−1(Rm,Rm) for some r ∈ N with
r > 3 and let the assumptions (A4p), (A6), (A8), (A9) and (A11) be satisfied for K = C and for some
1 < p <∞ with d

p 6 2. Then, for every 0 < ε < 1 there is a constant K1 = K1(A, f, v∞, d, p, ε) > 0 with
the following property: For every classical solution v? ∈ Cr+1(Rd,Rm) of

A4v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ Rd,
satisfying

sup
|x|>R0

|v?(x)− v∞| 6 K1 for some R0 > 0,

the symmetry set σsym(L) from (2.22) belongs to the point spectrum σpt(L) of the linearized operator L
from (1.7) in Lp(Rd,Cm).

The eigenvalue problem for the commutator generated by a skew-symmetric matrix, is analyzed for example
in [10, Lem. 4 & 5] and [40, Thm. 2]. Further, we mention that the asymptotic behavior of adjoint
eigenfunctions plays a role in the study of response functions, see [9].
For the proof of Theorem 2.10, we apply Theorem 2.8a) to eigenvalues λ ∈ σsym(L). Here, exponential
decay of the rotating wave v?, proved in [5, Cor. 4.1], implies that v from (2.23) belongs to Dp(L0), and
hence is an eigenfunction of L in Lp. The Fredholm property of λI −L follows from the spectral stability
of Df(v∞) assured by (A11) and Theorem 2.8a).
In Section 6 we apply our results to the cubic-quintic complex Ginzburg-Landau equation

(2.26) ut = α4u+ u
(
δ + β|u|2 + γ|u|4

)
which is known to exhibit spinning soliton solutions. We rewrite (2.26) as a 2-dimensional real-valued
system and formulate the eigenvalue problem for the associated linearization at the spinning soliton. We
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then compute numerical spectra and eigenfunctions using the freezing method from [6, 8] and the software
Comsol, [1]. This allows to compare exact and numerical spectra as well as their associated eigenfunctions.
Let us finally discuss some related results from the literature. Spectra of Ornstein-Uhlenbeck operators in
various function spaces are studied in [14, 25, 27, 28, 42], spectra at localized rotating waves in [4, 29], and
spectra at spiral waves (nonlocalized rotating waves) in [18, 29, 36, 37, 38, 45]. For scroll waves we refer to
[2, 19]. Exponential decay is proved in [5, 29] for solutions of nonlinear problems for Ornstein-Uhlenbeck
operators (with unbounded coefficients of ∇u), while [20, 35] treat solutions of real-valued quasilinear
second-order equations (with bounded coefficients of ∇u). We also refer to [20, 33, 44] for various results
on Fredholm properties of elliptic partial differential on unbounded domains in settings different from ours.
Nonlinear stability of rotating waves is investigated in [4, 39]. For numerical approximations of rotating
waves (including wave profiles, velocities and spectra), based on the freezing method from [6, 8], we refer
to [5, 29]. Numerical results on rotating waves are studied in [17] for scalar excitable media, and in [7] for
second order evolution equations. Interactions of several rotating waves is analyzed numerically in [6, 29].

3. Essential spectrum and dispersion relation
3.1. Formal derivation of the dispersion relation. In this section we discuss the essential spectrum
σess(L) of the linearization L from (1.7). We compute eigenvalues and bounded eigenfunctions of (1.8)
with L replaced by its far-field limit. These eigenvalues are determined by the dispersion relation (2.4).
By a standard truncation procedure we then show that bounded eigenfunctions lead to singular sequences
in Lp and hence belong to values in the essential spectrum. We proceed in several steps:
1. The far-field operator. Let v∞ ∈ Rm denote the constant asymptotic state of the wave profile v?.
i.e. f(v∞) = 0 and v?(x)→ v∞ ∈ Rm as |x| → ∞. Assuming f ∈ C1 and introducing Q(x) ∈ Rm,m via

Q(x) := Df(v?(x))−Df(v∞), x ∈ Rd,

allows us to write (1.8) as

(3.1) (λI − LQ)v = 0, x ∈ Rd

with LQ = L∞ +Q(x) and far-field operator

L∞v = A4v + 〈Sx,∇v〉+Df(v∞)v.

Obviously, f ∈ C1 and v?(x)→ v∞ imply Q(x)→ 0 as |x| → ∞, i.e. Q vanishes at infinity.
2. Orthogonal transformation. We next transfer the skew-symmetric matrix S into quasi-diagonal
real form which allows us to separate the axes of rotations in (3.1). Let S ∈ Rd,d be skew-symmetric, then
σ(S) ⊂ iR with nonzero eigenvalues ±iσ1, . . . ,±iσk and semisimple eigenvalue 0 of multiplicity d − 2k.
Here, σl denotes the angular velocity in the (y2l−1, y2l)-plane in one of the k different planes of rotation.
Moreover, there is an orthogonal matrix P ∈ Rd,d such that

S = PΛP> with Λ = diag (Λ1, . . . ,Λk,0) , Λj =

(
0 σj
−σj 0

)
, 0 ∈ Rd−2k,d−2k.

The orthogonal transformation ṽ(y) := v(T1(y)) with x = T1(y) := Py for y ∈ Rd transfers (3.1) into

(3.2) (λI − L̃Q)ṽ = 0, y ∈ Rd

with L̃Q = L̃∞ +Q(T1(y)) and

L̃∞ṽ = A

d∑
j=1

∂2yj ṽ +

k∑
l=1

σl
(
y2l∂y2l−1

− y2l−1∂y2l
)
ṽ +Df(v∞)ṽ.

3. Transformation into several planar polar coordinates. Since we have k angular derivatives in k
different planes it is advisable to transform each plane into planar polar coordinates via(

y2l−1
y2l

)
= T (rl, φl) :=

(
rl cosφl
rl sinφl

)
, rl > 0, φl ∈ [−π, π), l = 1, . . . , k.
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All further coordinates, y2k+1, . . . , yd, remain fixed. The multiple planar polar coordinates transformation
v̂(ψ) := ṽ(T2(ψ)) with T2(ψ) = (T (r1, φ1), . . . , T (rk, φk), y2k+1, . . . , yd), ψ = (r1, φ1, . . . , rk, φk, y2k+1, . . . , yd)
in the domain Ω := ((0,∞)× [−π, π))k × Rd−2k, transfers (3.2) into

(3.3) (λI − L̂Q)v̂ = 0, ψ ∈ Ω

with L̂Q = L̂∞ +Q(T1(T2(ψ))) and

L̂∞v̂ = A

[ k∑
l=1

(
∂2rl +

1

rl
∂rl +

1

r2l
∂2φl

)
+

d∑
l=2k+1

∂2yl

]
v̂ −

k∑
l=1

σl∂φl v̂ +Df(v∞)v̂.

4. Simplified operator (limit operator, far-field operator). Since the essential spectrum depends
on the limiting equation for |x| → ∞, we formally let rl →∞ for any 1 6 l 6 k. This turns (3.3) into

(3.4) (λI − Lsim
∞ )v̂ = 0, ψ ∈ Ω

with the simplified far-field operator

Lsim
∞ v̂ = A

[ k∑
l=1

∂2rl +

d∑
l=2k+1

∂2yl

]
v̂ −

k∑
l=1

σl∂φl v̂ +Df(v∞)v̂.

Note that we used the property |Q(x)| → 0 as |x| → ∞ which was established in step 1.
5. Angular Fourier transform. Finally, we solve for eigenvalues and eigenfunctions of Lsim

∞ by an
angular Fourier decomposition (separation of variables) with ω ∈ Rk, ρ, y ∈ Rd−2k, n ∈ Zk, z ∈ Cm,
|z| = 1, r ∈ (0,∞)k, φ ∈ [−π, π)k:

v̂(ψ) = exp

(
i

k∑
l=1

ωlrl

)
exp

(
i

k∑
l=1

nlφl

)
exp

(
i

d∑
l=2k+1

ρlyl

)
z = exp

(
i〈ω, r〉+ i〈n, φ〉+ i〈ρ, y〉

)
z.(3.5)

Inserting (3.5) into (3.4) leads to the m-dimensional eigenvalue problem

(3.6)
(
λIm + (|ω|2 + |ρ|2)A+ i〈n, σ〉Im −Df(v∞)

)
z = 0, σ = (σ1, . . . , σk)>.

6. Dispersion relation and dispersion set. The dispersion relation for localized rotating waves of
(1.1) now states that every λ ∈ C satisfying

(3.7) det
(
λIm + (|ω|2 + |ρ|2)A+ i〈n, σ〉Im −Df(v∞)

)
= 0

for some ω ∈ Rk, ρ ∈ Rd−2k and n ∈ Zk belongs to the essential spectrum of L, i.e. λ ∈ σess(L). Of
course, one can replace |ω|2 + |ρ|2 by any nonnegative real number, so that the set of λ-values satisfying
(3.7) agrees with the dispersion set from (2.4). A rigorous proof of σdisp(L) ⊆ σess(L) will be given in the
next section (see Theorem 2.7).

Remark 3.1. a) (Several axes of rotation). While the axis of rotation is unique in dimension d = 3, the
pattern can rotate about several axes simultaneously in dimension d > 4. The orientation of these axes
is determined by the similarity transformatiom in step 2.

b) (Dispersion relation for spiral waves). The dispersion relation for nonlocalized rotating waves, such
as spiral waves and scroll waves, is harder to derive and differs from (3.7). A dispersion relation for
spiral waves is developed in [18, 36, 37]. Their approach is based on a Bloch wave transformation and
on an application of Floquet theory. A summary of these results, which is structured similar to the
derivation above, can be found in [29, Sec. 9.5]. The angular Fourier decomposition is also used in
[18] for investigating essential spectra of spiral waves. For spectra of spiral waves in the FitzHugh-
Nagumo system we refer to [38, 45]. Results on essential spectra of nonlocalized rotating waves for
space dimensions d > 3, such as scroll waves, are quite rare in the literature and we refer to [18, 19]
and references therein.
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3.2. Essential spectrum in Lp. Consider the general linear differential operator

LQv = A4v + 〈Sx,∇v〉 −B∞v +Q(x)v,

satisfying |Q(x)| → 0 as |x| → ∞. In this case the dispersion relation reads

(3.8) det
(
λIm + (|ω|2 + |ρ|2)A+ i〈n, σ〉Im +B∞

)
= 0

for some ω ∈ Rk, ρ ∈ Rd−2k and n ∈ Zk and the corresponding dispersion set is given by

(3.9) σdisp(LQ) :=
{
λ ∈ C : λ satisfies (3.8) for some ω ∈ Rk, ρ ∈ Rd−2k and n ∈ Zk

}
.

Theorem 3.2 (Essential spectrum of LQ). Let the assumptions (A6), (A9B∞) and

(3.10) Q ∈ L∞(Rd,Km,m) with ηR := ess sup
|x|>R

|Q(x)| → 0 as R→∞

be satisfied for 1 < p < ∞ and K = C. Moreover, let ±iσ1, . . . ,±iσk with σ1, . . . , σk ∈ R, 1 ≤ k ≤ bd2c
denote the nonzero eigenvalues of S. Then the dispersion set σdisp(LQ) from (3.9) belongs to the essential
spectrum σess(LQ) of LQ in Lp(Rd,Cm).

Proof. Let χR ∈ C∞c ([0,∞),R) be cut-off functions with uniformly bounded derivatives for R > 2 and

χR(r) = 0, r ∈ I1 ∪ I5, χR(r) = 1, r ∈ I3, χR(r) ∈ [0, 1], r ∈ I2 ∪ I4,

I1 = [0, R− 1], I2 = [R− 1, R], I3 = [R, 2R], I4 = [2R, 2R+ 1], I5 = [2R+ 1,∞). With this define

wR :=
vR

‖vR‖Lp
, vR(T1(T2(ψ))) := v̂R(ψ), v̂R(ψ) :=

( k∏
l=1

χR(rl)

)
χR(|ỹ|)v̂(ψ), v̂ from (3.5),

for ψ = (r1, φ1, . . . , rk, φk, ỹ), ỹ = (y2k+1, . . . , yd), φ = (φ1, . . . , φk) ∈ [−π, π)k, r = (r1, . . . , rk) ∈ (0,∞)k,
and T1, T2 as in Section 3.1. Obviously, we have wR ∈ Dp(L0) and ‖wR‖Lp = 1. We further claim that

(3.11) ‖vR‖pLp > CR
d, ‖(λI − LQ) vR‖pLp 6 CR

d−1 + CRdηR.

Verifying these estimates is a somewhat lengthy but standard computation, which the reader may find in
the supplement 2. As a consequence of (3.11) we obtain ‖(λI − LQ)wR‖pLp 6 C( 1

R + ηR)→ 0 as R→∞.
In order for wR to be a singular sequence in the sense of [15, Ch.IX, Def.1.2] it is sufficient to show wR ⇀ 0
as R → ∞ since Lp is reflexive ([15, Ch.IX (1.2)]. In fact, for u ∈ Lq(Rd,Km), q = p

p−1 we find from
Hölder’s inequality with SR = {x ∈ Rd : R− 1 6 |x| 6 2R+ 1}

|〈u,wR〉| = |
∫
SR

〈u(x), wR(x)〉dx| 6 ‖u‖Lq(SR)‖wR‖Lp(SR) 6 ‖u‖Lq(SR) → 0 as R→∞.

An application of [15, Ch.IX, Thm.1.3] shows that λI − LQ is not semi-Fredholm with finite-dimensional
kernel, in particular λ belongs to σess(LQ) according to Definition 2.6. �

Proof (of Theorem 2.7). We apply Theorem 3.2 with the matricesB∞ = −Df(v∞) andQ(x) = Df(v?(x))−
Df(v∞) for x ∈ Rd. Since (A4p), (A6) and (A9) are satisfied, it remains to check (3.10). From Taylor’s
theorem we obtain

|Q(x)| 6
∫ 1

0

∣∣D2f(v∞ + s(v?(x)− v∞))
∣∣ ds |v?(x)− v∞| ∀x ∈ Rd.(3.12)

Since f ∈ C2(Rm,Rm) and v? ∈ Cb(Rd,Rm), estimate (3.12) implies Q ∈ L∞(Rd,Rm,m). Then an
application of [5, Cor. 4.3] for the trivial multi-index α = 0 yields a pointwise exponential estimate

(3.13) |v?(x)− v∞| 6 C1 exp
(
− µ

√
|x|2 + 1

)
∀x ∈ Rd ∀µ ∈ [0, µmax) with µmax =

√
a0b0

amaxp
,

where amax = ρ(A) denotes the spectral radius of A, −a0 = s(−A) the spectral bound of −A, and
−b0 = s(Df(v∞)) the spectral bound of Df(v∞). Combining (3.12) and (3.13) yields

|Q(x)| 6 C exp
(
− µ

√
|x|2 + 1

)
∀x ∈ Rd ∀µ ∈ [0, µmax)(3.14)
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with C = C1 sup|y−v∞|6C1
|D2f(y)|. Take a fixed µ ∈ (0, µmax) so that (3.14) implies

ηR := ess sup
|x|>R

|Q(x)| 6 C ess sup
|x|>R

exp
(
−µ
√
|x|2 + 1

)
= C exp

(
−µ
√
R2 + 1

)
→ 0 as R→∞.

This proves the second condition in (3.10). �

Let us discuss some consequences of Theorem 3.2 for the position and the structure of the essential
spectrum.
From the dispersion relation (3.8) and conditions (A3), (A9B∞) one infers σdisp(LQ) ⊆ Cb0 , where Cb0 =
{λ ∈ C : Reλ 6 −b0} and −b0 = s(−B∞) is the spectral bound of −B∞. If in addition, the stability
condition (A10B∞) holds, then −b0 = s(−B∞) < 0 and σdisp(LQ) is located in the left half-plane.
If there exist indices n, j ∈ {1, . . . , k} such that σj 6= 0 and σnσ

−1
j /∈ Q, then σdisp(LQ) is dense in the

half-plane Cb0 , which implies σess(LQ) = Cb0 . If on the other hand, σnσ−1j ∈ Q for all n, j, then the
dispersion set σdisp(LQ) is a discrete subgroup of Cb0 which is independent of p. The reason for this
conclusion is given by Metafune in [27, Thm. 2.6]. Therein it is proved that the essential spectrum of the
drift term v 7→ 〈S·,∇v〉), agrees with iR, if and only if there exists 0 6= σn, σj ∈ R such that σnσ−1j /∈ Q.
Otherwise, the essential spectrum is a discrete subgroup of iR which is independent of p.
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(b) d = 4, not dense
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(c) d = 4, dense

Figure 3.1. Dispersion set σdisp(LQ) of LQ from (2.7) for parameters A = 1
2 (1 + i),

B∞ = 1
2 and Q = 0.

Figure 3.1 illustrates the set σdisp(LQ) in the scalar complex case for A = 1
2 (1 + i), B∞ = 1

2 and Q = 0.
Figure 3.1(a) shows σdisp(LQ) for σ1 = 1.027 and space dimension d = 2 and d = 3 (see the examples in
Section 6). In this case σdisp(LQ) forms a zig-zag curve, see [4] for d = 2, and is not dense in C− 1

2
. Note

that density of σdisp(LQ) can only occur for space dimensions d > 4. Figures 3.1(b)(c) show two such
cases for d = 4. In the first case σ1 = 1, σ2 = 1.5, hence σ1σ−12 ∈ Q and σdisp(LQ) is not dense in C− 1

2
.

The second case belongs to σ1 = 1, σ2 = 1
2 exp(1) for which density occurs. This shows that σdisp(LQ)

may change dramatically with the eigenvalues of S.
For S 6= 0, Theorem 3.2 implies that the operator LQ is not sectorial in Lp(Rd,Cm), and the corresponding
semigroup is not analytic on Lp(Rd,Cm) for every 1 < p <∞, see [29, Cor. 7.10]. For the scalar real-valued
case we refer to [27, 34, 43].

4. Application of Fredholm theory in Lp(Rd,Cm)
4.1. Fredholm operator of index 0. In this section we show that the differential operator

(4.1) λI − LQ :
(
Dp(L0), ‖·‖L0

)
→
(
Lp(Rd,Cm), ‖·‖Lp

)
, 1 < p <∞

from (2.7)–(2.9) is Fredholm of index 0 provided that Reλ > −b0. The matrix-valued function Q ∈
C(Rd,Cm,m) is assumed to be asymptotically small, i.e. for |x| large it falls below a certain computable
threshold similar to (2.16). We further need the following Lemma (see [4, Lem.4.1]) which is a consequence
of Sobolev imbedding and the compactness criterion in Lp-spaces.
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Lemma 4.1 (Compactness of multiplication operator). Let

(4.2) M ∈ C(Rd,Cm,m) with lim
R→∞

sup
|x|>R

|M(x)| → 0.

Then the operator of multiplication

M̃ : (W 1,p(Rd,Cm), ‖·‖W 1,p)→ (Lp(Rd,Cm), ‖·‖Lp), u(·) 7−→ M̃u(·) := M(·)u(·),

is compact for any 1 < p <∞.

We are now ready to prove that λI − LQ is Fredholm of index 0.

Theorem 4.2. Let the assumptions (A4p), (A6) and (A9B∞) be satisfied for K = C and for some
1 < p < ∞. Moreover, let λ ∈ C with Reλ > −b0 + γ for some γ > 0, let 0 < ε < 1, and let
Q ∈ C(Rd,Cm,m) satisfy

(4.3) sup
|x|>R0

|Q(x)| 6 εγ

2
min

{
1

κa1
,

1

C0,ε

}
for some R0 > 0,

where −b0 = s(−B∞) denotes the spectral bound of −B∞, κ = cond(Y ) the condition number of Y from
(A9B∞), a1 the constant from (2.2), and C0,ε = C0,ε(d, p, ε, κ, a1) > 0 the constant from [5, Thm.2.10].
Then, the operator

λI − LQ : (Dp(L0), ‖·‖L0
)→ (Lp(Rd,Cm), ‖·‖Lp)

is Fredholm of index 0. In particular, the operator λI − LQ has finite-dimensional kernel and cokernel.

Proof. The proof follows our outline in formulas (2.20), (2.21).

1. Let us write λ = λ1 + λ2 with λ2 := −b0 + γ and λ1 := λ − λ2. Further, take cut-off functions
χR ∈ C∞c (Rd, [0, 1]), R > 0 satisfying

(4.4) χR(x) = χ1

( x
R

)
, χ1(x) = 1 (|x| ≤ 1), χ1(x) = 0 (|x| > 2).

With R0 from (4.3) we then write

Q(x) = Qs(x) +Qc(x), Qs(x) := (1− χR0(x))Q(x), Qc(x) := χR0(x)Q(x)

and define Ls as in (2.21). Then Qc has compact support in B2R0(0) and Qs satisfies due to (4.3)

(4.5) ‖Qs‖L∞ 6 ‖1− χR0‖∞ sup
|x|>R0

|Q(x)| 6 εγ

2
min

{
1

κa1
,

1

C0,ε

}
.

Setting L̃s := Ls − λ2I we can factorize λI − LQ as in (2.20),

λI − LQ = λ1I − (Ls − λ2I)−Qc(·) =
(
I −Qc(·)(λ1I − L̃s)

−1
)

(λ1I − L̃s).

2. We verify the following two conditions
a) λ1I − L̃s : (Dp(L0), ‖·‖L0

)→ (Lp(Rd,Cm), ‖·‖Lp) is a linear homeomorphism,
b) Q̃(λ1I − L̃s)

−1 : (Lp(Rd,Cm), ‖·‖Lp)→ (Lp(Rd,Cm), ‖·‖Lp) is a compact operator,
where Q̃c denotes the operator of multiplication by Qc which is defined by

Q̃c : (W 1,p(Rd,Cm), ‖·‖W 1,p)→ (Lp(Rd,Cm), ‖·‖Lp), [Q̃cv](x) = Qc(x)v(x).(4.6)

Then standard results from Fredholm theory [3, Satz 9.8],[41, Thm.13.1] imply that both operators

I −Qc(·)(λ1I − L̃s)
−1 : (Lp(Rd,Cm), ‖·‖Lp)→ (Lp(Rd,Cm), ‖·‖Lp)

and λI−LQ are Fredholm of index 0. It remains to check whether the conditions a) and b) are satisfied.
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a) The boundedness of λ1I−L̃s with respect to the graph norm ‖v‖L0
:= ‖L0v‖Lp +‖v‖Lp follows from

‖(λ1I − L̃s)v‖Lp 6 ‖L0v‖Lp + |λI +B∞| ‖v‖Lp + ‖Qs‖L∞ ‖v‖Lp 6 C ‖v‖L0
∀ v ∈ Dp(L0).

The unique solvability of (λ1I − L̃s)v = g and thus continuity of the inverse, is a consequece of
[5, Thm.3.2]. Note that [5, Thm.3.2] is formulated for (λI − Ls)v = g and must be applied to
(λ1I − L̃s)v = g, using the shifted data

(L̃s = Ls − λ2I, λ1 = λ− λ2, B̃∞ = B∞ + λ2I, b̃0 = b0 + λ2 = γ) instead of (Ls, λ,B∞, b0).

The assumptions of [5, Thm.3.2] are b̃0 := −s(−B∞ − λ2I) > 0 and Reλ1 > −(1 − ε)b̃0, which in
our case follow from

b̃0 := −s(−B∞ − λ2I) = −s(−B∞)− s(−λ2I) = b0 + λ2 = γ > 0,

Reλ1 = Reλ− λ2 > −b0 + γ − λ2 = 0 > −(1− ε)γ = −(1− ε)b̃0.

b) The operator Q̃c(λ1I−L̃s)−1 is a linear bounded and compact operator. While linearity and bounded-
ness are clear, compactness follows by an application of Lemma 4.1 withM = Qc. The condition (4.2)
is obviously satisfied since Qc is continuous and has compact support. As shown in a), (λ1I−L̃s)

−1 :
Lp(Rd,Cm)→ Dp(L0) is a linear bounded operator with dense range Dp(L0) ⊆ Lp(Rd,Cm). More-
over, a key result from [31, Sec.5] guarantees a continuous imbedding Dp(L0) ⊆ W 1,p(Rd,Cm).
Hence Lemma 4.1 shows that Q̃c(λ1I − L̃s)

−1 : Lp(Rd,Cm)→ Lp(Rd,Cm) is compact.
�

4.2. Fredholm alternative. In order to apply the abstract Fredholm alternative to λI −LQ from (4.1)
we need to identify the abstract adjoint and its domain as a differential operator. As for the operator
itself, this can be done along the lines of [29, 30, 31, 32], and we refer to Appendix A for details.
Let A : D(A) ⊂ X → Y be a closed densely defined Fredholm operator of index 0 between Banach
spaces and let A∗ : Y ∗ ⊃ D(A∗) → X∗ be its adjoint. Then the Fredholm alternative states that
either the homogeneous equations Ax = 0 and A∗x∗ = 0 have only the trivial solutions x = 0 ∈
D(A) and x∗ = 0 ∈ D(A∗), (in which case the inhomogeneous equations Ax = y and A∗x∗ = y∗

have unique solutions x ∈ D(A) and x∗ ∈ D(A∗) for any y ∈ Y and y∗ ∈ X∗), or the homogeneous
equations Ax = 0 and A∗x∗ = 0 have exactly 1 6 n := dimN (A) < ∞ linearly independent solutions
x1, . . . , xn ∈ D(A) and x∗1, . . . , x∗n ∈ D(A∗) (in which case the inhomogeneous equation Ax = y, y ∈ Y
admits at least one solution x ∈ D(A) if and only if y ∈ (N (A∗))⊥) Let us formulate this alternative to
the operator A = λI − Bp and its adjoint A∗ = (λI − Bp)∗ for λ ∈ C with Reλ > −b0.

Lemma 4.3. Let the assumptions (A4p), (A4q), (A6), (A9B∞) be satisfied for K = C, for some 1 < p <∞
and for q = p

p−1 . Moreover, let λ ∈ C with Reλ > −b0 + γ for some γ > 0, let 0 < ε < 1, and let
Q ∈ C(Rd,Cm,m) satisfy (4.3), where −b0 = s(−B∞) denotes the spectral bound of −B∞. Then
• either the homogeneous equations

(λI − LQ)v = 0 and (λI − LQ)∗ψ = 0

have only the trivial solutions v = 0 ∈ Dp(L0) and ψ = 0 ∈ Dq(L∗0), in which case the inhomogeneous
equations

(λI − LQ)v = h and (λI − LQ)∗ψ = φ

have unique solutions v ∈ Dp(L0) and ψ ∈ Dq(L∗0) for any h ∈ Lp(Rd,Cm) and φ ∈ Lq(Rd,Cm).
• or the homogeneous equations

(λI − LQ)v = 0 and (λI − LQ)∗ψ = 0

have exactly 1 6 n := dimN (λI − LQ) < ∞ (nontrivial) linearly independent solutions v1, . . . , vn ∈
Dp(L0) and ψ1, . . . , ψn ∈ Dq(L∗0), in which case the inhomogeneous equation

(λI − LQ)v = h, h ∈ Lp(Rd,Cm)

admits at least one (not necessarily unique) solution v ∈ Dp(L0) if and only if h ∈ (N ((λI − LQ)∗))⊥.
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Proof. The assertion follows from Fredholm’s alternative applied to (A,D(A)) = (λI − Bp,D(λI − Bp))
and its adjoint (A∗,D(A∗)) = ((λI − Bp)∗,D((λI − Bp)∗)). For this purpose recall D(λI − Bp) = Dp(L0)
and λI −Bp = λI −LQ from above as well as D((λI −Bp)∗) = Dq(L∗0) and (λI −Bp)∗ = (λI −LQ)∗ from
Lemma A.2. Finally, Theorem 4.2 shows that λI − Bp = λI − LQ is Fredholm of index 0. �

4.3. Exponential decay. Next we prove that any solution v of (λI − LQ)v = 0 decays exponentially
in space. The proof is based on an application of [5, Theorem 3.5]. The result is formulated in terms of
radial weight functions

θ(x, µ) = exp
(
µ
√
|x|2 + 1

)
, x ∈ Rd, µ ∈ R(4.7)

and the associated exponentially weighted Lebesgue and Sobolev spaces for 1 ≤ p <∞ and k ∈ N0

Lpθ(R
d,KN ) :={u ∈ L1

loc(Rd,KN ) : ‖u‖Lpθ = ‖θu‖Lp <∞},

W k,p
θ (Rd,KN ) :={u ∈ Lpθ(R

d,KN ) : ‖u‖p
Wk,p
θ

=
∑
|β|≤k

‖Dβu‖p
Lpθ
<∞}.

The following theorem also uses the constants a0, a1, amax from (2.2), γA from (A4p), δA from (A4q), b0, κ
as in Theorem 4.2 and β∞ ∈ R such that Re 〈w,B∞w〉 > β∞|w|2 for all w ∈ Cm.

Theorem 4.4 (A-priori estimates in weighted Lp-spaces). Let the assumptions (A4p), (A4q), (A6),
(A9B∞) be satisfied for K = C, for some 1 < p < ∞ and for q = p

p−1 . Moreover, let λ ∈ C with
Reλ > −b0 + γ for some γ > 0, let 0 < ε < 1 and let Q ∈ C(Rd,Cm,m) satisfy

ess sup
|x|>R0

|Q(x)| 6 εγ

2
min

{
1

κa1
,

1

C0,ε
,
β∞ − b0

γ
+ 1

}
for some R0 > 0.(4.8)

Consider weight functions θj(x) = θ(x, µj), j = 1, 2, 3, 4 with exponents µj satisfying

−

√
ε
γA(β∞ − b0 + γ)

2d|A|2
6 µ1 6 0 6 µ2 6 ε

√
a0γ

amaxp
,(4.9)

and

−

√
ε
δA(β∞ − b0 + γ)

2d|A|2
6 µ3 6 0 6 µ4 6 ε

√
a0γ

amaxq
.(4.10)

Then every solution v ∈W 2,p
loc (Rd,Cm) ∩ Lpθ1(Rd,Cm) resp. ψ ∈W 2,q

loc (Rd,Cm) ∩ Lqθ3(Rd,Cm) of

(λI − LQ)v = g in Lploc(R
d,Cm) resp. (λI − LQ)∗ψ = φ in Lqloc(R

d,Cm)

with g ∈ Lpθ2(Rd,Cm) resp. φ ∈ Lqθ4(Rd,Cm) satisfies v ∈ W 1,p
θ2

(Rd,Cm) resp. ψ ∈ W 1,q
θ4

(Rd,Cm).
Moreover, the following estimates hold:

‖v‖Wk,p
θ2

6C1 (Reλ+ b0)
− k2
(
‖v‖Lpθ1

+ ‖g‖Lpθ2

)
, k = 0, 1,(4.11)

‖ψ‖Wk,q
θ4

6C3 (Reλ+ b0)
− k2
(
‖ψ‖Lqθ3

+ ‖φ‖Lqθ4

)
, k = 0, 1.(4.12)

Remark 4.5. Due to the choice of exponents in (4.9), (4.10), the main effect is to show that solutions of
inhomogeneous equations lie in a small space of exponentially decaying solution, provided they come from
a large space exponentially growing solutions and provided the inhomogeneity belongs to the same small
space of exponentially decreasing functions.

Proof. Decompose λ ∈ C into λ = λ1 +λ2 with λ2 := −b0 +γ, λ1 := λ−λ2, and write λI−LQ = λ1I−L̃Q
with L̃Q := LQ − λ2I. This implies

g = (λI − LQ)v = (λ1 − L̃Q)v.(4.13)

Introducing the matrix B̃∞ := B∞+ λ2I and the two quantities b̃0 := b0 + λ2 = γ, β̃∞ := β∞+ λ2, which
satisfy 0 < b̃0 6 β̃∞, we now apply [5, Thm.3.5] to (4.13) with

(L̃Q, λ1, B̃∞, b̃0, β̃∞) instead of (LQ, λ,B∞, b0, β∞).
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For this purpose, one must check the following three properties

β̃∞ > 0, Reλ1 > −(1− ε)β̃∞, and ess sup
|x|>R0

|Q(x)| 6 ε

2
min

{
b̃0
κa1

,
b̃0
C0,ε

, β̃∞

}
.

Using 0 < b0 6 β̃∞, 0 < ε < 1, Reλ > −b0 + γ, λ = λ1 + λ2 and λ2 = −b0 + γ, we obtain

β̃∞ = β∞ − b0 + γ > γ < 0, Reλ1 = Reλ− λ2 > 0 > −(1− ε)β̃∞.

The Q-estimate follows from (4.8) using γ = b̃0 and β∞ − b0 + γ = β̃∞ − b̃0 + γ = β̃∞. Replacing
((A4p), p, v, g, µ1, µ2) by ((A4q), q, ψ, φ, µ3, µ4), the same approach yields the assertion for solutions ψ of
the adjoint problem (λI − L∗Q)ψ = φ. �

4.4. Fredholm properties of the linearized operator and exponential decay of eigenfunctions.
We now apply the previous results from Section 4 to

−B∞ = Df(v∞) and Q(x) = Df(v?(x))−Df(v∞)

in which case the linearization L from (1.7) coincides with the variable coefficient operator LQ from (2.7).
This allows us to transfer the Fredholm alternative (Lemma 4.3) and the exponential decay (Theorem 4.4)
to the linearized operator L and its adjoint L∗.
In the following, let amax = ρ(A) denote the spectral radius of A, −a0 = s(−A) the spectral bound of −A,
−b0 = s(Df(v∞)) the spectral bound of Df(v∞) and let β∞ be from (A11).

Proof (of Theorem 2.8). With −B∞ = Df(v∞) and Q(x) = Df(v?(x))−Df(v∞) we obtain L = LQ.
a) An application of Theorem 4.2 proves that λI − L is Fredholm of index 0 with finite-dimensional

kernel and cokernel. In order to apply Theorem 4.2, note that the assumptions (A4p) and (A6) are
directly satisfied, and (A9B∞) follows from (A9). The property Q ∈ C(Rd,Cm,m) follows from (A7)
and v? ∈ C2(Rd,Rm). Similarly, condition (4.3) follows for ε = 1

2 from (A7) and (2.16)

|Q(x)| = |Df(v?(x))−Df(v∞)| 6
∫ 1

0

∣∣D2f(v∞ + s (v?(x)− v∞)
∣∣ ds |v?(x)− v∞|

6K1

(
sup

z∈BK1
(v∞)

∣∣D2f(z)
∣∣ ) 6 γ

4
min

{
1

κa1
,

1

C0,1/2

}
,

provided we choose K1 = K1(A, f, v∞, γ, d, p) > 0 such that

K1

(
sup

z∈BK1
(v∞)

∣∣D2f(z)
∣∣ ) 6 γ

4
min

{
1

κa1
,

1

C0,1/2

}
.(4.14)

b) Since λ ∈ σpt(L) has geometric multiplicity n = dimN (λI − L) for some n ∈ N, we deduce from
Lemma 4.3 that the homogeneous equations (λI −L)v = 0 and (λI −L)∗ψ = 0 have exactly n linearly
independent solutions v1, . . . , vn ∈ Dp(L0) and ψ1, . . . , ψn ∈ Dq(L∗0). Further, Lemma 4.3 implies that
for any g ∈ Lp(Rd,Cm) the inhomogeneous equation (λI − L)v = g has at least one (not necessarily
unique) solution v ∈ Dp(L0) if and only if g ∈ (N ((λI −L)∗))⊥, which corresponds (2.18). Finally, the
estimates from (2.19) follow from abstract results of Fredholm theory.

�

Theorem 4.6 (Exponential decay of eigenfunctions). Let all assumptions of Theorem 2.8 a)-b) hold.
a) (Exponential decay of eigenfunctions in weighted Lp-spaces). Consider weight functions θj(x) = θ(x, µj),

j = 1, . . . , 4 with exponents that satisfy (4.9) and (4.10).
Then every classical solution v ∈ C2(Rd,Cm) and ψ ∈ C2(Rd,Cm) of the eigenvalue problems

(λI − L)v = 0 and (λI − L)∗ψ = 0,(4.15)

such that v ∈ Lpθ1(Rd,Cm) and ψ ∈ Lqθ3(Rd,Cm) satisfies v ∈W 1,p
θ2

(Rd,Cm) and ψ ∈W 1,q
θ4

(Rd,Cm).
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b) (Pointwise exponential decay of eigenfunctions). In addition to a), let p > d
2 , f ∈ Ck(Rm,Rm),

v? ∈ Ck+1(Rd,Rm) and v ∈ Ck+1(Rd,Cm) for some k ∈ N with k > 2. Then v belongs to W k,p
θ2

(Rd,Cm)
and satisfies the pointwise estimate

|Dαv(x)| 6 C exp
(
−µ2

√
|x|2 + 1

)
, x ∈ Rd(4.16)

for every exponential decay rate 0 6 µ2 6 ε
√
a0γ

amaxp
and for every multi-index α ∈ Nd0 satisfying d <

(k − |α|)p.
c) (Pointwise exponential decay of adjoint eigenfunctions). In addition to b) let min{p, q} > d

2 and ψ ∈
Ck+1(Rd,Cm). Then ψ belongs to W k,q

θ4
(Rd,Cm) and satisfies the pointwise estimate

|Dαψ(x)| 6 C exp
(
−µ4

√
|x|2 + 1

)
, x ∈ Rd(4.17)

for every decay rate 0 6 µ4 6 ε
√
a0γ

amaxq
and for every multi-index α ∈ Nd0 with d < (k − |α|)q.

Proof. As in the proof of Theorem 2.8. let −B∞ = Df(v∞), Q(x) = Df(v?(x))−Df(v∞). Assertion a)
follows directly from an application of Theorem 4.4 if K1 from (4.14) is chosen such that

K1

(
sup

z∈BK1
(v∞)

∣∣D2f(z)
∣∣ ) 6 εγ

2
min

{
1

κa1
,

1

C0,ε
,
β∞ − b0

γ
+ 1

}
.

The proof of b) works in quite an analogous fashion as in [5, Thm.5.1(2)] and will not be repeated here.
Similarly, assertion c) follows when applying the theory from [5] to the adjoint operator. �

5. Point spectrum on the imaginary axis
5.1. Eigenvalues and eigenvectors in Lp. Let us first compute the eigenvalues λ and associated
eigenfunctions v of (1.8) caused by the symmetriy w.r.t. the SE(d)-group action. These eigenvalues
belong to the point spectrum σpt(L) of the linearization L (Theorem 2.9).Consider the equation

0 = (λI − L)v = λv −A4v − (Dv)(Sx) +Df(v?)v, x ∈ Rd.(5.1)

Assume an eigenfunction v of the form

v = (Dv?)(Ex+ b) for some E ∈ Cd,d, b ∈ Cd, E> = −E, v? ∈ C3(Rd,Rm).(5.2)

Plugging (5.2) into (5.1) and using the equalities

λv = (Dv?)(λ(Ex+ b)),(5.3)
A4v = (D(A4v?))(Ex+ b),(5.4)
(Dv)(Sx) = (D((Dv?)(Sx)))(Ex+ b) + (Dv?)([E,S]x− Sb),(5.5)
Df(v?)v = (D(f(v?)))(Ex+ b),(5.6)

with Lie brackets [E,S] := ES − SE, we obtain

0 = (Dv?) ((λE − [E,S])x+ (λb+ Sb))−D (A4v? + (Dv?)(Sx) + f(v?)) (Ex+ b).(5.7)

Since v? satisfies the rotating wave equation

0 = A4v? + (Dv?)(Sx) + f(v?), x ∈ Rd,(5.8)

the second term in (5.7) vanishes and we end up with

0 = (Dv?) ((λE − [E,S])x+ (λb+ Sb)) , x ∈ Rd.(5.9)

Comparing coefficients in (5.9) yields the finite-dimensional eigenvalue problem

λE = [E,S],(5.10a)
λb = −Sb,(5.10b)

which is be solved for (λ,E, b). Since E is required to be skew-symmetric, we expect d(d+1)
2 nontrivial

solutions. If (λ,E) is a solution of (5.10a), then (λ,E, 0) solves (5.10). Similarly, if (λ, b) is a solution of
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(5.10b), then (λ, 0, b) solves (5.10). We solve (5.10) by using that S is unitarily diagonalizable over C, i.e.
there is a unitary matrix U ∈ Cd,d such that S = UΛSU

H, where ΛS = diag(λS1 , . . . , λ
S
d ) and λS1 , . . . , λSd

denote the eigenvalues of S. In particular, this implies S> = UΛSU
>.

• Solving (5.10b): Multiplying (5.10b) from left by UH and defining b̃ = UHb we obtain

λb̃ = λUHb = −UHSb = −UHUΛSU
Hb = −ΛS b̃.(5.11)

Equation (5.11) has solutions (λ, b̃) = (−λSl , el), hence (5.10b) has solutions (λ, b) = (−λSl , Uel), and
(5.10) has solutions (λ,E, b) = (−λSl , 0, Uel) for l = 1, . . . , d.

• Solving (5.10a): Multiplying (5.10a) from left by UH, from right by Ū , defining Ẽ = UHEU , and using
skew-symmetry of S and Ẽ, we obtain

λẼ = λUHEU = UH[E,S]U = −UHEUΛSU
>U − UHUΛSU

HEU = Ẽ>ΛS − ΛSẼ.(5.12)

Equation (5.12) has solutions (λ, Ẽ) = (−(λSi + λSj ), Iij − Iji), hence (5.10a) has solutions (λ,E) =

(−(λSi + λSj ), U(Iij − Iji)U>), and (5.10) has solutions (λ,E, b) = (−(λSi + λSj ), U(Iij − Iji)U>, 0) for
i = 1, . . . , d− 1, j = i+ 1, . . . , d, where Iij has entry 1 in the ith row and jth column and 0 otherwise.

Collecting these eigenvalues (and using skew-symmetry of S once more) we find the symmetry set

σsym(L) = σ(S) ∪ {λSi + λSj : 1 6 i < j 6 d}.(5.13)

A rigorous proof of the relation σsym(L) ⊆ σpt(L) (see Theorem 2.10) is proved next.

Proof (of Theorem 2.10). For λ ∈ σsym(L) the function v from (2.23) is a classical solution of the eigenvalue
problem (1.8) by Theorem 2.9. An application of [5, Cor. 4.1] implies v? ∈ W 3,p

θ (Rd,Rm). Thus we have
v ∈ W 2,p(Rd,Cm) and L0v ∈ Lp(Rd,Cm), and hence v ∈ Dp(L0) solves (1.8) in Lp. Therefore, v is an
eigenfunction of L in Lp with eigenvalue λ ∈ σ(L). By Theorem 2.8a) spectral stability of Df(v∞) from
(A11) implies that λI−L is Fredholm of index 0, so that λ ∈ σpt(L) holds according to Definition 2.6. �

5.2. Multiplicities of eigenvalues. Let us discuss some consequences of Theorem 2.10. Since v? ∈
C3(Rd,Rm), the function v(x) = 〈Sx,∇v?(x)〉, x ∈ Rd containing angular derivatives is in C2 and a
classical solution of Lv = 0, i.e. v is an eigenfunction of L with eigenvalue λ = 0. This can either be
shown directly by differentiating (1.5) (cf. [4] for d = 2) or it can be deduced from Theorem 2.9 with
(λ,E, b) = (0, S, 0). Theorem 2.9 gives also information about the multiplicity of the isolated eigenvalues
of L. More precisely, for any fixed skew-symmetric S ∈ Rd,d, Theorem 2.9 yields a lower bound for
the geometric and hence for the algebraic multiplicities. In general, multiplicities will depend on the
eigenvalues of S and higher multiplicities may arise from resonances such as σ1 + σ2 = σ3 or the like.
Figure 5.1 shows the eigenvalues λ ∈ σsym(L) from Theorem 2.9 and lower bounds of their multiplicities
for different space dimensions d = 2, 3, 4, 5. In line with formula (5.13), the eigenvalues λ ∈ σ(S) are
indicated by blue circles, the eigenvalues λ ∈ {λi + λj | λi, λj ∈ σ(S), 1 6 i < j 6 d} by green crosses.
The imaginary values to the right of the symbols denote the eigenvalues and the numbers to the left the
lower bounds for their corresponding multiplicities. We observe that for space dimension d there are d(d+1)

2
eigenvalues on the imaginary axis that are caused by the symmetries of the SE(d)-group action.

Example 5.1 (Point spectrum of L for d = 2). In case d = 2 the skew-symmetric matrix S ∈ R2,2, the
diagonal matrix ΛS ∈ C2,2 and the unitary matrix U ∈ C2,2, satisfying S = UΛSU

H, are given by

S =

(
0 S12

−S12 0

)
, ΛS =

(
iσ1 0
0 −iσ1

)
, U =

1√
2

(
1 1
i −i

)
with σ1 = S12, k = 1, λS1 = iσ1, λS2 = −iσ1. Therefore, using the relation U(I12− I21)UT = −i(I12− I21),
Theorem 2.9 implies the following eigenvalues and eigenfunctions of L, cf. [4, Lem. 2.3],

(5.14)
λ1 = 0, v1 = D(1,2)v?,

λ2,3 = ±iσ1, v2,3 = D1v? ± iD2v?
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Imλ

Reλ

iσ11

01

−iσ11

(a) d = 2

Imλ

Reλ

iσ12

02

−iσ12

(b) d = 3

Imλ

Reλ

i(σ1 + σ2)1

iσ11

i(σ1 − σ2)1

iσ21

02

−iσ21

−i(σ1 − σ2)1

−iσ11

−i(σ1 + σ2)1

(c) d = 4

Imλ

Reλ

i(σ1 + σ2)1

iσ12

i(σ1 − σ2)1

iσ22

03

−iσ22

−i(σ1 − σ2)1

−iσ12

−i(σ1 + σ2)1

(d) d = 5

Figure 5.1. Point spectrum of the linearization L on the imaginary axis iR for space
dimension d = 2, 3, 4, 5 and group dimension 1

2d(d+ 1) as given by Theorem 2.9.

Example 5.2 (Point spectrum of L for d = 3). In case d = 3 the skew-symmetric matrix S ∈ R3,3,
the diagonal matrix ΛS ∈ C3,3 and the unitary matrix U ∈ C3,3, satisfying S = UΛSU

H, are given by
ΛS = diag(iσ1,−iσ1, 0) and

S =

 0 S12 S13

−S12 0 S23

−S13 −S23 0

 , U =
1

qσ1

σ1S13 − iS12S23 σ1S13 + iS12S23 qS23

σ1S23 + iS12S13 σ1S23 − iS12S13 −qS13

i(S2
13 + S2

23) −i(S2
13 + S2

23) qS12

 ,

with σ1 =
√
S2
12 + S2

13 + S2
23, q =

√
2(S2

13 + S2
23), λS1 = iσ1, λS2 = −iσ1 and λS3 = 0. From this one

calculates the matrices U(I12 − I21)UT , U(I13 − I31)UT , U(I23 − I32)UT and finds from Theorem 2.9 the
following eigenvalues and eigenfunctions of L,

(5.15)

λ1 = 0, v1 = S12D
(1,2)v? + S13D

(1,3)v? + S23D
(2,3)v?,

λ2 = 0, v2 = S23D1v? − S13D2v? + S12D3v?,

λ3,4 = ±iσ1, v3,4 = (σ1S13 ± iS12S23)D1v? + (σ1S23 ± iS12S13)D2v? ± i(S2
13 + S2

23)D3v?,

λ5,6 = ±iσ1, v5,6 = −(S2
13 + S2

23)D(1,2)v? − (−S12S13 ± iσ1S23)D(1,3)v?

+ (S12S23 ± iσ1S13)D(2,3)v?.

6. Numerical spectra and eigenfunctions of spinning solitons
Consider the cubic-quintic complex Ginzburg-Landau equation (QCGL), [26],

ut = α4u+ u
(
δ + β |u|2 + γ |u|4

)
(6.1)

where u : Rd × [0,∞)→ C, d ∈ {2, 3}, α, β, γ, δ ∈ C with Reα > 0 and f : C→ C given by

f(u) := u
(
δ + β |u|2 + γ |u|4

)
.(6.2)

For the parameters, see [13],

α =
1

2
+

1

2
i, β =

5

2
+ i, γ = −1− 1

10
i, µ = −1

2
(6.3)

this equation exhibits so called spinning soliton solutions.
Figure 6 shows the isosurfaces of Re v?(x) = ±0.5 (left), Im v?(x) = ±0.5 (middle), and |v?(x)| = 0.5 (right)
of a spinning soliton profile v? for d = 3. The rotational velocity matrix S from Example 5.2 takes the
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Figure 6.1. Isosurfaces of spinning solitons of QCGL (6.1) for parameters (6.3) and
d = 3: Re v?(x) = ±0.5 (left), Im v?(x) = ±0.5 (middle), |v?(x)| = 0.5 (right).

values (S12, S13, S23) = (0.6888,−0.0043,−0.0043). Therefore, the eigenvalues of S are σ(S) = {0,±iσ1}
with σ1 =

√
S2
12 + S2

13 + S2
23 = 0.6888. Moreover, the temporal period T 3d that the soliton need for exact

one rotation is T 3d = 2π
|σ1| = 9.1216. The profile v? and the velocity matrix S of the spinning soliton are

computed simultaneously by the freezing method from [6, 8]. For more detailed information concerning
the computation of v? and S we refer to [29]. We suggest that there is no explicit formula for spinning
soliton solutions of (6.1), only implicit formulas and numerical approximations are available.
The real-valued version of (6.1) reads as follows

ut = A4u + f(u) with A :=

(
α1 −α2

α2 α1

)
, u =

(
u1
u2

)
(6.4)

and f : R2 → R2 given by

f

(
u1
u2

)
:=

(
(u1δ1 − u2δ2) + (u1β1 − u2β2)

(
u21 + u22

)
+ (u1γ1 − u2γ2)

(
u21 + u22

)2
(u1δ2 + u2δ1) + (u1β2 + u2β1)

(
u21 + u22

)
+ (u1γ2 + u2γ1)

(
u21 + u22

)2
)
,(6.5)

where u = u1 + iu2, α = α1 + iα2, β = β1 + iβ2, γ = γ1 + iγ2, δ = δ1 + iδ2.
For the real-valued formulation (6.4) the constants from (2.2) are given by

a0 = Reα, amin = amax = |A| = |α|, a1 =

(
|α|

Reα

) d
2

, b0 = β∞ = −Re δ, v∞ = 0.

They satisfy our assumptions (A1)–(A11) provided that

Reα > 0, Re δ < 0, pmin =
2|α|

|α|+ Reα
< p <

2|α|
|α| − Reα

= pmax.(6.6)

In particular, (A5p) and (A5q) for 1 < p <∞ and q = p
p−1 lead to the same restriction on p, namely

Reα

|α|
= µ1(α) = µ1(ᾱ) >

|q − 2|
2

=
|p− 2|

2
,

which is equivalent to the latter condition in (6.6) and qmin := pmin < q < pmax =: qmax. In particular, if
p approaches pmax (or pmin) then q approaches pmin (or pmax). Note that the application of Theorem 2.7
additionally requires p > d

2 . For our parameters (6.3) this allows us to choose p such that

1.1716 ≈ 4

2 +
√

2
= pmin < p < pmax =

4

2−
√

2
≈ 6.8284 and p >

d

2
,(6.7)

e.g. p = 2, 3, 4, 5, 6. A more detailed discussion of the assumptions (A1)–(A11) is worked out in [5, 29].
Linearizing at a rotating wave solution in a co-rotating frame leads to the operator

Lv(x) = A4v(x) + 〈Sx,∇v(x)〉+Df(v?(x))v(x)

and its adjoint

L∗ψ(x) = AT4ψ(x)− 〈Sx,∇ψ(x)〉+Df(v?(x))Tψ(x).
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We next numerically solve the eigenvalues problems (λI − L)v = 0 and (λI − L)∗ψ = 0, obtained from
the QCGL (6.4). We compare analytical and numerical spectrum, and compute eigenfunctions and their
adjoints numerically. For the computations below, realized by the CAE software Comsol Multiphysics
[1], we used continuous piecewise linear finite elements with maximal stepsize 4x = 0.8 (if d = 3), and
homogeneous Neumann boundary conditions to compute 800 eigenvalues which are located near σ = −b0
(measured radially) and satisfy an eigenvalue tolerance of 10−7. The profile v? and the velocity matrix S
are determined from a simulation with the so-called freezing method, see [29] for a detailed discussion of
how to get these quantities numerically.
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Figure 6.2. Spectrum of QCGL linearized at a spinnig soliton for parameters (6.3) and
d = 3.

Figure 6.2(a) shows the dispersion set σdisp(L) (red lines) and the symmetry set σsym(L) (blue circles).
Both of them belong to the analytical parts of the spectrum σ(L) of L. The entries and the spectrum of
the velocity matrix S ∈ R3,3 are given by

(S12, S13, S23) = (0.6888,−0.0043,−0.0043), σ(S) = {0,±iσ1} , σ1 =
√
S2
12 + S2

13 + S2
23 = 0.6888.

(6.8)

Therefore, the symmetry set (5.13) reads as follows

σsym(L) = {0,±iσ1},(6.9)

and the dispersion set (2.4) is given by

σdisp(L) = {λ = −η2α1 + δ1 + i(±η2α2 ∓ δ2 − nσ1) : η ∈ R, n ∈ Z}.(6.10)

As shown in Theorem 2.9, Example 5.2 and Figure 5.1(b), all eigenvalues from σsym(L) lie on the imaginary
axis have geometric multiplicity at least 2, and belong to the point spectrum σpt(L) in Lp. Similarly, as
shown in Theorem 2.7 and Figure 3.1(a), the eigenvalues from σdisp(L) belong to the essential spectrum
σess(L) in Lp and form a zig zag structure consisting of infinitely many copies of cones. The cones open to
the left and their tips are located at −b0 + inσ1, n ∈ Z, as can be seen from (6.10). The distance of two
neighboring tips of the cones equals σ1 = 0.6888. Theorem 2.8 shows that λI − L is Fredholm of index 0
for Reλ > −b0, i.e. to the right of the dashed line, and hence there is no essential spectrum. We believe
that the operator λI −L is also Fredholm of index 0 for λ-values between the dashed line Reλ = −b0 and
σdisp(L), but we do not have a proof of this. Similarly, the Fredholm properties for λ-values inside the
rhombic regions of σdisp(L) are unknown. To conclude, we suggest that both spectral subsets σpt(L) and
σess(L) are generally strictly larger than σsym(L) and σdisp(L), respectively. Finally, the spectrum of the
adjoint L∗ coincides with the spectrum of L.
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Figure 6.2(b) shows an approximation σapprox of the spectrum σ(L) of L linearized about the spinning
soliton v? for d = 3. The numerical spectrum σapprox of L is divided into the approximation of the essential
spectrum σapprox

ess (red dots) and the approximation of the point spectrum σapprox
pt (blue circles and plus

signs). The set σapprox
ess lies close to σdisp(L) which suggests that numerical computations seem to capture

this part of the essential spectrum σess(L). Similarly, the set σapprox
pt is an approximation of σpt(L), which

contains approximate values from σsym(L) (blue circles) and 12 additional complex-conjugate pairs of
isolated eigenvalues satisfying Reλ > −b0. In particular, one of these pairs lie between the black dashed
line and the essential spectrum. Further computations show that they seem to persist under spatial mesh
refinement and also when enlargeing the spatial domain. The case d = 2 is also treated in [4, Sec.8].
Let us briefly come back to Figure 6.2(a) to discuss analytical results on eigenfunctions and their adjoints.
In Theorem 2.9 we derived explicit formulas for the eigenfunctions associated to eigenvalues from the
symmetry set σsym(L). In case d = 3, the six eigenfunctions are those from Example 5.2. We recall that
each λ which is located to the right of −b0, either belongs to res(L) or to σpt(L). In case λ ∈ σpt(L)
with Reλ > −b0, Theorem 4.6 shows that the associated eigenfunction and adjoint eigenfunction decay
exponentially in space with exponential decay rates given by, see (4.10) with γ = Reλ+ b0,

0 6 µ2 6 ε

√
Reα(Reλ− Re δ)

|α|p
<

√
Reα(Reλ− Re δ)

|α|max{pmin,
d
2}

,(6.11)

and

0 6 µ4 6 ε

√
Reα(Reλ− Re δ)

|α|q
<

√
Reα(Reλ− Re δ)

|α|pmin
.(6.12)

The upper bounds show that the decay rates are affected by the spectral gap Reλ − Re δ between the
eigenvalue λ ∈ σpt(L) and the spectral bound b0 = −Re δ (black dashed line) of Df(v∞). Therefore, the
decay rates are large for eigenvalues far away to the right of b0, and they become smaller the closer Reλ lies
to the spectral bound b0 = −Re δ. For the eigenvalues from the symmetry set σsym(L), parameters from
(6.3), and d = 3, we obtain the following upper bounds for the exponential decay rates of the eigenfunctions
and their adjoints

0 6 µ2 <

√
2

3
≈ 0.4714 and 0 6 µ4 <

4

1 +
√

2
≈ 1.6569.

Figure 6.3. Isosurfaces of 4 eigenfunctions (top row) and 4 adjoint eigenfunctions (bot-
tom row) of QCGL linearized at a spinning soliton with d = 3
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In Figure 6.3 we visualize isosurfaces of numerical eigenfunctions v : R3 → C2 (upper row) which belong
to the eigenvalues λ1, λ2, λ3, λ5 from (5.15). The lower row shows the isosurfaces of adjoint eigenfunctions
ψ : R3 → C2 for the same eigenvalues. More precisely, the red surfaces are given by Revj(x) = − 1

2 and
Reψj(x) = − 1

2 while the blue surfaces are given by Revj(x) = 1
2 and Reψj(x) = 1

2 . The corresponding
numerical eigenvalues are provided in the title of each subfigure. Instead of double eigenvalues at 0 and
iσ1 as in the theory, one obtains two closely spaced simple eigenvalues in each case. The slight difference in
the values of the top and bottom row is due to the independent runs used for the original and the adjoint
eigenvalue problem. A detailed investigation of numerical decay rates of eigenfunctions and a comparison
with the theory can be found in [5, Sec.6.3].

Appendix A. Identification of adjoint operator
We analyze and identify the abstract adoint operator of LQ from (4.1). Let us first review some results from
[29, 30, 31, 32] for the complex-valued Ornstein-Uhlenbeck operator L0 in Lp(Rd,Cm) and its constant
coefficient perturbation L∞. Assuming (A2), (A6), (A9B∞) for K = C it is shown in [29, Thm.4.4], [30,
Thm.3.1] that the function H∞ : Rd × Rd × (0,∞)→ Cm,m defined by

H∞(x, ξ, t) = (4πtA)−
d
2 exp

(
−B∞t− (4tA)−1

∣∣etSx− ξ∣∣2) ,(1.13)

is a heat kernel of the perturbed Ornstein-Uhlenbeck operator L∞ from (1.10). Under the same assump-
tions it is proved in [30, Thm.5.3] that the family of mappings

[T∞(t)v] (x) :=

{∫
Rd H∞(x, ξ, t)v(ξ)dξ , t > 0

v(x) , t = 0
, x ∈ Rd,(1.14)

defines a strongly continuous semigroup T∞(t) : Lp(Rd,Cm) → Lp(Rd,Cm), t > 0, for each 1 6 p < ∞.
The semigroup (T∞(t))t>0 is called an Ornstein-Uhlenbeck semigroup. The infinitesimal generator of this
semigroup Ap : Lp(Rd,Cm) ⊇ D(Ap)→ Lp(Rd,Cm) has domain of definition

D(Ap) :=

{
v ∈ Lp(Rd,Cm) | Apv := lim

t↓0
t−1(T∞(t)v − v) exists in Lp(Rd,Cm)

}
,

and satisfies resovent estimates, see [29, Cor.6.7], [30, Cor.5.5]. The identification problem requires to
represent the maximal domain D(Ap) in terms of Sobolev spaces, and to show that the generator Ap and
the differential operator L∞ conincide on this domain. This problem is solved in [31]. Assuming (A4p),
(A6), (A9B∞) for K = C and for some 1 < p <∞, it is shown in [31, Thm.5.1] that

D(Ap) = Dp(L0) and Apv = L∞v for all v ∈ D(Ap).(1.15)

Moreover, in [30, Thm.5.7] a-priori estimates are used to show Dp(L0) ⊆W 1,p(Rd,Cm).
Next consider the variable coefficient operator LQ and assumes (A2), (A6) and (A9B∞). For Q ∈
L∞(Rd,Cm,m) let Q̃ denote the multiplication operator in Lp(Rd,Cm) as in (4.6) and apply the bounded
perturbation theorem [16, III.1.3] to conclude that Bp := Ap + Q̃ with D(Bp) := D(Ap) generates a
strongly continuous semigroup (TQ(t))t>0 in Lp(Rd,Cm). If we restrict 1 < p < ∞ and assume the
stronger assumption (A4p) (or equivalently (A5p)) instead of (A2), an application of [31, Thm.5.1] solves
the identification problem for Bp, namely D(Bp) = Dp(L0) and Bpv = L∞v+Qv = LQv for all v ∈ D(Bp).
In particular, we obtain from [30, Thm.5.7] that Dp(L0) ⊆W 1,p(Rd,Cm).
In the following we continue the process of identification for the adjoint differential operator and relate it
to its abstract definition [24, Ch.III.3].

Definition A.1 (Adjoint operator). Let X,Y be Banach spaces over C with dual spaces X∗, Y ∗ and
duality pairings 〈·, ·〉Y : Y ∗ × Y → C and 〈·, ·〉X : X∗ × X → C. For a densely defined operator
A : X ⊇ D(A)→ Y the abstract adjoint operator A∗ : Y ∗ ⊇ D(A∗)→ X∗ is defined by

D(A∗) = {y∗ ∈ Y ∗ | ∃x∗ ∈ X∗ : 〈y∗,Ax〉1 = 〈x∗, x〉2 ∀x ∈ D(A)} , A∗y∗ := x∗.
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Let us assume (A4p), (A6), (A9B∞), Q ∈ C(Rd,Cm,m), let 1 < p < ∞ and apply Definition A.1 to the
infinitesimal generator A = Bp using the setting

(1.16)
X = Y = Lp(Rd,Cm), X∗ = Y ∗ = Lq(Rd,Cm), 1 < p, q <∞, 1

p
+

1

q
= 1,

〈w, v〉q,p = 〈w, v〉X = 〈w, v〉Y =

∫
Rd
w(x)Hv(x)dx, w ∈ Lq, v ∈ Lp.

The abstract adjoint operator A∗ = B∗p has maximal domain

(1.17) D(B∗p) =
{
v ∈ Lq(Rd,Cm) | ∃w ∈ Lq(Rd,Cm) : 〈v,LQu〉q,p = 〈w, u〉q,p ∀u ∈ Dp(L0)

}
,

and is defined through

(1.18) B∗p :
(
D(B∗p), ‖·‖B∗p

)
→
(
Lq(Rd,Cm), ‖·‖Lq

)
, B∗pv := w, w from (1.17).

Note that the element w ∈ Lq(Rd,Cm) from (1.17) is uniquely determined. We compare this with the
formal adjoint (differential) operator L∗Q :

(
Dq(L∗0), ‖·‖L∗0

)
→
(
Lq(Rd,Cm), ‖·‖Lq

)
, defined by

(1.19) [L∗Qv](x) = AH4v(x)− 〈Sx,∇v(x)〉 −BH
∞v(x) +Q(x)Hv(x), x ∈ Rd

on its domain

Dq(L∗0) =
{
v ∈W 2,q

loc (Rd,Cm) ∩ Lq(Rd,Cm) : L∗0v = AH4v − 〈S·,∇v〉 ∈ Lq(Rd,Cm)
}
, 1 < q <∞.

Definition (1.19) is motivated by the following relation obtained via integration by parts

(1.20) 〈v,LQu〉q,p = 〈L∗Qv, u〉q,p ∀u ∈ Dp(L0) ∀ v ∈ Dq(L∗0).

The following result solves the identification problem for the adjoint operator. The proof is based on an
application of [5, Thm.3.1] to (AH,−S,BH

∞, Q(x)H, q = p
p−1 ) instead of (A,S,B∞, Q(x), p). This requires

the matrix AH to additonally satisfy the Lq-dissipativity condition (A4q) for the conjugate index q := p
p−1 .

Lemma A.2 (Identification of adjoint operator). Let the assumptions (A4p), (A4q), (A6), (A9B∞) and
Q ∈ L∞(Rd,Km,m) be satisfied for K = C, for some 1 < p < ∞ and q = p

p−1 . Then the formal adjoint
operator L∗Q and the abstract adjoint operator B∗p coincide, i.e.

D(B∗p) = Dq(L∗0) and B∗p = L∗Q.

In particular, the corresponding graph norms are equivalent.

Proof. For the proof we abbreviate 〈·, ·〉 = 〈·, ·〉q,p.
• Dq(L∗0) ⊆ D(B∗p): Let v ∈ Dq(L∗0) and choose w = L∗Qv ∈ Lq(Rd,Cm), then (1.20) implies

〈v,LQu〉 = 〈L∗Qv, u〉 = 〈w, u〉 ∀u ∈ Dp(L0),

which yields v ∈ D(B∗p).

• Dq(L∗0) ⊇ D(B∗p): Let v ∈ D(B∗p) and let w ∈ Lq(Rd,Cm) be defined according to (1.17). By an
application of [5, Theorem 3.1] we have a unique solution ṽ ∈ Dq(L∗0) of (λ̄I − L∗Q)ṽ = λ̄v − w in
Lq(Rd,Cm) for any λ ∈ C with Reλ > −b0 + κa1 ‖Q‖L∞ . Therefore, from (1.20) and (1.17) we obtain

〈v, (λI − LQ)u〉 =〈v, λu〉 − 〈v,LQu〉 = λ〈v, u〉 − 〈w, u〉 = 〈λ̄v − w, u〉 = 〈(λ̄I − L∗Q)ṽ, u〉
=λ〈ṽ, u〉 − 〈L∗Qṽ, u〉 = λ〈ṽ, u〉 − 〈ṽ,LQu〉 = 〈ṽ, (λI − LQ)u〉 ∀u ∈ Dp(L0).

Since λI − LQ is onto, this implies v = ṽ ∈ Dq(L∗0) ⊂ Lq(Rd,Cm).

�
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2. Supplement
In this supplement we provide a detailed proof of the estimate (3.11) needed to construct a singular
sequence for points in the essential spectrum of the linearized operator in Theorem 3.2.

Proof. 1. The property χR(r) = 0 for r ∈ I1 ∪ I5 implies

(λI − Lsim
∞ )v̂R(ψ) = 0, if |ỹ| ∈ I1 ∪ I5 or rl ∈ I1 ∪ I5 for some 1 6 l 6 k.(2.21)

Similarly, λ ∈ σdisp(LQ) and χ′′R(r) = χ′R(r) = 0 for r ∈ I3 imply

(λI − Lsim
∞ )v̂R(ψ) = 0, if |ỹ| ∈ I3 and rl ∈ I3 for every 1 6 l 6 k.(2.22)

Next compute the partial derivatives

∂2rl v̂R(ψ) =

[
χ′′R(rl)

χR(rl)
+ 2iωl

χ′R(rl)

χR(rl)
− ω2

l

]
v̂R(ψ), l = 1, . . . , k,

∂2yl v̂R(ψ) =

[
y2l
|ỹ|2

χ′′R(|ỹ|)
χR(|ỹ|)

+

(
|ỹ|2 − y2l
|ỹ|3

+ 2iρl
yl
|ỹ|

)
χ′R(|ỹ|)
χR(|ỹ|)

− ρ2l
]
v̂R(ψ), l = 2k + 1, . . . , d,

and consider the case |ỹ| ∈ I2∪I3∪I4 and rl ∈ I2∪I3∪I4 for all 1 6 l 6 k. Then we use λ ∈ σdisp(LQ) and
the estimates |χR(r)| 6 1, χ′R(r) 6 ‖χR‖C2

b
, χ′′R(r) 6 ‖χR‖C2

b
, |v̂(ψ)| = 1,

∣∣ v̂R(ψ)
χR(rl)

∣∣ 6 1,
∣∣ v̂R(ψ)
χR(|ỹ|)

∣∣ 6 1,
1
|ỹ| 6

1
R−1 6 1 to obtain

∣∣(λI − Lsim
∞
)
vR(ψ)

∣∣ =

∣∣∣∣(λI −A[ k∑
l=1

∂2rl +

d∑
l=2k+1

∂2yl

]
+

k∑
l=1

σl∂φl +B∞

)
v̂R(ψ)

∣∣∣∣
=

∣∣∣∣(λIm − (|ω|2 + |ρ|2)A+ i〈n, σ〉+B∞

)
vR(ψ)−A

k∑
l=1

(χ′′R(rl) + 2iωlχ
′
R(rl))

v̂R(ψ)

χR(rl)

−A
d∑

l=2k+1

(
y2l
|ỹ|2

χ′′R(|ỹ|) +

(
|ỹ|2 − y2l
|ỹ|3

+ 2iρl
yl
|ỹ|

)
χ′R(|ỹ|)

)
v̂R(ψ)

χR(|ỹ|)

∣∣∣∣(2.23)
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6|A|
k∑
l=1

(1 + 2|ωl|) ‖χR‖C2
b

+ |A|
d∑

l=2k+1

(3 + 2|ρl|) ‖χR‖C2
b

6|A|
(
k + 2|ω|

√
k + 3(d− 2k) + 2|ρ|

√
d− 2k

)
‖χR‖C2

b
=: C.

2. Transforming variables, setting 〈r〉 =
∏k
l=1 rl and using |v̂(ψ)| = 1, χR(r) > 0 (r ∈ I2 ∪ I4), χR(r) = 1

(r ∈ I3) leads to

‖vR‖pLp =

∫
Rd
|vR(x)|p dx =

∫ ∞
0

∫ π

−π
· · ·
∫ ∞
0

∫ π

−π

∫
Rd−2k

〈r〉 |v̂R(ψ)|p dψ

=

∫ 2R+1

R−1

∫ π

−π
· · ·
∫ 2R+1

R−1

∫ π

−π

∫
R−16|ỹ|62R+1

〈r〉 |v̂R(ψ)|p dψ

=

∫ 2R+1

R−1

∫ π

−π
· · ·
∫ 2R+1

R−1

∫ π

−π

∫
R−16|ỹ|62R+1

〈r〉
( k∏
l=1

χpR(rl)

)
χpR(|ỹ|)dψ

=

∫
R−16|ỹ|62R+1

χpR(|ỹ|)dỹ
k∏
l=1

∫ 2R+1

R−1

∫ π

−π
rlχ

p
R(rl)dφldrl

=

(∫
R−16|ỹ|6R

χpR(|ỹ|)dỹ +

∫
R6|ỹ|62R

χpR(|ỹ|)dỹ +

∫
2R6|ỹ|62R+1

χpR(|ỹ|)dỹ
)

·
k∏
l=1

2π

(∫ R

R−1
rlχ

p
R(rl)drl +

∫ 2R

R

rlχ
p
R(rl)drl +

∫ 2R+1

2R

rlχ
p
R(rl)drl

)

>

(∫
R6|ỹ|62R

1dỹ

)
·
( k∏
l=1

2π

∫ 2R

R

rldrl

)
= CRd̃

k∏
l=1

3πR2 = (3π)kCR2k+d̃ = CRd,

where C is independent of R, dψ := dỹdφkdrk · · · dφ1dr1 and d̃ := d− 2k. In the trivial case d̃ = 0 the
first integral is set to 1, while in case d̃ > 1 the term CRd̃ follows from the well-known formula

d̃Γ
(
d̃
2

) ∫
a6|ỹ|6b

1dỹ = 2π
d̃
2 (bd̃ − ad̃) for 0 < a < b <∞.(2.24)

3. The transformation theorem and (2.21) imply∥∥(λI − Lsim
∞
)
vR
∥∥p
Lp

=

∫
Rd

∣∣(λI − Lsim
∞
)
vR(x)

∣∣p dx
=

∫ ∞
0

∫ π

−π
· · ·
∫ ∞
0

∫ π

−π

∫
Rd−2k

〈r〉
∣∣(λI − Lsim

∞
)
v̂R(ψ)

∣∣p dψ
=

∫ 2R+1

R−1

∫ π

−π
· · ·
∫ 2R+1

R−1

∫ π

−π

∫
R−16|ỹ|62R+1

〈r〉
∣∣(λI − Lsim

∞
)
v̂R(ψ)

∣∣p dψ.
We distinguish the following cases for d̃ = d− 2k.
Case 1: (d̃ = 0). From (2.23), (2.22), the multinomial theorem and∫ R

R−1
rldrl =

1

2
(2R− 1),

∫ 2R

R

rldrl =
1

2
3R2,

∫ 2R+1

2R

rldrl =
1

2
(4R+ 1),(2.25)

we further obtain

=

∫ 2R+1

R−1

∫ π

−π
· · ·
∫ 2R+1

R−1

∫ π

−π
〈r〉
∣∣(λI − Lsim

∞
)
v̂R(ψ)

∣∣p dφkdrk · · · dφ1dr1
6

∑
j1+j2+j3=k

j2 6=k

(
k

j1, j2, j3

)(∫ R

R−1

)j1 (∫ 2R

R

)j2 (∫ 2R+1

2R

)j3
Cp〈r〉(2π)kdr1 · · · drk
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=
∑

j1+j2+j3=k
j2 6=k

(
k

j1, j2, j3

)
Cp(2π)k

2k
(2R− 1)j1(3R2)j2(4R+ 1)j3 6 CRd−1.

For the last inequality we estimate powers of R by j1 + 2j2 + j3 = k + j2 6 2k − 1 = d− 1 for j2 6= k.
Case 2: (d̃ > 1). Similarly, using (2.23) and (2.22), (2.24), the multinomial theorem gives (abbreviating
dr := dr1 · · · drk )

6
∑

j1+j2+j3=k

(
k

j1, j2, j3

)(∫ R

R−1

)j1 (∫ 2R

R

)j2 (∫ 2R+1

2R

)j3 ∫
R−16|ỹ|6R

Cp〈r〉(2π)kdỹdr

+
∑

j1+j2+j3=k
j2 6=k

(
k

j1, j2, j3

)(∫ R

R−1

)j1 (∫ 2R

R

)j2 (∫ 2R+1

2R

)j3 ∫
R6|ỹ|62R

Cp〈r〉(2π)kdỹdr

+
∑

j1+j2+j3=k

(
k

j1, j2, j3

)(∫ R

R−1

)j1 (∫ 2R

R

)j2 (∫ 2R+1

2R

)j3 ∫
2R6|ỹ|62R+1

Cp〈r〉(2π)kdỹdr

=
∑

j1+j2+j3=k

(
k

j1, j2, j3

)
Cp(2π)k

2k
(2R− 1)j1(3R2)j2(4R+ 1)j3

2π
d̃
2

d̃Γ
(
d̃
2

) (Rd̃ − (R− 1)d̃)

+
∑

j1+j2+j3=k
j2 6=k

(
k

j1, j2, j3

)
Cp(2π)k

2k
(2R− 1)j1(3R2)j2(4R+ 1)j3

2π
d̃
2

d̃Γ
(
d̃
2

) ((2R)d̃ −Rd̃)

+
∑

j1+j2+j3=k

(
k

j1, j2, j3

)
Cp(2π)k

2k
(2R− 1)j1(3R2)j2(4R+ 1)j3

2π
d̃
2

d̃Γ
(
d̃
2

) ((2R+ 1)d̃ − (2R)d̃)

6
∑

j1+j2+j3=k

(
k

j1, j2, j3

)
CRj1+2j2+j3+d̃−1 +

∑
j1+j2+j3=k

j2 6=k

(
k

j1, j2, j3

)
CRj1+2j2+j3+d̃

+
∑

j1+j2+j3=k

(
k

j1, j2, j3

)
CRj1+2j2+j3+d̃−1 6 CRd−1.

This shows that ‖(λI − Lsim
∞ )vR‖pLp 6 CRd−1.

4. For the operator L̂Q = L̂∞ +Q(T1(T2(ψ))), equation (2.21) and χR(r) = 0 for r ∈ I1 ∪ I5 imply

(λI − L̂Q)v̂R(ψ) = 0, if |ỹ| ∈ I1 ∪ I5 or rl ∈ I1 ∪ I5 for some 1 6 l 6 k.(2.26)

Moreover, if |ỹ| ∈ I3 and rl ∈ I3 for every 1 6 l 6 k, then we obtain from (2.22), χ′R(r) 6 ‖χR‖C2
b
,

|v̂R(ψ)| 6 1, and 1
rl
6 1

R 6 1,

|(λI − L̂Q)v̂R(ψ)| =
∣∣∣∣ (λI − Lsim

∞
)
v̂R(ψ)−A

k∑
l=1

(
1

rl
∂rl +

1

r2l
∂2φl

)
v̂R(ψ)−Q(T1(T2(ψ)))v̂R(ψ)

∣∣∣∣
=

∣∣∣∣A k∑
l=1

(
iωl
rl

+
χ′R(rl)

rlχR(rl)
− n2l
r2l

)
v̂R(ψ) +Q(T1(T2(ψ)))v̂R(ψ)

∣∣∣∣
6|A|

k∑
l=1

(
|ωl|
rl

+
‖χR‖C2

b

rl
+
n2l
r2l

)
+ |Q(T1(T2(ψ)))| 6

(
|A|

k∑
l=1

(
|ωl|+ ‖χR‖C2

b
+ n2l

) 1

rl
+ ηR

) 1
p

.
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Similarly, from (2.23), |χR(r)| 6 1, χ′R(r) 6 ‖χR‖C2
b
, |v̂R(ψ)| 6 1,

∣∣ v̂R(ψ)
χR(rl)

∣∣ 6 1, 1
rl
6 1

R−1 6 1, 1
r2l
6 1,

and Q ∈ L∞ we find in case |ỹ| ∈ I2 ∪ I3 ∪ I4 and rl ∈ I2 ∪ I3 ∪ I4 for every 1 6 l 6 k:

|(λI − L̂Q)v̂R(ψ)| =
∣∣∣∣ (λI − Lsim

∞
)
v̂R(ψ)−A

k∑
l=1

(
1

rl
∂rl +

1

r2l
∂2φl

)
v̂R(ψ)−Q(T1(T2(ψ)))v̂R(ψ)

∣∣∣∣
=

∣∣∣∣ (λI − Lsim
∞
)
v̂R(ψ)−A

k∑
l=1

(
iωl
rl

+
χ′R(rl)

rlχR(rl)
− n2l
r2l

)
v̂R(ψ)−Q(T1(T2(ψ)))v̂R(ψ)

∣∣∣∣
6
∣∣∣ (λI − Lsim

∞
)
v̂R(ψ)

∣∣∣+ |A|
k∑
l=1

(
|ωl|
rl

+
‖χR‖C2

b

rl
+
n2l
r2l

)
+
∣∣∣Q(T1(T2(ψ)))

∣∣∣
6C + |A|

(
|ω|
√
k + k ‖χR‖C2

b
+ |n|2

)
+ ‖Q‖L∞ = C.

5. Finally, let us consider (λI − LQ)vR in Lp. From the transformation theorem and (2.26) we obtain

‖(λI − LQ)vR‖pLp =

∫
Rd
|(λI − LQ)vR(x)|pdx

=

∫ ∞
0

∫ π

−π
· · ·
∫ ∞
0

∫ π

−π

∫
Rd−2k

〈r〉|(λI − L̂Q)v̂R(ψ)|pdψ

=

∫ 2R+1

R−1

∫ π

−π
· · ·
∫ 2R+1

R−1

∫ π

−π

∫
R−16|ỹ|62R+1

〈r〉|(λI − L̂Q)v̂R(ψ)|pdψ.

Again we distinguish two cases for d̃ := d− 2k:
Case 1: (d̃ = 0). From step 4, equation (2.25), and d = 2k we deduce

6
∫ 2R

R

∫ π

−π
· · ·
∫ 2R

R

∫ π

−π
〈r〉

[
|A|

k∑
l=1

(|ω|+ ‖χR‖C2
b

+ n2l )
1

rl
+ ηR

]
dφkdrk · · · dφ1dr1

+
∑

j1+j2+j3
j2 6=k

(
k

j1, j2, j3

)(∫ R

R−1

)j1 (∫ 2R

R

)j2 (∫ 2R+1

2R

)j3
Cp〈r〉(2π)kdr1 · · · drk

6(2π)k
∫ 2R

R

· · ·
∫ 2R

R

[
|A|

(
k∑
l=1

(
k∏
j=1
j 6=l

rj

)(
|ωl|+ ‖χR‖C2

b
+ n2l

))
+ 〈r〉ηR

]
dr + CRd−1

=(2π)k

[
|A|

k∑
l=1

(
|ωl|+ ‖χR‖C2

b
+ n2l

)∫ 2R

R

· · ·
∫ 2R

R

(
k∏
j=1
j 6=l

rj

)
dr + ηR

∫ 2R

R

· · ·
∫ 2R

R

〈r〉dr
]

+ CRd−1

=(2π)k|A|
k∑
l=1

(
|ωl|+ ‖χR‖C2

b
+ n2l

)( k∏
j=1
j 6=l

∫ 2R

R

rjdrj

)∫ 2R

R

drl + (2π)kηR

k∏
j=1

∫ 2R

R

rjdrj + CRd−1

=(2π)k|A|

(
k∑
l=1

(
|ωl|+ ‖χR‖C2

b
+ n2l

)(3

2

)k−1
R2k−1

)
+ (2π)kηR

(
3

2

)k
R2k + CRd−1

6CRd−1 + CRdηR.

For the first inequality we refer to case 1 of step 3.
Case 2: (d̃ > 1). From the procedure used in case 2 of step 5 and in case 1 and (2.24) we obtain

6
∫ 2R

R

∫ π

−π
· · ·
∫ 2R

R

∫ π

−π

∫
R6|ỹ|62R

〈r〉

[
|A|

k∑
l=1

(|ωl|+ ‖χR‖C2
b

+ n2l )
1

rl
+ ηR

]
dψ + CRd−1

6
(
CR2k−1 + CR2kηR

) ∫
R6|ỹ|62R

dỹ + CRd−1 6 CR2k−1+d̃ + CRd−1 + CR2k+d̃ηR
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=CRd−1 + CRdηR.

The constant CRd−1 in the first inequality comes from an estimate of three sums, compare case 2 from
step 3. For the second inequality compare case 1. This shows that ‖(λI−LQ)vR‖pLp 6 CRd−1+CRdηR.
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