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Abstract

We analyze Runge-Kutta discretizations applied to singularly perturbed gradient
systems. It is shown in which sense the discrete dynamics preserve the geometric prop-
erties and the longtime behavior of the underlying ordinary differential equation. If
the continuous system has an attractive invariant manifold then numerical trajectories
started in some neighbourhood (the size of which is independent of the step-size and the
stiffness parameter) approach an equilibrium in a nearby manifold. The proof combines
invariant manifold techniques developed by Nipp and Stoffer for singularly perturbed
systems with some recent results of the second author on the global behavior of dis-
cretized gradient systems. The results support the favorable behavior of ODE methods
for stiff minimization problems

1 Introduction

Dynamical systems with a gradient structure occur quite naturally when modelling systems
that show a constant decay of some energy function. They also occur as auxiliary systems
for minimization problems when searching for trajectories that approach a minimum. It is
well known that the w-limit sets of orbits in gradient systems consist of equilibria and the
connecting orbits between them, see e.g. Hirsch, Smale (1974). In addition, these equilibria
together with their unstable manifolds determine the general structure of the global attractor,
see e.g. Hale and Raugel (1989).

Despite this seemingly simple situation gradient systems can show a rich transient and
asymptotic behavior. Further analytic treatment of the systems is often impossible and
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numerical simulations become important in gaining a deeper understanding of the global
behavior. Here the question arises which qualitative properties of the system are preserved
by a numerical method. Some results about discretized gradient systems can be found for
one-step methods in Stuart and Humphries (1994), (1996), Schropp (1995) and for linear
multistep methods in Schropp (1997).

These results apply to nonstiff situations. In this paper we will treat the stiff gradient case.
Such stiff systems occur quite often when the function f in the gradient system & = —V f(x)
arises from a highly nonlinear unconstrained minimization problem (see e.g. Schropp (1995),
Schropp (1997)). In such a case the norm of the Jacobian typically becomes large, the allowed
step sizes in the results of Humphries, Stuart (1994), Schropp (1995) tend to zero and the
corresponding convergence theorems become useless for practical purposes.

In the present paper we analyze the behavior of Runge-Kutta discretizations applied to
gradient equations of singular perturbation type. We prove global convergence of numerical
trajectories for step sizes that are not restricted by the stiffness parameter. Moreover, the
region of attraction will be a neighborhood of some invariant manifold that does not depend
on both parameters.

We use the invariant manifold theorem of Nipp, Stoffer (1995) in order to reduce the
discrete singularly perturbed problem to a parameter dependent regular problem. Our main
result will then be obtained by a parameter dependent version of the global convergence
properties for the nonstiff case, see Schropp (1995). Our results support the advantage of
using stiff integrators on gradient systems for solving nonlinear least squares problems, see
Schropp (1997). An illustrative example of this type will be given in section 2.

2 The main results

We consider a singularly perturbed autonomous system

i = f(z,y),
ey = g(z,y), 0<ex 1 (2.1)

for € RM™, y € RY and ¢ €]0, €[ of gradient type

ok ok

flz,y) = —a—x(x,y), g(z,y) = —a—y(x,y), k:RMN 5 1R. (2.2)

Notice that (2.1) is in fact a gradient system as can be seen from the scaling

E=z, n=+ey, &(S,n)=k($,%)-

For the dynamical system (2.1) we assume the following

Al: The functions f, g are sufficiently smooth with globally bounded derivatives.



A2: There is a smooth function sy : R — IRY such that g(z, so(x)) = 0 for z € R™.

A3: ,ug(g%(x, s0(z))) < —bo holds for some by > 0 and for all z € RM.

In (A3) we used the logarithmic norm gy of a matrix B defined by

1
pe(B) = lim<(|| I +0B ||z ~1).

li
6—0
Our final assumption is typical when dealing with the longtime behavior of gradient systems

A4: The equilibria of the reduced system

T = f(iL',So(iE))

are hyperbolic, that is, at any stationary point of this system the Jacobian of the right
hand side has no eigenvalues on the imaginary axis.

The Jacobian of the reduced system at an equilibrium is given by

0 of dg ' 0
o(a) = (5 = 512020 (s

i.e. the Schur complement of % with respect to the Jacobian of (f,g). Moreover, it is also
easily seen that a similarity transformation of the Jacobian of (f,e 'g) leads to

d(x) 0
199 109 4 0g0r0g~1 | + O(e).
€ Ox € 0y oz dy Oy
Thus, using (A3) we obtain that (A4) holds iff the stationary points of the system (2.1) on
the manifold
Mo = {(z,y) € R"*™ | y = so(2)}

are hyperbolic (compare Lubich, Nipp and Stoffer (1995)). Moreover the number of unstable
eigenvalues is the same for the reduced and the full system.

Under the assumptions (Al)-(A3) Nipp (1985) (see also the general theory by Fenichel
(1979)) has shown that for € > 0 small enough equation (2.1) admits an attractive, invariant
manifold

M ={(z,y) e R"*"" | y = sc()}

which is O(e) close to My. In addition, the property of asymptotic phase holds (see Nipp,
Stoffer (1995), Th. 1). The characterization of the longtime behaviour of the singularly per-
turbed gradient dynamics is the content of

2.1 Lemma: Consider the model equation (2.1), (2.2) and assume (A1)-(A4) . Then there
exist 69 > 0 and €y > 0 such that any bounded solution of (2.1),(2.2) with 0 < € < €y and
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initial value (zo,Yo) satisfying || yo — so(xo) ||< do converges towards a stationary point in M,
ast — o0.

As noted above, the system (2.1), (2.2) may be written in gradient form. Lemma 2.1 can then
be proved by applying the general convergence result for gradient systems to the transformed
system. The assumptions (A1)-(A4) guarantee that the equilibria of the transformed system
are all hyperbolic in a neighborhood of the invariant manifold. Nevertheless we present an
alternative direct proof in Section 3 because we will mimic this approach in the discrete case.

We are interested in the behaviour of s-stage Runge-Kutta methods with Butcher tableau

i’biT’ A = (aij)1<ij<s € R, bc € R?

as applied to (2.1) with step size h > e. The discrete iteration has the form
Tpp1 = o +hOTQI)F(X™,Y™),
h

where X" = (X7,...,X") € RM™*, Y™ = (YP,...,Y") € R"*® denote the solution of the
algebraic system

U-(I®z,)=h(ARI)f(U,V),
h
V= (I®ya) = —(A@ (U, V). (24)
Here, f,g stand for f(X", V™) = (f(X*,Y"),..., f(X?, V"), g(X™, V") = (¢(X2,YP), ...,
g(X?,Y™) and 1 denotes (1,...,1)T € IR®. The Runge-Kutta method has stage order g, if

S ck
P N _ .
Zaijcj = ?,k—l,...,q,Z—l,...,s

Jj=1

holds. As in Hairer, Lubich and Roche (1988) we impose the following condition on the
Runge-Kutta method (2.3):

B1: The Runge-Kutta method is A-stable, that is, the stability function
R(z) := 1+ 2b" (I — zA)~1I satisfies | R(z) |< 1 for Re(z) < 0.

B2: Re(A) > 0 holds for A € g(A).
B3: R(oo) =1 — bT A7 satisfies | R(o0) |< 1.

B4: The method has order p in the classical sense and stage order ¢ > 1. In addition, let
p>qg+1forp>2orp=q=1hold.



In the case € < h, it is sufficient to require the invertibility of A, (B3) and (B4).

When applying the Runge-Kutta method (2.3) to equation (2.1) one is interested in the
geometric properties of the discrete dynamical system. In a remarkable paper Nipp and Stoffer
(1995) showed under the assumptions above that the resulting discrete dynamics inherits the
crucial properties from the smooth analog. To be more precise, the one-step mapping possesses
an attractive, invariant manifold

Mep = {(z,y) € R"™ | y = scn(2)}

which is O(h?™!) close to M, and for which the property of asymptotic phase holds.
The main result of this paper is the following discrete analog of Lemma 2.1 for singularly
perturbed gradient systems.

2.2 Theorem: Let the conditions (A1)-(A4) hold for the system (2.1), (2.2) and suppose that
the Runge-Kutta method satisfies (B1)-(B4). By (zn,yn) we denote the sequences generated
by the Runge-Kutta method (2.3) for the system (2.1), (2.2). Then dy > 0 ezists such that
the Runge-Kutta iteration is well defined for 0 < € < €y, 0 < h < hgy and initial values (zo, Yo)
satisfying || vo — so(z0) ||< do- Consider a compact set K = K; x Ky C R™ x RN and
parameter values 0 < € < h < hy. Then all Runge Kutta iterates that stay in K for n € IN
satisfy

hm (zn,y,) = (2,9)

n—o0

for some stationary point (Z,7) of the system (2.1), (2.2).

Let us discuss the consequences of Theorem 2.2. The e independent convergence result for our
model equation (2.1), (2.2) confirmes that stiff gradient equations should be attacked with
implicit A-stable Runge-Kutta methods. In particular, one should use Runge-Kutta methods
satisfying R(co) = 0, because otherwise the attractivity of M, is only poorly reproduced by
the attractivity of M, (see Remark 5 to Th. 2 in Nipp, Stoffer (1995)). For such methods,
after a short transient phase of approximating M, ;, the discrete dynamics is governed by the
gradient dynamics restricted to M, ;. This process continues till the convergence towards a
fixed point takes place.

Let us now illustrate this scenario by an example from nonlinear least squares which is taken
from Schropp (1995). With the function f from formula (4.2) in Schropp (1995) playing the
role of k£ we set up our model equation (2.1), (2.2). Then, the corresponding phase portraits
for various values of € are displayed in Figures 1 and 2.
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Fig. 1, 2: Phase portrait for ¢ = 1 (left) and € = 0.01 (right)
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Fig. 3: Phase portrait of the differential algebraic equation (e = 0)

In the above figures the label “o” indicates the stationary point which is the local solution
of the underlying minimization problem. Figure 1 shows the stiffness of the original problem
with € = 1. This means that ¢ = 1 is already “small” in our example and (z, s;(z)) is the
attractive, invariant manifold. For ¢ = 1072 the dynamics in y-direction is nearly vertical.
Finally, Figure 3 shows the graph of sy which is quite close to the graph of s;.

The rest of the paper is organized as follows. In Section 3 we present a proof of Lemma
2.1 and in Section 4 we show that the Runge-Kutta iteration is well defined. In Section 5 a
proof of Theorem 2.2 will be given. Here we use some technical properties of stable manifolds
which will finally be proved in Section 6.



3 Singularly perturbed gradient equations

Here we analyze the qualitative behavior of the solutions of the singularly perturbed initial
value problem

Bo= ) = —on (), 2(0) =,
) ok
e = g(z,y) = —a—y(w,y), y(0) = wo. (3.1)

For 0 < € < €g, ¢ > 0 sufficiently small, due to Nipp (1985), equation (3.1) possesses an
attractive invariant manifold

M. = {(z,y) e RV | y=s.(2)}

Differentiating the invariance relation yields g(x, sc(z)) =eDs.(x) f(x, sc(x)). Thus, equation
(3.1) restricted to M, is equivalent to the smooth parameter dependent autonomous system

i = fsn) = —2F (e s.(2), 5(0) = zo. (3.2)

Ox
Now let 9 (t, €, z9) denote the solution of the initial value problem (3.2), and let ¢(¢, €, z0) :=
(¥(t,€,0), sc((t,€,70))). In what follows, we examine the Liapunov properties of r.(t) :=
k(o(t, €, o)) for the system (3.2) in such a way that the analogy with the discretized system
becomes transparent. By a straightforward calculation we have

re(t) = _%(gﬁ(ta €, -TO))T[I + 6DS€(1/J(t, €, mO))TD$6(¢(t7 €, xo))]g—];(gzﬁ(t, €, -TO))v
) = 2105 (0(t,e.00)) 2 (61t 0)
0%k ok T
+8$8y (¢(t7 €, xO))D86(¢(t: €, xO))%(¢(tv €, 330))]
[T + €Ds((t, €, 70)) T Ds((t, e, xo))]%(qﬁ(t, €,Z0))
I8 (0(t,0)) 26D (1, 20)) 5 (86 €, 20)]”

ok
DS€(¢(ta €, ‘TO))]%(QS(L € .Io))
This yields the inequalities

— |1 3 (@0, se(w0)) I3,

7(0) <
| S (Cl +602) || %((b(tv 673:0)) ||§

| 7e(t)



for suitable constants C, Cy > 0 . Using Taylors formula we can establish the estimate
k(o (h, €, 0)) — (20, 5e(20)) < — || 35 (w0, se(w0)) I3 1
h
+ [ (b= 0)(Cr +€C) 113(0(0, €, 20)) [} do

Since 25 (4(¢, €, o)) solves the variational equation associated to (3.2), we obtain from the

Gronwall lemma the inequality

I 356t €20) l2 < || G (@0, 5¢(w0)) [l2 exp(v?)

where

vi= sup{l| 2 (e, sele)) — 2k (2, 5.(2)) Ds(a) o] € RM}.

Thus, we can estimate

k(9(h, €, 30)) — k(zo, 5e(20)) < hlo(h,€) || 5 (2o, 5e(20)) II3 (3-3)

with lo(h, €) := =1+ 2(Cy + €C) exp(2vh).

Inequality (3.3) states that k(-, s¢(-)) is a Liapunov function for equation (3.2) for 0 < e < ¢
and ¢y > 0 sufficiently small. In fact, an inequality similar to (3.3) will be obtained with
the one-step mapping replacing the h-flow. Since the right hand side of equation (3.3) can
only vanish at equilibria of equation (3.2), the invariance principle of La Salle (see, e.g., La
Salle (1976), Ch. 2, Theorem 6.4) assures that the solutions of equation (3.2) converge to
a stationary point, provided the positive halforbit has compact closure. Here we have used
the fact that (A4) implies that the equilibria of the reduced equation (3.2) are hyperbolic
for € sufficiently small. Finally, by the asymptotic phase result of Nipp and Stoffer (see
Nipp, Stoffer (1995), Theorem 1) convergence also holds for initial values (xg, o) satisfying
| yo — so(zo) ||< dp and Lemma 2.1 is proved.

4 Existence and uniqueness of the Runge-Kutta solu-
tion

Our proof of Theorem 2.2 makes essential use of the results of Nipp and Stoffer (1995) in
the case € < h. By the remark at the end of Section 4 in Lubich, Nipp and Stoffer (1995),
this is possible under the stronger conditions we have imposed. A proof can be obtained by
applying the techniques in Section 5 of Hairer, Lubich and Roche (1988). However, we notice
that Lemmata 5 and 6 in that paper use the assumption g(zo,vo) = O(h). This means that
the domain of the Runge-Kutta iteration will be A dependent and will shrink to zero if A
tends to zero. An existence and uniqueness proof in an A independent domain is the content
of the following Lemma.



4.1 Lemma: Let the assumptions (A1)-(A8) be fulfilled for equation (2.1) and let the
Runge-Kutta method satisfy (B1)-(B3). Then there exists some dy > 0 (independent of h)
such that for 0 < h < hy, 0 < € < € and initial values (xg,yo) with || yo — so(zo) ||< do the
Runge-Kutta iteration (2.3) is well defined.

To prove Lemma 4.1 we employ the concept of vector norms. A functional | - |: V' — IR* on
a vector space V is called a generalized norm, if

|v[>0, |[v|=0 < v=0,
lvi v [ <|ui | + v

holds with the natural ordering “<” on IR*. Every norm || - ||, in IR* defines a norm || - || in
V via

ol = [Tv[l.

Furthermore, any two norms of this type are equivalent.

4.2 Lemma: Let (V,| - |) be a Banach space with generalized norm | - | and let B :=
{veV||v—wy|<r} forr>0. Let the map F : B— V be continuously differentiable with
invertible DF(vy). Moreover, for some nonnegative matrices P, K € R** we assume

\DF(UO) z| < Plz|, z€V,
| (DF(w) = DF(v))z| < K|z|, z€V,veB,
P|F(vw)| < (I-PK)r.

Then, the equation F(v) = 0 has a unique solution in B. In addition, the matriz [ — PK is
nonsingular and we have the stability inequality

lv—w| < (I-PK)"'P|F()—-F(w)| Yv,wé€ B.

Lemma 4.2 is a version of Banachs fixed point theorem on a ball in terms of generalized
norms. It can be proved for example by applying Theorem B1, Appendix B, Beyn (1994) to
the fixed point equation T'(v) = v where

T(w) = v—DF(v) 'F(), T:B —V.

Proof of Lemma 4.1: We prove Lemma 4.1 by applying Lemma 4.2 to the equation

U-(I®z)—h(ARQI)f(U,V) €
POV, = <r<v—(u®y)>—<A®f)g< >> =0, 7=qp. (4.1)

We recall that (4.1) is equivalent to the algebraic system (2.4). To apply Lemma 4.2 we use
the generalized norm | (U, V) |= (|| U ||, || V ||) € IR? and the central point vy = (I®z, 1QY).
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For the derivative of F' we find

0  (I-hA () —hAL(x,y)
oy Lenlieynh) = ( (48 2(z,y)) ﬂ—(A@g—g(x,y)))
_(I+0(h) O(h)
—< 0(1) TI—(A®Z—Z(x,y))>’TEO'

Now condition (B2) and the spectral relation

g(x,y)), || v — so(z) ||=: d > 0 sufficiently small

0
Re(A) <0 VA €o(==
™) G

imply that 7/ — (A ® gz(:v, y)) is nonsingular for 7 > 0.

In addition, using the techniques of Lemma 5, Section 5 in Hairer, Lubich and Roche (1988)
we can show that L, := (7] — (A® gg(x, y))) ! satisfies an estimate || L, ||< C for all 7 > 0.
From

0 1 0
F 1 h) = -(I+0(h
8(U,V) ( Kz, 1®y,T, ) (O(l) L71> ( + ( ))
we can deduce that a(%F(]I@) z, I ® y,7,h) is invertible for 7 > 0, 0 < h < hgy, hg > 0
sufficiently small. The inverse is of the form
0

FlI®z,I®y,1,h)™" = <I+O(h) O(h) )

a(U, V) 0(1) L, +O(h)

This leads to

9 Plles ey k) (X,Y)] < <1+0(h) O(h)>_<||XII>

(U, V) o)  0o1) 1Yl
= P | (X,)Y)]|.
Moreover, we obtain
|(LF(H®@“ I® Th)—LF(UVTh))(XY)|
a(U’ V) I y’ I a(U’ V) M) ) 9 )

< g u-wsa h+oiv-wen il (oh on ) (1¥])
= K, | (X,Y) ] for (X,Y) € RMstNs,

Thus, for (U,V) € B, := {(X,Y) e R™™s | | (U V) -~ (I@z, 1®y) |<r}, r= (r1,r) >0
we can show the estimate

O(h) O(h
o (2 88)
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Next we calculate
[Flz,T@yrh)| = < Oh) || f(z,y) | ) |

Using Taylor expansion and g¢(z, so(z)) = 0, we find
9@yl < Clly—solz) || = O(d)
with d :=|| y — so(x) ||. Hence, | F(I® z, I ® y, T, h)|= (O(h),0(d))T and

O(h) + O(hd) )

P | FI®z, U®y,7,h)| = (O(h)+0(d)

follow. Now, Lemma 4.2 is applicable provided r > 0 is chosen in such a way that
P | FI®z,I®y,7,h)| < (I—PKp)r (4.2)

holds. To assure (4.2), we fix hg, 71,79 > 0 sufficiently small, such that

1
(I-PKp)r > - ( " ) (4.3)
2 T9
is satisfied for 0 < h < hg. By choosing additionally dy > 0 sufficiently small we obtain
_ O(h) + O(hd) 1fr
P, | FI®z,I®y,7,h)| = < O(h) + 0(d) <3l (4.4)

for 0 < h < hg, 0 < d < dy possibly after diminishing ho > 0 once more. Now (4.2) is an
immediate consequence of (4.3), (4.4) and Lemma 4.2 guarantees the unique solvability of
equation (4.1) for r = (ry,r3) > 0 sufficiently small in the set

B, = {(X,Y) e R"™™™ [[(X,Y) - (I@z,T®y)|<r}.

Remark: The stability inequality of Lemma 4.2 yields exactly the statement of Lemma 6,
Section 5 in Hairer, Lubich and Roche (1988) without the assumption g(zg,yo) = O(h).

5 Proof of the main result

For the given compact set K and 0 < € < h < hyg, let B, denote the set of initial values (zo, yo)
that satisfy || yo — so(z0) ||< do and that generate a Runge-Kutta sequence (zn,Yn)nen that
stays in K for all n € IN. By Theorem 2 of Nipp and Stoffer (1995), the Runge-Kutta mapping
admits an invariant manifold

My = {(z,y) e RV | y=scn(a)}
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that attracts all initial values in a neighborhood || 7o — so(zo) ||< do. Moreover, if dy > 0
is chosen sufficiently small then the property of asymptotic phase holds. That is, for every
(%o, Yo) there exists some (Zg, §p) € M, p, such that the corresponding Runge-Kutta evolutions
(n, yn) and (Z,,Yy,) satisfy

im ((Zn, Yn) — (Zn, ¥n)) = 0.

n—oo

Thus, it is sufficient to show our convergence result for initial values (zg, y9) € M, . Restricted
to that manifold, the Runge-Kutta iteration has the form

Tpyl = Tp+ h,(bT QN f(X"Y") =: Gh,e(zn),
where U = X",V = Y™ solve the system (see (2.4))
U-(1®z,) = h(AQI)f(U,V),
eV —(IQsen(zn)) = RARDGU,V).

Now in complete analogy to our Liapunov estimate for the continuous system in Section 3
(see formula (3.3)), we can show with L.(z) = k(z, s.(z)) and the solution flow 9 of (3.2) the
following inequality

L(Ghe(z)) = Le(2) < Co || Gre(w) —9(h,e;z) || +hig(hy ) || G (@, se(2)) |13 -
Let G, denote the Runge-Kutta map with step-size h when applied to (3.2). Then we obtain

I Gre(@) = ¥(h,e,2) | < || Gre(@) = Gue(@) | + || Gre(z) = ¥(h,e,2) |
< Cieh™™ + Coh?t < C3hIH.

The first part of the second inequality is valid due to Lemma 3 of Lubich, Nipp and Stoffer
(1995). Lemma 3 of that paper applies under our assumptions to an arbitrary xg, since (Al)
holds as well as

€ Dsc(2)f(x,s5.(z)) = g(z,s.(x)) for z € RM.

Moreover, part two of the second inequality follows from (B4) by the standard local error
estimate for Runge-Kutta methods. Combining the last two estimates we find for the discrete
dynamics

Le(zps1) — Le(zn) < hllo(h,€) || 2 (zn, se(zn)) |3 +Ch], n € . (5.1)

Let S denote the set of equilibria of equation (3.2) in K. By assumption (A4) and the
closeness of sy and s, all equilibria in S are hyperbolic. Thus we can deduce that either S = ()
or S ={zy,...,%;} for some [ > 1.

Suppose first that S = () holds. Setting

Ve := min{|| G (@, 5(2)) [l2] =€ K1} >0

12



and taking h > 0 sufficiently small we then find the inequality

lo(0,
Le(tpy1) — Le(zn) < h 0(2 6)762 for n € IN, (2, Sen(®0)) € Be.
This implies lim,, o, Le(2,) = —o0 in contrast to the boundedness of L, on Kj.

In the case of a nonempty finite set S we analyze the asymptotic behavior of the iterates
starting in M, ; by using the discrete w- limit set

whe(zg) = {2 €RM| klggo Zn, = & for some subsequence n; — co}.

The general properties of discrete limit sets are described in Theorem 5.2, Ch.1 in La Salle
(1976). In our situation, we have wp(2¢) # 0. Since the invariant manifold Theorem of
Nipp and Stoffer (1995) reduces the singular perturbed problem to a regular parameter de-
pendent problem on M., one can extend in a straightforward manner the techniques from
the Appendix of Schropp (1998) to show

7(h) = {ll 55 @ne, se(@ne)) I3 | Ene € wne(@o), (w0, 5e(w0)) € Be, 0 < € < h}
= o(1). (5.2)

Formula (5.1) states that the longtime behaviour of the discrete trajectories takes place near
the zeroes of %5(z, s.(z)). Now let Z be a stationary point of (3.2). Then (Z, s.(Z)) is a sta-
tionary point of (3.1). An easy calculation shows that Runge-Kutta methods retain equilibria
as fixed points. Then the attractivity of M., (see Theorem 2, ii) in Nipp, Stoffer (1995))
yields s.(z) = s.n(x) for h > 0 sufficiently small. Hence, z is a fixed point of z,11 = Gh(n)
and we need more information about the behavior of this iteration in the neighbourhood of
fixed points.

Let U denote a neighbourhood of a fixed point Z. The fixed point 7 is called hyperbolic, if
the linearization at Z has no eigenvalues of modulus one. We consider the set of initial values
that have bounded trajectories in U

BY, (7) = {zy€eR | z, €U for n € N}

s,h,e
as well as the stable set of Z in BY, (Z) given by

U
s,h,€

() = {n € th,e(a_c) | z, — T as n — oo}.

It is well known that for any fixed values of the parameters these two sets coincide and form
the local stable manifold of the fixed point. However, we need that the neighborhood can be
chosen independently of € and h. Such a result will be proved in Section 6 by an extension of
Theorem 4.1 in Schropp (1997) to the parameter dependent case. More precisely, we will show
that z;, 7 = 1,...,l are hyperbolic fixed points of G}, and that for some § > 0 independent
of h, e and 7 we have

W (z) = BSUN(3), 0<e<h<hy, 7i€S, i=1,...,1 (5.3)

s s,h.€e
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where Ks(z;) = {w e RM [|w—m||<d},i=1,...,1
Now we define

L m1n{|| T — T || | i, Tj €S, ’L?é_], 1,j € {1,,[}} if [ > 2,
po= 00, else

and consider the neighborhood V; := (U\_, K,(z;)) with b := ; min{é, £}. In addition we
define the quantity

= min{]| Z(z,5(2)) 3] z € Ki\Vi, 0< €< ho} > 0.

Next we diminish hq > 0 such that 7(h) < 75 holds for 0 < e < h < hy. Since

[ %(jh,ease(ih,e)) ||g < 7(h) <
is valid for &5 € wp (7o), 0 < € < h < hg we obtain the inclusion wy, (zo) C VN K. Now we
use that the w-limit set wp, (zo) is invariant and invariantly connected (see La Salle (1976),
Ch. 1, Section 5 for definition), which leads to the conclusion

Whe(xo) C Kp(Zy) N K; for some n € {1,...,1}, 0 <e < h < hy.

Since dist(xn,wn (o)) — 0asn — oo, 0 < € < h < hy there exists a number N; =
Ni(h,€,b,19) € IN such that

T, C Kou(z,) C Ks(zy) for n > Ny, (2o, Sen(z0)) € Be, 0 < € < h < hy.

This implies zy, € Bf,f(f W(z,) = ijf’(f")(jn), and our convergence result is proved.

6 Stable and bounded sets of hyperbolic fixed points

It is well known that the local stable manifold of a hyperbolic fixed point may be equivalently
defined as the set of initial data that lead to bounded sequences in the neighborhood. In this
Section we show that such a statement holds for a fixed neighborhood uniformly in A and e,
see equation (5.3).

6.1 Lemma: Let (Z,5 = so(Z)) be a hyperbolic stationary point of the equation (2.1) and let
the assumptions (A1)-(A3) hold. Consider a Runge-Kutta method (2.3) satisfying (B1)-(B4)
with invariant manifolds My, 0 < € < h close to My. Define the map Gy ¢ in a neighborhood
of T such that the x-component of the Runge-Kutta iteration on M, reads Tpy1 = Ghe(Tn).
Then Z is a hyperbolic fized point of the map G.p and there exists a 6 > 0 such that

5®@) = BSY(z)

holds for all 0 < e < h < hy.
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Proof: Following Lubich, Nipp and Stoffer (1995), Section 2 the Runge-Kutta method on
M., can be written as

(415 Ynt1) = (Gep(@n); Sep(Tns1))
where
Ghe(z) =2+ h(b" @ I)f(X,Y), (6.1)
and (X,Y) € RM* x R"* is the solution of
X—-(IehHr = h(ARQID)f(X
€Y —(I®1)sen(r) = h(A®IDG(X,Y).
In what follows, we derive the representation
DG (%) = I+ h[®(x)+ O(e) + O(h)]. (6.2)
where )
7=s(e), B@)= (5 - o0 @)

Using this we indicate how the proof of the stable manifold theorem can be repeated in such

a way that our assertion follows. B
With (A7 I(X — (I® I)z) = hf(X,Y) we can rewrite Gj,  in the form

Gre(z) = R(co)z+ (BTA '@ 1)X(h,€,2,5.4(2)).

In particular, the linearization of G has the structure

DGhi(z) = R(oo)I+ (5" A~ @ I)( ai (h, €, 7, 5en())

+a—yX(h, 6,2, 5en(2)) Dsep(T))- (6.3)

The dependence on the arguments (A, €, z, s.,(x)) will be suppressed in the following. By
implicit differentiation we find from (4.1) the derivatives

0X . ox af
o =Gnen  TL=ClhrAe 3L e ) (6.4)
where
._ of of dg
Cur = T-HA® )+ (48 J)L (40 30

and L, = (1] — (A® g—Z))_l as in Section 4. Recall that our assumptions imply || L, ||< C
for 7 > 0 so that (), is nonsingular for small ~ and

of of

=7 A
Ch,T +h’[( ® a ay

—)+(A® =)L, (A ®g—i)]+0(h2). (6.5)
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Inserting (6.4) into (6.3) leads to

DGhe(z) = R(co)I + (0"AT @ IC (@ 1) + hT(A® g—gjj)LT(]I ® I) Dsp)-

In this expression we want to replace Ds, ) by the derivative Dsgy(z) through

Dsc.p(x) = Dso(z) + O(h) + O(e)
dg~'dg

— (8_y p (x,50(x)) + O(h) + O(e). (6.6)

For this relation we need some smoothness of s.;(z) with respect to (z,h,€). In order

to establish such a result one has to modify the proof of Nipp and Stoffer (1995) (see the

arguments following equation (9) there). Instead of their operator P we consider P defined
by

:v—i—ﬁ(:v,z,h,e)
h

€

G(z,z, h,€)

and apply their invariant manifold result (see Theorem 5, Nipp, Stoffer (1992)) to P. This
yields an invariant and smooth manifold

M = {(z,h,e2)| (x,h,) € RMx]0,ho[,0 < € < &oh, z=5&(x,h,€)}
for the map P. Using the structure of P, we can deduce

M = U0<h<h0 U0<e<h60 Mh,e-

In particular, so(z) = 6(0,0,z) and scn(z) = 6(h, €, ) is smooth in (h,€,x). The estimate
(6.6) then follows from a Taylor expansion.
Using (6.6) we find

DGhe(z) = R(c0)I+ (b"AT @ I)C; 1
of gt g

JI®I) —hr(A® =)L (I® )=

9y dy 3_:1:] + O(he) + O(é%)

and combining this with (6.4) some algebraic manipulations lead to

of

DG (z) = I+h(b"A7'@I[(A® a_x)(ﬂ ®I)
+(A® g—?];)LT[(A ® %)(m I - T(u®1)g—z_ g—g ]

+0(eh) + O(€?) + O(h?).
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Finally, with the help of b/l = 1 and the equations

g~ g 1 dg~! dg
Tl = = (A —= AQ )T
@menzl £ = (el yae e,
B ag—l B 89_1
Li-rA" o3l ) = —utegl ),

we obtain the representation (6.2).

By (A4) the matrix ®(z) is hyperbolic. Let M, and M, = M — M, denote the number of
its stable and unstable dimensions respectively. Then z is a hyberbolic fixed point of DG}, ((z)
with the same number of stable and unstable eigenvalues. The corresponding invariant sub-
spaces Z"¢ | ZM¢ can be obtained by a simple perturbation argument (compare Lemma 3.4
in Beyn (1987)) as follows. For 0 < e < h < hy and hg sufficiently small there exist p > 0,
matrices T'(h, €) and norms || - ||s, || - |l. on R™:, R™* such that

T(h, €)' DG} (%)T(h,€) = (Qu(h,e) 0 )

0 Qs(h,e€)
and
max{|| Qu(h, )™ llu, | Qs(ho€) I} < 1—ph,
I T(e.h) I+ 1 TR < C. (6.7)
The first M, columns of T'(h,¢) form a basis for Z"¢ and the last M, columns for Z". In
the following we will use the norms || - ||, defined by

| T(€, h) (2w, T5) ||len= max(|| Ty ||u, || Z5 ||s) for z, € RM x, € RM:.

By (6.7) these norms are uniformly equivalent to the given norm and henceforth we will drop
the indices €, h. By construction we have the relations

[ [l = max{|| [z]; [l | [#]u I}, & = [2]s + [2]u,
max{[| DGne(z)s I, | (DGne(z)) "I} < 1— ph.

Here [z}, [z]; denote the projections of z onto Z¢, Zh<¢ and DG}, (Z)s, DG(T), stand for
the restrictions of DG}, () to ZM<, Zh<.

For the remainder we follow the proof of Theorem 4.1 in Schropp (1997).

To simplify the notation we assume without loss of generality z = 0. Let Sy, S, denote
the Banach spaces of zero convergent, respectively, bounded IR™-valued sequences (Zn)new
with the norm

| (Zn)new [loo := sup{[|z.|| [ n» € N}.

Consider the scaled and cut-off vector field

éh,e(x) := DGy(0)x+ Rpe(z), Rpe(z) = x(2)=(Ghe(dx) — DG} (0)0)

Sl
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for 0 < € < h < hy and scaling factor § > 0. Here xy € C°(IRM,[0,1]) is a cut-off function
satisfying
(@) =1if [z <1, x(z)=0,if ||z |>2.
For the transformed map CAv‘h,C, we define the operators
The. s, — ZMxS =Y,
(Tn)new = ([Tols; (Tng1 — éh,e(l‘n))nelN)

for i € {0,b}. The aim is to apply the Lipschitz inverse mapping Theorem (see the Appendix
of Irwin (1990) or Lemma 4.2) to the equations

T ((@n)new) = (v, (O)ner), v € 20

simultaneously and with the same data for 7 = 0 and ¢ = b. Since S, C Sy our conclusion
then follows from the uniqueness of the solutions. The main ingredient for the application of
the Lipschitz inverse mapping theorem is the estimate

| DRp(z) || < %h for 0 <e<h<hy, z€RM, (6.8)
Using x(z) =0 fiir || = ||> 2, we obtain
| DRue(z) | < sup{|l Dx(z) || || = [[< 2}
+ sup{]| %(Gh,e(éx) = Ghe(0) = DGre(0)oz) || [ ] = lI< 2}
+ sup{|| DGy(67) — DG.(0) || | || = ||< 2} Vz e RM.

A simple calculation yields
1 h
S(Gh,e(&c) — Gpe(0) — DG ((0)z) = E(Ah,f(éx) — Ap(0) = DA} (0)dz)
where Ay, ((z) := (BT @) f(X (h, €, 2, 8c4(7)), Y (h, €, 2, 5. 1(x))). Furthermore, we find for the
difference of the derivatives
DGh,e((S.Z‘) - DGh’E(O) = h(DAh’e(é.T) - DAh,C(O))

Combining this with the smoothness properties of A, . the estimate (6.8) follows for ~ and §
sufficiently small.

The further steps are (cf. Lemma 4.2 with ¥ = 1 and r > 1) a bound on the inverse
1

DI ((0)nen) ™ oo < —
| D (Onen) ™ e <

and a small residual

€, ,Uh
| T h((o)nElN) lloo < o

These can be proved along the lines of Theorem 4.1 in Schropp (1997) and our Lemma is
shown.
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