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Abstract

We study stability properties of a finite set 3 of nxmn-matrices
such as paracontractivity, BV- and LCP-stability, and their relations
to each other. The conjecture on equivalence of paracontractivity and
LCP-stability is proved. Moreover, we prove the equivalence of the
uniform BV-stability and the property of vanishing length of steps of
any trajectory of X.
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1 Introduction

The interest in discrete linear inclusions (DLI) and their stability [1, 3, 6,
10, 9] is caused by their natural occurence in constructing self-similar ob-
jects, interpolation schemes, in constructing wavelets of compact support, in
studying nonhomogeneous Markov chains, etc. One of the authors became
particulary interested in this subject during his work concerned with hys-
teresis nonlinearities and, in particular, Skorokhod problems and sweeping
processes [13, 14, 15, 11].

Briefly, a polyhedral sweeping process is given by a time-dependent poly-
hedral set

Z(t)={z R (z,p) > ;(t),1 <i<k}, 0<t<T, (L)

and an associated set of projection directions d; such that (d;, p;) > 0. Here
p; € R", ||pi]| = 1, and ¢;(¢) are continuous scalar functions such that Z(t) #
() for each t € [0, T).

For each initial value z, € Z(0), by a solution of (1.1) we understand
an absolutely continuous function z(t) : [0,7] — R™ such that z(0) = =y,
z(t) € Z(t) forall 0 <t < T, and

x(t) € { Z a;d; : a; > 0} a.e. on [0,7],

i€l(z,t)

where
I(z,t) = {i: (pi,z) = ()}

As is known ([4, 5, 12]), sufficient conditions for different types of regular-
ity of sweeping processes (unique solvability, continuity, Lipschitz continuity)
can be formulated in terms of different kinds of stability of so called asso-
ciated projection systems (APS), that is, of systems of projections P; onto
hyperplanes L; = {z € R" : (x,p;) = 0} along directions d;. In partic-
ular, notions of product boundedness and of finite length of any trajectory
of the APS are used. The latter property ensures convergence of a class of
discrete-time approximation methods to continuous solutions of the sweeping
process.

Another stability property which is widely used in applications is that of
left convergent products (LCP); it is known to be equivalent to convergence
of each infinite trajectory x;,, = P, x; to some z* € R" as j — oo. We will



also consider a weaker property of lim; , ||z;4+1 — ;|| = 0 (vanishing steps
property).

It seems to be more convenient to study the relations between different
kinds of stability for general finite sets of nxn-matrices, the more so that
so far we have no reasons to believe that investigation of sets of oblique
projections is essentially simpler than that of sets of general matrices.

A matrix A is said to be paracontracting with respect to a given norm
| - || (see, for instance, [8]) if

|Az|| < ||z|| whenever Az # x. (1.2)

Finite sets of paracontracting matrices are important, for instance, in study-
ing convergence of iterative algorithms. A stronger property of ¢-paracontra-
ctivity requires a positive rate of decrease of the norm in (1.2).

In [2], it was conjectured that the LCP property of a finite set of nxn-
matrices is equivalent to the paracontractivity of this set with respect to some
norm. We prove that this conjecture is true. Moreover, we demonstrate the
equivalence of these types of stability to the property of vanishing steps and
the property of finite length of all trajectories. The main idea of the proof is
induction on the cardinality & of the set X..

2 Discrete linear inclusions

Let ¥ be a finite set of real nxn-matrices A;, i = 1,..., k. Following [9], by
the discrete linear inclusion DLI(X) we will understand the set of all infinite
sequences {z;}, j > 0, of vectors in R" such that

Tj41 = Aij.’lij (23)

for some A;; € 3. These sequences and their segments will be called trajec-
tories of X.

We also introduce (right-infinite) matrix trajectories of ¥. These are
sequences { My, My, ...} such that M, € ¥ and

Mi—|—1 = qu;Mia 1 S ]z S k, 1= 0, 1, .. (24)

A set of matrices ¥ = {A;,..., Ax} is product bounded if there exists a
C > 0 such that [|4;, ... A4;,| < C for all finite sequences {1 < i; < k},
j=1,...,m. The following assertion is an easy consequence of well-known
results in the theory of DLIs (see, for instance, [1]).
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Proposition 2.1 A finite matriz set ¥ is product-bounded iff all its trajec-
tories are bounded.

A set 3 is LCP (left convergent products) if any matrix trajectory of X
has a limit. This is equivalent to the convergence of any trajectory of ¥ (not
necessarily to the origin), see [3].

Definition 2.2 A set ¥ is called BV-stable if all its trajectories
z = {zo,21,...}
have bounded variation, that is,

V(z) =) |zip — 23] < 0. (2.5)
=0

Proposition 2.3 A set X is BV-stable iff any matriz trajectory
M - {M(),Ml, . }

of ¥ has bounded variation, that is, iff

o0
D 1M = Ml < oo, (2.6)
=0

where || - || is some matriz norm (they are all equivalent).

Proof. Obviously, (2.6) implies (2.5). Now, if the variation of the sequence
M; of matrices is infinite, then the sum of variations of vector sequences
{Mye;, Mye;, ...} over i = 1,...,n (here e; are the coordinate vectors) is also
infinite and, hence, at least one of these sequences has infinite variation which
is a contradiction with the BV-stability of the set . O

We also introduce the formally stronger concept of (uniform) UBV-stabi-
lity. It will turn out to be the same as BV-stability, but this is not obvious.

Definition 2.4 A set ¥ is called UBV-stable if it is BV-stable and there
exists L > 0, such that for all trajectories z = {zo, z1, ...}

V(x) < Li|z]| (2.7)
holds.



Now we introduce a new property which is not stronger than LCP but
will be proved to be stronger than product boundedness.

Definition 2.5 The set X is called VS (vanishing steps) if, for each of its
trajectories {xo, ...},

lim [|lzj11 — 24| = 0.

j—oo

For completeness, let us also introduce a property that is stronger than LCP
and will be proved to be stronger than BV-stability.

Definition 2.6 The set X is asymptotically stable (AS) if all its trajectories
converge to the origin.

As is easy to see, the notions of PB, VS, LCP, BV, UBV and AS do
not depend on the particular norm in R* and R™". We will now give two
definitions that do depend on the norm used.

Definition 2.7 A matrix P is said to be paracontracting with respect to the
norm || - || in R" if, for all z € R",

Pz # z < ||Px|| < ||z]|-
It is £-paracontracting with respect to || - || if there exists v > 0 such that
[Pz < lz]] = ~||Pz — x|

holds for all = € R”.

A set of matrices is called paracontracting or /-paracontracting with re-
spect to || - || if all its matrices possess the respective property; and it is
called just paracontracting or /-paracontracting if there exists a norm in R”
such that the set possesses the respective property for this norm. We use the
abbreviations PC and LPC, respectively. The last two properties, again, do
not depend on the particular norm in R".

3 Known relations between stability notions

As is known [1], a finite set X is AS iff p(X) < 1, where p(X) is the generalized
spectral radius of X, see [3, 1, 6] for definitions and results concerning spectral
radii of sets of matrices.



Moreover it follows from results in [1], that ¥ is AS iff there exists a norm

|| - || in R™ such that
_lﬂan ||Az|| < 17

where || A|| = supy,.y=1) [|Az[|. This immediately implies the BV- and UBV-
stability of 3.

In turn, the BV-stability of ¥ implies its LCP property because any
sequence of bounded variation converges. Further, any convergent sequence
has vanishing steps which proves the implication LCP=-VS.

Proposition 3.1 For a finite set X of nxn-matrices, the properties UBV
and LPC are equivalent.

Proof. Let us demonstrate that the set 3 is UBV-stable iff there exists a
seminorm || - ||z in R™ that decreases at least at rate 1 along any trajectory
of the set X, that is,

[Aizlls < llzlls — |Aiz — =]
Indeed, this seminorm can be chosen as

lzlls = sup Y |lziq — @] < oo, (3.8)

T=T0, L1y ; Z0]
=0,1...

where the supremum is taken over all trajectories of X starting from z.
Since the rate of decrease of this seminorm is at least 1 along any trajec-
tory, the rate of decrease of the norm

]l = [l=11/2 + ll=lls

is at least 1/2. Thus a stronger criterion of UBV-stability can be formulated:
A set is UBV-stable iff there exists a norm decreasing at a qualified posi-
tive rate along all trajectories of the set. This, however, coincides with the
definition of ¢-paracontractivity with respect to the norm ||z|ly. O

The following result was proved in [8].

Theorem 3.2 If Y is a paracontracting set, then it is also an LCP set.



4 Auxiliary results

It was conjectured in [2] that the LCP property of a finite set ¥ implies its
paracontractivity. This conjecture was proved for ¥ = {A;, A5} and for the
case of ¥ with continuous limit function, see [2]. We are going to prove it in
the general case. First, we will need several auxiliary results. The first one
is as follows:

Proposition 4.1 Suppose a finite set X2 of matrices A; is a VS set and F is
the stationary space of X

E=FEX)={zeR":Azx=xz, i=1,...,k}. (4.9)

Suppose also that all matrices A; are reduced by similarity to the form

A;:(é g?), i=1,...,k,

where I is the identity mXxXm-matriz corresponding to the subspace E. Then
there exist positive constants v; > 0, i = 1,2, such that, for any x = (p,q) €
R™xR*™™ and any t = 1,...,k, the inequalities

nlICig — qll < |[Asw — 2| < [|Cig — g (4.10)
hold.

Proof. 1t suffices to consider the euclidean vector norm. First, note that

! Biq . .
Aix —x = ( Cig — g ), 1=1,...,k;
thus, the left inequality in (4.10) with 7; = 1 is obvious.

If there exists a ¢ € R* ™ and ¢ € {1...,k} such that C;¢ = ¢ and
B,q # 0, then the sequence z; = (jBiq,q), j = 0,1,... is a trajectory of ¥
which contradicts its VS property. Thus C;q = ¢ implies B;q = 0 for all 7
and it follows from simple facts of linear algebra that B; = D;(C; — I) for
some suitable matrix D; and hence

1Bigll < L|Cig — 4l

forsome L > 0,all2=1,...,k, and all ¢ € R*™™. The right-hand inequality
with 75 = /(1 + L?) follows immediately. 0O

Now, together with the VS set ¥ = {A4;,..., Ay}, let us consider the set
¥ ={Cy,...,C}. It follows from Proposition 4.1 that ¥’ is also VS and,
moreover,



Proposition 4.2 If ¥ is VS then the properties of LCP, BV, and UBV of

the set X are equivalent to the same properties of X'.

Theorem 4.3 If ¥ = {Ay,..., Ax} is a UBV-stable set then there exists an
e > 0 such that, for any finite trajectory {xo, ..., xm} of 3, the inequality

max e —wll > Y |z — il (4.11)
2=0,...,;n—1
1=0,...,m—1

holds.

Proof. Since BV implies VS, by virtue of Proposition 4.2 we can assume
E(X) = {0}. Let us use induction on the number k& of matrices. For a single
matrix A without nontrivial invariant vectors, the BV-stability is equivalent
to p(A) < 1 and the required property is obvious.

Next, suppose that the assertion of the theorem holds for all sets of £ — 1
or fewer matrices. Note that (4.11) is equivalent to the following. There
exists a C' > 0 such that the variation of any trajectory of ¥ with length of
steps equal to or less than 1 is less than C. Suppose the contrary, that is,
suppose that there exists a sequence of finite trajectories {xf}, =12 ...
0 < i < 4, such that ||z, — zJ|| < 1 for each admissible 7 and j but

Z ||:U{Jrl —zl|| > o0 asj — oo.
i=0,...,j—1

The UBV-stability of & implies lim;_,o, ||2}|| = co. Let us show that there
exists an M > 0 such that any piece of any trajectory of variation V' > M
uses all the matrices A;, i = 1,..., k. Indeed, this follows from the induction
hypothesis.

For each trajectory {7}, let us consider its minimal initial segment of
variation V' > M. Obviously V' < M +1. Since |[z}|| — oo as j — oo and all
matrices A; participate in each initial segment, we conclude that any limit
vector h of the sequence

7

i = g
5]l

j=1,2,...,
is an invariant vector for all A; and that ||| = 1. This is a contradiction to
E(X)={0}. D

We will also need the following assertion from [7].
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Theorem 4.4 Suppose ¥ is an LCP set and E(X) = {0}. Then there exists
a norm in R* and 0 < g < 1 such that

A4l <1, i=1,...,k

14, .. Al < g

for all products containing each A; from .

5 Equivalence theorem
Now, let us formulate and prove the main theorem of this paper.

Theorem 5.1 The following three properties of a set ¥ = {Ay,..., Ax} are
equivalent:

(1) The set ¥ is UBV;

(2) The set ¥ is LCP;

(8) The set ¥ is VS;

Proof. The only assertion that needs proof is that (3) implies (1); the im-
plications (1) = (2) and (2) = (3) are obvious. Again, we will use induction
on the number £ of matrices in X. For a single matrix, this follows from an
obvious implication (p(A) < 1) = UBV. Indeed, if p(4) > 1 and there are
no nontrivial invariant vectors, then there exists either a diverging trajectory
or a quasiperiodic trajectory x, Az, A%z, ..., and in both cases the lengths of
steps do not vanish.

Let us now suppose that the statement is true for all sets of £k —1 or fewer
matrices. If all trajectories of ¥ have vanishing steps, then so do all trajec-
tories of each proper subset of ¥ and, hence, by the induction assumption,
each proper subset of ¥ is UBV-stable.

Again, we will only consider the case E(X) = {0} because of Proposition
4.2. This implies the existence of a 6 > 0 such that, for any ||z|| > 1 and
some 7 = 1,...,k, the inequality

[Aiy —yll > 6 (5.12)

holds for any y such that ||y — z|| < 4. Suppose there exists a trajectory
X = {x;} of ¥ of infinite variation.



By assumption, lim; , ||z;11 — x;|| = 0. This implies the convergence of
X to zero because of Theorem 4.3. Indeed, suppose X does not converge
to zero. Let us consider the set F' of all finite segments of X generated
by proper subsets of 3. Theorem 4.3 ensures the existence of a universal
constant L > 0 such that

> lwia -l <L max |z — |
i=ig, i1 =iyt

for each segment X, ;; = {z,,...,z; } € F. Since X is VS, the variations of
these segments vanish as 79 — oo. The variation of the whole sequence X is
infinite, thus, for each index %¢, there exists a maximal segment Xj;,; in F
such that X;,;, 41 € F. Since X is VS, the variations of extended segments
Xigir+1 also vanish as ip — 00, and so do their diameters. It remains to
notice that, if we choose a sequence of initial indices 3} — 0o as j — oo such
that ||£EZ{)|| # 0 as j — oo, because of (5.12), for some 6 > 0 there exist
arbitrarily large indices 4 such that ||z;11 — ;|| > 0, which is a contradiction
with the VS property of X.

Thus, all trajectories of ¥ converge (because trajectories of bounded vari-
ation converge). Thus, we have proved that ¥ is an LCP set, and Theorem
4.4 can be now used.

Let us consider a finite trajectory {zo, ..., Z,} of X, where at least one
matrix A; does not participate. Its total variation is bounded from above
by L||xo|| where L > 0 is a universal constant for all 7. On the other hand,
any finite trajectory generated by all matrices A; satisfies the inequality
lzm|| < qllzo||. Thus, for any infinite trajectory {zo, ...} of ¥, its minimal
initial segment {zy, ..., 2, } for which all the matrices A; are used satisfies
the inequality

> i — @l < (L +O)lzoll,
1=0,...,m—1
where C' = max; ||4; — I||.
The second segment {z,, ..., zs} satisfies the inequality

Yo i =zl < (L +O)llamll < (L + C)llll,

i=m,...,s—1

and so on. Since ¢ < 1, we have V(z) < (1 — q)"*(L + C)||wo||. This shows
the UBV-stability of . O
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Note that Theorem 5.1 is wrong for general bounded sets of matrices.
Indeed, the set of all orthogonal projections is VS and paracontracting but
not LCP or BV. The set of orthogonal projections in R? onto lines {y = kx}
for all kK =1,2,... and onto the line x = 0 is LCP and paracontracting but
not BV.

Finally, let us formulate the most general equivalence theorem which is
an obvious consequence of Theorem 5.1 and results collected in Section 3.

Theorem 5.2 For any finite set X of nXn-matrices, the properties UBV,
BV, LCP, PC, LPC, and VS are equivalent to each other.
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