Übungen zur Vorlesung

CHAOTISCHE DYNAMIK

Wintersemester 2015/2016

PD Dr. Thorsten Hüls

Übungsblatt 7 3.12.2015

Abgabe: Donnerstag, 10.12.2015, 14:00 Uhr in Postfach 114

Tutorin: Alina Girod, E-Mail: agirod@uni-bielefeld.de

Aufgabe 19:

Sei $I \subset \mathbb{R}$ ein Intervall und sei $f \in \mathcal{C}^3(I, I)$. Die Schwarzsche Ableitung von f wird definiert durch

$$Sf(x) := \frac{f'''(x)}{f'(x)} - \frac{3}{2} \left(\frac{f''(x)}{f'(x)}\right)^2.$$

Beweisen Sie die folgende Aussage:

Sei I = [a, b], $f \in \mathcal{C}^3(I, \mathbb{R})$ mit $f'(x) \neq 0$ und $\mathcal{S}f(x) < 0$ für alle $x \in I$. Dann gilt für jedes $x \in (a, b)$

$$|f'(x)| > \min\{|f'(a)|, |f'(b)|\}.$$

(6 Punkte)

Aufgabe 20:

Sei $f \in \mathcal{C}^3(I,I)$, wobei I=[a,b] ein abgeschlossenes Intervall bezeichnet. Zusätzlich gelte $\mathcal{S}f(x) < 0$ für alle $x \in I$; hierbei ist der Fall $\mathcal{S}f(x) = -\infty$ zugelassen. Sei $p \in I$ ein periodischer Punkt. Der direkte Einzugsbereich von p ist ein maximales Intervall $B \subset I$ mit den folgenden Eigenschaften

- $p \in B$,
- für jedes $x \in B$ existiert eine Folge natürlicher Zahlen $(n_j)_{j \in \mathbb{N}}$, $\lim_{j \to \infty} n_j = \infty$ mit $\lim_{j \to \infty} f^{n_j}(x) = p$.

Für den Beweis der folgenden Aussage werden 6 Bonuspunkte vergeben:

Sei (p_1, \ldots, p_k) ein anziehender k-periodischer Orbit und B_i bezeichne den direkten Einzugsbereich des periodischen Punktes p_i , $i = 1, \ldots, k$.

Sei $\bar{B} = \bigcup_{i=1}^k B_i$, dann gilt:

Entweder existiert ein $y \in \bar{B}$ mit f'(y) = 0 oder $a \in \bar{B}$ oder $b \in \bar{B}$.

Seien
$$f(x) = \lambda x(1-x), \lambda \in (1,4], I = [0,1].$$

Wie viele verschiedene anziehende periodische Orbits kann die Abbildung f (in Abhängigkeit von λ) maximal besitzen? Bestimmen Sie diese Schranke so klein wie möglich.

(6 Punkte + 6 Bonuspunkte)

Aufgabe 21:

Konstruieren Sie glatte, eindimensionale zeit
diskrete dynamische Systeme, in denen der Fixpunkt $\bar{x}=0$

• den Eigenwert 1 bzw. -1 besitzt,

wobei der Fixpunkt \bar{x}

• anziehend bzw. abstoßend bzw. einseitig anziehend und einseitig abstoßend ist.

Das Konvergenzverhalten ist in jedem der 6 Fälle formal nachzuweisen. Sollte sich in einem Fall die Konstruktion als unmöglich erweisen, so ist auch dies formal zu beweisen.

Berechnen Sie abschließend für die Beispiele, die den Eigenwert -1 besitzen, die Schwarzsche Ableitung $\mathcal{S}f(\bar{x})$ am Fixpunkt $\bar{x}=0$. Was fällt Ihnen auf?

(6 Punkte)