Homework

Waves in Evolution Equations

Summer term 2017

Wolf-Jürgen Beyn Christian Döding

Due: Wed. May 17, 12:00, V3-128, mailbox 128 (Christian Döding)

Tutorial: Tue. 23.05. 2017, 14-16, V5-148

Exercise 6: [Equivariance for a general elliptic principal part]
Consider a reaction diffusion equation with a general principal part for a real-valued function $u: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}$,

$$
\begin{equation*}
u_{t}=\sum_{i, j=1}^{d} A_{i j} D_{i} D_{j} u+f(u), \quad x \in \mathbb{R}^{d}, t \geq 0 \tag{RD}
\end{equation*}
$$

The matrix $A=\left(A_{i j}\right) \in \mathbb{R}^{d, d}$ is assumed to be symmetric positive definite. Determine a Lie group that is isomorphic to the special orthogonal group $\mathrm{SO}(d)$ such that the right-hand side of (RD) is equivariant with respect to its action. How would you then define a rotating wave for equation (RD)?
Hint: Set up a linear coordinate transformation in \mathbb{R}^{d} which transforms the principal part of (RD) into Δu and then transfer the well-known action and the notion of a rotating wave.
(8 points)
Exercise 7: [Equivariance of a complex-valued evolution equation]
Consider an evolution equation for a complex-valued function $u: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{C}, d \geq 2$ given by

$$
\begin{equation*}
u_{t}=A \Delta u+g(|u|) u, \quad x \in \mathbb{R}^{d}, t \geq 0 \tag{CE}
\end{equation*}
$$

where $A \in \mathbb{C}$ and $g: \mathbb{R} \rightarrow \mathbb{C}$ is smooth. Determine an action of the (Lie) group $\mathrm{SO}(d) \times S^{1}$ (recall the unit circle $S^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$) on functions $u: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{C}$ with respect to which the right hand side of (CE) is equivariant. Which equation is satisfied by wave profiles that rotate about the origin and whose images simultaneously rotate in \mathbb{C} ?

