Homework Waves in Evolution Equations Summer term 2017

Wolf-Jürgen Beyn Christian Döding

Due: Wed. July 5, 12:00, V3-128, mailbox 128 (Christian Döding)

Tutorial: Tue. 11.07.2017, 14-16, V5-148

Exercise 20: [Exponential dichotomy of the adjoint operator]

Let S(t,s), $t, s \in J$ be the solution operator of a linear differential operator $\mathcal{L}v = \dot{v} - A(\cdot)v$, $A \in C(J, \mathbb{R}^{m,m})$ on an interval $J \subseteq \mathbb{R}$ (nonempty interior, bounded or unbounded).

- a) Show that $\frac{d}{dt}S(t,s) = A(t)S(t,s)$ and $\frac{d}{ds}S(t,s) = -S(t,s)A(s)$ for $t,s \in J$. Conclude that the (adjoint) differential operator $\mathcal{L}^*v = \dot{v} + A(\cdot)^{\top}v$ has the solution operator $S^*(t,s) = S(s,t)^{\top}, t,s \in J$. (Hint: use a fundamental matrix)
- b) If \mathcal{L} has an exponential dichotomy on J with projectors $P_s(t), t \in J$ and constants $\alpha, K > 0$ (w.r.t. the Euclidean norm) then the adjoint operator also has an exponential dichotomy on J with projectors $P_s^{\star}(t) := (I_m P_s(t))^{\top}, t \in J$ and the same constants.

(6 points)

Exercise 21: [Special solutions of inhomogeneous equations]

Let \mathcal{L} be a linear differential operator on an interval J as in Exercise 20 which has an exponential dichotomy with projectors $P_s(t), t \in J$ and constants $K, \alpha > 0$. Define Green's matrix for $t, s \in J$ via

$$G(t,s) = \begin{cases} S(t,s)P_s(s), & t \ge s, \\ S(t,s)(P_s(s) - I_m), & t < s, \end{cases}$$

and for $r \in C_{\mathrm{b}}(J, \mathbb{R}^m)$ (continuous, bounded) let

$$v(t) = \int_J G(t,s)r(s)ds, \quad t \in J.$$

- a) Prove that $v \in C_{\rm b}(J, \mathbb{R}^m) \cap C^1(J, \mathbb{R}^m)$ solves $\mathcal{L}v = r$ in J and derive an estimate $\|v\|_{\infty} \leq C \|r\|_{\infty}$. If, in addition, $A(\cdot)$ is bounded show that \dot{v} is bounded as well and one has an estimate $\|\dot{v}\|_{\infty} \leq \tilde{C} \|r\|_{\infty}$.
- b) If $J = [t_0, \infty)$ for some $t_0 \in \mathbb{R}$ and $||r||_{\eta} = \sup_{t \in J} e^{\eta t} |r(t)| < \infty$ for some $0 < \eta < \alpha$, then $||v||_{\eta} \leq C ||r||_{\eta}$ for some constant C.
- c) If $J = [t_0, \infty)$ for some $t_0 \in \mathbb{R}$ and the limits $\lim_{t\to\infty} A(t) = A_{\infty}$, $\lim_{t\to\infty} r(t) = r_{\infty}$ exist, then A_{∞} is invertible and $\lim_{t\to\infty} v(t) = -A_{\infty}^{-1}r_{\infty}$, $\lim_{t\to\infty} \dot{v}(t) = 0$. Hint: Show that $\lim_{t\to\infty} \int_J G(t,s)dsA_{\infty} = \lim_{t\to\infty} \int_J G(t,s)A(s)ds = -I_m$ and use Exercise 20 a).

(8 points)