Homework

Waves in Evolution Equations

Summer term 2017

Wolf-Jürgen Beyn
 Christian Döding

Due: Wed. July 19, 12:00, V3-128, mailbox 128 (Christian Döding)

Tutorial: Tue. 25.07.2017, 14-16, V5-148

Exercise 24: [Eigenvalues of a periodic boundary value problem]
Repeat the computation from Exercise 23 for the case of periodic boundary conditions

$$
\begin{equation*}
\mathcal{L} v=\lambda v \quad \text { in } \quad J=\left[x_{-}, x_{+}\right], \quad v\left(x_{-}\right)=v\left(x_{+}\right), v^{\prime}\left(x_{-}\right)=v^{\prime}\left(x_{+}\right) . \tag{1}
\end{equation*}
$$

Set up the discretized eigenvalue problem with $h=\frac{x_{+}-x_{-}}{N}$ for the scalar case $m=1$

$$
L_{h} v_{h}=\lambda v_{h}, \quad v_{h} \in \mathbb{R}^{N}
$$

where $v_{h}\left(x_{i}\right), x_{i}=x_{-}+i h, i=0, \ldots, N-1$ denote approximations of $v\left(x_{i}\right) i=0, \ldots, N-1$. Use central differences at the grid points $x_{i}, i=0, \ldots, N-1$ for all terms of the differential equation. Implement the boundary conditions by setting $v_{h}\left(x_{-1}\right)=v_{h}\left(x_{N-1}\right)$ and $v_{h}\left(x_{N}\right)=$ $v_{h}\left(x_{0}\right)$. Draw the eigenvalues in the complex plane in two diagrams for the following cases

$$
\begin{aligned}
& h=1, \quad-x_{-}=x_{+}=10,100,250,500,750,1000 \\
& h=2^{-n}, n=0, \ldots, 5, \quad-x_{-}=x_{+}=10
\end{aligned}
$$

For comparison include in your diagram the two parabolas

$$
\begin{equation*}
\lambda=-\omega^{2}+i \mu_{\star} \omega+D f\left(v_{ \pm}\right), \quad \omega \in \mathbb{R} \tag{7points}
\end{equation*}
$$

Exercise 25: [Eigenvalues of the linearization about a rotating wave]
For $\theta \in \mathbb{R}$ define rotation and reflection matrices by

$$
R_{\theta}=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right), \quad S_{\theta}=\theta\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

Let $u(x, t)=v_{\star}\left(R_{-\omega t} x\right), x \in \mathbb{R}^{2}, t \in \mathbb{R}$ be a wave solution with profile $v_{\star} \in C_{b}^{3}\left(\mathbb{R}^{2}, \mathbb{R}^{m}\right)$ and angular velocity $\omega \neq 0$ of the reaction diffusion system

$$
u_{t}=\Delta u+f(u), \quad x \in \mathbb{R}^{2}, t \geq 0, \quad u(x, t) \in \mathbb{R}^{m}, \quad f \in C^{1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)
$$

Then the profile v_{\star} solves the rotating wave equation equation (see lecture)

$$
\begin{equation*}
0=\Delta v+v_{x} S_{\omega} x+f(v), \quad x \in \mathbb{R}^{2} \tag{2}
\end{equation*}
$$

Show that the linear differential operator obtained by linearizing about v_{\star}

$$
\mathcal{L} v=\Delta v+v_{x} S_{\omega} x+D f\left(v_{\star}\right) v \quad v \in C_{b}^{2}\left(\mathbb{R}^{2}, \mathbb{R}^{m}\right)
$$

has eigenvalues 0 and $\pm i \omega$ with corresponding eigenfunctions $v_{\star, x} S_{1} x$ and $D_{1} v_{\star} \pm i D_{2} v_{\star}$
Hint: Differentiate (2) with respect to x_{1} and x_{2}.

