1. W.-J. Beyn; Y.-K. Zou:
    On manifolds of connecting orbits in discretizations of dynamical systems
    Nonlinear Analysis TMA no. 52 (2003) p. 1499-1520
  2. W.-J. Beyn; A. Champneys; E. Doedel; W. Govaerts; Y. Kuznetsov; B. Sandstede:
    Numerical continuation, and computation of normal forms
    Handbook of Dynamical Systems Vol. 2: Towards Applications (2002) p. 149-219
  3. W.-J. Beyn; Y. Zou:
    On manifolds of connectings orbits in discretizations of dynamical systems.
    Nonlinear Analysis TMA 52 (2002) p. 1499-1520
  4. W.-J. Beyn; B.M. Garay:
    Estimates of variable stepsize Runge-Kutta methods for sectorial evolution equations with nonsmooth data
    Applied Numerical Mathematics no. 41 (2002) p. 369-400
  5. W.-J. Beyn; W. Kleß; V. Thümmler:
    Continuation of low-dimensional invariant subspaces in dynamical systems of large dimension
    Ergodic Theory, Analysis and Efficient Simulation of Dynamical Systems (2001) p. 48-72
  6. W.-J. Beyn; H. Ritter; H. Wersing:
    Dynamic stability conditions for recurrent neural networks with unsaturating piecewise linear transfer functions.
    Neural Computation no. 13 (2001) p. 1811-1825
  7. W.-J. Beyn; T. Pampel; W. Semmler:
    Dynamic optimization and Skiba sets in economic examples.
    Optimal Control Applications and Methods no. 22 (2001) p. 251-280
  8. W.-J. Beyn; J. Schropp:
    Runge-Kutta discretizations of singularly perturbed gradient equations.
    BIT 40 (2000) p. 415-433
  9. W.-J. Beyn; L. Elsner; A. Vladimirov:
    Stability and paracontractivity of discrete linear inclusions.
    Lin. Alg. Appl. 312 (2000) p. 125-134
  10. W.-J. Beyn:
    A note on symbolic dynamics near connecting orbits of maps
    Preprint no. 072 (2000), SFB 343, University of Bielefeld
  11. W.-J. Beyn; M. Stiefenhofer:
    A direct approach to homoclinic orbits in the fast dynamics of singularly perturbed systems
    J. Dynam. Differential Equations 11 no. 4 (1999) p. 671-709
  12. W.-J. Beyn; J. Lorenz:
    Stability of traveling waves: dichotomies and eigenvalue conditions on finite intervals
    Numer. Funct. Anal. Optimiz. 20 (1999) p. 201-244
  13. W.-J. Beyn; W. Kleß; V. Thümmler:
    A continuation framework for invariant subspaces and its application to traveling waves
    Scientific Computing in Chemical Engineering II (1999) p. 144-151
  14. W.-J. Beyn; B. Garay:
    Estimates of variable stepsize Runge-Kutta methods for sectorial evolution equations with nonsmooth data.
    no. 99-065 (1999), SFB 343, Univ. of Bielefeld
  15. W.-J. Beyn; Y. Zou:
    Invariant manifolds for non-autonomous systems with application to one-step methods
    J. Dynam. Differential Equations 10 no. 3 (1998) p. 379-407
  16. W.-J. Beyn; W. Kleß :
    Numerical Taylor expansions of invariant manifolds in large dynamical systems
    Numer. Math. 80 no. 1 (1998) p. 1-38
  17. C. Alscher; W.-J. Beyn:
    Simulating the motion of the leech: a biomechanical application of DAEs
    Numer. Algorithms 19 no. 1-4 (1998)
  18. W.-J. Beyn; L. Elsner:
    Infinite products and paracontracting matrices.
    Electron. J. Linear Algebra 2 (1997) p. 1-8
  19. W.-J. Beyn; J.-M. Kleinkauf:
    Numerical approximation of homoclinic chaos.
    Numer. Algorithms 14 (1997) p. 25-53
  20. W.-J. Beyn; J.-M. Kleinkauf:
    The numerical computation of homoclinic orbits for maps.
    SIAM J. Numer. Anal. 34 (1997) p. 1207-1236
  21. W.-J. Beyn; Y. Zou:
    Discretizations of dynamical systems with a saddle-node homoclinic orbit.
    Discrete Continuous Dynamical Systems 2 (1996) p. 351-365
  22. W.-J. Beyn; W. Kleß :
    Numerical Taylor expansions of invariant manifolds in large dynamical systems.
    Preprint no. 6/96 (1996), DFG-Schwerpunktprogramm 'DANSE'
  23. W.-J. Beyn; T. Göke:
    A note on the Hopf stability formula under nonresonance conditions.
    Preprint no. 50/96 (1996), DFG-Schwerpunktprogramm 'DANSE'
  24. W.-J. Beyn; H. Cruse; U. Steinkühler:
    A simplified MMC model for the control of an arm with redundant degrees of freedom.
    Neural Processing Letters 2 (1995) p. 11-15
  25. W.-J. Beyn:
    Numerical analysis of homoclinic orbits emanating from a Takens-Bogdanov point.
    IMA J. Numer. Anal. 14 (1994) p. 381-410
  26. W.-J. Beyn:
    On well-posed problems for connecting orbits in dynamical systems.
    Proceedings of `Chaotic Numerics' 172 (1994) p. 131-168
  27. W.-J. Beyn:
    On smoothness and invariance properties of the Gauss-Newton method.
    Numer. Funct. Anal. and Optimiz. 14 (1993) p. 503-514
  28. W.-J. Beyn:
    Numerical methods for dynamical systems.
    Nonlinear Partial Differential Equations and Dynamical Systems 1 (1991) p. 175-236
  29. W.-J. Beyn:
    Global bifurcations and their numerical computation
    Continuation and Bifurcations: Numerical Techniques and Applications (1990) p. 169-181
  30. W.-J. Beyn:
    The numerical computation of connecting orbits in dynamical systems.
    IMA J. Numer. Anal. 10 (1990) p. 379-405
  31. W.-J. Beyn; M. Wadepuhl:
    Computer simulation of the hydrostatic skeleton. The physical equivalent, mathematics and application to worm-like forms.
    J. Theor. Biol. 136 (1989) p. 379-402
  32. W.-J. Beyn; M. Wadepuhl:
    Verformungen im Hydroskelett . Computersimulation.
    Symposium des SFB 230 (1989) p. 269-276
  33. W.-J. Beyn; M. Wadepuhl:
    Neural control of a hydroskeleton : Predictions based on a computer model.
    Verh. Dtsch. Zool. Ges. (1988) p. 216-217
  34. W.-J. Beyn:
    The effect of discretization on homoclinic orbits.
    Bifurcation: Analysis, Algorithms and Applications. ISNM 79 (1987) p. 1-8
  35. W.-J. Beyn:
    On invariant closed curves for one-step methods.
    Numer. Math. 51 (1987) p. 103-122
  36. W.-J. Beyn:
    On the numerical approximation of phase portraits near stationary points.
    SIAM J. Numer. Anal. 24 (1987) p. 1095-1113
  37. W.-J. Beyn; J. Lorenz:
    Center manifolds of dynamical systems under discretization.
    Numer. Funct. Anal. Optim. 9 (1987) p. 381-414
  38. W.-J. Beyn; M. Wadepuhl:
    Computersimulation des Hydroskeletts bei Anneliden.
    Verh. Dtsch. Zool. Ges. (1987) p. 265
  39. W.-J. Beyn:
    Zur numerischen Berechnung mehrfacher Verzweigungspunkte.
    ZAMM 65 (1985) p. T370-T371
  40. W.-J. Beyn:
    Defining equations for singular solutions and numerical applications.
    Numerical Methods for Bifurcation Problems. ISNM 70 (1984) p. 42-56
  41. W.-J. Beyn; E. Bohl:
    Organizing centers for discrete reaction diffusion models.
    Numerical Methods for Bifurcation Problems. ISNM 70 (1984) p. 57-67
  42. W.-J. Beyn:
    Half-stable solution branches for ordinary bifurcation problems.
    Math. Meth. in the Appl. Sci. 5 (1983) p. 1-13
  43. W.-J. Beyn:
    Numerical analysis of singularities in a diffusion reaction model.
    Proceedings of the EQUADIFF 82 no. 1017 (1983) p. 92-100
  44. W.-J. Beyn; J. Lorenz:
    Spurious solutions for discrete superlinear boundary value problems.
    Computing 28 (1982) p. 43-51
  45. W.-J. Beyn:
    Discrete Green's functions and strong stability properties of the finite difference method.
    Applicable Analysis 14 (1982) p. 73-98
  46. W.-J. Beyn; E. Doedel:
    Stability and multiplicity of solutions to discretizations of nonlinear ordinary differential equations.
    SIAM J. Sci. Stat. Comp. 2 (1981) p. 107-120
  47. W.-J. Beyn:
    Lösungszweige nichtlinearer Randwertaufgaben und ihre Approximation mit dem Differenzenverfahren.
    Habilitation (1981)
  48. W.-J. Beyn:
    On discretizations of bifurcation problems.
    Bifurcation problems and their numerical solutions. ISNM 54 (1980) p. 46-73
  49. W.-J. Beyn:
    Die Konvergenz der diskreten Greenschen Funktionen beim gewöhnlichen Differenzenverfahren.
    ZAMM 59 (1979) p. T47-T49
  50. W.-J. Beyn:
    The exact order of convergence for finite difference approximations to ordinary boundary value problems.
    Math. Comput. 33 (1979) p. 1213-1228
  51. W.-J. Beyn:
    On the convergence of the finite difference method for nonlinear ordinary boundary value problems.
    Constructive methods for nonlinear boundary value problems and nonlinear oscillations. ISNM 48 (1979) p. 9-19
  52. W.-J. Beyn:
    Schwach majorisierende Elemente und die besonderen Monotonieeigenschaften von Randwertaufgaben zweiter Ordnung.
    Manuscripta Mathematica 28 (1979) p. 317-336
  53. W.-J. Beyn:
    Höhere Konvergenzordnungen beim Differenzenverfahren für gewöhnliche Randwertaufgaben.
    ZAMM 58 no. 7 (1978) p. T405-T406
  54. W.-J. Beyn:
    Zur Stabilität von Differenzenverfahren für Systeme linearer gewöhnlicher Randwertaufgaben.
    Numer. Math. 29 (1978) p. 209-226
  55. W.-J. Beyn:
    Das Parallelenverfahren für Operatorgleichungen und seine Anwendung auf nichtlineare Randwertaufgaben.
    ISNM 31 (1976) p. 9-23
  56. W.-J. Beyn; J. Lorenz:
    On convergence of finite element methods for non-coercive problems.
    Research paper no. 330 (1976), Department of Mathematics and Statistics, University of Calgary
  57. W.-J. Beyn:
    Theorie und Anwendung eines iterativen Verfahrens zur Lösung von Operatorgleichungen Hammersteinschen Typs.
    Dissertation (1975)
  58. W.-J. Beyn; E. Bohl; J. Lorenz:
    Zur Anwendung der Theorie über den Spektralradius linearer, streng monotoner Operatoren.
    Tagungsbericht Oberwolfach 1972. ISNM 24 (1974) p. 23-31
  59. W.-J. Beyn:
    Existenz und Konstruktion von Anfangselementen bei der Iteration mit P-beschränkten Operatoren.
    Diplomarbeit (1973)