- W.-J. Beyn; Y.-K. Zou:
On manifolds of connecting orbits in discretizations of dynamical systems
Nonlinear Analysis TMA
no. 52 (2003)
p. 1499-1520
- W.-J. Beyn; A. Champneys; E. Doedel; W. Govaerts; Y. Kuznetsov; B. Sandstede:
Numerical continuation, and computation of normal forms
Handbook of Dynamical Systems Vol. 2: Towards Applications (2002)
p. 149-219
- W.-J. Beyn; Y. Zou:
On manifolds of connectings orbits in discretizations of dynamical systems.
Nonlinear Analysis TMA 52 (2002)
p. 1499-1520
- W.-J. Beyn; B.M. Garay:
Estimates of variable stepsize Runge-Kutta methods for sectorial evolution equations with nonsmooth data
Applied Numerical Mathematics
no. 41 (2002)
p. 369-400
- W.-J. Beyn; W. Kleß; V. Thümmler:
Continuation of low-dimensional invariant subspaces in dynamical systems of large dimension
Ergodic Theory, Analysis and Efficient Simulation of Dynamical Systems (2001)
p. 48-72
- W.-J. Beyn; H. Ritter; H. Wersing:
Dynamic stability conditions for recurrent neural networks with unsaturating piecewise linear transfer functions.
Neural Computation
no. 13 (2001)
p. 1811-1825
- W.-J. Beyn; T. Pampel; W. Semmler:
Dynamic optimization and Skiba sets in economic examples.
Optimal Control Applications and Methods
no. 22 (2001)
p. 251-280
- W.-J. Beyn; J. Schropp:
Runge-Kutta discretizations of singularly perturbed gradient equations.
BIT 40 (2000)
p. 415-433
- W.-J. Beyn; L. Elsner; A. Vladimirov:
Stability and paracontractivity of discrete linear inclusions.
Lin. Alg. Appl. 312 (2000)
p. 125-134
- W.-J. Beyn:
A note on symbolic dynamics near connecting orbits of maps
Preprint
no. 072 (2000), SFB 343, University of Bielefeld
- W.-J. Beyn; M. Stiefenhofer:
A direct approach to homoclinic orbits in the fast dynamics of singularly perturbed systems
J. Dynam. Differential Equations 11
no. 4 (1999)
p. 671-709
- W.-J. Beyn; J. Lorenz:
Stability of traveling waves: dichotomies and eigenvalue conditions on finite intervals
Numer. Funct. Anal. Optimiz. 20 (1999)
p. 201-244
- W.-J. Beyn; W. Kleß; V. Thümmler:
A continuation framework for invariant subspaces and its application to traveling waves
Scientific Computing in Chemical Engineering II (1999)
p. 144-151
- W.-J. Beyn; B. Garay:
Estimates of variable stepsize Runge-Kutta methods for sectorial evolution equations with nonsmooth data.
no. 99-065 (1999), SFB 343, Univ. of Bielefeld
- W.-J. Beyn; Y. Zou:
Invariant manifolds for non-autonomous systems with application to one-step methods
J. Dynam. Differential Equations 10
no. 3 (1998)
p. 379-407
- W.-J. Beyn; W. Kleß :
Numerical Taylor expansions of invariant manifolds in large dynamical systems
Numer. Math. 80
no. 1 (1998)
p. 1-38
- C. Alscher; W.-J. Beyn:
Simulating the motion of the leech: a biomechanical application of DAEs
Numer. Algorithms 19
no. 1-4 (1998)
- W.-J. Beyn; L. Elsner:
Infinite products and paracontracting matrices.
Electron. J. Linear Algebra 2 (1997)
p. 1-8
- W.-J. Beyn; J.-M. Kleinkauf:
Numerical approximation of homoclinic chaos.
Numer. Algorithms 14 (1997)
p. 25-53
- W.-J. Beyn; J.-M. Kleinkauf:
The numerical computation of homoclinic orbits for maps.
SIAM J. Numer. Anal. 34 (1997)
p. 1207-1236
- W.-J. Beyn; Y. Zou:
Discretizations of dynamical systems with a saddle-node homoclinic orbit.
Discrete Continuous Dynamical Systems 2 (1996)
p. 351-365
- W.-J. Beyn; W. Kleß :
Numerical Taylor expansions of invariant manifolds in large dynamical systems.
Preprint
no. 6/96 (1996), DFG-Schwerpunktprogramm 'DANSE'
- W.-J. Beyn; T. Göke:
A note on the Hopf stability formula under nonresonance conditions.
Preprint
no. 50/96 (1996), DFG-Schwerpunktprogramm 'DANSE'
- W.-J. Beyn; H. Cruse; U. Steinkühler:
A simplified MMC model for the control of an arm with redundant degrees of freedom.
Neural Processing Letters 2 (1995)
p. 11-15
- W.-J. Beyn:
Numerical analysis of homoclinic orbits emanating from a Takens-Bogdanov point.
IMA J. Numer. Anal. 14 (1994)
p. 381-410
- W.-J. Beyn:
On well-posed problems for connecting orbits in dynamical systems.
Proceedings of `Chaotic Numerics' 172 (1994)
p. 131-168
- W.-J. Beyn:
On smoothness and invariance properties of the Gauss-Newton method.
Numer. Funct. Anal. and Optimiz. 14 (1993)
p. 503-514
- W.-J. Beyn:
Numerical methods for dynamical systems.
Nonlinear Partial Differential Equations and Dynamical Systems 1 (1991)
p. 175-236
- W.-J. Beyn:
Global bifurcations and their numerical computation
Continuation and Bifurcations: Numerical Techniques and Applications (1990)
p. 169-181
- W.-J. Beyn:
The numerical computation of connecting orbits in dynamical systems.
IMA J. Numer. Anal. 10 (1990)
p. 379-405
- W.-J. Beyn; M. Wadepuhl:
Computer simulation of the hydrostatic skeleton. The physical equivalent, mathematics and application to worm-like forms.
J. Theor. Biol. 136 (1989)
p. 379-402
- W.-J. Beyn; M. Wadepuhl:
Verformungen im Hydroskelett . Computersimulation.
Symposium des SFB 230 (1989)
p. 269-276
- W.-J. Beyn; M. Wadepuhl:
Neural control of a hydroskeleton : Predictions based on a computer model.
Verh. Dtsch. Zool. Ges. (1988)
p. 216-217
- W.-J. Beyn:
The effect of discretization on homoclinic orbits.
Bifurcation: Analysis, Algorithms and Applications. ISNM 79 (1987)
p. 1-8
- W.-J. Beyn:
On invariant closed curves for one-step methods.
Numer. Math. 51 (1987)
p. 103-122
- W.-J. Beyn:
On the numerical approximation of phase portraits near stationary points.
SIAM J. Numer. Anal. 24 (1987)
p. 1095-1113
- W.-J. Beyn; J. Lorenz:
Center manifolds of dynamical systems under discretization.
Numer. Funct. Anal. Optim. 9 (1987)
p. 381-414
- W.-J. Beyn; M. Wadepuhl:
Computersimulation des Hydroskeletts bei Anneliden.
Verh. Dtsch. Zool. Ges. (1987)
p. 265
- W.-J. Beyn:
Zur numerischen Berechnung mehrfacher Verzweigungspunkte.
ZAMM 65 (1985)
p. T370-T371
- W.-J. Beyn:
Defining equations for singular solutions and numerical applications.
Numerical Methods for Bifurcation Problems. ISNM 70 (1984)
p. 42-56
- W.-J. Beyn; E. Bohl:
Organizing centers for discrete reaction diffusion models.
Numerical Methods for Bifurcation Problems. ISNM 70 (1984)
p. 57-67
- W.-J. Beyn:
Half-stable solution branches for ordinary bifurcation problems.
Math. Meth. in the Appl. Sci. 5 (1983)
p. 1-13
- W.-J. Beyn:
Numerical analysis of singularities in a diffusion reaction model.
Proceedings of the EQUADIFF 82
no. 1017 (1983)
p. 92-100
- W.-J. Beyn; J. Lorenz:
Spurious solutions for discrete superlinear boundary value problems.
Computing 28 (1982)
p. 43-51
- W.-J. Beyn:
Discrete Green's functions and strong stability properties of the finite difference method.
Applicable Analysis 14 (1982)
p. 73-98
- W.-J. Beyn; E. Doedel:
Stability and multiplicity of solutions to discretizations of nonlinear ordinary differential equations.
SIAM J. Sci. Stat. Comp. 2 (1981)
p. 107-120
- W.-J. Beyn:
Lösungszweige nichtlinearer Randwertaufgaben und ihre Approximation mit dem Differenzenverfahren.
Habilitation (1981)
- W.-J. Beyn:
On discretizations of bifurcation problems.
Bifurcation problems and their numerical solutions. ISNM 54 (1980)
p. 46-73
- W.-J. Beyn:
Die Konvergenz der diskreten Greenschen Funktionen beim gewöhnlichen Differenzenverfahren.
ZAMM 59 (1979)
p. T47-T49
- W.-J. Beyn:
The exact order of convergence for finite difference approximations to ordinary boundary value problems.
Math. Comput. 33 (1979)
p. 1213-1228
- W.-J. Beyn:
On the convergence of the finite difference method for nonlinear ordinary boundary value problems.
Constructive methods for nonlinear boundary value problems and nonlinear oscillations. ISNM 48 (1979)
p. 9-19
- W.-J. Beyn:
Schwach majorisierende Elemente und die besonderen Monotonieeigenschaften von Randwertaufgaben zweiter Ordnung.
Manuscripta Mathematica 28 (1979)
p. 317-336
- W.-J. Beyn:
Höhere Konvergenzordnungen beim Differenzenverfahren für gewöhnliche Randwertaufgaben.
ZAMM 58
no. 7 (1978)
p. T405-T406
- W.-J. Beyn:
Zur Stabilität von Differenzenverfahren für Systeme linearer gewöhnlicher Randwertaufgaben.
Numer. Math. 29 (1978)
p. 209-226
- W.-J. Beyn:
Das Parallelenverfahren für Operatorgleichungen und seine Anwendung auf nichtlineare Randwertaufgaben.
ISNM 31 (1976)
p. 9-23
- W.-J. Beyn; J. Lorenz:
On convergence of finite element methods for non-coercive problems.
Research paper
no. 330 (1976), Department of Mathematics and Statistics, University of Calgary
- W.-J. Beyn:
Theorie und Anwendung eines iterativen Verfahrens zur Lösung von Operatorgleichungen Hammersteinschen Typs.
Dissertation (1975)
- W.-J. Beyn; E. Bohl; J. Lorenz:
Zur Anwendung der Theorie über den Spektralradius linearer, streng monotoner Operatoren.
Tagungsbericht Oberwolfach 1972. ISNM 24 (1974)
p. 23-31
- W.-J. Beyn:
Existenz und Konstruktion von Anfangselementen bei der Iteration mit P-beschränkten Operatoren.
Diplomarbeit (1973)