Präsenzübungsaufgaben zur Vorlesung Maß- und Integrationstheorie

Blatt 5

Aufgabe 1. Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und seien $f_n : \Omega \to \overline{\mathbb{R}}, n \in \mathbb{N}$, und $f : \Omega \to \overline{\mathbb{R}}$ nicht negative \mathcal{A} -messbare Funktionen mit $f_n \xrightarrow{n \to \infty} f$ im Maß μ . Zeigen Sie, dass dann

$$\int f \mathrm{d}\mu \le \liminf_{n \to \infty} \int f_n \mathrm{d}\mu$$

gilt.

Aufgabe 2. Sei $n \in \mathbb{N}$ und seien $(\Omega_1, \mathcal{A}_1, \mu_1), \ldots, (\Omega_n, \mathcal{A}_n, \mu_n)$ σ -endliche Maßräume. Zeigen Sie per Induktion, dass es genau ein Maß μ auf $(\Omega_1 \times \ldots \times \Omega_n, \mathcal{A}_1 \otimes \ldots \otimes \mathcal{A}_n)$ mit $\mu(A_1 \times \ldots \times A_n) = \mu_1(A_1) \cdot \ldots \cdot \mu_n(A_n)$ für alle $A_1 \in \mathcal{A}_1, \ldots, A_n \in \mathcal{A}_n$ gibt. Ist μ σ -endlich?