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1 Introduction

The main purpose of this paper is to show that coupling of second order linear partial

di�erential equations (each yielding the structure of a harmonic space) can most easily be

considered as coupling within a balayage space. And then no additional constructions (as

e.g. in [CZ96]) are necessary, since the theory of balayage spaces as presented in [BH86]

can be directly applied. In particular, this covers the solution of the Dirichlet problem

for di�erential equations Lnh = 0, n 2 N and L a linear (elliptic or parabolic) partial

di�erential operator of second order.

Coupling of n PDE's as studied in [CZ96] is achieved by transitions between correspond-

ing points in n copies of the underlying domain, i.e., by very special transitions on the

direct sum of n domains. An additional advantage of our method is that it eventually al-

lows us to deal with perturbations given by arbitrary transition kernels within a balayage

space (which may or may not be a direct sum of several balayage spaces).

To illustrate our approach let us �rst discuss a very simple example: Consider two global

Kato measures �1; �2 � 0 on a Green domain D in Rd , d � 1, (i.e., we have a Green

function GD on D and G
�j

D
=
R
GD(�; y)�j(dy) is a bounded continuous real function
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on D, j = 1; 2) and assume that kG
�1

D
k1kG

�2

D
k1 < 1. Let U be a regular relatively

compact open subset of D and �x continuous real functions '1; '2 on the boundary @U .

Suppose we want to solve the coupled Dirichlet problem

�h1 = �h2�1 on U; h1 = '1 on @U;(1.1)

�h2 = �h1�2 on U; h2 = '2 on @U:(1.2)

Note that e.g. the biharmonic problem

�(�h) = 0 on U; h = '1 on @U; ��h = '2 on @U(1.3)

is a special case (take �1 = �d, �2 = 0).

Let X be the topological sum of two copies X1, X2 of D, each equipped with the har-

monic structure given by the Laplacian and let � denote the canonical mapping between

these two copies (in section 5 we shall do this more formally). Let Uj be the set U in Xj,

j = 1; 2. Taking � on X, h on U 1 [ U 2, ' on @U1 [ @U2 such that

�jXj = �j ; hjUj = hj ; 'j@Uj = 'j (j = 1; 2)(1.4)

the equations (1.1) and (1.2) may be rewritten as a single equation

�h = �(h � �)� on U1 [ U2 ; h = ' on @(U1 [ U2):(1.5)

For j = 1; 2, let GUj
denote the Green function on Uj and de�ne a kernel K

�

Uj
by

K
�

Uj
 := G

 �

Uj
=

Z
GUj

(�; z) (z) d�(z):

Then �h = �(h � �)� if and only if

�
�
h�K

�

Uj
(h � �)

�
= 0 on Uj ; j = 1; 2:(1.6)

The idea is now the following: Given j 2 f1; 2g and a regular subset V of Xj, let HV

denote the harmonic kernel of V (i.e., HV is a kernel on X such that, for every continuous

function ' on X, the function HV ' is continuous on X, harmonic on V , and equal to '

on X n V ) and de�ne a new kernel eHV on X by

eHV' = HV '+K
�

V
(' � �):

The family of all eHV , V regular, V � X1 or V � X2, yields a balayage space (X;fW)

(this requires some proof, see Example 4.3) and then there are corresponding harmonic

kernels eHU for every open subset U of X. In particular, U1 [ U2 is regular with respect

to (X;fW) and then

h := eHU1[U2
'

is the solution of (1.5). Indeed, clearly h = ' on @(U1 [ U2). And, for every j 2 f1; 2g,

we have eHU1[U2
= eHUj

eHU1[U2
, hence

h = eHUj
h = HUj

h +K
�

Uj
(h � �):

Since HUj
h is harmonic on Uj, this implies that �

�
h�K

�

Uj
(h � �)

�
= 0 on Uj, i.e., (1.6)

holds.
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2 Balayage spaces

The notion of a balayage space is more general than that of a P{harmonic space as e.g.

given by linear elliptic and parabolic partial di�erential equations of second order. In

addition, it covers Riesz potentials as well as Markov chains on discrete spaces. There are

various ways of describing a balayage space: By its cone W of positive hyperharmonic

functions, by a family of harmonic kernels, by a corresponding semigroup, by an associated

Hunt process (see [BH86, Theorem IV.8.1] or the survey article [Han87]). For our purpose

the description using harmonic kernels is very appropriate.

We begin by introducing some notation: Let X be a locally compact space with count-

able base. For every open set U in X, let B(U) denote the set of all numerical Borel

measurable functions on U . Further, C(U) will denote the space of all real continuous

functions on U and K(U) (C0(U) resp.) the set of all functions in C(U) having compact

support (vanishing at in�nity) with respect to U . Occasionally, functions on U will be

identi�ed with functions on X which are zero on U c. Finally, given any set A of functions

let Ab (A
+ resp.) denote the set of all functions in A which are bounded (positive resp.)

Let U be a base of relatively compact open subsets of X and, for every U 2 U , let

HU be a kernel on X such that HU(x; �) = "x for every x 2 U c and HU1U = 0. It will

be convenient to assume that U is stable with respect to �nite intersections (by [BH86,

Remark VII.3.2.4] this is no restriction of generality). De�ne

W := fv j v : X ! [0;1] l.s.c., HUv � v for every U 2 Ug(2.1)

and, for every numerical function f � 0 on X, let

Rf := inffv 2 W : v � fg:

A function s 2 C+(X) is called strongly (W-)superharmonic if, for every U 2 U , HUs < s

on U .

Then (HU)U2U is a family of (regular) harmonic kernels and (X;W) is a balayage space

provided the following holds (where U; V 2 U):

(H1) Given x 2 X, limU#fxgHU'(x) = '(x) for all ' 2 K(X) or R1fxg is l.s.c. at x.

(H 0

2) HVHU = HU if V � U .

(H3) For every f 2 Bb(X) with compact support, the function HUf is continuous on U .

(H 0

4) For every ' 2 K(X), the function HU' is continuous on U .

(H 0

5) There exists a strongly superharmonic function s 2 C+(X).

Remarks 2.1. 1. It will be clear to the specialist how to proceed if we would not assume

having a base of regular sets, i.e., if instead of (H 0

4) we would only suppose that the

following property (H4) holds: For every x 2 U there exists a l.s.c. function w � 0 on U

such that w(x) < 1, HVw � w if V � U , and limF w = 1 for every non{regular

ultra�lter F on U (see [BH86, p. 94]).

Moreover, properties (H1) { (H 0

5) imply the following property (H5): W is linearly

separating (i.e., for x; y 2 X, x 6= y, and � 2 R+ there exists v 2 W such that v(x) 6=

�v(y)) and there exists a strictly positive function s0 2 W \C(X). Indeed, let s 2 C+(X)

be strongly superharmonic. Then of course s > 0 and s 2 W. Furthermore, HUs 2 W for
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every U 2 U : Because of (H 0

4) the function HUs is l.s.c. Given V 2 U , we have to show

that HVHUs � HUs. Since HUs � s and HV s � s, we obtain �rst that

HVHUs � HV s � s = HUs on U c:

In addition, HVHUs = HUs on V
c. Since (U \ V )c = U c [ V c, we conclude that

HVHUs = HU\VHVHUs � HU\VHUs = HUs:

It is now easily seen that W is linearly separating: Fix x; y 2 X, x 6= y. Choose U 2 U

such that x 2 U , y =2 U . For every � 2 R+, s(x) 6= �s(y) or HUs(x) 6= �s(y) = �HUs(y).

We �nally note that (H 0

5) holds for every balayage space by [BH86, pp. 17,118].

2. It will be useful to know that W as de�ned by (2.1) does not change if we replace U

by a smaller base U 0 (see [BH86, Remark III.6.13]).

As for harmonic spaces continuous potentials play an important role. The convex cone

P(X) of all continuous real potentials can be de�ned and characterized in several ways:

P(X) = fp 2 W \ C(X) : inf
K compact �X

R1Kcp = 0g

= fp 2 W \ C(X) :
p

q
2 C0(X) for some q 2 W \ C(X)g

= fp 2 W \ C(X) : 0 � g � p; g 2 H+(X) =) g = 0g

where H+(X) denotes the set of all positive harmonic functions on X, i.e.,

H
+(X) = fg 2 C+(X) : HUg = g for every U 2 Ug:

Moreover, we have a Riesz decomposition

W(X) \ C(X) = H
+(X)� P(X):

A function f on X is called P-bounded if jf j � p for some p 2 P(X).

It is easily seen that we may restrict the balayage space (X;W) on any open subset Y

of X de�ning kernels

HY

U
(x; �) := HU(x; �)jY (x 2 U 2 U ; U � Y ):

Note that the corresponding cone WY contains WjY .

It is trivial that �nite and countable direct sums of balayage spaces are balayage spaces

as well:

Let (Xi;Wi), i 2 I � N, be balayage spaces. If X =
P

i2I
Xi denotes the topological

sum of all Xi, i 2 I, and

W =
X
i2I

Wi = fv
�� v : X ! [0;1]; vjXi 2 Wi for every i 2 Ig

(we identify vi 2 Wi with a function on X taking vi = 0 on X n Xi), then (X;W) is a

balayage space. To see this it su�ces to take U =
S
i2I
Ui (Ui being a base a regular sets

for the balayage space (Xi;Wi)) and to extend the harmonic kernels HU , U 2 Ui, de�ning

HU(x; �) = "x for all x 2 X nXi.

Let us note that of course, for every i 2 I, the restriction of (X;W) on Xi is (Xi;Wi).
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In the following (X;W) will always denote a balayage space associated with a family

(HU)U2U of regular harmonic kernels. Moreover, we �x a potential kernel KX for (X;W),

i.e., KX is a kernel such that

KXf 2 P(X) \ H(X n supp(f)) for f 2 B+
b
(X) with compact support:(2.2)

A general minimum principle implies that v � Kf whenever v 2 W and f 2 B+(X) such

that v � Kf on supp(f) (see [BH86, ...]).

De�ning

KU := KX �HUKX (U 2 U)

we obtain a family (KU)U2U of kernels such that

KU(Bb(X)) � C0(U) and KU = KV +HVKU(2.3)

for all U; V 2 U with V � U (this is an immediate consequence of (H 0

2), (H3), and (H 0

4)).

Remarks 2.2. 1. If we have a Green function GX for X, then KXf = G
f�

X
for some

measure � � 0 on X and KUf = G
f�

U
where GU(�; y) = GX(�; y) � HUGX(�; y) for

y 2 X;U 2 U .

2. For every p 2 P(X), there exists a unique potential kernel K
p

X
such that K

p

X
1 = p

(see [BH86, p. 75]). It is called the potential kernel associated with p.

3. If KX is a potential kernel and ' 2 B+(X) is locally bounded, then f 7! KX('f)

obviously de�nes a potential kernel.

4. Conversely, for every potential kernel KX , there exists p 2 P(X) and a strictly

positive function ' 2 C+(X) such that

KXf = K
p

X
('f) for every f 2 B+(X):

Indeed, �x a sequence ( n) in K
+(X) such that X =

S
1

n=1f n > 0g. Since pn := KX n 2

P(X), we may choose reals �n > 0, n 2 N, such that

 :=

1X
n=1

�n n 2 C
+(X); p :=

1X
n=1

�npn 2 P(X):

Obviously, KX = p and hence

K
p

X
f = KX( f) for every f 2 B+(X):

So ' := 1= has the desired properties.

5. If KX is a potential kernel on X, then every KU , U 2 U , is a potential kernel on U

(this follows easily from the de�nition of KU). For the converse, i.e., for the construction

of KX from a compatible family of potential kernels (KU)U2U see the Appendix.

Extending the notion used in [HH88] for harmonic spaces let us say that the balayage

space (X;W) is parabolic, if for every non-empty compact subset C of X there exists

x 2 C such that lim infy!xR1C (y) = 0. For equivalent properties see Theorem 10.2.
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3 First coupling within a balayage space

We �x a kernel T on X and assume that, for some sequence (Wn) of open sets increasing

to X,

T1Wn
<1; KX(1Wn

T1Wn
) 2 C(X) (n 2 N):(3.1)

Such a kernel T will be called an admissible transition kernel.

Remarks 3.1. 1. If the sets Wn are relatively compact and the functions T1Wn
are

bounded on Wn, then (3.1) is already a consequence of (2.2). So every kernel T on X

such that T' is locally bounded for every ' 2 K(X) is an admissible transition kernel.

2. It is easily seen that (3.1) implies that

KU(Tf) 2 C0(U) for all U 2 U and f 2 Bb(X) with compact support:(3.2)

Indeed, choosing n 2 N such that U � Wn and supp(f) � Wn, the lower semi-continuity

of the functions KX(1Wn
Tf�), KX(1Wn

T (kfk11Wn
� f�)) and the continuity of the sum

kfk1KX(1Wn
T (1Wn

)) implies that the functions KX(1Wn
Tf�) are continuous. Thus by

(2.3)

KU(Tf) = KX(Tf)�HUKX(Tf) = KX(1Wn
Tf)�HUKX(1Wn

Tf) 2 C0(U)

(the harmonicity of KX(1W c
n
Tf) on Wn implies that HUKX(1W c

n
Tf) = KX(1W c

n
Tf)).

3. Using lifting of potentials (see Remark 2.1.6) it can be shown that, conversely, (3.2)

implies (3.1).

Let UT be the set of all U 2 U such that T is a transition from U to the complement of

U , i.e.,

UT = fU 2 U : 1UT1U = 0g:

In this section we shall assume that

U
T is a base of X(3.3)

(in Section 9 we shall deal with the general case by approximation). De�ning

KT

U
:= KUT; HT

U
:= HU +KT

U
(U 2 U

T )

and

W
T := fv j v : X ! [0;1] l.s.c.; HT

U
v � v for every U 2 U

T
g

we then know already by Remark 2.1.2 that

W
T
� W:

Let us check that most of the axioms of a family of harmonic kernels are satis�ed by

(HT

U
)U2UT without any further assumption: Fix U; V 2 UT , V � U . Then

KT

V
1U = KV T1U = KV (1V T1U) = 0;(3.4)

hence (taking V = U)

HT

U
1U = HU1U = 0:

6



Let f 2 Bb(X) with compact support. Then

HT

U
f = HUf = f on U c(3.5)

showing that HT

U
(x; �) = "x for every x 2 U

c. Since KT

U
f 2 C0(U), we obtain by (H3) that

HT

U
f is continuous on U . And if f 2 K(X), then HT

U
f 2 K(X) by (H 0

4). Thus the family

(HT

U
)U2UT satis�es (H3) and (H 0

4).

Moreover, by (3.4) and (3.5), KT

V
HT

U
f = KT

V
(1UcH

T

U
f) = KT

V
(1Ucf) = KT

V
f , i.e.,

KT

V
HT

U
= KT

V
:(3.6)

Since HVHU = HU by (H2), we obtain by (3.6) and (2.3) that

HT

V
HT

U
= HV (HU +KT

U
) +KT

V
HT

U
= HVHU +HVK

T

U
+KT

V
= HU +KT

U
= HT

U
:

So (HT

U
)U2UT satis�es (H2) as well.

Given x 2 U and ' 2 K+(X), we obtain by (2.3) that limV #fxgK
T

V
'(x) = 0, since

limV #fxgHVKU(T')(x) = KU(T')(x). Hence

lim
V #fxg

HT

V
'(x) = '(x) if lim

V #fxg

HV '(x) = '(x):

Moreover, de�ning

r := R1fxg; rT := RT

1fxg
= inffv 2 WT : v(x) � 1g

we have rT � r, sinceWT � W. Hence lim infy!x r
T (y) � lim infy!x r(y) = 1, if r is l.s.c.

at x. And then rT is l.s.c. at x provided there exists v 2 WT with v(x) <1 (since then

v=v(x) � rT , 1 � rT (x)).

Thus we have the following result:

Theorem 3.2. If UT is a base of X, the following properties are equivalent:

1. (X;WT ) is a balayage space (i.e., (HT

U
)U2UT is a family of harmonic kernels on X).

2. There exists a strongly WT-superharmonic function s 2 C+(X).

Remark 3.3. Let T 0 be a kernel on X such that T 0 � T , UT is a base of X, and (X;WT )

is a balayage space. Then T 0 is admissible and every WT -strongly superharmonic function

is obviously WT
0
-strongly superharmonic. So Theorem 3.2 implies that (X;WT

0
) is a

balayage space as well.

Corollary 3.4. Suppose that UT is a base of X and that there exist s 2 W and u 2 B+(X)

such that

v := s+KXu 2 C(X); T v � u

and, for every U 2 UT ,

fHUs < sg [ fKU(u� Tv) > 0g = U:

Then (X;WT ) is a balayage space and v is strongly WT -superharmonic.
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Remarks 3.5. 1. For a version not assuming that UT is a base see Theorem 9.3.

2. If KX = K
p

X
for some strictly superharmonic p 2 P, then TKXu < u implies that

taking s = 0 we have KU(u� Tv) > 0 on U 2 U .

3. For some applications (see e.g. Corollary 4.9) it will be useful to keep in mind

that, given any strictly positive locally bounded function ' 2 B(X), we may replace the

potential kernel KX by the potential kernel f 7! KX('f) and the transition kernel T by

the transition kernel f 7! T (f)=' without changing (X;WT ).

Proof of Corollary 3.4. It su�ces to note that, for every U 2 UT ,

v �HT

U
v = v �HUv �KU(Tv) = s�HUs+KU(u� Tv) > 0 on U:

Corollary 3.6. Suppose that UT is a base of X, KX is associated with p 2 P(X), and

that for some s 2 W\C(X) the function v := p+s is strongly superharmonic and Tv < 1.

Then (X;WT ) is a balayage space and v is strongly WT -superharmonic.

Proof. Fix U 2 U and x 2 U . By assumption, HUv(x) < v(x). Suppose that HUs(x) =

s(x). Then HUp(x) < p(x), i.e., KU1(x) > 0. Since 1 � Tv > 0, this implies that

KU(1� Tv)(x) > 0. So the statement follows from Corollary 3.4.

If (X;WT ) is a balayage space, then, for every U 2 UT , HT

U
is the kernel solving the

Dirichlet problem for U with respect to (X;WT ). We may, however, solve the Dirichlet

problem with respect to (X;WT ) for any U 2 U (if we wanted to we could even solve

it for any open set U in X, see [BH86, VII.2]). This leads to the larger family (HT

U
)U2U

where HT

U
for arbitrary U 2 U can be characterized in the following way:

Proposition 3.7. Suppose that (X;WT ) is a balayage space. Then, for every U 2 U , the

harmonic kernel HT

U
for U with respect to (X;WT ) has the following property:

For every ' 2 K+(X), the function HT

U
' is the unique function h 2 K+(X) such that

h�KT

U
h = HU':

Beweis. 1. Fix ' 2 K+(X) and de�ne h := HT

U
'. Then h 2 K+(X) and hence KT

U
h 2

C0(U). So

g := h�KT

U
h 2 K(X); g = ' on U c:

For every V 2 UT with V � U ,

h = HT

V
h = HV h +KT

V
h;

hence

g = h�KT

V
h�HVK

T

U
h = HV (h�KT

U
h)

is harmonic on V . Thus g is harmonic on U , g = HU'.

2. Now let h be any function in K+(X) such that

h�KT

U
h = HU':

Then h = ' on U c and, for every V 2 UT with V � U ,

HT

V
h = HV h+KT

V
h = HVHU'+HVK

T

U
h+KT

V
h = HU'+KT

U
h = h:

Thus h = HT

U
'.
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Remark 3.8. Assuming that (X;WT ) is a balayage space we may show in the same way

that, for every ' 2 K(X), HT

U
' is the unique function h 2 K(X) such that KT

U
jhj 2 C0(U)

and h�KT

U
h = HU'.

Proposition 3.9. Let v be a positive numerical function on X. Then v 2 WT if and

only if there exists a function w 2 W such that v = KT

X
v + w.

Proof. Suppose �rst that w 2 W and v = KT

X
v + w. Then v is l.s.c. Fix U 2 UT and

x 2 U . We have to show that HT

U
v(x) � v(x). To that end we may assume that v(x) <1

and hence HUK
T

X
v(x) � KT

X
v(x) � v(x) <1. Then

HT

U
v(x) = HUv(x) +KT

U
v(x) = HUv(x)�HUK

T

X
v(x) +KT

X
v(x)

= HUw(x) +KT

X
v(x) � w(x) +KT

X
v(x) = v(x):

Thus v 2 WT .

Suppose now conversely that v 2 WT . Then v 2 W, so v is �nely continuous. Let

us choose an increasing sequence (Wn) of relatively compact open sets satisfying (3.1).

De�ning

'n := 1Wn
T (1Wn

inf(v; n)) (n 2 N)

we then have KX'n 2 P(X) for every n 2 N and

KX'n " K
T

X
v; KU'n " K

T

U
v

for every U 2 UT . De�ne

wn := v �KX'n (n 2 N):

For every U 2 UT ,

HUwn +KX'n = HUv +KU'n � HUv +KT

U
v = HT

U
v � v;

i.e., HUwn � wn. Since wn is l.s.c. and wn � �KX'n, we therefore obtain that wn 2 W.

The sequence (wn) is decreasing and the function w de�ned by

w(x) = f-liminf
y!x

inf
n

wn(y); x 2 X;

is contained in W. Since the functions v and KT

X
v are �nely continuous and obviously

v = KT

X
v + inf

n

wn;

we �nally obtain that v = KT

X
v + w.

4 First applications on direct sums

In this section we shall �rst consider general transitions between spaces forming a di-

rect sum and then study the important case of direct sums with the same underlying

topological space Y and transition between corresponding points in the copies of Y .

Let I = f1; 2; : : : ; ng, n 2 N, or I = N and let (X;W) be the direct sum of balayage

spaces (Xi;Wi), i 2 I � N (see Section 2). Let T be an admissible kernel on X satisfying

T (x;Xi) = 0 for every i 2 I and x 2 Xi(4.1)
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and let KX be the potential kernel associated with a potential p 2 P(X). Then UT =

U =
S
i2I
Ui and we know by Theorem 3.2 that (X;WT ) is a balayage space provided

there exists a WT -strongly superharmonic function s 2 C+(X). This may by guaranteed

by the existence of a function u on the index set I which is strongly superharmonic with

respect to a suitably chosen kernel P .

Let p0 2 P(X) such that ~p := p + p0 is strongly superharmonic and de�ne kernels P

and ~P on I by

P (i; fjg) := k1XiT (1Xjp)k1 = sup
x2Xi

Z
Xj

p(z)T (x; dz); ~P (i; fjg) := k1XiT (1Xj ~p)k1

for i; j 2 I where of course, P (i; fig) = ~P (i; fig) = 0 by (4.1). Then Theorem 3.2 leads

to the following result:

Theorem 4.1. If there exists a positive real function u on I such that ~Pu < u, then

(X;WT ) is a balayage space.

Remark 4.2. It is su�cient to know that Pu < u if

a) p is strongly superharmonic

or

b) I is �nite and there exists w 2 Wb such that w > 0 and Tw is bounded.

Indeed, in the �rst case we may take p0 = 0 so that ~P = P . In the second case, there

exists " > 0 such that Pu + "nkTwk1kuk1 < u (n being the number of elements in I)

and we may choose a strongly W-superharmonic function p0 2 P(X) with p0 � w. Then

~p = p+ p0 is strongly superharmonic and ~Pu � Pu+ "nkTwk1kuk1 < u.

Proof of Theorem 4.1. We de�ne a function q 2 P(X) by

q =
X
j2I

1Xju(j)~p:

Fix i 2 I and U 2 Ui. By de�nition of ~P , T (1Xju(j)~p) �
~P (i; fjg)u(j) on U . Moreover,

~Pu(i) < u(i) and HU ~p < ~p on U . Therefore

KT

U
q =

X
j2I

KU(T (1Xju(j)~p)) �
~Pu(i)KU1 = ~Pu(i)(p�HUp)

� ~Pu(i)(~p�HU ~p) < u(i)(~p�HU ~p) = q �HUq on U:

So q is strongly WT -superharmonic and the proof is �nished by an application of Theo-

rem 3.2.

Example 4.3. Let us consider the example given in the introduction. There we have

I = f1; 2g and T (x; �) = "�(x), hence P (i; fjg) = �ijkG
�j

D
k1 so that by assumption

P (1; f2g)P (2; f1g) < 1. If P (1; f2g) > 0, then Pu < u if we take u(1) = 1 and P (2; f1g) <

u(2) < P (1; f2g)�1. Similarly, if P (2; f1g) > 0. The case P (1; f2g) = P (2; f1g) = 0

(which is of no interest, since we have no coupling at all) can be dealt with taking u = 1.

Thus (X;WT ) is a balayage space by Theorem 4.1 and Remark 4.2.

Corollary 4.4. Suppose that I = f1; : : : ; ng and that T (x;Xj) = 0 for all x 2 Xi and

1 � j � i � n. Moreover, assume that p > 0 and Tp is bounded. Then (X;WT ) is a

balayage space.
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Proof. In view of Theorem 4.1 and Remark 4.2 it su�ces to note that we may easily �nd

a positive real function u on I satisfying Pu < u: Having P (i; fjg) = 0 for 1 � j � i

and P (i; fjg) < 1 for 1 � i < j � n we may take u(n) = 1 and choose u(i) >P
n

j=i+1 P (i; fjg)u(j) recursively for i = n� 1; n� 2; : : : ; 1.

Remark 4.5. Using the results of [Bou84] it can easily be seen that (strong) biharmonic

spaces as introduced by [Smy75, Smy76] (or, more generally, polyharmonic spaces) are a

special case. They are balayage spaces if interpreted in the right way.

Let us now suppose that all Xi, i 2 I, are copies of a space Y and that we have

transitions only between corresponding points in these copies: Let Wi, i 2 I, be convex

cones of l.s.c. positive numerical functions on Y such that every (Y;Wi) is a balayage

space. For every i 2 I, let pi be a strongly superharmonic continuous real potential for

(Y;Wi) and let K
pi

Wi
denote the corresponding potential kernel. The potentials pi de�ne

a strongly superharmonic continuous real potential p for the direct sum (X;W) and the

restriction of K
p

X
on the copy of Y corresponding to (Y;Wi) is the kernel K

pi

Wi
. Let

gij 2 B
+(Y ) describe the transition from points in the i-th copy of Y to the j-th copy of

Y , i.e., identifying the i-th copy of Y with Y � fig we have

T ((y; i); �) =
X
j2I

gij(y)"(y;j) (y 2 Y; i 2 I)

where of course gii = 0 by (4.1). We assume that the functions K
pi

Wi
(1Cgij) are continuous

and real for every compact subset C of Y so that T is admissible.

Then Corollary 3.4 provides the following results (for the case gii 6= 0 see the end of

Section 8):

Theorem 4.6. If there exist functions ui 2 B
+(Y ) such that K

pi

Wi
ui 2 C(Y ) andX

j2I

gijK
pj

Wj
uj < ui

for every i 2 I, then (X;WT ) is a balayage space.

Corollary 4.7. Assume that Wi = W1 and pi = p1 for every i 2 I. Then (X;WT ) is a

balayage space if there exists a strictly positive function u 2 B+(Y ) and strictly positive

reals bi such that K
p1

W1
u 2 C(Y ) and, for all i 2 I,

X
j2I

gijbj < biu=K
p1

W1
u:(4.2)

Remark 4.8. Suppose that I = f1; : : : ; ng, aij := kgijk1 < 1 for all i; j and denote

A := (aij). Assume that u 2 B+(Y ) and � > 0 such that

�K
p1

W1
u � u:

Then (4.2) is satis�ed if there exists b 2 Rn, b > 0, such that

Ab < �b

which in turn holds if and only if the spectral radius of A is strictly less than �.
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Corollary 4.9. Assume that Wi = W1 and pi = p1 for all i 2 I and that there exists a

strictly positive bounded function in W1. Then (X;WT ) is a balayage space if (Y;W1) is

parabolic and the function K
p1

W1
(maxi2I

P
j2I

gij) is continuous and bounded.

Proof. We choose '0 2 Cb(Y ) such that '0 > 0 and K
p1

W1
'0 2 Cb(Y ), and de�ne

' := '0 +max
i2I

X
j2I

gij; ~gij := gij=' (i; j 2 I)

so that
P

j2I
~gij � 1 for every i 2 I. Moreover, let

~T ((y; i); �) :=
X
j2I

~gij"(y;j); ~K1f := K
p1

W1
('f) (f 2 B+(Y )):

Then ~K1 is a potential kernel on (Y;W1) such that ~K11 2 Cb(Y ). For the corresponding

kernel ~KX on X we obviously have KXT = ~KX
~T : Thus (X;WT ) is not changed if we

replace KX by ~KX and T by ~T .

Our assumption on W1 implies that there exists a strictly positive bounded function

s 2 W1 which is continuous. By Theorem 10.2 and Lemma 10.3, I � ~K1 is invertible and

u := (I � ~K1)
�1s 2 B+

b
(X):

Then u = ~K1u+ s 2 Cb(X) and, for all y 2 Y and i 2 I,

X
j2I

~gij(y) ~K1u(y) � ~K1u(y) = u(y)� s(y) < u(y);

By Theorem 4.6 we conclude that (X;WT ) is a balayage space.

Proposition 3.7 can be expressed as follows:

Proposition 4.10. Let I = f1; : : : ; ng. Suppose that (X;WT ) is a balayage space and

that U is a relatively compact open subset of Y which is Wi-regular for every 1 � i � n.

Then, for any choice of functions '1; : : : ; 'n 2 K(Y ), there exist unique functions

h1; : : : ; hn 2 K(Y ) such that, for every 1 � i � n,

hi �
X
j2I

K
pj

Wj
(gijhj) is Wi-harmonic on U; hi = 'i on U c:

Moreover, the functions h1; : : : ; hn are positive, if the functions '1; : : : ; 'n are positive.

5 Coupling of partial di�erential equations

Let D be a domain in Rd, d � 1, let n 2 N, and let Li, 1 � i � n, be second order

(elliptic or parabolic) linear partial di�erential operators on D leading to harmonic spaces

(D;HLi
). (For the de�nition of harmonic spaces and various su�cient conditions for

the di�erential operators the reader might consult [Her62, CC72, BH86, Kro88, Her68,

Bon70]). Moreover, we assume that, for every 1 � i � n, we have a base of Li-regular

sets for D, a Green function GLi
for (X;HLi

), and a Radon measure �i � 0 on D such

that G
�i

Li
2 Cb(D) and (GLi

)
�i

V
> 0 on V for every (Li-regular) open subset V of D.
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We want to study the coupled system

Lihi +
X
j 6=i

gijhj�i = 0 (1 � i � n)

where gij 2 B+(D) such that G
1Agij�i
Li

2 C(D) for every compact subset A of D (in

Section 8 we shall consider more general systems Lihi +
P

n

j=1 gijhj�i = 0). This will be

possible by introducing associated transitions on the direct sum of the spaces (D;HLi
).

By now it should be intuitively clear how to do it. To get it done in a formally correct

way we proceed as follows: For every 1 � i � n, let

Xi := D � fig

and let �i denote the canonical projection from Xi on D. Then the direct sum (X;H)

of the spaces (Xi;HLi
� �i), 1 � i � n, is a harmonic space (with the subspace X =

D�f1; 2; : : : ; ng of Rd�N). (IfWi denotes the convex cone of all positive hyperharmonic

functions for (Xi;HLi
��i) andW the convex cone of all positive hyperharmonic functions

for (X;H), then of course (X;W) is the direct sum of (X1;W1); : : : ; (Xn;Wn).)

De�ning p : X ! R by

pjXi = G
�i

Li
� �i; 1 � i � n;

we obtain a continuous real potential on X with a corresponding potential kernel KX .

Finally, we de�ne an admissible transition kernel T on X by

T ((x; i); �) :=
X
j 6=i

gij "(x;j) (x 2 D; 1 � i � n):

Suppose for a moment that there exists a strongly WT -superharmonic function s 2

C+(X), i.e., that (X;WT ) is a balayage space. Fix a relatively compact subset U of D

and functions '1; : : : ; 'n 2 K(D). For simplicity suppose that U is Li-regular for every

1 � i � n (again it will be clear for the specialist how to proceed if this does not hold).

Then

~U :=

n[
i=1

U � fig

is a regular subset of X. De�ning

'(x; i) := 'i(x) (x 2 D; 1 � i � n)

we obtain a function ' 2 K(X). By Proposition 3.7, there is a unique function h 2 K(X)

such that

h�KT

~U
h = H ~U':

Of course, hj ~U depends only on 'j
@ ~U , since T (

~U) � ~U and H ~U' depends only on 'j
@ ~U .

De�ne

hi := h � ��1
i

(1 � i � n)

and �x 1 � i � n. Clearly, hi 2 K(D) and hi = 'i on D n U , since h = ' on X n ~U .

Furthermore, Li((H ~U') � �
�1
i
) = 0 on U , since H ~U' 2 H( ~U) and hence (H ~U') � �

�1
i
2

HLi
(U). And

(KT

~U
h) � ��1

i
= K ~U(Th) � �

�1
i

= (GLi
)(Th)��

�1
i �i
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where, for every x 2 D, by de�nition of T

(Th) � ��1
i
(x) = Th(x; i) =

X
j 6=i

gijh(x; j) =
X
j 6=i

gijhj(x):

Thus

0 = Li((H ~U') � �
�1
i
) = Li[(h�KT

~U
h) � ��1

i
] = Lihi +

X
j 6=i

gijhj�j

and we obtain the following consequence of Proposition 3.7 (see Section 4, Theorem 5.4,

and Corollary 5.6 for conditions implying that (X;WT ) is a balayage space):

Theorem 5.1. Suppose that (X;WT ) is a balayage space and let U be a relatively compact

subset of D such that U is Li-regular for every 1 � i � n. Then, for every choice of

functions '1; : : : ; 'n 2 C(@U), there exist unique continuous functions h1; : : : ; hn on U

such that, for every 1 � i � n,

Lihi +
X
j 6=i

hjgij�i = 0 on U; hi = 'i on @U:

Further, the functions h1; : : : ; hn are positive if the functions '1; : : : ; 'n are positive.

From Corollary 4.4 we get the following:

Corollary 5.2. Let U be a relatively compact subset of D such that U is Li-regular for

every 1 � i � n. Then, for every choice of functions '1; : : : ; 'n 2 C(@U), there exist

unique continuous functions h1; : : : ; hn on U such that, for every 1 � i � n,

Lihi +

nX
j=i+1

hjgij�i = 0 on U; hi = 'i on @U:

And the functions hi; : : : ; hn are positive if the functions '1; : : : ; 'n are positive.

A very special case is the situation where all operators Li are equal and gij�i = �i+1;j�:

Corollary 5.3. Let D be a bounded domain in Rd, d � 1, and let L be a second order

linear partial di�erential operator on D leading to a harmonic space (D;HL) with Green

function GL such that G�

L
is continuous and bounded. Let U be a relatively compact

(L�)regular subset of D, n 2 N, and '1; : : : ; 'n 2 C(@U). Then there exists a unique

function h 2 C(U) such that Lh; L2h; : : : ; Ln�1h 2 C(U),

Lnh = 0 on U; lim
x!z

(�L)i�1h(x) = 'i(z) for every 1 � i � n and for all z 2 @U:

And h;�Lh; L2 : : : ; (�L)n�1h are positive, if '1; : : : ; 'n are positive.

Moreover, Theorem 4.6 implies the following result involving �i-eigenfunctions for the

operators Li:

Theorem 5.4. Suppose that there exist strictly positive PLi(D)-bounded functions ui 2

Cb(D) and strictly positive real numbers �i; �ij, i; j 2 f1; : : : ; ng, such that

Liui + �iui�i = 0;

and

uj � �ijui;
X
j 6=i

�ijgij=�j < 1:

Then (X;WT ) is a balayage space.
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Remark 5.5. If there exists an Li-superharmonic function si � 1 on D, then every

function u 2 C0(D) is PLi(D)-bounded.

Proof of Theorem 5.4. For every 1 � i � n,

�iG
ui�i

Li
= ui;

since ui � �iG
ui�i

Li
is PLi(D)-bounded and Li-harmonic on D. Therefore

X
j 6=i

gijG
uj�j

Lj
=
X
j 6=i

gij
uj

�j
�
X
j 6=i

gij
�ij

�j
ui < ui

for every 1 � i � n. Thus (X;WT ) is a balayage space by Theorem 4.6.

Corollary 5.6. Suppose that L1 = � � � = Ln =: L. Then (X;WT ) is a balayage space if

one of the following conditions is satis�ed:

1. �1 = � � � = �n =: � and there exist � > 0, a strictly positive PL(D)-bounded function

u 2 Cb(D), and strictly positive real numbers b1; : : : ; bn such that

Lu+ �u� = 0 and
X
j 6=i

gijbj < �bi for every 1 � i � n:

2. (D;HL) is parabolic and the potentials G
gij�i

L
, i; j 2 f1; : : : ; ng, are continuous and

bounded.

Remark 5.7. Note that the harmonic space associated with the heat equation or a similar

parabolic equation is parabolic. Moreover, the last property clearly holds if the functions

gij are bounded.

Proof of Corollary 5.6. By Theorem 5.4, (1) implies that (X;WT ) is a balayage space

(take ui = biu).

So suppose that (2) holds. Since of course gij�i = ~gij(�1 + � � � + �n) for some Borel

function 0 � ~gij � gij, we may assume without loss of generality that �1 = � � � = �n.

Thus Corollary 4.9 implies that (X;WT ) is a balayage space.

6 Perturbation of balayage spaces

In order to get further possibilities for transitions let us briey discuss perturbation of

(X;W). To that end we �x a real function k 2 B(X) such that, for every U 2 U ,

KU jkj 2 C0(U):

Such a function will be called a Kato function (with respect to KX). Let Mk� denote the

multiplication operators

Mk� : f 7! k�f

so that KUMk� are the potential kernels associated with KUk
�.

Lemma 6.1. For every U 2 U , the mapping I +KUMk+ is a bijection on Bb(U) and

0 � (I +KUMk+)
�1s � s

for every s 2 S+
b
(U). Moreover, for every s 2 S+

b
(U), (I +KUMk+)

�1s > 0 on fs > 0g.
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Proof. As for harmonic spaces (see [BHH87, p. 104], or [HM90, p. 558]).

In particular, for every U 2 U , the operator

LU := (I +KUMk+)
�1KUMk�

de�nes a kernel. As for harmonic spaces we obtain (see [HM90]):

Lemma 6.2. For every U 2 U , the following statements are equivalent:

1. The operator I�LU is invertible on Bb(U) and (I�LU )
�1f � 0 for every f 2 B+

b
(U).

2.
1P
n=1

Ln
U
1 is bounded.

If (2) holds, then U is called k-bounded and

(I +KUMk)
�1 =

1X
n=1

Ln
U
(I +KUMk+)

�1:

Theorem 6.3. ((I +KUMk+)
�1HU)U2U is a family of harmonic kernels on X.

More generally:

Theorem 6.4. Suppose that there exist s 2 W and u 2 B+(X) such that

v := s+KXu 2 C(X); 0 � u+ kv;

and, for every U 2 U , fHUs < sg [ fKU(u + kv) > 0g = U . Then every U 2 U is

k-bounded and de�ning

~HU := (I +KUMk)
�1HU (U 2 U)(6.1)

and

fW := fv j v : X ! [0;1] l.s.c., ~HUv � v for every U 2 Ug(6.2)

the family ( ~HU)U2U is a family of harmonic kernels on X, the pair (X;fW) is a balayage

space, and v is strongly fW-superharmonic.

Proof. Given U 2 U , our assumptions imply that

(I +KUMk+)(v � LUv) = v +KUMk+v �KUMk�v

= v +KU(kv) = s+HUKXu+KU(u+ kv)

is a strictly positive function in S+
b
(U) and hence v � LUv > 0 on U by Lemma 6.1. In

particular, v > 0 on X. Moreover, LUv 2 C0(U) and inf v(U) > 0. So the function

f := v � LUv

satis�es inf f(U) > 0. Since by induction

v =

m�1X
n=0

Ln
U
f + Lm

U
v
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for every m 2 N, we know that
P

1

n=0 L
n

U
f � v. Thus U is k-bounded and we may de�ne

a kernel ~HU by

~HU := (I +KUMk)
�1HU =

1X
n=0

Ln
U
(I +KUMk+)

�1HU :(6.3)

Since

(I +KUMk)(v � ~HUv) = v +KU(kv)�HUv = (s�HUs) +KU(u+ kv) =: t

is a strictly positive function in S+
b
(U), we obtain by (6.3) and by Lemma 6.1 that

v � ~HUv = (I +KUMk)
�1t � (I +KUMk+)

�1t > 0:

In particular, ( ~HU)U2U satis�es (H 0

5).

Obviously, ~HU1U = 0 and ~HU(x; �) = "x for all U 2 U and x 2 U c. If f 2 Bb(X) with

compact support, then ~HUf 2 Bb(X), hence KU(k ~HUf) 2 C0(U). So the equality

~HUf +KU(k ~HUf) = HUf

immediately implies that ( ~HU)U2U satis�es (H3) and (H 0

4). Applied to functions in K(X)

we have for all U; V 2 U with V � U

(I +KVMk) ~HU = ~HU + (KU �HVKU)Mk
~HU

= HU �HVKUMk
~HU = HV (HU �KUMk

~HU) = HV
~HU ;

i.e.,
~HU = (I +KVMk)

�1HV
~HU = ~HV

~HU :

So ( ~HU)U2U satis�es (H 0

2).

To show that (H1) holds let us �x x 2 X and assume �rst that limU#fxgHU'(x) = '(x)

for every ' 2 K(X). Let W be a neighborhood of x. Then, for every U 2 U with U � W ,

KU(jkj ~HUv) � KU(jkjv) � sup(v(W ))KU jkj

and limU#fxg kKU jkjk1 = 0. So we conclude that, for every ' 2 K(X),

lim
U#fxg

~HU'(x) = lim
U#fxg

HU'(x) = '(x):

By [BH86, Proposition III.2.7], it remains to consider the case where x is (W-)�nely

isolated. Let

~r = inffw 2 fW : w(x) � 1g:

By Choquet's lemma, there exist wn 2 fW , such that wn(x) � 1 for every n 2 N and

~̂r =\inf wn:

Of course we may assume without loss of generality that wn+1 � wn � v=v(x) for every

n 2 N. De�ne

sn := wn +KU(k
+wn) (n 2 N):

Then sn is l.s.c. and, for every V 2 U with V � U ,

HV sn = ~HVwn +KV (k ~HVwn) +HVKU(k
+wn)

� wn +KV (k
+wn) +HVKU(k

+wn) = sn;
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i.e., sn 2
�H+(U). De�ning s := inf sn, we hence know that ŝf = ŝ (see [BH86, p. 58]).

Let w = inf wn. Then s = w +KU(k
+w) and the continuity of KU(k

+w) implies that

ŵf +KU(k
+w) = ŝf = ŝ = ŵ +KU(k

+w);

i.e., ŵf = ŵ. Since x is �nely isolated, we conclude that

~̂r(x) = ŵ(x) = ŵf(x) = f-liminf
y!x

w(y) = w(x) = 1 = ~r(x):

Thus ~r is l.s.c. at x. This �nishes the proof of Theorem 6.4.

Theorem 6.3 is a special case: If k � 0, then we may take u = 0 and any strongly

superharmonic s 2 C+(X). But of course we may as well take the preceding proof and

omit its �rst part noting that, by Lemma 6.1, the operators (I + KUMk)
�1HU , U 2 U ,

yield kernels ~HU and that W � ~W if k � 0.

Moreover we shall need the following:

Proposition 6.5. If every U 2 U is k-bounded and ( ~HU)U2U is a family of harmonic

kernels on X, then there exists a (unique) potential kernel ~KX on X with respect to fW
such that

~KX �
~HU

~KX = (I +KUMk)
�1KU for every U 2 U :

Proof. De�ne
~KU = (I +KUMk)

�1KU (U 2 U):

If U; V 2 U with V � U , we have I +KVMk = I +KUMk �HVKUMk, hence

(I +KVMk)( ~KV + ~HV
~KU �

~KU) = KV +HV
~KU � (KU �HVKUMk

~KU)

= KV �KU +HV (I +KUMk) ~KU = KV �KU +HVKU = 0;

i.e.,

~KV = ~KU �
~HV

~KU :(6.4)

By Remark 2.2,6, it therefore su�ces to show that every ~KU is a potential kernel on U

with respect to fW .

So �x U 2 U and f 2 B+
b
(U). If V 2 U with V � U , then (6.4) implies that ~HV

~KUf �
~KUf with equality if f = 0 on V . If 0 � h � ~KUf such that h is harmonic on U with

respect to ( ~HV )V 2U , then g := h + KU(kh) is harmonic on U and 0 � g � KUf , hence

g = 0, h = 0.

7 Coupling and perturbation in a balayage space

We shall now combine assumptions of Section 3 and Section 6: Let us assume that k is a

Kato function on X (with respect to KX) and that T is an admissible transition kernel

on the balayage space (X;W) such that UT is a base of X (in Section 9 we shall get rid

of the last assumption).

For every k-bounded U 2 UT we de�ne a kernel ~HT

U
by

~HT

U
= (I +KUMk)

�1(HU +KUT ):(7.1)

If every U 2 UT is k-bounded, we de�ne

fWT := fv j v : X ! [0;1] l.s.c., ~HT

U
v � v for every U 2 U

T
g:(7.2)

The following result generalizes Corollary 3.4:
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Theorem 7.1. Suppose that there exist s 2 W and u 2 B+(X) such that

v := s+KXu 2 C(X); T v � u+ kv;

and, for every U 2 U ,

fHUs < sg [ fKU(u+ kv � Tv) > 0g = U:

Then every U 2 U is k-bounded, ( ~HT

U
)U2UT is a family of harmonic kernels on X, (X;fWT )

is a balayage space, and v is strongly fWT -superharmonic.

Proof. By Theorem 6.4, every U 2 U is k-bounded and ~HU := (I +KUMk)
�1HU , U 2 U ,

de�nes a family of harmonic kernels on X. By Proposition 6.5, there exists a potential

kernel ~KX with respect to ( ~HU)U2U such that, for every U 2 U ,

~KU := ~KX �
~HU

~KX = (I +KUMk)
�1KU :

Fix U 2 U and let

f := v � ~HT

U
v = v � (I +KUMk)

�1(HUv +KU(Tv)):

Then

t := (I +KUMk)f = v +KU(kv)�HUv �KU(Tv) = s�HUs +KU(u+ kv � Tv)

is a positive superharmonic function on U , hence f � 0. By assumption t > 0 and

therefore f > 0. The proof is �nished by an application of Theorem 3.2.

Corollary 7.2. Assume that, for every U 2 U , the function KU1 is strictly positive on U .

Then the following holds:

1. If 1 2 W and k > T1, then the assumptions of Theorem 7.1 are satis�ed and 1 is

strongly fWT -superharmonic.

2. If u 2 B+(X) such that q := KXu 2 C(X) and Tq < u + kq, then the assumptions

of Theorem 7.1 are satis�ed and q is strongly fWT -superharmonic.

Proposition 7.3. Suppose that (X;fWT ) is a balayage space. Then, for every U 2 U , the

harmonic kernel ~HT

U
for U with respect to (X;fWT ) has the following property: For every

' 2 K+(X), the function ~HT

U
' is the unique function h 2 K+(X) such that

h +KU(kh� Th) = HU':

Proof (see the proof of Proposition 3.7). 1. Fix ' 2 K+(X) and de�ne h := ~HT

U
'. Then

h 2 K+(X), hence KU(kh� Th) 2 C0(U). So

g := h+KU(kh� Th) 2 K(X); g = ' on U c:

For every V 2 UT with V � U ,

h = ~HT

V
h = (I +KVMk)

�1(HV '+KV (T'))

and therefore

g = h+KV (kh) +HVKU(kh)�KU(Th)

= HV' +KV (T') +HVKU(kh)�KU(Th) = HV ('+KU(kh� Th))
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is harmonic on V (note that ' = h on U c implies that T' = Th on V , since 1V T1V = 0).

Thus g is harmonic on U , g = HU'.

2. Now let h be any function in K+(X) such that

h +KU(kh� Th) = HU':

Then h = ' on U c and, for every V 2 UT with V � U ,

(I +KVMk) ~H
T

V
h = HV h +KT

V
h = HVHU'�HVKU(kh� Th) +KT

V
h

= HU'+KU(Th)�HVKU(kh) = h+KV (kh);

i.e., ~HT

V
h = h. Thus h = ~HT

U
'.

To close this section let us briey consider the situation discussed at the end of Section 4:

Let (X;W) be the direct sum of balayage spaces (Y;Wi), i 2 I. Let pi be strongly

superharmonic continuous real potentials for (Y;Wi), i 2 I, and let KX be the potential

kernel on X composed from the potential kernels K
pi

Wi
on the copies of Y �fig of Y . Let

gij � 0 be Kato functions on Y with respect to K
pi

Wi
, i; j 2 I, i 6= j, and

T ((y; i); �) =
X

j2Infig

gij(y)"(y;i) (y 2 Y; i 2 I):

In addition, we now take a Kato function k with respect to KX and de�ne

gii(y) := �k(y; i) (y 2 Y; i 2 I):

Replacing Corollary 3.4 by Theorem 7.1 we of course obtain the same results as at the

end of Section 4 replacing WT by fWT :

Theorem 7.4. If there exist functions ui 2 B
+(Y ) such that K

pi

Wi
ui 2 C(Y ) andX

j2I

gijK
pj

Wj
uj < ui

for every i 2 I, then (X;fWT ) is a balayage space.

Corollary 7.5. Assume that Wi = W1 and pi = p1 for every i 2 I. Then (X;fWT ) is a

balayage space if there exists a strictly positive function u 2 B+(Y ) and strictly positive

reals bi such that K
p1

W1
u 2 C(Y ) and, for all i 2 I,

X
j2I

gijbj < biu=K
p1

W1
u:(7.3)

Remark 7.6. Suppose that I = f1; : : : ; ng, aij := kgijk1 < 1 for all i; j and denote

A := (aij). Assume that u 2 B+(Y ) and � > 0 such that

�K
p1

W1
u � u:

Then (7.3) is satis�ed if there exists b 2 Rn, b > 0, such that

Ab < �b

which in turn holds if and only if the spectral radius of A is strictly less than �.
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Corollary 7.7. Assume that Wi = W1 and pi = p1 for all i 2 I and that there exists a

strictly positive bounded function in W1. Then (X;fWT ) is a balayage space if (Y;W1) is

parabolic and the function K
p1

W1
(maxi2I

P
j2I

gij) is continuous and bounded.

Proposition 7.8. Let I = f1; : : : ; ng. Suppose that (X;fWT ) is a balayage space and that

U is a relatively compact open subset of Y which is Wi-regular for every 1 � i � n.

Then, for any choice of functions '1; : : : ; 'n 2 K(Y ), there exist unique functions

h1; : : : ; hn 2 K(Y ) such that, for every 1 � i � n,

hi �
X
j2I

K
pj

Wj
(gijhj) is Wi-harmonic on U; hi = 'i on U c:

Moreover, the functions h1; : : : ; hn are positive, if the functions '1; : : : ; 'n are positive.

8 Further applications on PDE's

Again let D be a domain in Rd and L1; : : : ; Ln second order linear partial di�erential

operators on D leading to harmonic spaces (D;HLi
) (having a base of regular sets) with

Green functions GLi
. For every 1 � i � n, let �i be a (positive) Radon measure on D

such that G
�i

Li
2 Cb(D) and (GLi

)
�i

V
> 0 on V for every (Li-regular) open subset V of D.

We want to study the coupled system

Lihi +

nX
j=1

gijhj�i = 0 (1 � i � n)

where gij 2 B(D) such that gij � 0 for i 6= j and G
1Ajgij j�i
Li

2 C(D) for every compact

subset A of D and all i; j 2 f1; : : : ; ng.

Using Xi = D�fig and the canonical projections �i : Xi ! D the direct sum (X;H) of

the spaces (X;HLi
��i), 1 � i � n, is a harmonic space as before. We de�ne a continuous

bounded potential p, a kernel T and a function k � 0 on X by

p(x; i) = G
�i

Li
(x); T ((x; i); �) =

X
j 6=i

gij "(x;j); k(x; i) = �gii(x); (x 2 D; 1 � i � n):

Then k is a Kato function, T is admissible with respect to K
p

X
, and the results of the

preceding section can be applied. In particular, we have a convex cone fWT of functions

on X.

Arguing as in Section 5 or applying Proposition 7.8 we obtain the following generaliza-

tion of Theorem 5.1:

Theorem 8.1. Assume that (X;fWT ) is a balayage space. Let U be a relatively compact

open subset of D which is Li-regular for every 1 � i � n and '1; : : : ; 'n 2 C(@U). Then

there exist unique functions h1; : : : ; hn 2 C(U) such that

Lihi +

nX
j=1

hjgij�i = 0 on U; hij@U = 'i (1 � i � n):

Further, if '1; : : : ; 'n are positive, then h1; : : : ; hn are positive.

Combined with Theorem 8.1 the following result is similar to [CZ96, Theorem ...] (where

�i = � and all Li are uniformly elliptic):
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Theorem 8.2. Suppose that exists a strictly positive real function s on D such that, for

every 1 � i � n, one of the following conditions is satis�ed:

1.
P

n

j=1 gij � 0 and s is strongly Li-superharmonic.

2.
P

n

j=1 gij < 0 and s is Li-superharmonic.

Then (X;fWT ) is a balayage space.

Proof. De�ne s 2 W by s(x; i) = s(x) and �x 1 � i � n. Then, for every x 2 D,

(ks� Ts)(x; i) = �gii(x)�
X
j 6=i

gij(x) � 0;

So (X;fWT ) is a balayage space by Theorem 7.1 (taking u = 0).

Among various other possible criteria for getting a balayage space (X;fWT ) let us men-

tion just one, a generalization of Corollary 5.6:

Theorem 8.3. Suppose that L1 = � � � = Ln =: L. Then (X;fWT ) is a balayage space if

one of the following conditions is satis�ed:

1. �1 = � � � = �n =: � and there exist � > 0, a strictly positive PL(D)-bounded function

u 2 Cb(D), and strictly positive real numbers b1; : : : ; bn such that

Lu+ �u� = 0 and
X
j 6=i

gijbj < �bi for every 1 � i � n:

2. (D;HL) is parabolic and the functions G
gij�i

L
, i; j 2 f1; : : : ; ng, are continuous and

bounded on D.

Remark 8.4. Note that in Theorem 8.2 we necessarily have gii � 0, whereas Theorem 8.3

leaves some range for positive values of gii.

9 General coupling and perturbation in a balayage

space

As in Section 7 we shall assume that k is a (not necessarily positive) Kato function on X

and that T is an admissible transition kernel (both with respect to the given potential

kernel KX). The essential di�erence will be that we shall no longer assume that UT (as

de�ned in (3.3)) is a base of X. So our result will be new even if there is no perturbation

at all, i.e., if k = 0.

We shall need the following stability result with respect to increasing limits which is of

interest in itself:

Proposition 9.1. Let U be a base of relatively compact open sets in X and, for every

n 2 N, let (Hn

U
)U2U be a family of (regular) harmonic kernels on X. Suppose that, for

every U 2 U , the sequence (Hn

U
)n2N is increasing to a kernel H1

U
. Then the following are

equivalent:

1. (H1

U
)U2U is a family of harmonic kernels on U .
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2. There exists s 2 C+(X) such that, for every U 2 U , the function H1

U
s is continuous

on X and H1

U
s < s on U .

Proof. (1) =) (2): By general properties of a family of harmonic kernels (see [BH86]).

(2) =) (1): For every n 2 N [ f1g, de�ne

W
n := fv j v : X ! [0;1]; v l.s.c., Hn

U
v � v for every U 2 Ug:

Then

W
1 =

1\
n=1

W
n:

By assumption (2), the function s is strongly W1-superharmonic.

If U; V 2 U and V � U , then Hn

V
Hn

U
= Hn

U
for every n 2 N, and hence

H1

V
H1

U
= H1

U
:

Fix a sequence ( m) in K
+(X) which is increasing to 1, �x U 2 U and f 2 B+

b
(X) with

compact support. Choose � 2 R+ such that f � �s. Then, for every n 2 N, the function

Hn

U
f is continuous on U and the function Hn

U
(�s � f) = sup

m
Hn

U
( m(�s � f)) is l.s.c.

on U . So the increasing limits H1

U
f and H1

U
(�s� f) are l.s.c. on U . Knowing that their

sum H1

U
(�s) = �H1

U
s is continuous on U we obtain continuity of H1

U
f and H1

U
(�s� f)

on U .

Now suppose that f is even continuous, i.e., that f 2 K+(X). Then we have the

corresponding continuity properties on X. In particular, we see that H1

U
f 2 K(X).

So we already know that (H1

U
)U2U has the properties (H 0

5), (H2), (H3), and (H 0

4).

It remains to show that (H1) is satis�ed. So �x x 2 X. Assume �rst that, for every

' 2 K(X),

lim
V #fxg

H1
V
'(x) = '(x):

Fix '1 2 K
+(X) and choose � 2 R+, '2 2 K

+(X) such that '1+'2 � �s, ('1+'2)(x) =

�s(x). Then

lim inf
V #fxg

H1

V
'j(x) � lim

V #fxg

H1
V
'j(x) = 'j(x); j = 1; 2

and, for every x 2 V 2 U ,

H1

V
'1(x) +H1

V
'2(x) � H1

V
(�s)(x) � �s(x) = '1(x) + '2(x):

Therefore

lim
V #fxg

H1

V
'j(x) = 'j(x); j = 1; 2:

Finally, de�ne

r1 = inffv 2 W1 : v(x) � 1g; r1 = inffv 2 W1 : v(x) � 1g;

and suppose that r1 is l.s.c. at x. Since W1 is contained in W1, we have r1 � r1.

Moreover, obviously r1 � s=s(x). Therefore

1 = lim inf
y!x

r1(y) � lim inf
y!x

r1(y) � lim inf
y!x

s(y)=s(x) = 1 = r1(x);

i.e., r1 is l.s.c. at x.
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Suppose next that T is an admissible kernel on X such that T (x; fxg) = 0 for every

x 2 X. Moreover, assume that there exists s 2 C+(X) such that, for every U 2 U ,

HUs+KT

U
s < s on U .

Let � be a metric for X and de�ne kernels Tn; T
0

n
on X by

Tn(x; �) = 1B(x;1=n)c T (x; �); T 0
n
(x; �) = 1B(x;1=n) T (x; �) (n 2 N; x 2 X)

(where of course B(x; 1=n) = fy 2 X : �(x; y) < 1=ng). Then, for every n 2 N, the set

UTn = fU 2 U : 1UTn1U = 0g is a base of X and we have kernels

KTn

U
= KUTn; HTn

U
= HU +KTn

U
(U 2 U

Tn):

Since obviously, for every V 2 UTn ,

HTn

V
s = HV s +KTn

V
s � HV s+KT

V
s < s on V;

the function s is strongly WTn-superharmonic and we conclude by Theorem 3.2 that

(HTn

U
)U2UTn is a family of harmonic kernels and that (X;WTn) is a balayage space. In

particular, for every n 2 N and for every U 2 U , we have a harmonic kernel HTn

U
solving

the Dirichlet problem with respect to (X;WTn) (see [BH86, Chapter VII]).

Clearly, UTn+1 � UTn and HTn

U
� H

Tn+1

U
for every U 2 UTn+1 . We claim that in fact

HTn

U
� H

Tn+1

U
for every U 2 U :(9.1)

Indeed, �x U 2 U , ' 2 K+(X), and de�ne

t := H
Tn+1

U
':

Then, for every V 2 UTn+1 with V � U ,

HTn

V
t � H

Tn+1

V
t = t;

hence t is superharmonic on U with respect to (X;WTn). Moreover, t 2 K+(X) and t = '

on U c. Therefore

HTn

U
' � t

proving (9.1). In particular, the sequence (WTn) is decreasing and de�ning

HT

U
:= sup

n

HTn

U

we have

W
T := fv j v : X ! [0;1] l.s.c.,HT

U
v � v for every U 2 Ug =

\
n2N

W
Tn :

We now obtain the following extension of Theorem 3.2 (see also Remark 9.4):

Theorem 9.2. Let T be an admissible kernel such that T (x; fxg) = 0 for every x 2 X.

Suppose that there exists s 2 C+(X) such that, for every U 2 U , KT

U
s is continuous on U

and HUs+KT

U
s < s on U . Then the following holds:

1. (X;WT ) is a balayage space and s is strongly WT -superharmonic.

2. For every U 2 U and for every ' 2 K+(X), the Dirichlet solution HT

U
' is the unique

function h 2 K+(X) such that h�KT

U
h = HU'.
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3. If v is any positive numerical function on X, then v 2 WT if and only if there exists

a function w 2 W such that

v = KT

X
v + w:

Proof. 1. Fix U 2 U . By Proposition 9.1 it su�ces to show that HT

U
s is continuous on X

and HT

U
s < s on U . Let us note �rst that obviously s 2 W\C(X) and hence HUs 2 C(X)

and s�HUs 2 C0(X). Given n 2 N, we have s 2 WTn . So

hn := HTn

U
s � s:

and, by Proposition 3.7,

hn = HUs+KTn

U
hn:

Letting n tend to in�nity we obtain that

h := HT

U
s = lim

n!1

hn = HUs+KT

U
h � s

and hence

h � HUs+KT

U
s < s on U:

Moreover, KT

U
h 2 C(U), since 0 � h � s and KT

U
s is continuous on U by assumption.

Since 0 � KT

U
h � KT

U
s � s � HUs, we know that KT

U
h tends to zero at the boundary

of U . Thus KT

U
h 2 C0(U) and h = HUs+KT

U
h 2 C(X).

2. Fix ' 2 K+(X). Since by Proposition 3.7

HTn

U
'�KTn

U
HTn

U
' = HU';

we immediately obtain that

HT

U
'�KT

U
HT

U
' = HU':(9.2)

Conversely, let h be any function in K+(X) such that

h�KT

U
h = HU':(9.3)

Let C be the support of h. By (3.2), KT

U
1C 2 C0(U). Given x 2 U , the functions

KT

V
1C = KT

U
1C �HVK

T

U
1C ; x 2 V; V � U

are uniformly decreasing to zero as V decreases to fxg. So we may choose Vx 2 U such

that x 2 Vx; V x � U and KT

V
1C �  for some real  < 1. Fix V 2 U such that x 2 V � Vx

and de�ne a positive operator N on Bb(X) by Nf := KT

V
(1Cf). Then the operator I�N

is invertible.

Applying HV on both sides of (9.3) we obtain that

HV h�HVK
T

U
h = HVHU' = HU' = h�KT

U
h;

and therefore

HV h = h�KT

U
h+HVK

T

U
h = h�KT

V
h = (I �N)h:

On the other hand,

HV h = HT

V
h�KT

V
HT

V
h = (I �N)HT

V
h
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(using (9.2) for h instead of ' and V instead of U). Since I�N is invertible, we conclude

that

h = HT

V
h:

By [BH86, Proposition III.4.4], this shows that h is harmonic on U with respect to

(X;WT ). Thus h = HT

U
'.

3. Suppose that w 2 W such that v = KT

X
v + w. Then, for every n 2 N,

v = KTn

X
v +K

T 0n
X
v + w

where K
T 0n
X
v + w 2 W. Thus Proposition 3.9 implies that

v 2

1\
n=1

W
Tn =W

T :

Assume conversely that v 2 WT . Then, for every n 2 N, there exists a function wn 2 W
Tn

such that

KTn

X
v + wn = v:

De�ning w 2 W by

w(x) = f-liminf
y!x

inf
n

wn(y)

we �nally get that KT

X
v + w = v.

We now obtain the results of Theorem 7.1 and Proposition 7.3 not assuming any more

that UT is a base of X.

Theorem 9.3. Let T be an admissible transition kernel and let k be a Kato function

(with respect to KX). Suppose that there exist s 2 W and u 2 B+(X) such that

v := s+KXu 2 C(X); T v � u+ kv;

and, for every U 2 U , fHUs < sg [ fKU(u+ kv � Tv) > 0g = U .

Then, for every U 2 U and for every ' 2 K+(X), there exists a unique function

h = ~HT

U
' 2 K+(X), such that

h +KU(kh� Th) = HU':

Moreover, ( ~HT

U
)U2U is a family of harmonic kernels on X for which v is strongly super-

harmonic.

Remark 9.4. Note that taking k = 0 we obtain the statements of Theorem 9.2 without

the assumption that T (x; fxg) = 0 for x 2 X.

Proof of Theorem 9.3. Replacing T by the kernel x 7! T (x; �) � T (x; fxg)"x, k by the

function x 7! k(x)� T (x; fxg) we may assume that T (x; fxg) = 0 for every x 2 X.

We now proceed as in the proof of Theorem 7.1: By Theorem 6.4, every U 2 U is k-

bounded and de�ning ~HU , U 2 U , by (6.1) and fW by (6.2) we obtain a family ( ~HU)U2U of

harmonic kernels and a balayage space (X;fW) such that v is strongly fW-superharmonic.

Moreover, by Proposition 6.5, there exists a potential kernel ~KX such that, for every

U 2 U ,

~KU := ~KX �
~HU

~KX = (I +KUMk)
�1KU :(9.4)
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We claim that, for every U 2 U ,

~HUv + ~KT

U
v < v on U:

Indeed, de�ning f := v � ~HUv � ~KT

U
v we obtain that

(I +KUMk)f = v +KU(kv)�HUv �KU(Tv) = s�HUs+KU(u+ kv � Tv)

is a strictly positive superharmonic function on U and hence f > 0 on U . Clearly,

KXu 2 C(X) and hence KUu 2 C0(U). Since jkvj � sup v(U) jkj on U , we know that

KU jkvj 2 C0(U). Therefore the inequality 0 � Tv � u + kv implies that KT

U
v 2 C0(U)

and hence ~KT

U
v 2 C0(U).

Replacing (HU)U2U by ( ~HU)U2U and (KU)U2U by ( ~KU)U2U we get a balayage space

(X;fWT ) such that v is strongly fWT -superharmonic.

Moreover, for every ' 2 K+(X), the function

~HT

U
' = lim

n!1

~HTn

U
'

is the unique function h 2 K+(X) such that

h� ~KT

U
h = ~HU':

By (6.1) and (9.4), the last equation is equivalent to

h +KU(kh� Th) = HU';

and the proof is �nished.

10 Appendix

In this section we shall �rst characterize parabolic balayage spaces and then construct a

potential kernel corresponding to a compatible family of potential kernels (KU)U2U (see

Remark 2.2,5).

We shall need the following result on compactness of operators K
q

X
which is of indepen-

dent interest:

Lemma 10.1. Suppose that there exists a strictly positive bounded function in W and

let p 2 P(X) such that p is harmonic outside a compact set C. Then K
p

X
is a compact

operator on Bb(X).

Proof(cf. also [Han81, p. 504]). Let K := K
p

X
and let us �x w 2 W such that 0 < w � 1.

There exists � > 0 such that p � �w on C and hence p � aw on X. So p is bounded.

We intend to show �rst that the subset fKf : f 2 B(X); 0 � f � 1g of Pb(X) is

equicontinuous. Fix x 2 X, " > 0, and let L be a compact neighborhood of x. By Dini's

theorem, there exists an open neighborhood U of x in L such that K1Unfxg < " on L. For

every f 2 B(X) such that 0 � f � 1,

Kf = f(x)K1fxg +K(1Unfxgf) +K(1Ucf)

where K1fxg is continuous (it vanishes if fxg is semi-polar), 0 � K(1Unfxgf) < " on C,

and the functions K(1Ucf) are equicontinuous, since they are harmonic on U and bounded
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by p. So there exists a neighborhood V of x in U such that, for every f 2 B(X) with

0 � f � 1,

jKf �Kf(x)j < 3" on V:

Fix a sequence (fn) in B(X) such that 0 � fn � 1 for every n 2 N. By our preceding

considerations, there exist a subsequence (gn) of (fn) such that the sequence (Kgn) is

locally convergent on X. Fix � > 0. There exists a natural n0 such that, for all n;m � n0,

jKgn �Kgmj < �w on C:

Fix n;m � n0. Having Kgn � �s + Kgm on C and knowing that Kgn is harmonic

outside C, we conclude that Kgn � �s +Kgm on X. Similarly, Kgm � �s +Kgn on X.

Thus

jKgn �Kgmj � �s � � on X:

Theorem 10.2. Suppose that there exists a strictly positive bounded function in W and

let p 2 P(X) be strongly superharmonic. Then the following statements are equivalent:

1. (X;W) is parabolic, i.e., for every non-empty compact subset C of X, there exists

x 2 C such that lim infy!xR1C (y) = 0.

2. For every q 2 P(X) and for every non-empty compact subset C of X, there exists

x 2 C such that K
q

X
1C(x) = 0.

20. For every non-empty compact subset C of X, there exists x 2 C such that

K
p

X
1C(x) = 0.

3. For every q 2 Pb(X) such that K
q

X
is a compact operator on Bb(X), the operator

I �K
q

X
is invertible.

30. For every compact subset C of X and for every � > 0, the operator I � �K
p

X
M1C

on Bb(X) is invertible.

Proof. (1) =) (2): Fix q 2 P(X) and a non-empty compact C subset of X. There exists

� > 0 such that �q � 1 on C and hence �K
q

X
1C � R1C . By (1), there exists x 2 C such

that lim infy!xR1C (y) = 0 and therefore

�K
q

X
1C(x) = lim

y!x

�K
q

X
1C(y) � lim inf

y!x

R1C (y) = 0

whence K
q

X
1C(x) = 0.

(2) =) (20): Trivial.

(20) =) (1): Suppose that there is a non-empty compact C subset of X such that

lim infy!xR1C (y) > 0 for every x 2 C. Then there exists a compact neighborhood C 0

of C such that R1C0
> 0 on C 0. De�ne q0 := K

p

X
1C0. Since p is strongly superharmonic,

we know that q0 > 0 on the interior of C 0 whence �q0 � 1 on C for some � > 0. This

implies that �q0 � R1C . In particular, q0 > 0 on C 0.

(2) =) (3): Fix q 2 Pb(X) such that K
q

X
is a compact operator on Bb(X). Assume

that, for some � > 0, the operator I � �K
q

X
is not invertible and let K = �K

q

X
. Then

there exists a function f 2 Bb(X) n f0g such that f = Kf , and we may assume without
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loss of generality that jf j � 1 and ff > 0g 6= ;. Since the kernel K is a compact operator

on Bb(X), there exists a real " > 0 and a compact subset C of ff � "g such that

K1f0<f<"g < 1=2 and K1ff�"gnC < "=2:

By (2), there exists x 2 C such that K1C(x) = 0 and therefore

" � f(x) = Kf(x) � K(f1ff>0g(x) � "K1f0<f<"g(x) +K1ff�"gnC(x) < ":

This contradiction shows that I �K is invertible.

(3) =) (30): Trivial, since, for every compact subset C ofX, K
p

X
M1C is the operatorK

q

X

for q := K
p

X
1C 2 Pb(X) (see Remark 2.2,2) and K

q

X
is compact by Lemma 10.1.

(30) =) (20): Suppose that there exists a non-empty compact subset C of X such that

K
p

X
1C > 0 on C. Then there exists a real  > 0 such that K

p

X
1C � 1 on C. De�ning

q := K
p

X
1C we already noted before that K

q

X
= K

p

X
M1C . In particular, K

q

X
1 = q � 1

on C and K
q

X
1Cc = 0. Therefore (K

q

X
)n1 � 1 on C whence

P
1

n=0(K
q

X
)n1 = 1 on C.

Thus the following lemma implies that (3) does not hold.

Lemma 10.3. Let K be a bounded kernel on X and  > 0 such that I��K is invertible

for every 0 < � � . Then (I � K)�1 =
P

1

n=0(K)n.

Proof. Let

� := supf� 2 [0; ] : (I � �K)�1f � 0 for every f 2 B+
b
(X)g:

By continuity, (I � �K)�1f � 0 for every f 2 B+
b
(X). So

(I � �K)�1 =

1X
n=0

(�K)n

by [HH88, Lemma 1.3]. If � < , then by continuity again, there exists � < � 0 �  such

that

(I � � 0K)�1 =

1X
n=0

(� 0K)n

and therfore (I �� 0K)�1f � 0 for every f 2 B+
b
(X). This contradicts the de�nition of �.

Thus � =  and the proof is �nished.

Now assume that, for every U 2 U , we have a potential kernel KU on U such that

KU = KV + HVKU whenever U; V 2 U with V � U (such a family (KU)U2U is called

compatible). To construct a corresponding potential kernel KX we shall need the following

lifting property :

Theorem 10.4. Let U be an open subset of X and q a continuous real potential on U

which is harmonic outside a compact subset C of U . Then there exists a unique p 2 P(X)

such that p is harmonic outside C and p� q is harmonic on U .

For harmonic spaces the proof is already fairly technical (see [Her62, Theorem 13.2]),

for balayage spaces it is even more delicate:
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Proof of Theorem 10.4 (cf. [Alb95]). The uniqueness of p is easily established. Indeed, if

p and p0 have the desired properties, then p�p0 is harmonic on U and harmonic outside C.

Therefore p� p0 is harmonic on X. Since p� p0 is of course P(X)-bounded, we conclude

that p = p0.

To prove the existence let us de�ne

F := fp 2 P : p� q 2 S+(U)g:

We intend to show that there is a smallest element in F and that this function inf F has

the desired properties.

1. First we claim that the set F is non-empty: We choose an open set V and a compact

set L such that C � V � L � U . By a general approximation property (see [BH86, I.1.2])

there exist q1; q2 2 P(X) such that

q2 � q1 � q on V; q1 = q2 on Lc:

Then

p0 := inf(q + q1; q2) 2 S
+(U):

Moreover, p0 2 S+(Lc). Thus p0 2 W. Since p0 2 C(X) and p0 � q2 we obtain that in

fact p0 2 P(X).

Obviously p0 � q on V and therefore on U , since q is harmonic outside the subset C

of U . In addition, p0 � q = q1 on V and p0 � q � q1 whence p0 � q 2 S+(V ). Further,

obviously p0 � q 2 S+(U n C) and p0 � q � q1. So p0 � q 2 S+(U), p0 2 F .

2. Obviously F is stable with respect to �nite in�ma, since both P(X) and S+(U) are.

3. Next we show that inf F is harmonic outside C: Let us �x an open neighborhood

W of C in U . Clearly it su�ces to show that inf F is harmonic outside the closure of

W . For the present �x p 2 F . Then K
p

X
1W � q = (p � q) � K

p

X
1W c 2 S(W ) and

K
p

X
1W � q 2 S(U n C), hence K

p

X
1W � q 2 S(U). Since q 2 P(U), we obtain that

K
p

X
1W � q � 0. Therefore K

p

X
1W 2 F , i.e.

inf F = inffK
p

X
1W : p 2 Fg:

Since F is stable with respect to �nite in�ma, the set of all K
p

X
1W , p 2 F , is decreasingly

�ltered and therefore contains a decreasing sequence (pn) converging to inf F . Since all

functions K
p

X
1W , p 2 F , are harmonic outside W , we conclude in particular that inf F is

harmonic outside W as well.

4. Moreover, inf F � q is harmonic on U : Fix p 2 F , a compact neighborhood L of C

in U and an open neighborhood W of C such that W is contained in the interior of L.

Choose ' 2 C(X) such that 0 � ' � 1, ' = 1 on Lc, and ' = 0 on W . De�ne

p0 := inf(R'p + q; p):

Then p0 = p on Lc, so p0 is continuous on Lc. Further, the continuity of the functions R'p,

q, and p on U implies that p0 is continuous on U . Therefore p0 is continuous on X.

Clearly, p0 2 S+(U). Moreover, p0 2 S+(Lc), since p0 = p on Lc and p0 � p. Therefore

p0 2 W and even p0 2 P(X), since p0 is continuous and p0 � p. Since p� q 2 S+(U), we

obtain that p0 � q = inf(R'p; p� q) 2 S+(U). Thus p0 2 F .

Further, R'p � R1Wcp = HWp whence p
0 � q � HWp: So, for every n 2 N and for every

V 2 U with V � W , we obtain that

pn � q � HV (pn � q) � HW (pn � q) = HWpn �HW q � p0
n
� q �HW q:

30



Since obviously inf F = inf pn = inf p0
n
, we conclude that

inf F � q � HV (inf F � q) � inf F � q �HW q:

Since limW"U HW q = 0, this implies that

inf F � q = HV (inf F � q)

for all V 2 U with V � U . Thus inf F � q is harmonic on U .

Knowing that inf F�q is harmonic on U and inf F is harmonic on Cc we see immediately

that inf F is continuous on X. Thus inf F 2 P(X), and the proof is �nished.

Proposition 10.5. Let (KU)U2U be a compatible family of potential kernels. Then there

exists a unique potential kernel KX on X such that KU = KX �HUKX for every U 2 U .

Proof. Indeed, if f 2 B+
b
(X) with compact support in some U 2 U , then KXf has to be

the lifting of KUf . So we have uniqueness of KX .

To prove its existence we may choose a locally �nite covering of X by a sequence (Un)

in U and continuous functions 'n � 0 on X with compact support in Un, n 2 N, such

that
P

1

n=1 'n = 1. For every n 2 N, let pn be the lifting of KUn'n on X so that

K
pn

X
�HUnK

pn

X
= KUnM'n :(10.1)

De�ne

KX :=

1X
n=1

K
pn

X
:

Clearly, KX is a potential kernel on X. Fix U 2 U , n 2 N, and f 2 B+
b
(X) with compact

support in U . Then 'nf has compact support in Un\U and our compatibility assumption

implies that KU('nf) is the lifting of KUn\U('nf) on U and KUn('nf) is the lifting of

KUn\U('nf) on Un. By (10.1), K
pn

X
f is the lifting of KUn('nf) on X. Therefore

K
pn

X
f �HUK

pn

X
f = KU('nf):

Taking the sum over all n 2 N we �nally conclude that KX �HUKX = KU .
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