Convolution Calculus and Applications to Stochastic Differential Equations

Mohamed Ben Chrouda, Mohamed El Oued and Habib Ouerdiane

> Department of Mathematics Faculty of sciences of Tunis-Campus 1060. Tunis. Tunisia.

Abstract

The present work is mostly based on a functional analytic point of view. In this paper we develop a convolution calculus over a family of spaces of generalized functions. We use this calculus to discuss new solutions of some stochastic differential equations.

1 Introduction

Let X be a real nuclear Frechet space. Assume that its topology is defined by an increasing family of Hilbertian norms $\{|.|_p, p \in \mathbb{N}\}$. Then X is represented as

$$X = \bigcap_{p \in \mathbb{I} \mathbb{N}} X_p,$$

where for $p \in \mathbb{N}$ the space X_p is the completion of X with respect to the norm $|.|_p$. Denote by X_{-p} the dual space of X_p , then the dual space X' of X is represented as

$$X' = \bigcup_{p \in \mathbb{N}} X_{-p},$$

and it is equipped with the inductive limit topology. Let N (resp. N_p) be the complexification of X (resp. X_p), *i.e.* N = X + iX and $N_p = X_p + iX_p$, $p \in \mathbb{Z}$. For any $n \in \mathbb{N}$ we denote by $N^{\hat{\otimes}n}$ the n-th symetric tensor product of N equipped with the π -topology and by $N_p^{\hat{\otimes}n}$ the symetric Hilbertian tensor product of N_p . We will preserve the notation $|.|_p$ and $|.|_{-p}$ for the norms on $N_p^{\hat{\otimes}n}$ and $N_{-p}^{\hat{\otimes}n}$ respectively. Let θ be a Young function on \mathbb{R}_+ , *i.e.* θ is continuous, convex, increasing function and satisfies $\lim_{n \to \infty} \frac{\theta(x)}{x} = +\infty$, see [9]. We define the conjugate function θ^* of θ by

$$\forall x \ge 0 , \quad \theta^*(x) := \sup_{t \ge 0} (tx - \theta(t)). \tag{1}$$

For a such Young function θ we denote by $\mathcal{G}_{\theta}(N)$ the space of holomorphic functions on N with exponential growth of order θ and of arbitrary type, and by $\mathcal{F}_{\theta}(N')$ the space of holomorphic functions on N' with exponential growth of order θ and of minimal type. For every $p \in \mathbb{Z}$ and m > 0, we denote by $Exp(N_p, \theta, m)$ the space of entire functions f on the complex Hilbert space N_p such that $||f||_{\theta,p,m} := \sup_{x \in N_p} |f(x)| e^{-\theta(m|x|_p)} < +\infty$. Then the spaces $\mathcal{F}_{\theta}(N')$ and $\mathcal{G}_{\theta}(N)$ are represented as

$$\mathcal{F}_{\theta}(N') = \bigcap_{\substack{p \in N \\ m > 0}} Exp(N_{-p}, \theta, m)$$
$$\mathcal{G}_{\theta}(N) = \bigcup_{\substack{p \in N \\ m > 0}} Exp(N_{p}, \theta, m),$$

and equipped with the projective limit topology and the inductive limit topology respectively. The spaces $\mathcal{F}_{\theta}(N')$ and its dual $\mathcal{F}'_{\theta}(N')$ equipped with the strong topology are called the test functions space and the distributions space respectively.

Let $p \in \mathbb{N}$ and m > 0, we define the Hilbert spaces

$$F_{\theta,m}(N_p) = \{ \vec{f} = (f_n)_{n=0}^{\infty}, f_n \in N_p^{\hat{\otimes}n}; \sum_{n \ge 0} \theta_n^{-2} m^{-n} |f_n|_p^2 < +\infty \}$$
$$G_{\theta,m}(N_{-p}) = \{ \vec{\phi} = (\phi_n)_{n=0}^{\infty}, \phi_n \in N_{-p}^{\hat{\otimes}n}; \sum_{n \ge 0} (n!\theta_n)^2 m^n |\phi_n|_{-p}^2 < +\infty \},$$

where $\theta_n = \inf_{r>0} \frac{e^{\theta(r)}}{r^n}$, $n \in \mathbb{N}$, and put

$$F_{\theta}(N) = \bigcap_{\substack{p \in \mathbb{N} \\ m > 0}} F_{\theta,m}(N_p),$$

$$G_{\theta}(N') = \bigcup_{\substack{p \in \mathbb{N} \\ m > 0}} G_{\theta,m}(N_{-p}).$$

The space $F_{\theta}(N)$ equipped with the projective limit topology is a nuclear Frechet space [3], and $G_{\theta}(N')$ carries the dual topology of $F_{\theta}(N)$ with respect to the **C**-bilinear form $\ll ., . \gg$:

$$\ll \vec{\phi}, \vec{f} \gg = \sum_{n \ge 0} n! \langle \phi_n, f_n \rangle , \ \vec{\phi} = (\phi_n) \in G_\theta(N') , \ \vec{f} = (f_n) \in F_\theta(N).$$

It was proved in [3] that the Taylor series map, denoted by S.T, yields a topological isomorphism between $\mathcal{F}_{\theta}(N')$ (resp. $\mathcal{G}_{\theta^*}(N)$) and $F_{\theta}(N)$ (resp. $G_{\theta}(N')$). Then the action of a distribution $\phi \in \mathcal{F}'_{\theta}(N')$ on a test function $f \in \mathcal{F}_{\theta}(N')$ is given by

$$\ll \phi, f \gg : = \ll \vec{\phi}, \vec{f} \gg,$$

where $\vec{\phi} = [(S.T)^*]^{-1}(\phi)$ and $\vec{f} = (S.T)(f)$. It is easy to see that for every $\xi \in N$, the exponential function $e_{\xi} : z \longmapsto e^{\langle z, \xi \rangle}$, $z \in N'$ belongs to the test space $\mathcal{F}_{\theta}(N')$ for any Young function θ . Then we define the Laplace transform of a distribution $\phi \in \mathcal{F}'_{\theta}(N')$ by

$$\widehat{\phi}(\xi) := \ll \phi, e_{\xi} \gg , \ \xi \in N.$$

In [3], the authors prove the important duality theorem: the Laplace transform realizes a topological isomorphism of $\mathcal{F}'_{\theta}(N')$ on $\mathcal{G}_{\theta^*}(N)$.

In this paper we develop a new convolution calculus over the generalized functionals spaces $\mathcal{F}'_{\theta}(N')$. Unlike the Wick calculus studied by many authors [7][10][12], the convolution calculus is developed independently of the gaussian analysis. In fact, we define the convolution product $\phi_1 * \phi_2$ of two distributions ϕ_1, ϕ_2 in $\mathcal{F}'_{\theta}(N')$ by a naturaly way using convolution operators. Then we give a sens to the expression $f^*(\phi) = \sum_n f_n \phi^{*n}$, for any entire function $f(z) = \sum_{n\geq 0} f_n z^n$, $z \in \mathbf{C}$ with exponential growth, and for any distribution $\phi \in \mathcal{F}'_{\theta}(N')$. In paticular, the important convolution exponential functional $exp^*\phi = \sum_{n\geq 0} \frac{\phi^{*n}}{n!}$, which cannot be in general an element of the usual white noise distributions spaces introduced in [8], is well defined in the $\mathcal{F}'_{\theta}(N')$ -spaces. This permits to solve some stochastic differential equations in the distributions spaces of type $\mathcal{F}'_{\theta}(N')$. Moreover, this solutions as elements of the $\mathcal{F}'_{\theta}(N')$ -spaces have more regularity and properties than those of the bigger distributions space $(N)^{-1}$ of Kondratiev-Streit type, systematically used for example by Oksendal in [13].

2 Convolution of distributions

In infinite dimension complex analysis [2], a convolution operator on the test space $\mathcal{F}_{\theta}(N')$ is a continuous linear operator from $\mathcal{F}_{\theta}(N')$ into itself which commutes with translation operators.

Let $x \in N'$, we define the translation operator τ_{-x} on $\mathcal{F}_{\theta}(N')$ by

$$\tau_{-x}\varphi(y) = \varphi(x+y) , \ y \in N' , \ \varphi \in \mathcal{F}_{\theta}(N').$$

It is easy to see that τ_{-x} is a continuous linear operator from $\mathcal{F}_{\theta}(N')$ into itself. Now, we define the convolution product of a distribution $\phi \in \mathcal{F}'_{\theta}(N')$ with a test function $\varphi \in \mathcal{F}_{\theta}(N')$ as follows

$$\phi * \varphi(x) = \ll \phi, \tau_{-x}\varphi \gg , \ x \in N'.$$

If ϕ is represented by $\vec{\phi} = (\phi_n)_{n>0} \in G_{\theta}(N')$, then

$$\phi * \varphi(x) = \sum_{n \ge 0} \langle x^{\otimes n}, \psi^{(n)} \rangle$$

where for every integer $n \in \mathbb{N}$

$$\psi^{(n)} = \sum_{k \ge 0} k! C_{n+k}^n \langle \phi_k, \varphi^{(n+k)} \rangle$$

A direct calculation shows that the sequence $(\psi^{(n)})_{n\geq 0}$ is an element of $F_{\theta}(N)$ and consequently $\phi * \varphi \in \mathcal{F}_{\theta}(N')$. It was proved in [4] that T is a convolution operator on $\mathcal{F}_{\theta}(N')$ if and only if there exists $\phi \in \mathcal{F}'_{\theta}(N')$ such that

$$T(\varphi) = \phi * \varphi , \quad \forall \varphi \in \mathcal{F}_{\theta}(N').$$
(2)

We denote the convolution operator T by T_{ϕ} . Moreover for every $\varphi \in \mathcal{F}_{\theta}(N')$ we have

$$T_{\phi}(\varphi)(0) = \ll \phi, \varphi \gg .$$

Let $\phi_1, \phi_2 \in \mathcal{F}'_{\theta}(N')$ and T_{ϕ_1}, T_{ϕ_2} be the associated convolution operators respectively. It is clear that the composition $T_{\phi_1} \circ T_{\phi_2}$ is also a convolution operator. Consequently there exists a unique element of $\mathcal{F}'_{\theta}(N')$ denoted by $\phi_1 * \phi_2$ such that

$$T_{\phi_1} \circ T_{\phi_2} = T_{\phi_1 * \phi_2}.$$
 (3)

The distribution $\phi_1 * \phi_2$, defined by (3) is called the convolution product of ϕ_1 and ϕ_2 .

Proposition 1 For every $\varphi \in \mathcal{F}_{\theta}(N)$ we have

$$\ll \phi_1 * \phi_2, \varphi \gg := [(\phi_1 * \phi_2) * \varphi](0)$$
$$= [\phi_1 * (\phi_2 * \varphi)](0).$$

Moreover, $\forall \phi_1, \phi_2 \in \mathcal{F}'_{\theta}(N')$ it holds that

$$\widehat{\phi_1 \ast \phi_2} = \widehat{\phi}_1 \ \widehat{\phi}_2 \ . \tag{4}$$

Proof

Let $\varphi \in \mathcal{F}_{\theta}(N')$, in view of (2) and (3) we obtain

$$[(\phi_1 * \phi_2) * \varphi](x) = [\phi_1 * (\phi_2 * \varphi)](x) , \ \forall \ x \in N'.$$

In particular if we put x = 0 then we get

$$\ll \phi_1 \ast \phi_2, \varphi \gg = [\phi_1 \ast (\phi_2 \ast \varphi)](0),$$

from wich follows (4) by taking $\varphi(x) = e^{\langle x,\xi \rangle}$, $\xi \in N$.

Let \mathcal{L}^{c}_{θ} be the space of convolution operators on $\mathcal{F}_{\theta}(N')$. Taking (3) into consideration, we immediatly obtain

Lemma 1

$$\begin{array}{ccc} (\mathcal{F}'_{\theta}(N'), *) & \longrightarrow (\mathcal{L}^{c}_{\theta}, \circ) \\ \phi & \longmapsto T_{\phi} \end{array}$$

is an isomorphism of algebra.

It follows from (4) that $(\mathcal{F}'_{\theta}(N'), *)$ is a commutative algebra. Hence we deduce from lemma 1 that so is $(\mathcal{L}^{c}_{\theta}, \circ)$.

Theorem 1 Let γ be a Young function on \mathbb{R}_+ with does not necessaerily satisfy $\lim_{x\to+\infty} \frac{\gamma(x)}{x} = +\infty$ and $f \in Exp(\mathbf{C}, \gamma, m)$ for some m > 0. Then for every distribution $\phi \in \mathcal{F}'_{\theta}(N')$, the functional $f^*(\phi)$ defined by

$$\widehat{f^*(\phi)} = f(\widehat{\phi}) \tag{5}$$

belongs to $\mathcal{F}'_{\lambda}(N')$, where $\lambda = (\gamma \circ e^{\theta^*})^*$.

\mathbf{Proof}

By the duality theorem, it is sufficient to prove that $f(\hat{\phi}) \in \mathcal{G}_{\lambda^*}(N)$. In fact let $\phi \in \mathcal{F}'_{\theta}(N')$, then there exist $p \in \mathbb{N}, m' > 0$ and c' > 0 such that

$$|\widehat{\phi}(\xi)| \le c' e^{\theta^*(m'|\xi|_p)} , \ \xi \in N.$$

On the other hand there exists c > 0 such that

$$|f(z)| \le c \ e^{\gamma(m|z|)} \ , \ z \in \mathbf{C}$$

Then combining the last inequality we get

$$\begin{aligned} |f(\widehat{\phi}(\xi))| &\leq c \ e^{\gamma(mc'e^{\theta^*(m'|\xi|_p)})}, \ \xi \in N \\ &\leq \begin{cases} c \ e^{\gamma(e^{\theta^*(m'|\xi|_p)})} & \text{if } mc' \leq 1 \\ c \ e^{\gamma(e^{\theta^*(cmm'|\xi|_p)})} & \text{if } mc' > 1 \end{cases} \end{aligned}$$

This inequality with the holomorphy of $f(\hat{\phi})$ on N show that $f(\hat{\phi}) \in \mathcal{G}_{\lambda^*}(N)$.

If we take $\gamma(x) = x$, $x \in \mathbb{R}_+$ and $f(z) = e^z$, $z \in \mathbb{C}$ in theorem 1, we get the following result

Corollary 1 Let $\phi \in \mathcal{F}'_{\theta}(N')$, then the convolution exponential function of ϕ , denoted by $e^{*\phi}$, is an element of $\mathcal{F}'_{(e^{\theta^*})^*}(N')$. If in addition $\hat{\phi}(\xi)$ is a polynomial in ξ of degree $k \in \mathbb{N}$, $k \geq 2$ then $e^{*\phi} \in \mathcal{F}'_{\lambda}(N')$, where $\lambda(x) = x^{\frac{k}{k-1}}$, $x \geq 0$.

A similar result of corollary 1, in the particular case where $\hat{\phi}$ is a polynomial, was proved in [12] with Wick product.

3 Applications to stochastic differential equations

A one parameter generalized stochastic process with values in $\mathcal{F}'_{\theta}(N')$ is a family of distributions $\{\phi_t, t \in I\} \subset \mathcal{F}'_{\theta}(N')$, where I is an interval, without loss generality we can assume that $0 \in I$. The process ϕ_t is said to be continuous if the map $t \longmapsto \phi_t$ is continuous. In order to introduce generalized stochastic integrals, we need the following result proved in [17].

Proposition 2 [17] Let $(\phi_n)_{n\geq 0}$ be a sequence in $\mathcal{F}'_{\theta}(N')$. Then (ϕ_n) converges in $\mathcal{F}'_{\theta}(N')$ if and only if the following conditions hold :

(D1) There exist $p \ge 0, m > 0$ and $c \ge 0$ such that for every integer n

$$|\hat{\phi}_n(\xi)| \le c \ e^{\theta^*(m|\xi|_p)}, \ \forall \ \xi \in N.$$

(D2) The sequence $\hat{\phi}_n(\xi)$ converges in **C** for each $\xi \in N$.

Let $\{\phi_t\}_{t\in I}$ be a continuous $\mathcal{F}'_{\theta}(N')$ -process and put

$$\phi_n = \frac{t}{n} \sum_{k=0}^{n-1} \phi_{\frac{tk}{n}} \quad n \in \mathbb{N}^* , \ t \in I.$$

It is easy to prove that the sequence $(\hat{\phi}_n)$ is bounded in $\mathcal{G}_{\theta^*}(N')$ and for every $\xi \in N$, $(\hat{\phi}_n(\xi))_n$ converges to $\int_0^t \hat{\phi}_s(\xi) ds$. Thus we conclude by proposition 2 that (ϕ_n) converges in $\mathcal{F}'_{\theta}(N')$. We denote its limit by

$$\int_0^t \phi_s ds := \lim_{n \to +\infty} \phi_n \quad in \ \mathcal{F}'_{\theta}(N').$$

Proposition 3 $E_t = \int_0^t \phi_s ds$, $t \in I$ is a continuous $\mathcal{F}'_{\theta}(N')$ -process which satisfies

$$\int_0^t \widehat{\phi_s} ds = \int_0^t \widehat{\phi_s} ds.$$

Moreover, The process E_t is differentiable in $\mathcal{F}'_{\theta}(N')$ i.e. $\frac{\partial E_t}{\partial t} = \phi_t$, $t \in I$.

Proof

Since the map $s \mapsto \hat{\phi}_s \in \mathcal{G}_{\theta^*}(N)$ is continuous, $\{\hat{\phi}_s , s \in [0, t]\}$ becomes a compact set, in particular it is bounded in $\mathcal{G}_{\theta^*}(N)$ *i.e.* there exist $p \in \mathbb{N}$, m > 0 and $C_t > 0$ such that for every $\xi \in N_p$ we have

$$\widehat{\phi}_s(\xi) \leq C_t \ e^{\theta^*(m|\xi|_p)} , \ \forall \ s \in \ [0,t].$$
(6)

Then inequality (6) show that the function $\xi \mapsto \int_0^t \hat{\phi}_s(\xi) ds$ belongs to $\mathcal{G}_{\theta^*}(N)$. Consequently the pointwise convergence of the sequence of functions $(\hat{\phi}_n)$ to $\int_0^t \hat{\phi}_s ds$ becomes a convergence in $\mathcal{G}_{\theta^*}(N)$ and we get

$$\int_0^t \widehat{\phi_s} ds = \int_0^t \widehat{\phi_s} ds.$$

Let $t_0 \in I$ and let $\varepsilon > 0$ such that $[t_0 - \varepsilon, t_0 + \varepsilon] \subset I$. It then follows from (6) that

$$\begin{aligned} \|\widehat{E}_t - \widehat{E}_{t_0}\|_{\theta^*, p, m} &\leq \int_{t_0}^t \|\widehat{\phi}_s\|_{\theta^*, p, m} ds \\ &\leq |t - t_0| C_{t_0 + \varepsilon}. \end{aligned}$$

This proves the continuity of the map $t \in I \mapsto \hat{E}_t \in \mathcal{G}_{\theta^*}(N)$ which is equivalent to the continuity of the process E_t . By the same argument we prove the differentiability of E_t .

3.1 Stochastic Volterra equation

Let $J: [0,T] \longrightarrow \mathcal{F}'_{\theta}(N'), K: [0,T] \times [0,T] \longrightarrow \mathcal{F}'_{\theta}(N')$ be two continuous generalized processes. We consider the stochastic Volterra equation

$$E(t) = J(t) + \int_0^t K(t,s) * E(s)ds , \quad 0 \le t \le T.$$
(7)

Theorem 2 Suppose that there exist $p \in \mathbb{N}$, m > 0 and M > 0 such that

$$||\widehat{K}(t,s)||_{\theta^*,p,m} \le M , \quad \forall \ 0 \le s \le t \le T,$$

then there exists a unique continuous $\mathcal{F}'_{(e^{\theta^*})^*}(N')$ -process that solves (7). The solution E(t) is given by

$$E(t) = J(t) + \int_0^t H(t,s) * J(s)ds$$
(8)

where $H(t,s) = \sum_{n>1} K_n(t,s)$ with K_n given inductively by

$$K_{n+1}(t,s) = \int_{s}^{t} K_{n}(t,u) * K(u,s) du, \ n \ge 1$$

and $K_1(t, s) = K(t, s)$.

Proof

The solution is given by Picard iteration. In fact, put $E_0(t) = J(t)$ and consider

$$E_{n+1}(t) = J(t) + \int_0^t K(t,s) * E_n(s) ds, \quad n \ge 0$$
(9)

By iteration we get

$$E_n(t) = J(t) + \int_0^t H_n(t,s) * J(s)ds, \ n \ge 1$$

where $H_n(t,s) = \sum_{l=1}^n K_l(t,s)$. Now, we use proposition 2 to prove that for every $t, s \in [0,T]$ the sequence $H_n(t,s)$ converges in $\mathcal{F}'_{(e^{\theta^*})^*}(N')$. By assumption we have

$$|\widehat{K}(t,s)(\xi)| \le M e^{\theta^*(m|\xi|_p)} , \ \xi \in N_p.$$

Thus by induction we get

$$|\widehat{K}_{l}(t,s)(\xi)| \leq M^{l} \frac{(t-s)^{l-1}}{(l-1)!} (e^{\theta^{*}(m|\xi|_{p})})^{l}.$$
(10)

Then, summing up both sides of (10) we come to

$$\begin{aligned} |\widehat{H}_{n}(t,s)(\xi)| &\leq \sum_{l=1}^{n} M^{l} \frac{(t-s)^{l-1}}{(l-1)!} (e^{\theta^{*}(m|\xi|_{p})})^{l} \\ &\leq M e^{\theta^{*}(m|\xi|_{p})} exp[M(t-s)e^{\theta^{*}(m|\xi|_{p})}] \\ &\leq M e^{\theta^{*}(m|\xi|_{p})} exp[\frac{M^{2}(t-s)^{2}}{2} + e^{2\theta^{*}(m|\xi|_{p})}] \\ &\leq M e^{M^{2}(t-s)^{2}} exp(e^{\theta^{*}(3m|\xi|_{p})}). \end{aligned}$$

Hence we get the first condition (D1) of proposition 2. For the second condition (D2) we just note that for every $0 \leq s \leq t \leq T$ and $\xi \in N$, $(\widehat{H}_n(t,s)(\xi))_{n\geq 0}$ is a Cauchy sequence in **C**. We have thus proved that the infinite series $H(t,s) = \sum_{l\geq 1} K_l(t,s)$ converges in $\mathcal{F}'_{(e^{\theta^*})^*}(N')$. Consequently, the sequence $(E_n(t))_{n\geq 0}$ converges also in $\mathcal{F}_{(e^{\theta^*})^*}(N')$ to $E(t) = J(t) + \int_0^t H(t,s) * J(s) ds$. By equation (9), E(t) is a solution of the stochastic Volterra equation. Finally, we use the Granwall inequality to prove the uniqueness.

3.2 Differential equations associated with convolution operators

Let θ_1 and θ_2 be two fixed Young functions, and let $\{\phi_t\}_{t\in I}$ be a continuous $\mathcal{F}'_{\theta_1}(N')$ -process. Consider the Cauchy problem

$$\begin{cases} \frac{\partial U}{\partial t} = \phi_t * U, \quad t \in I \\ U(0) = f \in \mathcal{F}_{\theta_2}(N'). \end{cases}$$
(11)

Theorem 3 If there exists constant C > 0 such that $e^{\theta_1^*(r)} \leq C \theta_2^*(r)$ for r large enough, then the Cauchy problem (11) has a unique solution given by

$$U(t,x) = (e^{*\int_0^t \phi_s ds} * f)(x) , \ x \in N' , \ t \in I.$$
(12)

Moreover, $U(t) \in \mathcal{F}_{\theta_2}(N') \ \forall t \in I$. If in addition $\widehat{\phi}_t(\xi)$ is a polynomial in ξ of degree $k \geq 2$, $\forall t \in I$, then U(t) given by (12) is also the unique solution of equation (11) with values in $\mathcal{F}_{\theta_2}(N')$ whenever $\lim_{r \to +\infty} \frac{r^k}{\theta_2^*(r)}$.

Proof

The solution U(t) is obtained by Picard iteration as in the proof of theorem 2.

As an application of theorem 3 we give the heat equation associated with Gross Laplacian. In fact,

let $\varphi(x) = \sum_{n \ge 0} \langle x^{\otimes n}, \varphi^{(n)} \rangle \in \mathcal{F}_{\theta}(N)$. The Gross Laplacian [5], [10] of φ at $x \in N'$ is given by

$$\Delta_G \varphi(x) = \sum_{n \ge 0} (n+2)(n+1) \langle x^{\otimes n}, \langle \tau, \varphi^{(n+2)} \rangle \rangle$$

where τ is the trace operator defined by

$$\langle \tau, \xi \otimes \eta \rangle = \langle \xi, \eta \rangle, \ \xi, \eta \in N.$$

Let γ be the standard gaussian measure on X' defined by its characteristic function $\int_{X'} e^{i\langle y,\xi\rangle} d\gamma(y) = e^{-\frac{|\xi|^2}{2}}$, see [6],[7],[11] [14].

Corollary 2 Let θ be a Young function satisfying $\lim_{r\to+\infty} \frac{\theta(r)}{r^2} < +\infty$ and $f \in \mathcal{F}_{\theta}(N')$. Then the heat equation associated with the Gross Laplacian

$$\frac{\partial U}{\partial t} = \frac{1}{2} \Delta_G U , \quad t \ge 0 , \quad U(0) = f, \tag{13}$$

has a unique solution in $\mathcal{F}_{\theta}(N')$ given by

$$U(t,x) = \int_{X'} f(x + \sqrt{ty}) d\gamma(y) \; .$$

Proof

In fact, the Gross Laplacian Δ_G is a convolution operator. The distribution associated to Δ_G is $\vec{\phi}_{\tau} = (0, 0, \tau, 0, \cdots)$, then it follows from equality (2) that

$$\Delta_G(\varphi) = \phi_\tau * \varphi , \ \forall \ \varphi \in \mathcal{F}_\theta(N').$$

Thus the heat equation (13) is equivalent to

$$\frac{\partial U}{\partial t} = \phi_{\frac{\tau}{2}} * U , \quad t \ge 0 , \quad U(0) = f.$$

Since $\hat{\phi}_{\frac{\tau}{2}}(\xi) = \frac{\langle \xi, \xi \rangle}{2}$, $\xi \in N$ is a polynomial of degree 2, then it follows from theorem 3 that the equation (13) has a unique solution in $\mathcal{F}_{\theta}(N')$ given by

$$U(t,x) = (e^{*t\phi_{\frac{\tau}{2}}} * f)(x) , \ t \ge 0.$$

On the other hand, since $e^{\widehat{t\phi_{\frac{\tau}{2}}}}(\xi) = e^{\frac{t(\xi,\xi)}{2}} = \widehat{\gamma}_{\sqrt{t}}(\xi)$, $\xi \in N$, $t \ge 0$ where $\gamma_{\sqrt{t}}$ is a gaussian measure on X' [10], then the solution U(t) can be expressed as

$$U(t,x) = (\gamma_{\sqrt{t}} * f)(x) = \int_{X'} f(x + \sqrt{t}y) d\gamma(y) , \ t \ge 0 , \ x \in N'.$$

Let $\{\phi_t\}$ and $\{M_t\}$ be two continuous $\mathcal{F}'_{\theta}(N')$ -processes. Consider the initial value problem

$$\frac{dX_t}{dt} = \phi_t * X_t + M_t , \quad X(0) = X_0 \in \mathcal{F}'_{\theta}(N').$$
(14)

Then using the Laplace transform we prove the following theorem

Theorem 4 The stochastic differential equation (14) has a unique solution in $\mathcal{F}'_{(e^{\theta^*})^*}(N')$, given by

$$X_{t} = X_{0} * e^{*\int_{0}^{t} \phi_{s} ds} + \int_{0}^{t} e^{*\int_{s}^{t} \phi_{u} du} * M_{s} ds$$

The next example is an application of theorem 4 :

In fact, let $\phi(t)$, $t \geq 0$ and F(x), $x \in \mathbb{R}^d$ be two continuous $\mathcal{F}'_{\theta}(N')$ -processes. Suppose that there exist $p \in \mathbb{N}$, m > 0 and a positive function

 $\beta \in L^1(\mathbb{R}, d\lambda)$ such that $|\hat{F}(x, \xi)| \leq \beta(x) e^{\theta^*(m|\xi|_p)}$. Then the heat equation with stochastic potential

$$\begin{cases} \frac{\partial U(t,x,\omega)}{\partial t} = & \frac{\sigma^2}{2} \Delta_x u(t,x,\omega) + \phi(t,\omega) * U(t,x,\omega), \ t > 0, x \in I\!\!R^d \\ u(0,x,\omega) = & F(x,\omega), \ x \in I\!\!R^d \end{cases}$$

has a unique solution given by

$$U(t,x) = exp^* \left(\int_0^t \phi(s)ds\right) * \int_{\mathbb{R}^d} F(y) \frac{e^{-\frac{|x-y|^2}{2\sigma^2 t}}}{\sqrt{2\pi t\sigma}} dy.$$

Moreover, U(t,x) is a continuous $\mathcal{F}'_{(e^{\theta^*})^*}(N')$ -process. In particular if $\phi(t) = W(t)$ the white noise, then U(t,x) becomes a continuous $\mathcal{F}'_{\theta}(N')$ -process. See [15] in the case $\theta(x) = x^k$.

Now, we give an example of non-linear stochastic differential equation: Let $\{\phi_t\}$ be a continuous $\mathcal{F}'_{\theta}(N')$ -process and consider the Verhulst equation

$$\begin{cases} \frac{\partial X_t}{\partial t} &= X_t * (X_t - 1) * \phi_t , \quad t \ge 0\\ X(0) &= x_0 \in]0, 1[\end{cases}$$

$$(15)$$

In an obvious manner we show that

$$\widehat{X}_{t} = \frac{1}{1 + (\frac{1}{x_{0}} - 1)e^{\int_{0}^{t} \widehat{\phi}_{s} ds}}, \quad t \ge 0$$
(16)

Lemma 2 [4] Let $f \in \mathcal{G}_{\varphi}(N)$ such that $f(z) \neq 0, \forall z \in N$, then $\frac{1}{f} \in \mathcal{G}_{\varphi}(N)$.

Since the function $\xi \mapsto exp(\int_0^t \hat{\phi}_s(\xi) ds)$ is an element of $\mathcal{G}_{e^{\theta^*}}(N)$, the above lemma shows that $\widehat{X}_t \in \mathcal{G}_{e^{\theta^*}}(N)$. Then using the duality theorem, X_t given by (16) is the unique continuous $\mathcal{F}'_{(e^{\theta^*})^*}(N')$ -process that solves equation (15). In particular if $\widehat{\phi}_t(\xi)$ is a polynomial in ξ of degree $k \geq 2$ then the solution X_t becomes a continuous $\mathcal{F}'_{x^{\frac{k}{k-1}}}(N')$ -process.

Remark

If the Young function θ satisfies $\lim_{x \to +\infty} \frac{\theta(x)}{x^2} < +\infty$, we get [3]

$$\mathcal{F}_{\theta}(N') \hookrightarrow L^2(X',\gamma) \hookrightarrow \mathcal{F}'_{\theta}(N'),$$
 (17)

where γ is the standard gaussian measure on X'. In this case the test space $\mathcal{F}_{\theta}(N')$ coincides with the space $(X)_{\theta}$ introduced in [1]. In addition, the function $\xi \longmapsto e^{\frac{\langle \xi, \xi \rangle}{2}}, \ \xi \in N$ becomes an element of $\mathcal{G}_{\theta^*}(N)$ and the usual S-transform, denoted by S, is obtained by

$$S(\phi)(\xi) = \hat{\phi}(\xi)e^{-\frac{\langle \xi, \xi \rangle}{2}}, \ \xi \in N, \phi \in \mathcal{F}'_{\theta}(N').$$
(18)

Unlike to the Laplace transform, we see here that the chaotic transform S can not be defined on all spaces of generalized functions $\mathcal{F}'_{\theta}(N')$, it is defined only on the space $\mathcal{F}'_{\theta}(N')$ with $\lim_{x\to+\infty} \frac{\theta(x)}{x^2} < +\infty$. Recall that in the gaussian analysis, the Wick product of two generalized functions ϕ and ψ in $\mathcal{F}'_{\theta}(N')$, denoted by $\phi \diamond \psi$, is the unique distribution in $\mathcal{F}'_{\theta}(N')$ such that $S(\phi \diamond \psi) = S\phi S\psi$, see [7] [10]. Then using (18) we can derive the following relationships between convolution and Wick product

$$\phi \diamond \psi = \phi \ast \psi \ast \nu \text{ and } \phi \ast \psi = \phi \diamond \psi \diamond \gamma_{\sqrt{2}}, \tag{19}$$

where ν and $\gamma_{\sqrt{2}}$ are two distrubitions in $\mathcal{F}'_{x^2}(N')$ given by there Laplace transforms $\hat{\nu}(\xi) = e^{-\frac{1}{2}\langle \xi, \xi \rangle}$ and $\hat{\gamma}_{\sqrt{2}}(\xi) = e^{\langle \xi, \xi \rangle}, \ \xi \in N.$

A similar convolution calculus can be developed if we replace the space $\mathcal{F}'_{\theta}(N)$ by a space of test functions with several variables introduced in [16]

References

- M.Ben Chrouda and A.Rezgui, Measures and related spaces of test functions and distributions in infinite dimensional analysis. BiBos No. 99-11-16.
- [2] **D.Dineen,** Complex Analysis in locally convex spaces, Mathematical studies **57**, North Holland, Amsterdam (1981).
- [3] R.Gannoun; R.Hachaichi ; H.Ouerdiane and A.Rezgui, Un théorème de dualité entre espace de fonctions Holomorphes à croissance exponentielle. J.F.A, Vol. 171, No. 1, pp. 1-14, (2000).
- [4] **R.Gannoun** ; **R.Hachaichi** ; **P.Kree et H.Ouerdiane**, Division de fonctions holomorphes a croissance θ -exponentielle. Preprint, BiBos No: $E \ 00-01-04$, (2000).

- [5] L.Gross and P.Malliavin, Hall's transform and the Segal-Bargmann map, in Itô's stochastic calculus and Probability theory, pp. 73-116. Springer-Verlag, Tokyo, (1996).
- [6] **T.Hida**, Brownian motion, Translated from the Japanese by the author and T. P. Speed, Springer-Verlag, New York, 1980.
- [7] T.Hida ; H.Kuo ; J.Potthof and L.Streit, White noise, an infinite-dimensional calculus, Kluwer Academic Publishers Group, Dordrecht, 1993.
- [8] Y.G.Kondratiev and L.Streit, Spaces of white noise distributions
 : constructions, descriptions, applications, Rep. Math. physics. 33 (1993), 341-366.
- [9] M-A.Krasnosel'ski and Ya-B.Ritickili, Convex functions and Orliez spaces. P.Novdhoff.Itd, Groningen, The Nethelands (1961).
- [10] **H.Kuo,** White noise distribution theory, CRC Press, Boca Raton, FL, 1996.
- [11] N.Obata, White noise calculus and Fock space. LNM 1577 (1994).
- [12] N.Obata, Wick product of white noise operators and quantum stochastic differential equations. J.Math.Soc.Japan Vol. 51, No. 3, (1999), p. 613-641.
- [13] H.Holden; B.Oksendal; J.Uboe and T.Zhang, Stochastic Partial Differential Equation (1996) Birkhauser. Boston. Basel. Berlin.
- [14] Ouerdiane, H : Fonctionnelles analytiques avec conditions de croissance et application à l'analyse gaussienne. Japanese Journal of Math. Vol 20, No 1. pp. 187-198 (1994).
- [15] H.Ouerdiane, Algèbres nucléaires et équations aux dérivées partielles stochastiques. Nagoya Math. Journal Vol 151 (1998), pp. 107-127.
- [16] H.Ouerdiane, Nuclear * algebras of entire functions and applications. BiBos N: 00-05-15 Univ. Bielefeld Germany.

- [17] H.Ouerdiane and A.Rezgui, Representation intégrles de fonctionnelles analytiques. Stochastic Process, Physic and Geometry: New interplays. A volume in honor of S.Albevrio Canadian Math. Society. Conference Proceedings series. (1999).
- [18] **F.Trèves,** Topological vector space, Distributions and kernels. Academic press New York. London (1967).