Convolution Calculus and Applications to Stochastic Differential Equations

Mohamed Ben Chrouda, Mohamed El Oued
and Habib Ouerdiane
Department of Mathematics
Faculty of sciences of Tunis-Campus
1060.Tunis. Tunisia.

Abstract

The present work is mostly based on a functional analytic point of view. In this paper we develop a convolution calculus over a family of spaces of generalized functions. We use this calculus to discuss new solutions of some stochastic differential equations.

1 Introduction

Let X be a real nuclear Frechet space. Assume that its topology is defined by an increasing family of Hilbertian norms $\left\{\left|.| |_{p}, p \in \mathbb{N}\right\}\right.$. Then X is represented as

$$
X=\cap_{p \in \mathbb{N}} X_{p},
$$

where for $p \in I N$ the space X_{p} is the completion of X with respect to the norm $\left.|\cdot|\right|_{p}$. Denote by X_{-p} the dual space of X_{p}, then the dual space X^{\prime} of X is represented as

$$
X^{\prime}=\underset{p \in \mathbb{N}}{\cup} X_{-p}
$$

and it is equipped with the inductive limit topology. Let N (resp. N_{p}) be the complexification of $X\left(\right.$ resp. $\left.X_{p}\right)$, i.e. $N=X+i X$ and $N_{p}=X_{p}+i X_{p}$,
$p \in \mathbf{Z}$. For any $n \in \mathbb{N}$ we denote by $N^{\hat{\otimes} n}$ the n-th symetric tensor product of N equipped with the π-topology and by $N_{p}^{\hat{\otimes} n}$ the symetric Hilbertian tensor product of N_{p}. We will preserve the notation $|\cdot|_{p}$ and $|.|_{-p}$ for the norms on $N_{p}^{\hat{\otimes} n}$ and $N_{-p}^{\hat{\otimes} n}$ respectively. Let θ be a Young function on \mathbb{R}_{+}, i.e. θ is continuous, convex, increasing function and satisfies $\lim _{+\infty} \frac{\theta(x)}{x}=+\infty$, see [9]. We define the conjugate function θ^{*} of θ by

$$
\begin{equation*}
\forall x \geq 0, \quad \theta^{*}(x):=\sup _{t \geq 0}(t x-\theta(t)) \tag{1}
\end{equation*}
$$

For a such Young function θ we denote by $\mathcal{G}_{\theta}(N)$ the space of holomorphic functions on N with exponential growth of order θ and of arbitrary type, and by $\mathcal{F}_{\theta}\left(N^{\prime}\right)$ the space of holomorphic functions on N^{\prime} with exponential growth of order θ and of minimal type. For every $p \in \mathbf{Z}$ and $m>0$, we denote by $\operatorname{Exp}\left(N_{p}, \theta, m\right)$ the space of entire functions f on the complex Hilbert space N_{p} such that $\|f\|_{\theta, p, m}:=\sup _{x \in N_{p}}|f(x)| e^{-\theta\left(m|x|_{p}\right)}<+\infty$. Then the spaces $\mathcal{F}_{\theta}\left(N^{\prime}\right)$ and $\mathcal{G}_{\theta}(N)$ are represented as

$$
\begin{aligned}
\mathcal{F}_{\theta}\left(N^{\prime}\right) & =\underset{\substack{p \in \mathbb{N} \\
m>0}}{\cap} \operatorname{Exp}\left(N_{-p}, \theta, m\right) \\
\mathcal{G}_{\theta}(N) & =\underset{\substack{p \in \mathbb{N} \\
m>0}}{\cup} \operatorname{Exp}\left(N_{p}, \theta, m\right),
\end{aligned}
$$

and equipped with the projective limit topology and the inductive limit topology respectively. The spaces $\mathcal{F}_{\theta}\left(N^{\prime}\right)$ and its dual $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$ equipped with the strong topology are called the test functions space and the distributions space respectively.
Let $p \in I N$ and $m>0$, we define the Hilbert spaces

$$
\begin{gathered}
F_{\theta, m}\left(N_{p}\right)=\left\{\vec{f}=\left(f_{n}\right)_{n=0}^{\infty}, f_{n} \in N_{p}^{\hat{\otimes} n} ; \sum_{n \geq 0} \theta_{n}^{-2} m^{-n}\left|f_{n}\right|_{p}^{2}<+\infty\right\} \\
G_{\theta, m}\left(N_{-p}\right)=\left\{\vec{\phi}=\left(\phi_{n}\right)_{n=0}^{\infty}, \phi_{n} \in N_{-p}^{\hat{\otimes} n} ; \sum_{n \geq 0}\left(n!\theta_{n}\right)^{2} m^{n}\left|\phi_{n}\right|_{-p}^{2}<+\infty\right\},
\end{gathered}
$$

where $\theta_{n}=\inf _{r>0} \frac{e^{\theta(r)}}{r^{n}}, n \in I N$, and put

$$
F_{\theta}(N)=\underset{\substack{p \in \mathbb{N} \\ m>0}}{\cap} F_{\theta, m}\left(N_{p}\right)
$$

$$
G_{\theta}\left(N^{\prime}\right)=\underset{\substack{p \in \mathbb{N} \\ m>0}}{ } G_{\theta, m}\left(N_{-p}\right) .
$$

The space $F_{\theta}(N)$ equipped with the projective limit topology is a nuclear Frechet space [3], and $G_{\theta}\left(N^{\prime}\right)$ carries the dual topology of $F_{\theta}(N)$ with respect to the \mathbf{C}-bilinear form $\ll ., \gg$:

$$
\ll \vec{\phi}, \vec{f} \gg=\sum_{n \geq 0} n!\left\langle\phi_{n}, f_{n}\right\rangle, \vec{\phi}=\left(\phi_{n}\right) \in G_{\theta}\left(N^{\prime}\right), \vec{f}=\left(f_{n}\right) \in F_{\theta}(N) .
$$

It was proved in [3] that the Taylor series map, denoted by S.T, yields a topological isomorphism between $\mathcal{F}_{\theta}\left(N^{\prime}\right)$ (resp. $\mathcal{G}_{\theta^{*}}(N)$) and $F_{\theta}(N)$ (resp. $\left.G_{\theta}\left(N^{\prime}\right)\right)$. Then the action of a distribution $\phi \in \mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$ on a test function $f \in \mathcal{F}_{\theta}\left(N^{\prime}\right)$ is given by

$$
\ll \phi, f \gg:=\ll \vec{\phi}, \vec{f} \gg
$$

where $\vec{\phi}=\left[(S . T)^{*}\right]^{-1}(\phi)$ and $\vec{f}=(S . T)(f)$. It is easy to see that for every $\xi \in N$, the exponential function $e_{\xi}: z \longmapsto e^{\langle z, \xi\rangle}, z \in N^{\prime}$ belongs to the test space $\mathcal{F}_{\theta}\left(N^{\prime}\right)$ for any Young function θ. Then we define the Laplace transform of a distribution $\phi \in \mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$ by

$$
\widehat{\phi}(\xi):=\ll \phi, e_{\xi} \gg, \xi \in N
$$

In [3], the authors prove the important duality theorem: the Laplace transform realizes a topological isomorphism of $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$ on $\mathcal{G}_{\theta^{*}}(N)$.

In this paper we develop a new convolution calculus over the generalized functionals spaces $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$. Unlike the Wick calculus studied by many authors [7][10][12], the convolution calculus is developed independently of the gaussian analysis. In fact, we define the convolution product $\phi_{1} * \phi_{2}$ of two distributions ϕ_{1}, ϕ_{2} in $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$ by a naturaly way using convolution operators. Then we give a sens to the expression $f^{*}(\phi)=\sum_{n} f_{n} \phi^{* n}$, for any entire function $f(z)=\sum_{n>0} f_{n} z^{n}, z \in \mathbf{C}$ with exponential growth, and for any distribution $\phi \in \mathcal{F}_{\theta}^{\prime}\left(\bar{N}^{\prime}\right)$. In paticular, the important convolution exponential functional $\exp ^{*} \phi=\sum_{n \geq 0} \frac{\phi^{* n}}{n!}$, wich cannot be in general an element of the usual white noise distributions spaces introduced in [8], is well defined in the $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$-spaces. This permits to solve some stochastic differential equations in the distributions spaces of type $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$. Moreover, this solutions as elements of the $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$-spaces have more regularity and properties than those of the bigger distributions space $(N)^{-1}$ of Kondratiev-Streit type, systematically used for example by Oksendal in [13].

2 Convolution of distributions

In infinite dimension complex analysis [2], a convolution operator on the test space $\mathcal{F}_{\theta}\left(N^{\prime}\right)$ is a continuous linear operator from $\mathcal{F}_{\theta}\left(N^{\prime}\right)$ into itself which commutes with translation operators.
Let $x \in N^{\prime}$, we define the translation operator τ_{-x} on $\mathcal{F}_{\theta}\left(N^{\prime}\right)$ by

$$
\tau_{-x} \varphi(y)=\varphi(x+y), \quad y \in N^{\prime}, \varphi \in \mathcal{F}_{\theta}\left(N^{\prime}\right)
$$

It is easy to see that τ_{-x} is a continuous linear operator from $\mathcal{F}_{\theta}\left(N^{\prime}\right)$ into itself. Now, we define the convolution product of a distribution $\phi \in \mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$ with a test function $\varphi \in \mathcal{F}_{\theta}\left(N^{\prime}\right)$ as follows

$$
\phi * \varphi(x)=\ll \phi, \tau_{-x} \varphi \gg, \quad x \in N^{\prime} .
$$

If ϕ is represented by $\vec{\phi}=\left(\phi_{n}\right)_{n \geq 0} \in G_{\theta}\left(N^{\prime}\right)$, then

$$
\phi * \varphi(x)=\sum_{n \geq 0}\left\langle x^{\otimes n}, \psi^{(n)}\right\rangle,
$$

where for every integer $n \in I N$

$$
\psi^{(n)}=\sum_{k \geq 0} k!C_{n+k}^{n}\left\langle\phi_{k}, \varphi^{(n+k)}\right\rangle .
$$

A direct calculation shows that the sequence $\left(\psi^{(n)}\right)_{n>0}$ is an element of $F_{\theta}(N)$ and consequently $\phi * \varphi \in \mathcal{F}_{\theta}\left(N^{\prime}\right)$. It was proved in [4] that T is a convolution operator on $\mathcal{F}_{\theta}\left(N^{\prime}\right)$ if and only if there exists $\phi \in \mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$ such that

$$
\begin{equation*}
T(\varphi)=\phi * \varphi, \quad \forall \varphi \in \mathcal{F}_{\theta}\left(N^{\prime}\right) \tag{2}
\end{equation*}
$$

We denote the convolution operator T by T_{ϕ}. Moreover for every $\varphi \in \mathcal{F}_{\theta}\left(N^{\prime}\right)$ we have

$$
T_{\phi}(\varphi)(0)=\ll \phi, \varphi \gg .
$$

Let $\phi_{1}, \phi_{2} \in \mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$ and $T_{\phi_{1}}, T_{\phi_{2}}$ be the associated convolution operators respectively. It is clear that the composition $T_{\phi_{1}} \circ T_{\phi_{2}}$ is also a convolution operator. Consequently there exists a unique element of $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$ denoted by $\phi_{1} * \phi_{2}$ such that

$$
\begin{equation*}
T_{\phi_{1}} \circ T_{\phi_{2}}=T_{\phi_{1} * \phi_{2}} \tag{3}
\end{equation*}
$$

The distribution $\phi_{1} * \phi_{2}$, defined by (3) is called the convolution product of ϕ_{1} and ϕ_{2}.

Proposition 1 For every $\varphi \in \mathcal{F}_{\theta}(N)$ we have

$$
\begin{aligned}
\ll \phi_{1} * \phi_{2}, \varphi \gg & :=\left[\left(\phi_{1} * \phi_{2}\right) * \varphi\right](0) \\
& =\left[\phi_{1} *\left(\phi_{2} * \varphi\right)\right](0) .
\end{aligned}
$$

Moreover, $\forall \phi_{1}, \phi_{2} \in \mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$ it holds that

$$
\begin{equation*}
\widehat{\phi_{1} *} \phi_{2}=\widehat{\phi}_{1} \widehat{\phi}_{2} . \tag{4}
\end{equation*}
$$

Proof

Let $\varphi \in \mathcal{F}_{\theta}\left(N^{\prime}\right)$, in view of (2) and (3) we obtain

$$
\left[\left(\phi_{1} * \phi_{2}\right) * \varphi\right](x)=\left[\phi_{1} *\left(\phi_{2} * \varphi\right)\right](x), \forall x \in N^{\prime}
$$

In particular if we put $x=0$ then we get

$$
\ll \phi_{1} * \phi_{2}, \varphi \gg=\left[\phi_{1} *\left(\phi_{2} * \varphi\right)\right](0)
$$

from wich follows (4) by taking $\varphi(x)=e^{\langle x, \xi\rangle}, \xi \in N$.
Let \mathcal{L}_{θ}^{c} be the space of convolution operators on $\mathcal{F}_{\theta}\left(N^{\prime}\right)$. Taking (3) into consideration, we immediatly obtain

Lemma 1

$$
\begin{aligned}
\left(\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right), *\right) & \longrightarrow\left(\mathcal{L}_{\theta}^{c}, \circ\right) \\
\phi & \longmapsto T_{\phi}
\end{aligned}
$$

is an isomorphism of algebra.
It follows from (4) that $\left(\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right), *\right)$ is a commutative algebra. Hence we deduce from lemma 1 that so is $\left(\mathcal{L}_{\theta}^{c}, \circ\right)$.

Theorem 1 Let γ be a Young function on \mathbb{R}_{+}wich does not necessaerily satisfy $\lim _{x \rightarrow+\infty} \frac{\gamma(x)}{x}=+\infty$ and $f \in \operatorname{Exp}(\mathbf{C}, \gamma, m)$ for some $m>0$. Then for every distribution $\phi \in \mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$, the functional $f^{*}(\phi)$ defined by

$$
\begin{equation*}
\widehat{f^{*}(\phi)}=f(\widehat{\phi}) \tag{5}
\end{equation*}
$$

belongs to $\mathcal{F}_{\lambda}^{\prime}\left(N^{\prime}\right)$, where $\lambda=\left(\gamma \circ e^{\theta^{*}}\right)^{*}$.

Proof

By the duality theorem, it is sufficient to prove that $f(\widehat{\phi}) \in \mathcal{G}_{\lambda^{*}}(N)$. In fact let $\phi \in \mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$, then there exist $p \in I N, m^{\prime}>0$ and $c^{\prime}>0$ such that

$$
|\widehat{\phi}(\xi)| \leq c^{\prime} e^{\theta^{*}\left(m^{\prime}|\xi| p\right)}, \xi \in N
$$

On the other hand there exists $c>0$ such that

$$
|f(z)| \leq c e^{\gamma(m|z|)}, \quad z \in \mathbf{C} .
$$

Then combining the last inequality we get

$$
\begin{aligned}
|f(\widehat{\phi}(\xi))| & \leq c e^{\gamma\left(m c^{\prime} e^{\theta^{*}\left(m^{\prime}|\xi| p\right)}\right)}, \quad \xi \in N \\
& \leq \begin{cases}c e^{\gamma\left(e^{\theta^{*}\left(m^{\prime}|\xi| p\right)}\right)} & \text { if } m c^{\prime} \leq 1 \\
c e^{\gamma\left(e^{\theta^{*}\left(c m m^{\prime}|\xi| p\right)}\right)} & \text { if } m c^{\prime}>1\end{cases}
\end{aligned}
$$

This inequality with the holomorphy of $f(\hat{\phi})$ on N show that $f(\widehat{\phi}) \in \mathcal{G}_{\lambda^{*}}(N)$.

If we take $\gamma(x)=x, x \in \mathbb{R}_{+}$and $f(z)=e^{z}, z \in \mathbf{C}$ in theorem 1 , we get the following result

Corollary 1 Let $\phi \in \mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$, then the convolution exponential function of ϕ, denoted by $e^{* \phi}$, is an element of $\mathcal{F}_{\left(e^{\left.\theta^{*}\right)^{*}}\right.}^{\prime}\left(N^{\prime}\right)$. If in addition $\widehat{\phi}(\xi)$ is a polynomial in ξ of degree $k \in \mathbb{N}, k \geq 2$ then $e^{* \phi} \in \mathcal{F}_{\lambda}^{\prime}\left(N^{\prime}\right)$, where $\lambda(x)=$ $x^{\frac{k}{k-1}}, x \geq 0$.

A similar result of corollary 1 , in the particular case where $\widehat{\phi}$ is a polynomial, was proved in [12] with Wick product.

3 Applications to stochastic differential equations

A one parameter generalized stochastic process with values in $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$ is a family of distributions $\left\{\phi_{t}, t \in I\right\} \subset \mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$, where I is an interval, without loss generality we can assume that $0 \in I$. The process ϕ_{t} is said to be continuous if the map $t \longmapsto \phi_{t}$ is continuous. In order to introduce generalized stochastic integrals, we need the following result proved in [17].

Proposition 2 [17] Let $\left(\phi_{n}\right)_{n \geq 0}$ be a sequence in $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$. Then $\left(\phi_{n}\right)$ converges in $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$ if and only if the following conditions hold:
(D1) There exist $p \geq 0, m>0$ and $c \geq 0$ such that for every integer n

$$
\left|\widehat{\phi}_{n}(\xi)\right| \leq c e^{\theta^{*}(m|\xi| p)}, \quad \forall \xi \in N
$$

(D2) The sequence $\widehat{\phi}_{n}(\xi)$ converges in \mathbf{C} for each $\xi \in N$.
Let $\left\{\phi_{t}\right\}_{t \in I}$ be a continuous $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$-process and put

$$
\phi_{n}=\frac{t}{n} \sum_{k=0}^{n-1} \phi_{\frac{t k}{n}} n \in I N^{*}, t \in I
$$

It is easy to prove that the sequence $\left(\widehat{\phi}_{n}\right)$ is bounded in $\mathcal{G}_{\theta^{*}}\left(N^{\prime}\right)$ and for every $\xi \in N,\left(\widehat{\phi}_{n}(\xi)\right)_{n}$ converges to $\int_{0}^{t} \widehat{\phi}_{s}(\xi) d s$. Thus we conclude by proposition 2 that $\left(\phi_{n}\right)$ converges in $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$. We denote its limit by

$$
\int_{0}^{t} \phi_{s} d s:=\lim _{n \rightarrow+\infty} \phi_{n} \text { in } \mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)
$$

Proposition $3 E_{t}=\int_{0}^{t} \phi_{s} d s, t \in I$ is a continuous $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$-process which satisfies

$$
\int_{0}^{t} \phi_{s} d s=\int_{0}^{t} \widehat{\phi_{s}} d s
$$

Moreover, The process E_{t} is differentiable in $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$ i.e. $\frac{\partial E_{t}}{\partial t}=\phi_{t}, t \in I$.

Proof

Since the map $s \longmapsto \widehat{\phi}_{s} \in \mathcal{G}_{\theta^{*}}(N)$ is continuous, $\left\{\widehat{\phi}_{s}, s \in[0, t]\right\}$ becomes a compact set, in particular it is bounded in $\mathcal{G}_{\theta^{*}}(N)$ i.e. there exist $p \in$ $I N, m>0$ and $C_{t}>0$ such that for every $\xi \in N_{p}$ we have

$$
\begin{equation*}
\left|\widehat{\phi}_{s}(\xi)\right| \leq C_{t} e^{\theta^{*}(m|\xi| p)}, \forall s \in[0, t] \tag{6}
\end{equation*}
$$

Then inequality (6) show that the function $\xi \longmapsto \int_{0}^{t} \widehat{\phi}_{s}(\xi) d s$ belongs to $\mathcal{G}_{\theta^{*}}(N)$. Consequently the pointwise convergence of the sequence of functions $\left(\widehat{\phi}_{n}\right)$ to $\int_{0}^{t} \widehat{\phi}_{s} d s$ becomes a convergence in $\mathcal{G}_{\theta^{*}}(N)$ and we get

$$
\widehat{\int_{0}^{t}} \phi_{s} d s=\int_{0}^{t} \widehat{\phi_{s}} d s
$$

Let $t_{0} \in I$ and let $\varepsilon>0$ such that $\left[t_{0}-\varepsilon, t_{0}+\varepsilon\right] \subset I$. It then follows from (6) that

$$
\begin{aligned}
\left\|\widehat{E}_{t}-\widehat{E}_{t_{0}}\right\|_{\theta^{*}, p, m} & \leq \int_{t_{0}}^{t}\left\|\widehat{\phi}_{s}\right\|_{\theta^{*}, p, m} d s \\
& \leq\left|t-t_{0}\right| C_{t_{0}+\varepsilon}
\end{aligned}
$$

This proves the continuity of the map $t \in I \longmapsto \widehat{E}_{t} \in \mathcal{G}_{\theta^{*}}(N)$ which is equivalent to the continuity of the process E_{t}. By the same argument we prove the differentiability of E_{t}.

3.1 Stochastic Volterra equation

Let $J:[0, T] \longrightarrow \mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right), K:[0, T] \times[0, T] \longrightarrow \mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$ be two continuous generalized processes. We consider the stochastic Volterra equation

$$
\begin{equation*}
E(t)=J(t)+\int_{0}^{t} K(t, s) * E(s) d s, \quad 0 \leq t \leq T \tag{7}
\end{equation*}
$$

Theorem 2 Suppose that there exist $p \in I N, m>0$ and $M>0$ such that

$$
\|\widehat{K}(t, s)\|_{\theta^{*}, p, m} \leq M, \quad \forall 0 \leq s \leq t \leq T
$$

then there exists a unique continuous $\mathcal{F}_{\left(e^{* *}\right)^{*}}^{\prime}\left(N^{\prime}\right)$-process that solves (7). The solution $E(t)$ is given by

$$
\begin{equation*}
E(t)=J(t)+\int_{0}^{t} H(t, s) * J(s) d s \tag{8}
\end{equation*}
$$

where $H(t, s)=\sum_{n \geq 1} K_{n}(t, s)$ with K_{n} given inductively by

$$
K_{n+1}(t, s)=\int_{s}^{t} K_{n}(t, u) * K(u, s) d u, \quad n \geq 1
$$

and $K_{1}(t, s)=K(t, s)$.

Proof

The solution is given by Picard iteration. In fact, put $E_{0}(t)=J(t)$ and consider

$$
\begin{equation*}
E_{n+1}(t)=J(t)+\int_{0}^{t} K(t, s) * E_{n}(s) d s, \quad n \geq 0 \tag{9}
\end{equation*}
$$

By iteration we get

$$
E_{n}(t)=J(t)+\int_{0}^{t} H_{n}(t, s) * J(s) d s, \quad n \geq 1
$$

where $H_{n}(t, s)=\sum_{l=1}^{n} K_{l}(t, s)$. Now, we use proposition 2 to prove that for every $t, s \in[0, T]$ the sequence $H_{n}(t, s)$ converges in $\mathcal{F}_{\left(e^{\theta^{*}}\right)^{*}}^{\prime}\left(N^{\prime}\right)$. By assumption we have

$$
|\widehat{K}(t, s)(\xi)| \leq M e^{\theta^{*}(m|\xi| p)}, \quad \xi \in N_{p} .
$$

Thus by induction we get

$$
\begin{equation*}
\left|\widehat{K}_{l}(t, s)(\xi)\right| \leq M^{l} \frac{(t-s)^{l-1}}{(l-1)!}\left(e^{\theta^{*}(m|\xi| p)}\right)^{l} \tag{10}
\end{equation*}
$$

Then, summing up both sides of (10) we come to

$$
\begin{aligned}
\left|\widehat{H}_{n}(t, s)(\xi)\right| & \leq \sum_{l=1}^{n} M^{l} \frac{(t-s)^{l-1}}{(l-1)!}\left(e^{\theta^{*}(m|\xi| p)}\right)^{l} \\
& \leq M e^{\theta^{*}(m|\xi| p)} \exp \left[M(t-s) e^{\theta^{*}(m|\xi| p)}\right] \\
& \leq M e^{\theta^{*}(m|\xi| p)} \exp \left[\frac{M^{2}(t-s)^{2}}{2}+e^{2 \theta^{*}(m|\xi| p)}\right] \\
& \leq M e^{M^{2}(t-s)^{2}} \exp \left(e^{\theta^{*}(3 m|\xi| p)}\right)
\end{aligned}
$$

Hence we get the first condition (D1) of proposition 2. For the second condition (D2) we just note that for every $0 \leq s \leq t \leq T$ and $\xi \in N$, $\left(\widehat{H}_{n}(t, s)(\xi)\right)_{n \geq 0}$ is a Cauchy sequence in C. We have thus proved that the infinite series $H(t, s)=\sum_{l \geq 1} K_{l}(t, s)$ converges in $\mathcal{F}_{\left(e^{* *}\right)^{*}}^{\prime}\left(N^{\prime}\right)$. Consequently, the sequence $\left(E_{n}(t)\right)_{n \geq 0}$ converges also in $\mathcal{F}_{\left(e^{* *}\right)^{*}}\left(N^{\prime}\right)$ to $E(t)=$ $J(t)+\int_{0}^{t} H(t, s) * J(s) d s$. By equation (9), $E(t)$ is a solution of the stochastic Volterra equation. Finally, we use the Granwall inequality to prove the uniqueness.

3.2 Differential equations associated with convolution operators

Let θ_{1} and θ_{2} be two fixed Young functions, and let $\left\{\phi_{t}\right\}_{t \in I}$ be a continuous $\mathcal{F}_{\theta_{1}}^{\prime}\left(N^{\prime}\right)$-process. Consider the Cauchy problem

$$
\begin{cases}\frac{\partial U}{\partial t}= & \phi_{t} * U, \quad t \in I \tag{11}\\ U(0)= & f \in \mathcal{F}_{\theta_{2}}\left(N^{\prime}\right) .\end{cases}
$$

Theorem 3 If there exists constant $C>0$ such that $e^{\theta_{1}^{*}(r)} \leq C \theta_{2}^{*}(r)$ for r large enough, then the Cauchy problem (11) has a unique solution given by

$$
\begin{equation*}
U(t, x)=\left(e^{* \int_{0}^{t} \phi_{s} d s} * f\right)(x), x \in N^{\prime}, t \in I \tag{12}
\end{equation*}
$$

Moreover, $U(t) \in \mathcal{F}_{\theta_{2}}\left(N^{\prime}\right) \forall t \in I$. If in addition $\widehat{\phi}_{t}(\xi)$ is a polynomial in ξ of degree $k \geq 2, \forall t \in I$, then $U(t)$ given by (12) is also the unique solution of equation (11) with values in $\mathcal{F}_{\theta_{2}}\left(N^{\prime}\right)$ whenever $\lim _{r \mapsto+\infty} \frac{r^{k}}{\theta_{2}^{*}(r)}$.

Proof

The solution $U(t)$ is obtained by Picard iteration as in the proof of theorem 2.

As an application of theorem 3 we give the heat equation associated with Gross Laplacian. In fact, let $\varphi(x)=\sum_{n \geq 0}\left\langle x^{\otimes n}, \varphi^{(n)}\right\rangle \in \mathcal{F}_{\theta}(N)$. The Gross Laplacian [5], [10] of φ at $x \in N^{\prime}$ is given by

$$
\Delta_{G} \varphi(x)=\sum_{n \geq 0}(n+2)(n+1)\left\langle x^{\otimes n},\left\langle\tau, \varphi^{(n+2)}\right\rangle\right\rangle
$$

where τ is the trace operator defined by

$$
\langle\tau, \xi \otimes \eta\rangle=\langle\xi, \eta\rangle, \quad \xi, \eta \in N
$$

Let γ be the standard gaussian measure on X^{\prime} defined by its characteristic function $\int_{X^{\prime}} e^{i\langle y, \xi\rangle} d \gamma(y)=e^{-\frac{|\xi|^{2}}{2}}$, see [6],[7],[11] [14].
Corollary 2 Let θ be a Young function satisfying $\lim _{r \rightarrow+\infty} \frac{\theta(r)}{r^{2}}<+\infty$ and $f \in \mathcal{F}_{\theta}\left(N^{\prime}\right)$. Then the heat equation associated with the Gross Laplacian

$$
\begin{equation*}
\frac{\partial U}{\partial t}=\frac{1}{2} \Delta_{G} U, \quad t \geq 0, \quad U(0)=f \tag{13}
\end{equation*}
$$

has a unique solution in $\mathcal{F}_{\theta}\left(N^{\prime}\right)$ given by

$$
U(t, x)=\int_{X^{\prime}} f(x+\sqrt{t} y) d \gamma(y)
$$

Proof

In fact, the Gross Laplacian Δ_{G} is a convolution operator. The distribution associated to Δ_{G} is $\vec{\phi}_{\tau}=(0,0, \tau, 0, \cdots)$, then it follows from equality (2) that

$$
\Delta_{G}(\varphi)=\phi_{\tau} * \varphi, \forall \varphi \in \mathcal{F}_{\theta}\left(N^{\prime}\right)
$$

Thus the heat equation (13) is equivalent to

$$
\frac{\partial U}{\partial t}=\phi_{\frac{\tau}{2}} * U, \quad t \geq 0, \quad U(0)=f
$$

Since $\widehat{\phi}_{\frac{\tau}{2}}(\xi)=\frac{\langle\xi, \xi\rangle}{2}, \quad \xi \in N$ is a polynomial of degree 2 , then it follows from theorem 3 that the equation (13) has a unique solution in $\mathcal{F}_{\theta}\left(N^{\prime}\right)$ given by

$$
U(t, x)=\left(e^{* t \phi_{\frac{\tau}{2}}} * f\right)(x), \quad t \geq 0 .
$$

On the other hand, since $e^{\widehat{* t \phi \frac{\tau}{2}}}(\xi)=e^{\frac{t(\xi, \xi\rangle}{2}}=\widehat{\gamma}_{\sqrt{t}}(\xi), \quad \xi \in N, t \geq 0$ where $\gamma_{\sqrt{t}}$ is a gaussian measure on $X^{\prime}[10]$, then the solution $U(t)$ can be expressed as

$$
U(t, x)=\left(\gamma_{\sqrt{t}} * f\right)(x)=\int_{X^{\prime}} f(x+\sqrt{t} y) d \gamma(y), \quad t \geq 0, x \in N^{\prime}
$$

Let $\left\{\phi_{t}\right\}$ and $\left\{M_{t}\right\}$ be two continuous $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$-processes. Consider the initial value problem

$$
\begin{equation*}
\frac{d X_{t}}{d t}=\phi_{t} * X_{t}+M_{t}, \quad X(0)=X_{0} \in \mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right) \tag{14}
\end{equation*}
$$

Then using the Laplace transform we prove the following theorem
Theorem 4 The stochastic differential equation (14) has a unique solution in $\mathcal{F}_{\left(e^{\left.\theta^{*}\right) *}\right.}^{\prime}\left(N^{\prime}\right)$, given by

$$
X_{t}=X_{0} * e^{* \int_{0}^{t} \phi_{s} d s}+\int_{0}^{t} e^{* \int_{s}^{t} \phi_{u} d u} * M_{s} d s
$$

The next example is an application of theorem 4 :
In fact, let $\phi(t), t \geq 0$ and $F(x), x \in \mathbb{R}^{d}$ be two continuous $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$ processes. Suppose that there exist $p \in I N, m>0$ and a positive function
$\beta \in L^{1}(\mathbb{R}, d \lambda)$ such that $|\widehat{F}(x, \xi)| \leq \beta(x) e^{\theta^{*}(m|\xi| p)}$. Then the heat equation with stochastic potential

$$
\left\{\begin{array}{l}
\frac{\partial U(t, x, \omega)}{\partial t}=\frac{\sigma^{2}}{2} \Delta_{x} u(t, x, \omega)+\phi(t, \omega) * U(t, x, \omega), t>0, x \in \mathbb{R}^{d} \\
u(0, x, \omega)=F(x, \omega), x \in \mathbb{R}^{d}
\end{array}\right.
$$

has a unique solution given by

$$
U(t, x)=\exp ^{*}\left(\int_{0}^{t} \phi(s) d s\right) * \int_{\mathbb{R}^{d}} F(y) \frac{e^{-\frac{|x-y|^{2}}{2 \sigma^{2} t}}}{\sqrt{2 \pi t} \sigma} d y
$$

Moreover, $\mathrm{U}(\mathrm{t}, \mathrm{x})$ is a continuous $\mathcal{F}_{\left(e^{\left.\theta^{*}\right)^{*}}\right.}^{\prime}\left(N^{\prime}\right)$-process. In particular if $\phi(t)=$ $W(t)$ the white noise, then $\mathrm{U}(\mathrm{t}, \mathrm{x})$ becomes a continuous $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$-process. See [15] in the case $\theta(x)=x^{k}$.

Now, we give an example of non-linear stochastic differential equation: Let $\left\{\phi_{t}\right\}$ be a continuous $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$-process and consider the Verhulst equation

$$
\begin{cases}\frac{\partial X_{t}}{\partial t} & =X_{t} *\left(X_{t}-1\right) * \phi_{t}, \quad t \geq 0 \tag{15}\\ X(0) & \left.=x_{0} \in\right] 0,1[\end{cases}
$$

In an obvious manner we show that

$$
\begin{equation*}
\widehat{X}_{t}=\frac{1}{1+\left(\frac{1}{x_{0}}-1\right) e^{\int_{0}^{t} \widehat{\phi}_{s} d s}}, \quad t \geq 0 \tag{16}
\end{equation*}
$$

Lemma 2 [4] Let $f \in \mathcal{G}_{\varphi}(N)$ such that $f(z) \neq 0, \forall z \in N$, then $\frac{1}{f} \in \mathcal{G}_{\varphi}(N)$.
Since the function $\xi \longmapsto \exp \left(\int_{0}^{t} \widehat{\phi}_{s}(\xi) d s\right)$ is an element of $\mathcal{G}_{e^{\theta^{*}}}(N)$, the above lemma shows that $\widehat{X}_{t} \in \mathcal{G}_{e^{*}}(N)$. Then using the duality theorem, X_{t} given by (16) is the unique continuous $\mathcal{F}_{\left(e^{*}\right)^{*}}^{\prime}\left(N^{\prime}\right)$-process that solves equation (15). In particular if $\widehat{\phi}_{t}(\xi)$ is a polynomial in ξ of degree $k \geq 2$ then the solution X_{t} becomes a continuous $\mathcal{F}_{x^{\frac{k}{k-1}}}^{y}\left(N^{\prime}\right)$-process.

Remark

If the Young function θ satisfies $\lim _{x \rightarrow+\infty} \frac{\theta(x)}{x^{2}}<+\infty$, we get [3]

$$
\begin{equation*}
\mathcal{F}_{\theta}\left(N^{\prime}\right) \hookrightarrow L^{2}\left(X^{\prime}, \gamma\right) \hookrightarrow \mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right) \tag{17}
\end{equation*}
$$

where γ is the standard gaussian measure on X^{\prime}. In this case the test space $\mathcal{F}_{\theta}\left(N^{\prime}\right)$ coincides with the space $(X)_{\theta}$ introduced in [1]. In addition, the function $\xi \longmapsto e^{\frac{\langle\xi, \xi\rangle}{2}}, \xi \in N$ becomes an element of $\mathcal{G}_{\theta^{*}}(N)$ and the usual S-transform, denoted by S, is obtained by

$$
\begin{equation*}
S(\phi)(\xi)=\widehat{\phi}(\xi) e^{-\frac{\langle\xi, \xi\rangle}{2}}, \quad \xi \in N, \phi \in \mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right) \tag{18}
\end{equation*}
$$

Unlike to the Laplace transform, we see here that the chaotic transform S can not be defined on all spaces of generalized functions $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$, it is defined only on the space $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$ with $\lim _{x \rightarrow+\infty} \frac{\theta(x)}{x^{2}}<+\infty$. Recall that in the gaussian analysis, the Wick product of two generalized functions ϕ and ψ in $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$, denoted by $\phi \diamond \psi$, is the unique distribution in $\mathcal{F}_{\theta}^{\prime}\left(N^{\prime}\right)$ such that $S(\phi \diamond \psi)=S \phi S \psi$, see [7] [10]. Then using (18) we can derive the following relationships between convolution and Wick product

$$
\begin{equation*}
\phi \diamond \psi=\phi * \psi * \nu \text { and } \phi * \psi=\phi \diamond \psi \diamond \gamma_{\sqrt{2}}, \tag{19}
\end{equation*}
$$

where ν and $\gamma_{\sqrt{2}}$ are two distrubitions in $\mathcal{F}_{x^{2}}^{\prime}\left(N^{\prime}\right)$ given by there Laplace transforms $\widehat{\nu}(\xi)=e^{-\frac{1}{2}\langle\xi, \xi\rangle}$ and $\widehat{\gamma}_{\sqrt{2}}(\xi)=e^{\langle\xi, \xi\rangle}, \xi \in N$.

A similar convolution calculus can be developed if we replace the space $\mathcal{F}_{\theta}^{\prime}(N)$ by a space of test functions with several variables introduced in [16]

References

[1] M.Ben Chrouda and A.Rezgui, Measures and related spaces of test functions and distributions in infinite dimensional analysis. BiBos No. 99-11-16.
[2] D.Dineen, Complex Analysis in locally convex spaces, Mathematical studies 57, North Holland, Amsterdam (1981).
[3] R.Gannoun; R.Hachaichi ; H.Ouerdiane and A.Rezgui, Un théorème de dualité entre espace de fonctions Holomorphes à croissance exponentielle. J.F.A, Vol. 171, No. 1, pp. 1-14, (2000).
[4] R.Gannoun ; R.Hachaichi ; P.Kree et H.Ouerdiane, Division de fonctions holomorphes a croissance θ-exponentielle. Preprint, BiBos No: E 00-01-04, (2000).
[5] L.Gross and P.Malliavin, Hall's transform and the Segal-Bargmann map, in Itô's stochastic calculus and Probability theory, pp. 73-116. Springer-Verlag, Tokyo, (1996).
[6] T.Hida, Brownian motion, Translated from the Japanese by the author and T. P. Speed, Springer-Verlag, New York,1980.
[7] T.Hida ; H.Kuo ; J.Potthof and L.Streit, White noise, an infinite-dimentional calculus, Kluwer Academic Publshers Group, Dordrecht, 1993.
[8] Y.G.Kondratiev and L.Streit, Spaces of white noise distributions : constructions, descriptions, applications, Rep.Math.physics. 33 (1993), 341-366.
[9] M-A.Krasnosel'ski and Ya-B.Ritickili, Convex functions and Orliez spaces. P.Novdhoff.Itd, Groningen, The Nethelands (1961).
[10] H.Kuo, White noise distribution theory, CRC Press,Boca Raton, FL,1996.
[11] N.Obata, White noise calculus and Fock space. LNM 1577 (1994).
[12] N.Obata, Wick product of white noise operators and quantum stochastic differential equations. J.Math.Soc.Japan Vol. 51, No. 3, (1999), p. 613641.
[13] H.Holden ; B.Oksendal ; J.Uboe and T.Zhang, Stochastic Partial Differential Equation (1996) Birkhauser. Boston. Basel. Berlin.
[14] Ouerdiane,H : Fonctionnelles analytiques avec conditions de croissance et application à l'analyse gaussienne. Japanese Journal of Math. Vol 20, No 1. pp. 187-198 (1994).
[15] H.Ouerdiane, Algèbres nucléaires et équations aux dérivées partielles stochastiques. Nagoya Math. Journal Vol 151 (1998), pp. 107-12\%.
[16] H.Ouerdiane, Nuclear * algebras of entire functions and applications. BiBos N: 00-05-15 Univ. Bielefeld Germany.
[17] H.Ouerdiane and A.Rezgui, Representation intégrles de fonctionnelles analytiques. Stochastic Process, Physic and Geometry : New interplays. A volume in honor of S. Albevrio Canadian Math. Society. Conference Proceedings series.(1999).
[18] F.Trèves, Topological vector space, Distributions and kernels. Academic press New York. London (1967).

