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Abstract

The present work is mostly based on a functional analytic point of view.
In this paper we develop a convolution calculus over a family of spaces of
generalized functions. We use this calculus to discuss new solutions of some
stochastic differential equations.

1 Introduction

Let X be a real nuclear Frechet space. Assume that its topology is defined by
an increasing family of Hilbertian norms {|.|,,p € IN}. Then X is represented

as
X= N X,
peIN
where for p € IN the space X, is the completion of X with respect to the
norm |.|,. Denote by X_, the dual space of X,, then the dual space X' of X

is represented as

X'= U X_,
peIN

and it is equipped with the inductive limit topology. Let N (resp. N,) be
the complexification of X (resp. X,), i.e. N =X +iX and N, = X, +iX,,
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p € Z. For any n € IN we denote by N©n the n-th symetric tensor product of

N equipped with the m-topology and by Nlj@" the symetric Hilbertian tensor

product of N,. We will preserve the notation |.|, and |.|_, for the norms

on N72" and N%p respectively. Let  be a Young function on IRy, i.e. 0 is
O(x

continuous, convex, increasing function and satisfies lim Q = 400, see [9].

+oo
We define the conjugate function 6* of 6 by

Vao>0, 6°(x):=sup(te —0(1)). (1)
>0

For a such Young function # we denote by Gy(IN) the space of holomorphic
functions on N with exponential growth of order # and of arbitrary type, and
by Fp(N') the space of holomorphic functions on N’ with exponential growth
of order # and of minimal type. For every p € Z and m > 0, we denote by
Exp(N,,0,m) the space of entire functions f on the complex Hilbert space
N, such that [|f|lgpm = sup,ey, |f(z)|e M=) < 400, Then the spaces
Fy(N') and Gyp(N) are represented as

Fyo(N') = pQIN Exp(N_,,0,m)
m>0

Go(N) = peUﬂ\Or Exp(N,,0,m),
m>

and equipped with the projective limit topology and the inductive limit topol-
ogy respectively. The spaces Fy(N') and its dual Fy(N') equipped with the
strong topology are called the test functions space and the distributions space
respectively.

Let p € IN and m > 0, we define the Hilbert spaces

Fpm(Ny) = {f = (fa)2g, fu € NE™ 370, 2m ™| fu]2 < +o0}

n>0

Gom(N_p) = {6 = (60) 20, b € NZ 1 3 (01,)2m"|hn|2, < +00},

n>0

B

where 0,, = inf,~¢ <5, n € IV, and put

n o9

Fy(N) = Ll Fy.m(Np),
m>0
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!
GQ(N) = eriﬂg Gg,m(N_p).
The space Fy(N) equipped with the projective limit topology is a nuclear
Frechet space [3], and Gy(N') carries the dual topology of Fy(N) with respect
to the C-bilinear form < ., .>:
<6, f>=3 g, fu) , 6= (da) € Gs(N') . ['=(fu) € Fo(N).
n>0

It was proved in [3] that the Taylor series map, denoted by S.T', yields
a topological isomorphism between Fy(N') (resp. Gy-(N)) and Fp(N) (resp.
Gy(N')). Then the action of a distribution ¢ € Fj(N') on a test function
f € Fy(N') is given by

Lo f> =<6 f>,

where ¢ = [(S.T)*]7X(¢) and f = (S.T)(f). It is easy to see that for every
£ € N, the exponential function e : 2 — €€ | 2 € N’ belongs to the
test space Fy(N') for any Young function §. Then we define the Laplace
transform of a distribution ¢ € Fj(N') by

B(8) =< d,ee > , € N.

In [3], the authors prove the important duality theorem: the Laplace trans-
form realizes a topological isomorphism of Fj(N') on Gy« (N).

In this paper we develop a new convolution calculus over the generalized
functionals spaces Fy(N'). Unlike the Wick calculus studied by many au-
thors [7][10][12], the convolution calculus is developed independently of the
gaussian analysis. In fact, we define the convolution product ¢; * ¢9 of two
distributions ¢y,p2 in Fy(N') by a naturaly way using convolution opera-
tors. Then we give a sens to the expression f*(¢) =Y, fnd*", for any entire
function f(z) = Y50 fn2™ , 2z € C with exponential growth, and for any
distribution ¢ € F4(N’). In paticular, the important convolution exponential
functional exp*d = 3,5 %, wich cannot be in general an element of the
usual white noise distributions spaces introduced in [8], is well defined in the
Fy(N')-spaces. This permits to solve some stochastic differential equations in
the distributions spaces of type F,(N'). Moreover, this solutions as elements
of the Fj(N')-spaces have more regularity and properties than those of the
bigger distributions space (N)~! of Kondratiev-Streit type, systematically
used for example by Oksendal in [13].
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2 Convolution of distributions

In infinite dimension complex analysis [2], a convolution operator on the test
space Fy(N') is a continuous linear operator from Fy(N') into itself which
commutes with translation operators.

Let © € N', we define the translation operator 7_, on Fy(N') by

T_20(y)=plx+y), ye N, pe Fy(N').

It is easy to see that 7_, is a continuous linear operator from Fy(N') into
itself. Now, we define the convolution product of a distribution ¢ € Fp(N')
with a test function ¢ € Fy(N’) as follows

¢rp(r) =<, Tap>, z€N.
If ¢ is represented by ¢ = (én)n>0 € Go(N'), then
pxp(n) = 3@, p™),
n>0
where for every integer n € IN

P = 3 KO bk, o).

k>0

A direct calculation shows that the sequence (¢9(™),,5 is an element of Fy(N)
and consequently ¢ * ¢ € Fy(N'). It was proved in [4] that T is a convolution
operator on Fp(N') if and only if there exists ¢ € Fy(N') such that

T(p) = ¢x@, Yo Fp(N). (2)

We denote the convolution operator 1" by T},. Moreover for every ¢ € Fy(N')
we have

Ts()(0) =< ¢, 0 > .

Let ¢1,p0 € Fy(N') and Tp,,T,, be the associated convolution operators
respectively. It is clear that the composition T}, o T}, is also a convolution
operator. Consequently there exists a unique element of Fj(N') denoted by

¢1 * ¢ such that

Ty, 0Ty, = Ty vp,- (3)
The distribution ¢; * ¢, defined by (3) is called the convolution product of
¢ and ¢o.



Proposition 1 For every ¢ € Fy(N) we have
L Pr#a, 0> = [(d1x¢2) * ©](0)
= [¢1 % (02 9)](0).
Moreover, ¥ ¢1, ¢po € Fy(N') it holds that

b1 % b2 = 1 6s . (4)
Proof
Let ¢ € Fp(N'), in view of (2) and (3) we obtain

[(p1 % P2) * ©](x) = [p1 % (2 x @)](x) , Vo € N".

In particular if we put x = 0 then we get

L @1 * P2, 0 >= [p1 * (d2 * )] (0),

from wich follows (4) by taking p(z) = /™% | ¢ € N. u

Let L£§ be the space of convolution operators on Fy(N'). Taking (3) into
consideration, we immediatly obtain

Lemma 1
(fé(Nl)a*) —>( gao)
Qb — T¢

s an isomorphism of algebra.

It follows from (4) that (Fj(N'),*) is a commutative algebra. Hence we
deduce from lemma 1 that so is (£§,0) .

Theorem 1 Let v be a Young function on IR, wich does not necessaerily
satisfy limg_, 00 22 = 400 and f € Exp(C,~,m) for some m > 0. Then

x

for every distribution ¢ € Fy(N'), the functional f*(¢) defined by

—

(@) = £(9) (5)
belongs to Fi(N'), where X = (yoe? ).



Proof
By the duality theorem, it is sufficient to prove that f(qAS) € G+ (N). In fact
let ¢ € Fy(N'), then there exist p € IN,;m' > 0 and ¢ > 0 such that

|$(§)| < el el ¢ e N
On the other hand there exists ¢ > 0 such that
MOl et 2 e C.

Then combining the last inequality we get

7,0 (m

(@) < cetmee™ ™) ey
{ cen@ ) e e <

< . '
— 0% (cmm’|€|p) .
cele ) if omd > 1.

This inequality with the holomorphy of f(¢) on N show that f(¢) € G- (V).
n

If we take y(z) =z, z € IRy and f(2) =e*, z € C in theorem 1, we
get the following result

Corollary 1 Let ¢ € Fy(N'), then the convolution exponential function of
¢ , denoted by e*?, is an element of *7:(139*)*(N,)' If in addition ¢(&) is a
polynomial in € of degree k € IN , k > 2 then e*® € Fy(N'), where \(z) =
x%, x> 0.

A similar result of corollary 1, in the particular case where QAS is a polynomial,
was proved in [12] with Wick product.

3 Applications to stochastic differential equa-
tions

A one parameter generalized stochastic process with values in Fj(N') is a
family of distributions {¢, t € I} C Fy(N'), where I is an interval, without
loss generality we can assume that 0 € I. The process ¢, is said to be con-
tinuous if the map ¢ — ¢, is continuous. In order to introduce generalized
stochastic integrals, we need the following result proved in [17].
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Proposition 2 [17] Let (¢n)n>0 be a sequence in Fy(N'). Then (¢py) con-
verges in Fy(N') if and only if the following conditions hold :
(D1) There exist p > 0,m > 0 and ¢ > 0 such that for every integer n

6 (6)] < c e MEl) v e e N.
(D2) The sequence $n(§) converges in C for each £ € N.

Let {¢:}er be a continuous Fy(N')-process and put
t n—1

:—Z¢tk TLEW* el

o

It is easy to prove that the sequence (¢n) is bounded in Gy- (N') and for every
€ €N, (¢n(€))n converges to J¢ ¢,(€)ds. Thus we conclude by proposition 2
that (¢n) converges in Fy(N'). We denote its limit by

t
R T . / 1
/0 Gsds := nl_l)I_Poo b in Fy(N').

Proposition 3 E, = [} ¢,ds , t € I is a continuous Fjy(N')-process which

satisfies
£ t
/ ¢sds:/ B.ds.
0 0

Moreover, The process Fy is differentiable in Fy(N') i.e. % =¢;,tel.

Proof

Since the map s — ¢, € Go-(IN) is continuous, {¢, ,s € [0,#]} becomes
a compact set, in particular it is bounded in Gy-(N) i.e. there exist p €
IN', m > 0 and C}; > 0 such that for every £ € N, we have

|6,(6)] < Cp e b v s € [0, 4]. (6)

Then inequality (6) show that the function & — [} b(€)ds belongs to
Go-(N). Consequently the pointwise convergence of the sequence of func-
tions (¢,) to J¢ ¢yds becomes a convergence in Gy-(N) and we get

‘- t
/¢sds:/ B.ds.
0 0
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Let ty € I and let € > 0 such that [ty — ,to + ¢] C I. It then follows from
(6) that

~ ~ b~
|E: — Ello pm < /t||¢5||9*,p,md5
0
< |t = 0| Croe-

This proves the continuity of the map t € I —» E;, € Gy-(N) which is
equivalent to the continuity of the process E;. By the same argument we
prove the differentiability of E;. [ ]

3.1 Stochastic Volterra equation

Let J : [0,T] — Fp(N'),K : [0,T] x [0,T] — Fy(N') be two continuous
generalized processes. We consider the stochastic Volterra equation

t
E(t) = J(t) +/ K(t,s)* E(s)ds, 0<t<T. (7)
0
Theorem 2 Suppose that there exist p € IN , m > 0 and M > 0 such that
||?(t7 5)||9*,p,m S M ) Vo0 S S S t S T7

then there exists a unique continuous Fe-\.(N")-process that solves (7). The
solution E(t) is given by

t
E(t) = J(t) + / Hit,s) % J(s)ds (8)
0
where H(t,s) = 3,51 Ku(t, s) with K, given inductively by
t
Kni(t,s) = / K,(t,u) * K(u,s)du, n>1

and K, (t,s) = K(t,s).

Proof
The solution is given by Picard iteration. In fact, put Ey(t) = J(¢) and
consider

Bualt) = 1)+ [ "K(t5) % Ey(s)ds, n>0 (9)
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By iteration we get
t
E,(t) = J(t) + / H(t,5) * J(s)ds, n>1
0

where H,(t,s) = Y/, Ki(t,s). Now, we use proposition 2 to prove that
for every t,s € [0,T] the sequence H,(t,s) converges in ]—"(’69*),(]\[/), By
assumption we have

Kt 5)(€)] < M) | ¢ € N,

Thus by induction we get

|f/€l(t, S)(f)| < Ml(t(l__isi)_!l(eg*(mﬁb))l_ (10)

Then, summing up both sides of (10) we come to

5 S I
[Ha(t,s)(O)] < > M (e 0mleley
P (-1
< Meé’ (mlflp)exp[M(t _ 8)60*(m\§\p)]
* M2 t_ 2 *
< M mlel) g M= 8 i)

2
M6M2(t_8)2 exp(ee*(3m|£|p) ) )

IN

Hence we get the first condition (D1) of proposition 2. For the second
condition (D2) we just note that for every 0 < s < ¢ < T and £ € N,
(H,(t, 5)(€))n>0 is a Cauchy sequence in C. We have thus proved that
the infinite series H(t,s) = ¥ ;51 K;(t,s) converges in .7-"(’89*)*(N’) . Con-
sequently, the sequence (E,(t))n>0 converges also in Fe-)-(N') to E(t) =
J(t)+ [y H(t,s)xJ(s)ds. By equation (9) , E(t) is a solution of the stochas-
tic Volterra equation. Finally, we use the Granwall inequality to prove the
uniqueness. [

3.2 Differential equations associated with convolution
operators

Let 6, and 6, be two fixed Young functions, and let {¢;};c; be a continuous
5, (N')-process. Consider the Cauchy problem
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B—It]: oexU, tel
{ GO)= f € Fa(N). (1)

Theorem 3 If there exists constant C' > 0 such that e’i) < C 03(r) for r

large enough, then the Cauchy problem (11) has a unique solution given by
L psd

Ult,z) = (e o *% « f)(z) , x e N', t € I. (12)

Moreover, U(t) € Fp,(N') Yt € 1. If in addition &t(f) is a polynomial in &
of degree k > 2, ¥ t € I, then U(t) given by (12) is also the unique solution
of equation (11) with values in Fy,(N') whenever lim,, a:—g«) .

Proof
The solution U(t) is obtained by Picard iteration as in the proof of theorem
2. |

As an application of theorem 3 we give the heat equation associated with
Gross Laplacian. In fact,
let p(z) = ¥,50(x®", ™) € Fy(N). The Gross Laplacian [5], [10] of ¢ at
z € N' is given by

Agp(r) = 2;0(% +2)(n+ 1)@, (1, 0"))

where 7 is the trace operator defined by

(r,é@n)y =(&n), &neN.

Let v be the standard gaussian measure on X' defined by its characteristic
function [y e¥9dy(y) = e5, see [6],[7],[11] [14].

Corollary 2 Let 6 be a Young function satisfying lim,_, @ < +o0 and

f € Fo(N'). Then the heat equation associated with the Gross Laplacian
ou

1
ot 2
has a unique solution in Fp(

Ut,x) = /X f o+ Viy)dy(y) .

AU, t>0, U0) =, (13)

N') given by
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Proof
In fact, the Gross Laplacian Ag is a convolution operator. The distribution
associated to Ag is ¢, = (0,0, 7,0, - - -), then it follows from equality (2) that

Aa(p) = dr x @, YV p € Fp(N').

Thus the heat equation (13) is equivalent to

Since gg% (&) = <§—2§> , £ € N is a polynomial of degree 2, then it follows from
theorem 3 that the equation (13) has a unique solution in Fy(N') given by

Ut,z) = ("% % f)(z), t>0.

On the other hand, since "% (¢) = ¢"“5% =7 4(¢), € € N, t > 0 where

7vy; is a gaussian measure on X' [10], then the solution U(t) can be expressed
as

Ut,z) = (v + f) () = /Y’ fl@+Viy)dy(y), t>0, €N
]
Let {¢:} and {M;} be two continuous Fj(N')-processes. Consider the

initial value problem

dX
B g Xt M X(0)= X € BV) (14)

Then using the Laplace transform we prove the following theorem

Theorem 4 The stochastic differential equation (14) has a unique solution

in f{eg*)*(N’), given by

t t t
X, =X, * et Jo 9sds 4 / e Js dudu Mds
0
The next example is an application of theorem 4 :

In fact, let ¢(¢), t > 0 and F(z), = € IR’ be two continuous Fj(N’)-
processes. Suppose that there exist p € IN , m > 0 and a positive function
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B € LY(IR,d)) such that |F(x,€)| < B(z)e? ™€) Then the heat equation
with stochastic potential

8U(txw) _ %2 Agu(t,z,w) + ¢(t,w) x U(t, z,w), t >0,z € IR?
(0 r,w)= F(r,w), v e R?

has a unique solution given by

2
_lz—yl
e 202t

Ut ) = eap ([ o(s)ds) « [ FO)———dy.

2nto

Moreover, U(t,x) is a continuous ]—"(’eg*)*(N’)—process. In particular if ¢(t) =
W (t) the white noise, then U(t,x) becomes a continuous Fj(N')-process. See
[15] in the case 0(z) = x*.

Now, we give an example of non-linear stochastic differential equation:
Let {¢:} be a continuous Fj(N')-process and consider the Verhulst equation

D% Xy (X~ 1) xdy, t20
{)?’t(o) :xotG]O,lt[ t 9)

In an obvious manner we show that
— 1

X, = . t>0 (16)
1+ (a%0 — 1)ef0 ¢sds

Lemma 2 [4] Let f € G,(N)such that f(z) #0, Yz € N, then % € G,(N).

Since the function § — exp([! §s(€)ds) is an element of G,e- (), the above
lemma shows that X; € G.o«(N). Then using the duality theorem, X; given
by (16) is the unique continuous Flooeys (N'")-process that solves equation (15).

In particular if &t(g) is a polynomial in £ of degree k£ > 2 then the solution
X; becomes a continuous 7—"’ (N’) -process.

Remark
If the Young function 6 satisfies lim,_, |« % < 400, we get [3]

Fo(N') — LA*(X',v) = Fy(N), (17)
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where 7 is the standard gaussian measure on X'. In this case the test space

Fy(N') coincides with the space (X), introduced in [1]. In addition, the

function £ — e@, ¢ € N becomes an element of Gy-(N) and the usual

S-transform, denoted by S, is obtained by

S(6)(€) = d&)eF, €€ N,g € FyN). (18)
Unlike to the Laplace transform, we see here that the chaotic transform S
can not be defined on all spaces of generalized functions Fy(N'), it is defined
only on the space Fy(N') with lim, % < 400 . Recall that in the
gaussian analysis, the Wick product of two generalized functions ¢ and
in Fy(N'), denoted by ¢ ¢ 1), is the unique distribution in Fj(N') such that
S(po1p) =S¢ S, see [7] [10]. Then using (18) we can derive the following

relationships between convolution and Wick product

pot=gxtrvand g1 = oy os (19)

where v and v 5 are two distrubitions in F,(N') given by there Laplace
transforms 7(€) = e (&4 and Js5(€) =€l ceN.

A similar convolution calculus can be developed if we replace the space
F3(N) by a space of test functions with several variables introduced in [16]
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