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ABSTRACT. An approach to the description of the Gibbs states
of lattice models of interacting quantum anharmonic oscillators,
based on integration in infinite dimensional spaces, is described
in a systematic way. Its main feature is the representation of the
local Gibbs states by means of certain probability measures (lo-
cal Euclidean Gibbs measures). This makes possible to employ
the machinery of conditional probability distributions, known in
classical statistical physics, and to define the Gibbs state of the
whole system as a solution of the equilibrium (Dobrushin-Lanford-
Ruelle) equation. With the help of this representation the Gibbs
states are extended to a certain class of unbounded multiplication
operators, which includes the order parameter and the fluctua-
tion operators describing the long range ordering and the critical
point respectively. It is shown that the local Gibbs states con-
verge, when the mass of the particle tends to infinity, to the states
of the corresponding classical model. A lattice approximation tech-
nique, which allows one to prove for the local Gibbs states analogs
of known correlation inequalities, is developed. As a result, cer-
tain new inequalities are derived. By means of them, a number
of results describing physical properties of the model are obtained.
Among them are: the existence of the long-range order for low
temperatures and large values of the particle’s mass; the suppres-
sion of the critical point behaviour for small values of the mass
and for all temperatures; the uniqueness of the Euclidean Gibbs
states for all temperatures and for the values of the mass less than
a certain threshold value, dependent on the temperature.
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1. INTRODUCTION

Gibbs states of quantum systems living on a lattice IL are constructed
as positive normalized functionals on von Neumann algebras whose
elements (observables) represent physical quantities characterizing a
given system (see [26], [51]). If the algebra of observables of each
subsystem in a finite A C IL may be regarded as a C*—algebra of
bounded operators on a Hilbert space, the construction of the Gibbs
states is performed within an algebraic approach, which now is quite
well elaborated [26]. But if one needs to include into consideration also
unbounded operators, the situation becomes much more complicated
and the construction of Gibbs states even for simple models turns into
a very hard task (for more details on this see the discussion in [49],
Chapter IV, pp. 169, 170 and [50]).

In 1975, in [1], an approach to the construction of Gibbs states of lat-
tice systems of interacting quantum particles performing D-dimensional
oscillations around their equilibrium positions has been initiated. This
approach employs the integration theory in path spaces (see also [2],
[16], [17], [20], [43], [44], [51], [60], [76]). It is based on the fact, dis-
covered by R. Hgegh-Krohn [48], that the C*-algebra of observables of
every subsystem in a finite subset A C IL is spanned by the operators
of a certain type constructed with bounded multiplication operators.
The essence of the approach is that the states at a given temperature
T = (! taken on such operators (Green functions) are written as
expectations with respect to a probability measure ji3, on a certain
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infinite-dimensional space, obtained as a perturbation of a Gaussian
measure. Then, for ‘nice’ perturbating functions, it was proved that,
in the thermodynamic limit when A 7 IL, the weak limit pga = g
exists. The Gibbs state of the whole system as a functional was re-
constructed by means of 3, analogously to the case of the Euclidean
quantum field theory (see [1], Section 4, in particular Theorem 4.1 for
the reconstruction of the Gibbs state). That is the reason why pg is of-
ten called a Euclidean Gibbs state of a quantum system. This approach
was further developed in [16] — [20], [43], [44], [52]. As a result, it has
become possible to develop substantially the theory of Gibbs states
in the models of quantum anharmonic crystals employing unbounded
operators. In particular, for a model of this type, the convergence at
the critical point of the states taken on fluctuation operators - the only
result of this kind obtained for quantum models - was proven [4]. In
this article, we intend to describe the most important aspects of this
approach in a systematic way. Though being mainly a review article
based on our works [5] — [8], [18], [19], [52] — [56], this paper contains
some new results (see the last paragraph of this introduction).

Since the Euclidean Gibbs state 43 is a measure, in order to estab-
lish the set of all possible such states, one can apply the machinery
of conditional probability distributions, known in classical statistical
physics (see [33], [34], [42]). This was done in [8], [11] — [14], [63].
Certain information regarding the properties of the systems with large
values of D may be obtained by means of perturbation arguments with
respect to 1/D, as it has been done in [15]. Starting from [1], as a
main tool in studying such states, various cluster expansion techniques
were employed [10], [59], [62], [64], [68]. As a result, the existence and
certain properties of the Euclidean Gibbs states (ergodicity, decay of
correlations) were obtained for high temperatures [64], or for all tem-
peratures in the case of the one-dimensional lattice [62], [64]. In [59],
for small values of the particle’s mass, the convergence of correspond-
ing cluster expansions was proved for all values of the temperature
including zero. This made possible to prove the existence of tempera-
ture and ground states and to describe a number of properties of these
states. The convergence of cluster expansions implies analyticity in the
coupling parameter which, for systems of particles moving on compact
manifolds (considered in [10]), or for the case of ‘gentle’ anharmonicity
(studied in [1]), corresponds to the uniqueness of the Euclidean Gibbs
states. However, for systems with unbounded oscillations (and hence
described by unbounded operators), as in the case considered in this
work, it is impossible to recover the uniqueness of the states from the
convergence of a cluster expansion. An alternative approach consists in
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establishing correlation inequalities, as it has been used in solving var-
ious problems of classical statistical physics [25], [27], [35] — [41], [47],
[61], [74], [83]. To apply such inequalities to the Euclidean Gibbs states
one should approximate them by classical (i.e. non-quantum) Gibbs
measures. In the Euclidean quantum field theory this is known as the
lattice approximation technique [75], [76]. As it has been mentioned
above, an essential role in the theory of equilibrium properties of the
models considered is played by unbounded operators. Starting from
the early seventies great efforts to generalize the traditional algebraic
schemes of the construction of states on C*-algebras to the algebras of
unbounded operators have been done [67], [71], [72]. The status quo in
this domain, as well as an extensive bibliography, may be found in [49],
[50]. It should be stressed here that within such an algebraic approach
only the states for finite families of particles of the type considered in
this work have been constructed. Thus the Euclidean approach remains
so far the only method which allows one to construct the Gibbs states
for the infinite systems of quantum particles described by unbounded
operators.

We consider the following quantum lattice system. To each point
of the lattice I = Z% d € N, there is attached a quantum particle
(oscillator) with the reduced mass m = myy,/h* (m,, being the phys-
ical mass), which has an unstable equilibrium position at this point.
Such particles perform D-dimensional oscillations around their equilib-
rium positions and interact among themselves via an attractive poten-
tial. Similar objects have been studied for many years as quite realistic
models of crystalline substance undergoing structural phase transitions
— one of the most spectacular phenomena of contemporary statistical
physics (see [29], [30], [70], [80]). They also are used as parts of the
models which describe strong electron-electron correlations caused by
the interaction of electrons with oscillating ions [40], [81], [82]. In the
case considered, the phase transition is connected with the appear-
ance of macroscopic displacements of particles (a long-range order),
which break the O(D)-symmetry possessed by the model, when the di-
mensions d, D, the mass m, the temperature 3!, and the parameters
of the potential energy satisfy certain conditions. These phenomena
were studied mathematically in various papers, see e.g. [18], [52], [66],
[85], [86]. The essential problem in this context is to understand how
does a quantum model become more and more classical, i.e. how (and
whether) do the quantum Gibbs states converge to the corresponding
classical Gibbs states. On the other hand, of the same importance is
to understand the role of quantum effects in phase transitions in such
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models. As was justified on the physical level [70] and observed ex-
perimentally (see [84] and Chapter 2.5.4.3 of the book [29]), quantum
effects may suppress the long-range ordering. For the one-dimensional
oscillations (i.e. for D = 1), this was proved in [86]. Later on it was
shown in [5], [6] (D = 1), and [53], [54], [55] (D € N) that not only the
long-range order but also any critical anomaly of the displacements of
particles from the equilibrium positions are suppressed at all tempera-
tures if the model is ‘strongly quantum’, which may occur in particular
if the mass m is small enough.

Another important problem of the mathematical theory of models
which exhibit such phenomena is the uniqueness of their Gibbs states.
Such uniqueness would imply the absence of all critical anomalies and
all the more of the long— range ordering. Therefore, one may expect the
uniqueness of Gibbs states at all values of the temperature for ‘strongly
quantum’ models. First the uniqueness of the Euclidean Gibbs states
for the model considered in this work (for D = 1) was proved to occur
under conditions which were irrelevant to the ‘quantumness’ of the
model (e.g. for high temperatures). This was done in [11] — [14] by
means of logarithmic Sobolev inequalities. Then in [8] the mentioned
uniqueness was proved to hold for D = 1 and for every fixed inverse
temperature 3 if the mass m is less than some threshold value m,
(depending on ).

The present paper is organized as follows. In Section 2 we describe
the models which will be considered throughout the article. Neces-
sary facts from the theory of local Gibbs states of such models are also
presented there. Thereafter, we introduce a Gaussian measure on an
infinite-dimensional Hilbert space. This measure plays a key role in
our approach. Then its properties, which we use in the sequel, are de-
scribed in details. By means of this measure we define local Euclidean
Gibbs measures corresponding to different boundary conditions. The
Green functions constructed by bounded multiplication operators for
the periodic and zero boundary conditions are written as moments of
the Euclidean Gibbs measures. Moreover, by means of such measures,
we introduce the Green functions corresponding to nonzero boundary
conditions. Then we give the definition of the Euclidean Gibbs state
for the whole system as a solution of the Dobrushin-Lanford-Ruelle
equation. In Section 3, the results of which were announced in [7], we
show that such states converge, when m — +o00, to states isomorphic
to the Gibbs states of the corresponding classical models. Section 4
is based on [53] — [56]. It is dedicated to the extension of the Green
functions (and hence of the local Gibbs states) to a certain class of
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unbounded operators, which includes the order parameter and fluc-
tuation operators describing the long-range ordering and the critical
points of the models considered. In Section 5 we prove that the local
Euclidean Gibbs measures may be approximated by finite-dimensional
measures corresponding to general ferromagnets. This allows us to
prove analogs of known correlation inequalities for the moments of the
local Euclidean Gibbs states (Section 6). In Section 7 we use these
inequalities to prove a number of new inequalities, such as scalar dom-
ination, zero boundary domination, refined Gaussian upper bound. In
Section 8, which is based on [5], [6], [8], [18], [52] — [56], we apply these
results to the description of certain physical properties of the models
considered. Thus, we prove the existence of the long-range order (The-
orem 8.1). By means of the scalar domination inequality we show that
the fluctuations of the displacement of particles remain normal, at all
temperatures and for all dimensions of the oscillations, if the energy of
zero-point oscillations of a given particle exceeds a certain value pro-
portional to the energy of its interaction with the rest of the particles.
In particular, this occurs when the smallest distance between the en-
ergy levels of the corresponding one-dimensional isolated oscillator is
large enough or its mass is small enough (Theorem 8.3). Under a sim-
ilar condition we prove that the FEuclidean Gibbs state of the whole
system is unique (Theorem 8.4). To this end we use the zero boundary
domination inequality. General infinite dimensional methods we use in
this article may be found in [22], [58].

Now let us mention which new results are contained in the present
article. In Section 2 we give a complete description of the properties
of the basic Gaussian measure (Lemmas 2.2 — 2.4). In Section 3 we
give a complete proof of Theorems 3.2, 3.3 - in [7] these theorems were
only announced. In Section 4 we prove that the Green functions, con-
structed in the Euclidean region by certain unbounded operators, may
be analytically continued to the same domain as the functions corre-
sponding to bounded operators, although the former functions cannot
be bounded uniformly in this domain (Theorem 4.1). Here we also
prove that the Green functions corresponding to nonempty boundary
conditions, and constructed by certain unbounded multiplication op-
erators, are continuous in the Euclidean domain (Theorem 4.2). The
lattice approximation technique was known in the context of quantum
fields at least since the seventies [75]. Section 5 gives a version of this
technique with a complete proof adapted to the models we consider.
The proof of Theorem 7.4 is also new. A similar statement was proved
in [6] but by means of a much more complicated technique. Theo-
rem 8.2, proved in Section 8, is a generalization of a similar statement
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proved in [53]. Finally, the uniqueness of Euclidean Gibbs states (The-
orem 8.4) here is proved for more general models than it was done in
8]-

2. EUCLIDEAN FORMALISM FOR QUANTUM GIBBS STATES

2.1. Local Gibbs States. As it was mentioned above, we consider
a countable system of interacting quantum particles with the reduced
mass m, performing D-dimensional oscillations around their equilib-
rium positions which form a lattice I = Z? The oscillations of the
particle having its equilibrium position at [ € IL are described by the
momentum and displacement operators {p;, ¢} obeying the canoni-
cal commutation relations and densely defined on the complex Hilbert
space H; = L*(R"”). The whole system is described by the formal

Hamiltonian
1
H= > dwlqar) + Y Hi, (2.1)
LIEl leL
Hy = 5 (o) + 5000 + V(@) 2.2)
I — om pi, P 9 q, q q), .
where (., . ) stands for the scalar product in R” and djy form a

dynamical matrix. The one-particle potential V' is supposed to be
O(D)-invariant, i.e.,

V(z) = o((z,2)). (2.3)

Generally, regarding the function v we will assume that it is continuous
onR, ¥ [0, +00) and obeys the following condition

W) >ag+h,  VECR,, (2.4)

with certain positive @ and b € R. Sometimes we will impose more
restrictive conditions:

(V1) wvis a polynomial of order r > 2, convex on Ry ;
(V2) v has the form

1 - s
V() = JaE+ Y bE, r>2 a€R b>0, 5 >0  (25)

5=2
Clearly, a function v which obeys (V2), also obeys (V1). For p € Z,
let

Sp = {fﬂ = (@)iep, | Y L+ D7} < OO},

lell
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where |/| is the Euclidean distance on IL = Z¢ C R?. Let also

SE NS, 8= s, (2.6)

peEN peN

These sets, equipped with the projective-limit (S) and inductive-limit
(8') topologies respectively, constitute a mutually dual, with respect
to the Hilbert space Sy = [?(IL), pair of Schwartz spaces.

The dynamical matrix (djy ), ren is supposed to possess the following
properties:

(D1) dypy is invariant under translations on I;
(D2) dy <0 (ferroelectricity), dy = 0;
(D3) for every [ € IL, (dy)yer belongs to S.

The formal Hamiltonian cannot be defined directly and is ”repre-
sented” by local Hamiltonians H, — indexed by finite subsets A C IL
essentially self-adjoint and lower bounded (due to (2.4)) operators act-
ing in the complex Hilbert space H, = L*(RPM), (| - | stands for
cardinality). In standard situations, also in this article, it is enough to
consider Hamiltonians indexed by the boxes
A={l=(y, ..., W) |0<; <, j=1,....d; Iy <lj, 9,l; € Z}.
For a box A, let P(A) denote the partition of IL by the boxes which are
obtained as translations of A. Let also T be the group of all translations
of IL, and T(A) C ¥ be its subgroup consisting of the translations which
generate P(A), i.e. P(A) = {t(A) |t € T(A)}, where t(A) = {t(l) |l €
A}. Then the dynamical matrix (d2);rea, obeying periodic conditions
on the boundaries of A, and the corresponding local Hamiltonian Hy
are introduced as follows

diy = min{dyqy @ t € T(A)}, (2.7)

1
HA — 5 Z dﬁ,(ql,ql/) —|— ZH[ (28)

LIEA leA

The dynamical matrix (di));rea is invariant with respect to the trans-
lations on the torus which one obtains by identifying the boundaries of
the box A. These translations constitute a factor-group ¥/%(A). The
local Hamiltonian which corresponds to the zero boundary conditions
is

_ 1
Hy" =35 > dwlqqr)+ ) H. (2.9)

LI'eA leA
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For a box A, a local periodic Gibbs state vz at a given value of the
temperature 7' = 3! is defined on 2, — the C*-algebra of all bounded
operators on H,, as the following positive normalized functional
trace (Aexp (—FHy))

trace exp (—FHy)

Va.a(A) = (2.10)

The state fyg?)A corresponding to the zero boundary conditions is defined

in the same way but with the Hamiltonian H/(XO) (2.9) instead of Hjy.
Given a box A and ¢t € R, we introduce the following automorphisms
of Ax

aM(A) = exp (itHy) Aexp (—itHy) , (2.11)
a,?’A(A) = exp (itH/(\O)) Aexp <—7}tH§0)) .

A significant role in the construction of the Gibbs states on the algebras
A, is played by multiplication operators. Recall that, for a function
A : RPM - C, the multiplication operator A € 2, acts on ¥ € H, as
follows

(AT) (z) = A(z)¥(x).
The components ql(a), a=1,2,...,D,1 € A of the displacement oper-
ator are multiplication operators, but they do not belong to 2, since
they are unbounded. R. Hgegh-Krohn in [48] proved the following as-
sertion (for more details see also [1] and [44]).

Proposition 2.1. Let ty,...,t, € R and Ay,... A, be bounded con-
tinuous functions Aj : RPIA — C. Then Uy is the smallest strongly
closed linear space containing all operators of the form

A A A
a, (Ar)ag, (A2) ... a; (Ay).
The same remains true if one replaces a with a)™.

For Ay,..., A, € Ay and ty,...t, € R, the temporal Green functions
corresponding to the periodic and zero boundary conditions are

Gg’ﬁ.__,An (ty oo tn) = vaa (0 (A1) .. 0l (4,)), (2.12)
GO (s st) =50 (@A) el (A)) . (213)

For a domain O C C", let Hol(O) stand for the set of all holomorphic
in O complex valued functions. Let also
DF L, L) €C | (2.14)
0 < 3(t) <S(tg)--- < S(tn) < B}
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By virtue of [1], Sect.3 and [48], Sect.2, we prove the following state-
ment.

Lemma 2.1. For every Aq,..., A, € Ax,
(a) GZ’IA,___’An may be extended to a holomorphic function on DE;

(b) this exstension (which will also be written as GZ’IA,___’An)

s continuous on the closure 52 of DY, moreover,
for all (t1,...,t,) € 52,

A
Goloa (s t) | S QA [[An]], (2.15)

where || - || stands for operator norm;
(c) for every &y,...,& € R, the set

def .
:{(tl,,tn)€D5|§R(t]):§], ]:1,...,’n},
is such that for arbitrary F,G € Hol(D?), the equality

F =G onD8,... &) implies that these functions
are equal on the whole DE.

The Green function Gg’?”f\.’An has the same properties.

Proof. It is known (see [23], p. 57) that the Hamiltonian Hy (2.8)
has a discrete spectrum consisting of positive eigenvalues Ey, s € N.
The corresponding eigenfunctions Wy constitute an orthonormal base
of the space L?(RP/Al). We set

HyU, = BV, Ao = (AV,, Wyr) o oiay - (2.17)
Then
GYE (b, t)
_ i ZGN (A1), , expli(ts — t1)Ey,] x
Xoeee X (An—l)sn,l,sn exp [i(t, — tn_1)Es,] X
X (An),, o, expli(ty — t, +iB)E,] (2.18)
where
Zg, = trace {exp (—BHx)}. (2.19)

Each element of the Dirichlet series (2.18) is an entire function of
(t1,...,t,). Hence its module achieves the maximal on 52 value on
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the boundaries of this set, that is at the points (¢;) = S(tp) = -+ =

S(tk) = 0 and I(tgy1) = -+ - = S(t,) = [ with k running from 1 to n.
For such (t,...,t,), one has
(afs (A1) - o, (An) exp [=BHA] Wy, W) | (2:20)
< ‘(K}c+1 KO K LKLY, U )L2(RD|A| exp [—BE;],
where
Kj=a5(4;), 0, =R({t;), j=1,...,n (2.21)

The number k£ depends on s. Obviously,
(Kt K G0 W) o

< | Kgyr - KKy .. K|
< KA ]
yielding
trace {atAl(Al) e atAn(An) exp [—BHA]} <N KAl .- | Kl Zgoa-
Moreover,
G = 114511,
since @) is a norm preserving automorphism of 2. Thus, the men-

tioned Dirichlet series converges uniformly on 52, which proves claims
(a) and (b). To prove (c) one observes that D’(&y,...,&,) is a gen-
erating manifold (see e.g. [73], p. 444), hence it is an inner unique-
ness set for the functions from Hol(D?). The latter means that every
F € Hol(D?), which is zero on this set is identically zero on the whole

D2, 0
The restrictions of the functions G#*, G*PA to DE(0,...,0), i.e.
riﬁ () = GAI, ,An(m, i), (2.22)

are called temperature (Matsubara) Green functions. Writing them in
the form of the series (2.18) one immediately concludes that they have
the following property

Fﬂ’A A (0,7 +0) :Fﬂ’A o (T1 T, (2.24)
FO’ﬁAAn(TﬁLH T +0) = FO’ﬁAAn(Tl""T”)’

for every 0 € Zj dof 0, ], where addition is modulo £.
In view of Proposition 2.1, the Green functions defined by (2.12),
(2.13) with bounded multiplication operators fully determine the states

YB.A fyg?)A. Claim (c) of the latter assertion yields in turn that these
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states are determined by the Matsubara functions (2.22), (2.23) con-
structed with such operators.

2.2. Basic Gaussian Measure. The essence of the Euclidean ap-
proach is that the Matsubara functions may be written as moments of
probability measures. We begin the construction of such measures with
the introduction of a Gaussian measure, which plays a key role in the
sequel. Given 3, let X stand for the real Hilbert space L?(Zs; — RP)
equipped with the scalar product and norm respectively

(w,w')s = / (@), (dr,  lolls = Jlw,w)s.  (225)

On this space we define the following operator
Sp = (—mAg +1)7"1, (2.26)

where Ag is the Laplacian, m is the reduced mass, and 1 is the iden-
tity operator in RP. This operator is strictly positive and trace class.
Thus it determines on X an isotropic (i.e. O(D)-invariant) Gaussian
measure Xz having the Laplace transform

[ ewltowhad wtdo) =esp {Gsooila b 22

This measure describes a D-dimensional quantum harmonic oscillator
with the mass m. Sometimes to indicate its dependence on the mass
we shall write xjf. The integral kernel of the operator (2.26) may be
written as follows

S5 (1,7') = (2.28)
_ e exp ((B— |7 = 7'))/vm) + exp(|T — 7'|/vm)
2y/m exp(3/y/m) — 1 ’

where 040/, a, ' =1, ..., D stands for the Kronecker delta. Employing
this kernel one can show that

! ! ‘D !
< (w(r) —w(T),w(r) —w(r)) > < o |7 —1'|, (2.29)

where |7 — 7|3 o min{|r — 7|, f — |7 — 7'|}. Here and further on we
write

<f >u:/fdu. (2.30)

Given 7, 7" € I3, we set

G=wr)—w(),  G=wl), |G =(& &)
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For the random variables §;, 7 = 1, 2, one can show that
2 2 p
< |§J| P >X5: [Cp < |§J| >X6] ’ pe N7 (2'31)

where (), is a constant depending only on p and D. Thus, one has from
(2.29)

< |w(r) —w(r)* >y5 < (CyD/m)P |1 — T'|g. (2.32)
Further, by means of (2.29), (2.31) one gets that
/ exp [a(w(T),w(7))] xp(dw) < 00, Va < a,, (2.33)
A3
where
2y/m  ef/Vm 1
=5 AT (2.34)
We set
Cp ={w e CZs) | w(0) =w(B)}, (2.35)
and
Cs ={w el | (Vo€ (0,1/2)) (3K,(w) > 0) (2.36)

(V7,7 € I3) |w(r) — w(T")| < Ky(w)|T — T'|g}.

Clearly, Cs is a subspace of the Banach space C'(Zg), thus in the topol-
ogy induced from this space it is also a Banach space. The periodicity
of the functions from Cj is related to the property (2.24).

Lemma 2.2. The measure xg is concentrated on Cg. There exists a >
0 such that

| explalloll bustde) < . (2.37)

Proof. The proof of the first statement follows from the estimate
(2.32) and Theorem 5.1 from [76], p. 43. Since the measure y is
concentrated on Cg O CF, one can apply Fernique’s theorem (see e.g.
[32], p. 16), which gives (2.37). O

The result just proven allows us to consider xs as a measure on the
Banach space Cg. Recall that a family of probability measures M on a
topological space X is called tight in this space if, for any € > 0, there
exists a compact subset A, C X such that u(X\ A) < ¢ for all p € M.
A measure p is called tight if the family {u} is so.

Lemmg 2.3. For everymg > 0, the family of measures {xj | m > mg}
is tight in Cg.
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The proof of this lemma will be based on a tightness criterium, for
which we take Theorem 8.2 from Billingsley’s book [24], p. 55 '. The
modulus of continuity of a w € Cg is set as follows

P(w,d) =sup{|lw(7) —w(r)| | |t = 7'|s <}, 0<d<p/2. (2.38)

Proposition 2.2. The family of measures {ug | @ € O} is tight in Cs
if and only if these two conditions hold:

(i) For each positive n, there exists an a such that

po({w | lw(0)] > a}) <mn, Voeo. (2.39)

(ii) For each positive € and n, there exists a § € (0, 3/2) such that
po({w | p(w,6) >e}) <n,  VHeoO. (2.40)

If {ug | 0 € O} is a sequence {pp | M € N}, the above condition is to
be satisfied only for M > My, with My depending on £ and n only.

To employ this criterium we shall use the Chebyshev inequality (see
e.g. [24], p- 223)

1
pol{w | F) 2 a}) < = < F >, (2.41)
which holds for any nonnegative and integrable function.

Proof of Lemma 2.3. First we prove that the condition (i) holds.
By (2.28) and (2.41) one has

X5 ({w [ [w(0)] > a}) = (2.42)
— 3w | WO > @) < - < (@(0),0(0)) >y
S D exp(f/vm) +1

- ;sg“(o,()) " 2a2y/m exp(f/y/m) - 1
oD ewp(B/ym) +1 Vm > m
= 2a2\/m, exp(f/y/mg) — 1 —

To prove (ii) we shall use the estimates obtained in [21] by means of
the Garsia-Rodemich-Rumsey lemma. For w € C3, one has (see (2.36))

d(w,d) < K,(w)8%, Vo e (0,1/2). (2.43)

! This theorem gives a criterium for sequences, but just after the proof the author
remarks how it can be generalized to an arbitrary family of measures.
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Given o € (0,1/2), let us take p € N such that p > (1 — 20)~!. For
this o and p, one has by 2.41) and (2.43)

3w | 6(8) > <)) = (2.44)
= 3 | w5 > ) < 2

Taking into account (2.32) and applying the estimate (3b) from [21],
p. 203, we get

< Ky (w)]?P >

1 C,,DP
< [Kp(w)?? >pm< — - —— 22—
Ko >y < o5
with a constant C),, depending only on D, p, and 0. Employing this
estimate in (2.44) one gets (2.40). O
As a strictly positive trace class operator, Sg possesses eigenvectors,
the set of which, £3, spans the space Xjs. This set may be written as

follows

Eom{e | keky, K Sy ven), 2.45
’ 3

/8])(1—20’)

Y

¢k = (f)ac1.p> € (T) =ex(T)?,

ek(T):\/%COSkT (k> 0), ek(T):—\/%sinkT (k <0),

€o (7_) = 1/\/57
where 1, o = 1,..., D form the canonical base of R”. Let P2, k €
K, @« =1,...,D stand for the projector from X3 onto the subspace
spanned by €f. Then the operator Sz may be written in the canonical
form

Sp = XD: > (mk? +1)7' P (2.46)

a=1 kel

Below we consider the sequences {xxa | M € Z,}, Z “ Nu {0}

of Gaussian measures on X3 having zero means and the covariance
operators

D
Swar=_ > Apr A >0 (2.47)

a=1kek

We shall assume that each a sequence {A\(M) = ()\,(CM))ke;c | M € Z.}
converges in [ to A = ([mk? + 1] )rex, when M — oo. Therefore,
the sequence of operators {S\ | M € Z.} converges to Sg in the
trace norm. Given a measure X, (resp. Xxg), a finite-dimensional
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approzimation X(AN]\Z[ (resp. X(ﬁN)), N € 2Zy,ie., N =2L, L € Z,

is the measure which has the covariance operator S/(\]g& (resp. SEN)),
given as follows

D
N M) pa
St =23 A, (2.48)

a=1 kel y
D
ST =33 (mk? 1)1 P
a=1 kel y
Here
o 2
Ky {kzgmm:—(L—l),...,L}. (2.49)

Throughout this paper we deal with the weak convergence of measures
on metric spaces (see e.g. [24], [65]). For a measure space (X, B(X)),
where X is a real separable metric space and B(X) is the Borel o-
algebra of its subsets, let M (X) be the space of all probability measures
defined on X. Let C,(X) stand for the space of all bounded real-
valued continuous functions on X. The weak topology on the space
M(X) is defined in such a way that a net of measures {1y} converges
to € M(X) (then we write p9 = 1) in this topology if

/fdu9—>/fdu, Ve Cp(X).

Regarding the measures on separable Hilbert spaces, Lemma 5.1 of [65],
p.182 implies the following

Proposition 2.3. Let a net of Gaussian measures {xp} on a separable
Hilbert space H be given. Let also each xy have zero mean and covari-
ance Sy, which is a positive trace class operator on H. Suppose that
the net {Sy} converges in the trace norm to an operator S. Then there
exists a Gaussian symmetric measure on H, such that its covariance
operator is S and xg = x in H.

Employing this fact we prove the following lemma.

Lemma 2.4. Let the sequence {Sxp | M € Z.} converges to Sz in
the trace norm. Then the sequence of measures {xam | M € Z}
converges weakly in the Banach space Cg to the measure xg, i.e., for
every F' € Cy(Cgs), one has

/c Flpou(ds) = [ F@plds), M -
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Proof. By Proposition 2.3 the assumed convergence of the sequence

{Sx\.m} yields the weak convergence in Xg of the sequences of finite-

dimensional approximations XE\]\Z to Xg ) for every N € 2Z,. Since

all these measures are concentrated on finite-dimensional subspaces of

Cs C X3, each a sequence {XE\N]&, | N € 2Z .} converges weakly to ngN)

also in Cg. If we show that the sequence {x\n | M € Z,} is tight in
Cg, the stated convergence will follow from Theorem 8.1 of Billingsley’s
book [24], p. 54. One observes that

< (w(0),w(0)) >y, ;= ZS (0,0) = traceSy u-

Since the sequence {traceS) s | M € Z.} is bounded, the condition
(i) of Proposition 2.2 is satisfied. Similarly,

< (w(T) —w(r"), w(T) = w(T) >y, = (2.50)

D
=2 [S33,(0,0) — S35,(r, 7).

ax

But
Sy (0,0) = S5 (7, 7) =
S§*(0,0) — Sg*(7, ') +
+[S354(0,0) — S5(0,0)] —
—[Syu (7)) — 5““(7,7')]
def !
= 55%(0,0) — S5*(r,

T )+
+IM(0,0) [M(T T

)
. (2.51)
Further,

I(0,0) = trace [Sxm — Sg] = 0, M — o0, (2.52)

1D (r, ™) =1 ([Sar — Sal e, €) | (2.53)
kek
ZM —(mk2+1)"Y =0, M — +oo.
kek
Taking into account (2.52), (2.53) in (2.51) and (2.32), one concludes
that there exists M, such that the estimate
< |w(r) = w(m) [ >y, < (CD/m)" |7 — 7]},

holds for all M > M,. Now we may proceed as in proving Lemma 2.3,
where the estimate (2.32) and the Garsia-Rodemich-Rumsey lemma
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implied (ii) of Proposition 2.2. Thus the sequence {x | M € Z.} is
tight. O

2.3. Euclidean Gibbs States. Given 3 and a box A, we write
Qg = {wr = (Wi)jen | wi € Ca}, (2.54)

and
Xﬁ,A = {wA = (wl)leA | wp € Xg} (255)

Since A is finite, one may equip (g, and X3, with the usual Banach
space and Hilbert space structures respectively. Then the space 235
may be densely embedded into X3 5. Let B(€25,4) stand for the Borel
o-algebra of the subsets of {13 x. Further, set

Xﬁ/\ de ®X/3 dwl (256)
lEA

The latter measure is concentrated on

Qfa = {wa = (Wi)iea | wi € C3}. (2.57)
Set
EﬂA C()A Z dll’ WZ,LUZI /3 + Z/ 7—, (258)
ll’eA leA
and

E,BA wA|0 Z dll’ wl,wl/ i + Z/ wl T. (259)

ll’eA leA

Under the assumptions made regarding V' and (djy)iren, both EX,A,
B ,(+|0) are continuous functions from Qg to R.

Thereafter, we may introduce the local Euclidean Gibbs measures
corresponding to the periodic and zero boundary conditions. These
are respectively the following probability measures on the Hilbert space
Xjs.a, supported on {244,

1
ug,,\(dw,\) = E exp {—EX’A((,UA)} X/;’A(dw/\), (260)

s (Ao [0) = % exp { Y\ (wal0)} va(dwn),  (2.61)

Zg,
where Z3 z, Z3(0) are the normalizing constants.

By means of these measures one can write the Green functions (2.22),
(2.23), constructed with the multiplication operators Ay, ... A, € Ay,
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as follows [1], [44]

Lot A (T ) (2.62)
= [ Avenm) - Anonm)maaldon),
XBaA
LA (T Ta) (2.63)
= Ai(wa(m)) ... An(wa (7)) g a (dwa0).
XB,A

The Gibbs states of the whole lattice system which correspond to
the periodic and zero boundary conditions are obtained as limits of
the above states g, ’Yg?,)\ when A~ IL. More precisely, let £ be
a sequence of boxes ordered by inclusion and such that Uy, A = IL.
For A; C Ay, one may introduce a natural norm-preserving embedding
A5, C Ap,, which defines an increasing sequence of algebras {2, | A €
L}. In a standard way [26], this sequence defines a quasi-local algebra
of observables 2. Two sequences L, L' are set to be equivalent if the
corresponding quasi-local algebras coincide. A standard sequence L is
the sequence of boxes {A;, | L € N}, where A;, = (=L, L]*NZ In the
sequel, all (thermodynamic) limits A~ IL are taken over a sequence L,
which is equivalent to the standard one. The mentioned Gibbs states
of the whole lattice system are defined as the thermodynamic limits of
the local Gibbs states vz 4, 7[(3?/)\. The existence of periodic Gibbs states
for similar models was shown in [20] (see also [62] — [64]).

As it was mentioned above, the great advantage of the Euclidean
approach lies in the fact that due to the above relationship between
the Green functions and local Gibbs states one may apply to the quan-
tum case the machinery of conditional probability distributions, which
form the base of modern classical equilibrium statistical physics (see
e.g. [33], [34], [42] and the references therein). To this end, along with
the Gibbs measures (2.60), (2.61), which correspond to the periodic
and zero boundary conditions respectively, we introduce conditional
local Gibbs measures. They will describe the Gibbs states of the par-
ticles contained in the box A and interacting between themselves and
with fixed configurations of particles outside A. Such configurations
determine conditions for the measures we are going to introduce.

Since the complements of boxes A, in which we shall fix configura-
tions, are infinite subsets of the lattice IL, we employ the spaces {254,
introduced (2.54), (2.55) also for infinite subsets A, in particular, we
shall use €23 standing for €23 .. We equip such spaces with the product
topology and with the o-algebra B(€s,) generated by the cylinder
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subsets

{wa = (Wl)zeA | (Wl)zeA € Ba}, Ba = xeaBy,

with finite A C IL and Borel subsets {B, C Cs | | € A}. For AC A C
IL, we write wa x (x\a for the configuration (§);ca such that § = w
forl € A, and § = (; for [ € A\ A. Given a sequence of boxes L, in
order to have the collections of all the spaces {34, A € L} ordered
by inclusion, we introduce the following mappings. For A C A, we set
wa = wa X 0p\a € Qpa, where 04 is the zero configuration in Qg 4.

Hence one may consider every configuration wa as an element of all
Q4 with A C A. Besides, we define

Q/B’A > WA (CUA)A/ € Q,B,A’)

as a configuration such that w; = 0 for [ € A"\ A. Obviously, (ws), =
Op if ANA" =0. Let

Qf = {Ce | (lclls)er € S} (2.64)
Given ¢ € 23 and a box A, we put
H,B,A(BK) =0, (€ Qﬂ \ Qt, B e %(Q,@,A), (265)
and for ¢ € Qf,
1 v
pg.a(dwa|C) = exp {—Ey \ (walQ)} xpaldwy), (2.66)
Zg A(Q)
where
Zun(© [ exp {=BYu(0rl0)} xpadon),
QBJ\

is the local partition function subject to the external boundary condi-
tion (pe, A= IL\ A, and

Ega(wal¢) = Esa(walQ) +Z/ T))dr, (2.67)
leA
Ega(walC) = Z dyr (Wi, wir) g + Z dyr (Wi, Gr) g (2.68)
l JeA lEANTENe

Here V' is the same as in (2.2). Under the assumptions made regarding
V and dy, both Eg x(+|C), EY s (-[¢) are continuous functions from Qg 5
to R for all ¢ € Qf. The function Ega(-[¢) describes the interaction
between the particles in A and with the fixed configuration (.. Clearly,
for ( € Qtﬁ, paA(-]C) is a probability measure. For ¢ = 0, it coincides
with the measure (2.61).
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Thus, along with the Green functions (2.62), (2.63) we introduce the
temperature Green function which corresponds to the external bound-
ary condition (e

B,A
PS04 a) (2.69)
= Ar(wa(m)) - - An(wa(70)) psa (dwa Q).
Xg.a
Here Aq,..., A, are multiplication operators such that for every
Ti,-..,Tn € Lg, the function

Qg,A D WA Al(w,\(ﬁ)) .. .An(u}A(Tn)),

is p13.4(-|C) integrable for every ( € g, which obviously holds for
Aq,..., A, € Ax. Note that the above temperature Green function
is defined only for multiplication operators, there is no a priori in-
formation regarding its analytic and continuity properties (except for
¢ = 0), even in the case of bounded operators.

For B € B(Q3) and w € Qg, let dp(w) take values 1, resp. 0, if w
belongs, resp. does not belong, to B. Then for a finite A C IL, ( € Qg,
B € B(Qp), we set

def

malBIO [ nlon x Ghmaaldenld). (270
B,A

These probability kernels satisfy the consistency conditions

/Q T (dw|C)ms a(Blw) = m5a(BIC), (2.71)

which holds for arbitrary pairs of finite subsets A C A C IL, and any
B € B(Qp), ¢ € Q4 (for the meaning of such consistency conditions see

e.g. [42]).

Definition 2.1. A probability measure p on the measure space
(23, B(2p)) is said to be a Euclidean Gibbs state of the model considered
at the inverse temperature (3 if it satisfies the Dobrushin-Lanford-Ruelle
(DLR) equilibrium equation

| wd)man(Bl) = u(B), (2.72)

for all finite A C IL and B € B(Qp).

In order to exclude the states with no physical relevance we impose
some a prior: conditions restricting the growth of the sequences of
moments (see [11], [46]).
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Definition 2.2. The class Gg of tempered Gibbs measures consists of
the Gibbs states i defined above, the moments of which obey the con-
dition

(< le“ﬂ >M)leL €S

3. CLASSICAL LIMITS

In this section L, Lg, will stand for the set of all, respectively of all
finite, subsets of IL. Given A € L, let us consider the subset of {25 A
consisting of constant trajectories, that is

5a Z{wn € Qs | (VI €A) (T, € RP) (3.1)
(V1 € ) wi(r) = 21} ~ (]RD)A.
We also set
2008, € of = (R”)". (3.2
For A € L, let ‘B%fA be the g-algebra generated by the cylinder subsets
of Q%‘:A, which is isomorphic to the corresponding o-algebra B ((RD)A)

generated by the cylinder subsets of (RD )A but, on the other hand, is
def

a subalgebra of Bz = B (Qga). For every B € By ,, let
C(B) € BNOQY,. (3.3)
We write
B, 5 C~AeB((R)Y), (3.4)

for the pair of subsets C € SB%?A , Ae’B ((RD)A) which are isomor-

phic in the above sense. This means that they consist of exactly those
wy and x, for which w;(r) = ; for all 7 € Zg and | € A.
Consider the following Gaussian measure

w,@‘,A(dl'A) def HWg(d$l), TA € (RD)A, A € Lgn, (35)
leA
D/2
ws(dxy) &ef (%) exp {—g(xl,xl)} dx;, x; € RP. (3.6)

For A € Lg,, let X%(;A be the Gaussian measure on {25, such that for
every B € Bg one has

Xja(B) = @A (A), (3.7)
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where A ~ C(B), which is defined by (3.3), (3.4). This means that
X5.4(B) = x5 (C(B)), (3.8)

ie. X%fA is supported on SB%TA' Making use of these measures we
construct the periodic and conditional Gibbs measures following the
scheme (2.60), (2.58) and (2.66) — (2.67). Thus we set

C ef
/L%’A(dw/\) e exp{ EﬂA wa }XﬁA dwy), (3.9)

1
ch
and for ¢ € Qf,

ef
Hg, A(deK) =

1 C
—age7 XD { =B 5 (wal€) } xFa (dwa), (3.10)
Z5 A (C)
where EY, (-) and E} , (-¢) are given by (2.58) and (2.67) respectively.
Here, as above,

C def c
Zon = /Q exp { —Eg (wa) } xFa(dwnr), (3.11)
B,A

and

def

72,(¢) / exp {— Y, (wal0)} %, (don), (3.12)
B,A

are the normalizing constants. We remark that the measures (3.9),
(3.10) are defined on the same space as uga(-) and pga(-|¢) given by
(2.60) and (2.66) respectively. Further, (3.8) implies that

psa(B) = ks a(C(B)); sz (BIC) = g A (C(B)IC), V(¢ € Qp. (3.13)

By means of the conditional Gibbs measures (3.10) we define the family
of probability kernels {7, (+|¢) | A € Len} (setting as above w3, (+[¢) =
0 for ¢ € Q25\9), and hence the corresponding Euclidean Gibbs states.
The family of such Euclidean tempered Gibbs states will be denoted
Qgc. The members of this family will be called quasiclassical Gibbs
states.

Now let us construct the Gibbs states for the classical model de-
scribed by the Hamiltonian

HY =Y [(w,2)/2+V(x ]+ > dw (), (3.14)
lell ll’ElL

where V' is the same as in (2.2), which means that in this case only the
potential energy of the oscillators described by (2.1) — (2.3) is taken
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into account. Heuristically, this potential energy may be obtained from
(2.1) by passing to the limit m — +oo. For A € Lg,, we set

[A(IL'A) = ZV(JI;) + % Z df}/(l‘l,{ﬂll), (315)

leA LI'eA

and

In(zaly) = Zv(xz) + % Z d (1, ) + Z du (z1, yr), (3.16)
leA LI'eA leA,l'eAe

where y = (y;)ier, € 8" determines the boundary conditions outside A

and plays here the same role as ¢ does in the case of quantum Euclidean

Gibbs states. It is not difficult to show that I,(-) and Ix(-]y) are

continuous functions on (]RD )A, A € Lg,. The periodic and conditional

Gibbs measures for the classical model are introduced respectively as

paa(dey) = pexp (=0} oaldry). (317

pp.a(desly) = % exp {—B1x(zaly)} @wpa(dza), (3.18)

YﬁA

’

where Y5 A, Ysa(y) are the corresponding normalizing constants. As
above, {pga(:|ly) | A € Lgn} defines the family of probability kernels,
and, thereby, the family of classical Gibbs states. We will denote this
family by gg.

For (,( € (3, we write ¢ ~ C if for every | € L,

g G(r)dr = g El(T)dT. (3.19)

For y € (RP )L, let T5(y) be the equivalence class consisting of such ¢
that

51/ G(r)dr =y, Vie L. (3.20)
I3

We write y € T5(y) assuming that the former y stands for the constant
loop wi(1) =y, | € IL and 7 € Zj.

Since all the quasiclassical kernels 75, (+[C), as measures on (g, are
concentrated on Q7 (see (3.8), (3.10)), every solution of the DLR equa-
tion constructed by means of such kernels has the same property .

Proposition 3.1. For every u € QEC and all B € Bg,
u(B) = u(C(B)), (3.21)
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i.e. every quasiclassical Euclidean Gibbs state is supported on the con-
figurations consisting of constant loops.

Our first theorem in this section establishes the relationship between
the families Qgc and le.

Theorem 3.1. For every pu € G, there exists p € G§, such that
p(A) = u(B) = u(C(B)), (3.22)

for all A € B ((RD)IL) and B € Bg, where C(B) ~ A in the sense
(3.2). The mapping p— p (3.22) is a bijection.

Proof. By construction, the measure spaces (Q%C,% (Q%C)) and
((RD)IL B ((RD)IL)> are isomorphic. On the other hand, since ev-

ery equivalence class T4 contains exactly one element of Q%c, the latter
space and the corresponding factor space are isomorphic as well. Also
by construction (3.7), (3.10), (3.18), every solution x of the DLR equa-
tion constructed with the help of the quasiclassical kernels defines by
(3.22) a measure p on ((RD)IL ,B ((RD)IL)), which solves the corre-

sponding DLR equation in this space, and wvice versa.

In this section X}, x§ 4, 15 4 (-|¢) will stand for the measures (2.27),
(2.56), (2.66) respectively. In such a way we indicate their dependence
on the mass m. We shall speak about a net of measures {uj , } assuming
the net {z5,(-[¢) | m > me} with a certain positive my.

Theorem 3.2. Let 8 >0, A € Lg,, and y € (]RD)IL be chosen. Then
for every ¢ € Yy(y), the net of measures {uf ,(+|C)} converges weakly
in Qg.a, when m — 400, to the measure pig , (+|C) = pg (1Y)

Theorem 3.3. Forevery >0, A € Lg,, and £ € QF, the conditional
Gibbs measure M%(,:A('K)’ given by (3.10), is a weak limit in Qg 5, when
m — +00, of the net of measures {3 ,(-|C)} with arbitrary ¢ € T5(§).

Remark 3.1. Similar statements may be proven also for the measures
(2.60) and corresponding quasiclassical periodic measures.

The proof of the two just stated theorems is based upon the following
lemmas.

Lemma 3.1. For every box A and any 8 > 0, the net of measures xj5 5
converges weakly in the Hilbert space X3 5 to the measure X%(;A given by

(3.7).
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Proof. Since, for a box A, xJ, is a product measure (see (2.56)),
it is enough to prove this lemma for a one-point box. By (3.6), (3.7),
one has

/X exp{ (i, ) s} (dw) (3.23)

— (8/2m)""? /RD exp { (x /Iﬁ ¢(T)d7> } «

x exp{—0(z,z)/2}dx =

{ i . [ oot } _

= exp{—(e0, ©)3/2},

where ¢, belongs to the base £z given by (2.45). This implies that the
covariance operator S’EC of this measure may be written as follows

D
Se=>"Py. (3.24)
a=1
Then by (2.46) one obtains

trace (S5 — S§°) = Z 1 S Z (3.25)

kek\{0} ek\{

_ p*’D
= ng n- —>0 when m — +o00.
2w
neN

Now one may use Proposition 2.3 which yields the convergence to be
proven. g

Lemma 3.2. For every box A and any § > 0, the net of measures
{XIE,A} converges weakly in the Banach space €0 x to the measure X%TA‘
Hence, for arbitrary F' € Cy(Q23,0), one has

/ Fwa)xfa(dwy) — F(wA)X%fA(de), m — +00.
QA Qg A

Proof. Again, it is enough to prove this lemma for a one-element
box A. By Lemma 2.3 the net {x};} is tight in the Banach space C5. On
the other hand, by the above lemma each a net of finite-dimensional

. . m,M qC,M . . . .

approximations {Xg } converges to Xz in Cg since it converges in
the Hilbert space X (see also the proof of Lemma 2.4). Thus, by
mentioned Theorem 8.1 of Billingsley’s book [24], p. 54, the same
convergence holds for the net {Xg . O
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Proof of Theorems 3.2 and 3.3. Let y € (]RD)IL \ &', then every
¢ belongs to 25\ 2 since by (3.20)

Gl < IGlleas < lwl, Vi€ L.

Thus, every member of the net {4 ,(-[C)}, as well as its limit, are zero
measures. For y € &', one has ¢ € Q%, and the members of the net
given by (2.66) - (2.67) now may be written as follows

115 A (dwa Q) = Fa(walC) X5 4 (dwn), (3.26)
where
1
Fﬁ,l\(wl\K) = exp § — di <wl, Ql>g X (3.27)
Zs.A(C) e Azl; A
X\pﬁ,/\(w/\)a
where
1
\I/g,A(wA) = exp {_5 Z dll’ <wl,wl/>[3— (328)
LUeA
_Z/ V(wl(T))dT}.
t1eA ¥ Is

Since ¢ € O and the dynamical matrix satisfies (D3), both Fj A(+|¢),
W4 belong to Cy,(25,4). Moreover, GF(-[¢) € Cy(Qp,4), for all ¢ € Q
and any G € C,(Q.4). Thus by Lemma 3.2, one has

Glwn) g a(dwa|C) = (3.29)

QB,A

:/Q G(wr) Fpa (walQ) x5 a(dwa)
B,A

— G(WA)F,B,A(WAK)X%?A(dWA)a
Q/B,A
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when m — oco. But

G(WA)Fﬁ,A(wAK)X%?A(dWA) =

Q/B,A
o,
o G(u)A)\I/ ,A(wA) X
ZsA(C) Jayu ’
X exp {— Z dyr (W, sz)ﬂ} X (dwy)
lEA, I EAC
L [ Gl Baae) x
Zga(C) Juoiny T IAER
X exp {— Z dll’ (:Ul,/ Cy(’/‘)d’/‘)}@'ﬂy,\(dl‘,\)
leA, ' EAe I
o,
= G(WA)\I/ ,A(WA) X
ZsA(C) Jag . ’
X exp {— Z dyr (wi, yz'>ﬁ} X%fA(de)
leAl’eAC
= G(wa) g 4 (dwaly),
Q/B,A

where

A

G(I‘A) :G(w/\), u)A(T) = Tp,
and similarly \ifg, A- The proof of Theorem 3.3 is straightforward. 0O

4. GREEN FuNcTIONS FOR UNBOUNDED OPERATORS

The most spectacular phenomenon described by the model consid-
ered in this work is the spontaneous O(D)-symmetry breaking, which
occurs when the fluctuations of displacements of particles become large.
Since the displacement operators ¢;, [ € IL are unbounded, to study
this phenomenon we should extend the local Gibbs states, as well as the
corresponding Green functions, to certain classes of unbounded multi-
plication operators. To this end we will use representations like (2.62),
(2.63), which makes possible to replace bounded functions by suitable
integrable unbounded functions.

Theorem 4.1. Let the functions Ay,..., A, : RPNl — C be such
that for every 3 > 0 and every 7 € Lg, the functions Qg n > wp +—

Ai(wa(T)), 5 =1,...n, are uga (resp. /Lf,joz\) integrable. Then, for the
corresponding multiplication operators Aq,...,A,, the Green function
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(2.62) (resp. (2.63)) can be analytically continued to the domain D?
defined by (2.14).

Proof. In view of the statement (c) of Lemma 2.1, it is enough to
show that there exists a function F' € Hol(D?), such that its restriction
to the set D2(0, . ..,0) coincides with the function (2.62) (resp. (2.63)).
Let us show this in the case of periodic boundary conditions. By (2.62),

for any § > 0, the operators Aj o Ajexp(—dH,), j =1,...,n are
bounded since

trace {A;exp(—dH))} = Zsa / Aj(wa(0)) s a(dwy) < 0o. (4.1)

Xs

Given ¢ € (0, 3), we take positive 1, ..., d,, such that 6;+---+0, = 0.
Then, for 0 <7 <--- <7, <[, one has

A 5\ 8- R “
D3 (T 7a) = 28000 (R B), - (42)

where the arguments of the Green function on the right-hand side are

7A'1:T1, %k:Tk—((Sl—i—---—i—(Sk_l),k:2,...,n, (43)
and satisfy the condition

0<7 < <7 <B—0.

By Lemma 2.1, the function on the right-hand side of (4.2) can be
continued to a function holomorphicin (¢1,...,%,) € D?~. Let D?;fﬁn
stand for the set of values of (t;,...,t,) € D? such that t; = t,
te =t +i(6 4+ 40k 1), k=2,...,n with ({,...,1,) € D%, Then

the left-hand side of (4.2) can be continued to a function of (¢1,...,t,)
holomorphic in Dﬂ o .5,» Which is an open subset of DP. But

UD5 (51+ +(5n
1. a

where summation is taken over all dy,...,d, running through the in-
terval (0, 3) and obeying the condition d; +- - -+, < #. Thus Ff"ﬁn’An
can be continued to the whole D?. O

In contrast to the case of bounded operators (c.f. statement (b) of
Lemma 2.1), one cannot expect that, for unbounded operators the

extended Green functions Gﬂ .4, are uniformly bounded on D and
continuous on its boundarles "To get such a continuity we impose
additional restrictions on the functions Aq,..., A,.
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Definition 4.1. A continuous function A : RPIN — C belongs to the
famaly ‘B(AD) if for arbitrary a > 0, the function

RPN 5 2) = |A(zy)] exp {—az |xl|2} : (4.4)

leA

is bounded on RPAL

Here |z;| stands for the Euclidean norm of z; € R”. In the case of
one-point boxes, i.e. for |A| = 1, we will simply write "), It is worth
noting that under point-wise multiplication ‘I}EXD) is an algebra.

Corollary 4.1. For arbitrary Ay, ..., A, € ‘B(AD), the temperature Green
functions (2.62), (2.63) may be continued analytically in accordance
with Theorem 4.1.

Indeed, by (2.33), functions from ‘BE\D) are integrable.

Theorem 4.2. Given a box A, let Ay, ..., A, belong to ‘BE\D). Then for
all ¢ € Qg, the Green functions (2.62), (2.63), (2.69) are continuous
functions of (11,...,m) € I}.

Proof. In view of (2.66) one may rewrite (2.69) as follows

F%lﬁ,,./.\.,An (T1,...,Tn) = /Q Ar(wa(m)) - An(wa(ma))  (4.5)

X W A (walQ)xs,aldwa),

where

def
Ui a(wald) =

1 |4
Zon(@) P L Eaaleal0)] (4.6)

All A; are continuous, thus all the functions Qg 3 wp — Aj(wa (7))
are continuous as well. Set
f
R(wy) = max sup |4;(wa(m))]. (4.7)
7j=1,...,n 7, €L5
By Lemma 2.2 the latter function is x -integrable since all A; belong
to ‘B(D) Hence
A -

def
d(dwp) = [R(wr)]" ga(wal)xsa(dwn),
is a measure on {3 5. It is tight because, for finite A, {23 5 is a Polish
space. Therefore, for every & > 0, there exists a compact subset 023 , C
(25 such that

P(Qpa \ 2 0) < (4.8)

NS



EUCLIDEAN GIBBS STATES OF QUANTUM LATTICE SYSTEMS 31
For § > 0, let
Ts def sup F%?,’.{%,An (T1y. ey Tn) — Ffﬁl’ﬁ’.{}.,An (/s om0, (4.9)
where the supremum is taken over the subset of Zf}” defined by the
condition

max |7, — 7’| <.
= n

=1,000y

For such ¢ and wy € Q3.4, we set

def
Ws(wy) = jmax | sup| |Aj(wa (7)) = Aj(wal(r"))] - (4.10)
=1,...,n Tj—1i'|<6
Since all A; are continuous functions from R”/l to C, in order that QA
be compact it is necessary and sufficient that the following conditions
be satisfied simultaneously (see [65] p. 213):

i) lim sup W;s(wy) =0, 4.11

0 fig, sup Wl (1

(ii) sup R(wp) < oo, (4.12)
UJAEQ%’A

where R was defined by (4.7). Now let us estimate Y5. From (4.9) and
(4.7), (4.10) one obtains

Ts<n Wi(wa) [R(wa)]" " Wga(wal¢)xsa(dwa)

Q%,A

+20(Qp.0 \ 254)-

In view of (4.11), (4.12) one can choose ¢ small enough making the first
term in the right-hand side of the latter formula less than /2. The
second one has already been estimated by (4.8). The stated continuity
of the Green functions (2.62), (2.63) may be proven just in the same
way. a

5. LATTICE APPROXIMATION

In the following two sections our aim is to prove, for the Euclidean
measures (2.60), (2.61), (2.66), correlation inequalities analogous to
the inequalities known in the Euclidean quantum field theory (see e.g.
[75], [76]). In the subsequent sections we use these basic inequalities to
get a number of new correlation inequalities, which in turn are used in
studying physical properties of our models. The basic inequalities we
are going to prove concern the one-dimensional oscillations, that does
not preclude from their application to the vector case which will be
given below. Thus, we put in this section and in the next one D = 1.
Since we will use the mentioned inequalities for the moments not only
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of the above introduced local Gibbs measures, we prove them in a more
general setting.
Given a box A and £ € Qg 5, we define the following measure

08,4 (dwa|€) = @ a(wal€)xp,a(dwn) (5.1)
def 1 1
- S J/ , _

Vin(©) eXp{ 7 3 drlanr)s = 3609

>/ W(wzm)dr}xﬁ,udwu,

with certain nonpositive Jy = Jyy, £ € Xz and W(z) = w((x,x)),
w being a polynomial satisfying (2.4). Clearly, every measure (2.60),
(2.61), (2.66) may be written in this form.

The Gaussian measure xgs is determined by its covariance operator
Sp given by (2.26). Since D = 1, the base g (2.45) consists of the
eigenfunctions {e; | £ € K}. In this case the canonical representation
(2.46) may be rewritten as follows

1
kex

Now we choose N = 2L, L € N and set

e 1
A= y , (5.3)
2N . Jij 2
m (2) [sin (%) K] +1
and
s € ST AVR, (5.4)
kEXN

It is a technical exercise to prove the following statement.

Proposition 5.1. The sequence of finite-rank operators {SéN)} con-
verges in the trace norm, when N — 00, to the operator Sg.

Let X%N) be the Gaussian measure on Xz having S éN) as a covariance

operator. This measure may also be written in a coordinate represen-

tation. To this end we introduce Gaussian measures on R, a,(CN), ke K,
such that

1
/ exp (izy) J,(CN)(dy) = exp {—5)\§CN)$2} , (5.5)
R
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with )\,(CN) given by (5.3). Then
X5 (dw) = &) otV (din) Q) (), (5.6)

keKn keEK\K N
where

w(r) = Zd)(k)ek(T), (k) :/I w(r)eg(T)dr, (5.7)

ke

and 0 is the Dirac d-function on R. Proposition 5.1 and Lemma 2.4
immediately yield

Lemma 5.1. The sequence of Gaussian measures {X%N)} converges
weakly in the Banach space Cg to the measure xg.

Employing the sequence {X(ﬁN) | N € N} we will construct by means
of (2.60), (2.66) approximations of the measure pga(-|£) (5.1), and
hence of its moments such as the Green functions (5.14). This means
that, for integrable functions F': 23 y — C, the integrals

/ F(wa)opa(dwal§)
QBJ\

< F >oa.a(l€) =

= / F(wa)®@pa(wal)xsaldws), (5.8)
QBJ\
will be approximated by

/Q Fwn) B (rl )X (don) (5.9)

= / F) (wA)q)(ﬁ],VA) (wA|§)X,(3],VA)(dWA)7
Qg A

where
def
Xoh (dwy) = @) xG (dw), (5.10)
leA
and
def def
FMwy) € FM), oo < dsa@Me),  (5.11)
(N):( (N)) (N)  def
Wy W)@ Z Pruw. (5.12)
kEK N

The reason to use such approximations is that the integrals on the right-
hand side of (5.9) may be rewritten as integrals over finite-dimensional
spaces. To the latter integrals one may apply the classical ferromag-
netic interpretation, which would yield the correlation inequalities we
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are going to get. To do this we should make more precise definition
of the class of functions F', for which such an interpretation may make
sense. First of all we will need the following functions

F(wy) = Ai(wa(m)) - .- An(wa(m)), (5.13)
with A,..., A, € ‘I}EXI), which determine the Green functions

L () = [ Alwaln) - Au(wa(a)) 05,0 (dwa€)

QB,A
def
= < Al(w,\(’ﬁ)) .. .An(wA(Tn)) >£’B,A('\§) . (5.14)
The latter functions are continuous on Ig in view of Theorem 4.2. Since

the w[(xN) belong to a finite-dimensional subspace of X4, they can be
written as linear combinations of wx((v/N)f3), v =0,..., N —1, which
may be chosen as variables for the mentioned finite-dimensional inte-
grals. Therefore, for F' given by (5.13), it would be much more conve-

nient to construct such approximations if the arguments 7, ..., 7, be-
longed to Qs C Zs, where Qg consists of the values of 7, for which 7/
is rational. Then, for given 7y,...,7, € Qg,onecanfind vy,...,v,, N €

N, such that ; = (v;/N)f3, j = 1,...,n. In this case, we obtain fer-
romagnetic approximations of the Green functions (5.14) only for the
arguments belonging to Q. But in view of the continuity of these
functions, this will be enough since Qg is dense in Zj.

Following this way we will deal with such basic types of functions
Q/;’A - R

(1) WA wA(T), T E Qg; (515)
(ii) Wp (wl,wy>g, WA <wl,§l>ﬂ, l, ' e Aa 6 € Qﬁ,l\;
(i) wp W (w(7))dT.
I3

Definition 5.1. Given 7y,...,T,, n € Zy, the family
Spa(T1,..., ) consists of the continuous functions F : Qzn — C
which are compositions of the functions

wp = (wa(T), -y walTh)),
with functions R — C, such that for all aq, ..., a, > 0,
|F(wA)|eXp{—ZZaj [wl(Tj)P} < 0. (5.16)
leA j=1

Clearly, the functions F' having the form (5.13) with A,,..., A, €
‘]35\1) belong to the family just introduced.
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Thereafter, we choose 71,...,7, € Qg, n € Z4, £ € Q5 and keep
them fixed. Then for n > 1, there exist tending to infinity sequences

{N(™) | m e N}, {l/](-m) | m €N}, j=1,...,n, such that for all m € N,

=-2—B, j=1,...,n. (5.17)

Below we drop the superscript (m) assuming that N and v; tend to
infinity in such a way that (5.17) holds. We also suppose that all N
are even. The set of values of such N satisfying (5.17) depends on the
choice of {7j,j =1,...,n}, we denote it by N (71,..., 7).

The basic element of our construction is the following statement.

Theorem 5.1. For every F' € Fga(ri,...,7,) and all & € Qg y, the

following convergence, when N (i,...,7,) @ N = o0,
[ PO 0™ e o) (5.18)
QBJ\
— F(wa)®@(wal€)xpa(dwa),
QBaA
holds.

Proof. By (5.6) and (5.10) one has

| PO e e den) =
Q/@,A

= /Q F(WA)q)(WA|€)X(ﬁ],V/\)(de)'
B,A

By Lemma 5.1, for any box A, the sequence of product measures
{X(ﬁNA) | N € N(m,...,7,)} converges weakly in Q3 to the measure
Xs.a- On the other hand, for every £ € Qg 4, the function F®(-|€) is

bounded and continuous on 3 4, which yields (5.18). 0
Now let G : RMAl — C be such that F(wy) = G(wa(71), - - -, wa(Tn))-
Then FV)(wy) = G(wI(XN) (11), ... ,wl(\N) (7,)). Our next statement gives

the ferromagnetic representation of the above approximating integrals.

Theorem 5.2. For every y,...,7, € Qp, all F € Fpa(r1,...,T0),
any & € Qg p, and all N € N(ry,...,7,) the following representation
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holds

/Q FO (w0) @ (wal€)x5W (dwa) (5.19)

G G (Sa(n), .-, Sa(vn)) psa(dSa|X)

RNIA|

= K5 (6) < G(Sa(1); - Sy () >y ac1x)

Here K[g]j\)(f) is a positive constant, v; = (1;/B)N, j =1,...,n, and
the probability measure ps a(-|X) has the form

def 1
poaldSalX) = m—=7 X 5.20
(A1) ey (5.20)
N—-1
xexp{—— Z JZZ’ZSl Sll — ZSZ(V)X 14
LI'eA v=0 leA v=0
N? —
S 5D S }®®a asit
leA v=0 leA v=0

where the coefficients Jy are the same as in (5.1), {X;(v) |l € A,v =
0,...,N — 1} is a certain, dependent on &, real vector (X = 0 for
€=0), and

M(dSi(v)) (5.21)

o
— exp {_gw (ﬁ&@)) -3 [sxu)]?} 15,(v).

It should be noted here that by [75] the measure pga(-|X) corre-
sponds to a general type ferromagnet, whereas pg(-|0) corresponds to
an even ferromagnet.

Proof of Theorem 5.2 . First we change the variables in the
integral on the right-hand side of (5.9) by means of the following Fourier
transformations (c.f. (5.7))

:Zc?)z(k)ek(T), @z(k):/z wi(7)ex(T)dr, (5.22)

where the functions ey, k € K were defined by (2.45). Then, for Qs >
7 = (v/N)[3, one has

wl(N)(T):Zch(k)ek( ) Zwl< ) ), (5.23)

keEXN pEPN
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where

o 2
Py {p:%nhﬁz—(L—l),...,L}, (5.24)

and for v =0,1,...,N — 1, (c.f. (2.45))

ep(v) = \/%COS]DI/ (p > 0), ep(v) = —\/%sinpu (p <0),

1
() = = (5.25)
(N)

For the functions of the type (ii) taken at wy ’, one has
. R . (N \ . (N
(wl(N),wl(,N)>g = Z w(k)wp (k) = Z Wi <ﬁp) wyr (ﬁp) , (5.26)
ke PEPN
and
(Wi s =D @bak), &k) = | &Gredr)dr.  (5.27)
kEK N Ip

As for functions of the type (iii), instead of (5.22) it is more convenient
to use the following transformation

a(r) = % ICEZK (k) exp (ik7) | (5.28)
0 —i wy(T)exp (—ikT) dT
wz(k)—\/B - 1(7) exp (—ikT) dr.

Then one has

r

/I w (wl(N) (7')) dr = Zws/I [wl(N) (7')] v dr. (5.29)

s=1

Further

/I[wa)(T)]Qsdeﬂs > k). (k)

k1,..,k2s€ELN

X /IBeXp[i(k1+"'+k25)T]dT
— ﬁ_s‘H Z (;)l(k‘l) .. .(:)l(k'gs)
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Here 0(0) = 1, (k) = 0 if £ # 0. Now we introduce the variables
(quasi-spins) Sl(z/)

wl L leA, v=0,1,...,N—1; (531)

( ) =
p =w | =
for which one has

= Z Si(p)e,(v) = \/LN Z Si(p) exp(ipv); (5.32)

PEPN PEPN

Si(p) = i: Si(v)ep(v), Z Si(v) exp(—ipv).

Then (5.30) may be rewritten in the following way

==
tblz

p>, p € Pn;

=y

X Z 6(k1++k25)><

ki1,...kas€EXN
1
X exp {_ﬁﬂ(klyl 4+ -+ stVZS)}

Z Si(v1) ... Si(ves) X

Vi, 7V23—0

L )
2
X E exp{—%m(yl—ygs)} X ...

K1 yeeny Kkos—1=—L+1

211
X €Xp§ — =7 K2s—1 st 1 —l/2s =

N
\/gsl(lj)] .

Nsﬁs 1

N2s—1 N-1

2s /8 -
- Nsﬁs—l Z [Sl( )] - N [

v=0 v=
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Returning to (5.29) one obtains

/I W <w§N) (T)) dr = %NZI W <\/§sl(y)> . (5.33)

v=

Accordingly,

(wl wl, 5 == Z Sl Sl/ Z Sl Sl/ (534)

and
W6 = 3 aba) = S SXi).  (539)
def zp: & < ) (v).

At last, (5.23) takes the form

wi(ri) = w (%5) - \/gsl(yj), j=1,...,n.  (5.36)

The next step is to introduce the measure on finite-dimensional space
which would have the above mentioned ferromagnetic properties and
such that the integral on the right-hand side of (5.9) could be substi-
tuted by the integral over this finite-dimensional space. Here we use
the representation (5.6) and construct a finite-dimensional analogue of

X,(BN). To this end we introduce the following Gaussian measure on RY:

= ) oV (dS(p)), (5.37)

PEPN

where the measure ¢ satisfies (5.5) with (c.f.(5.3))

def 1 N
oy . — = Aos- (5.38)
m (%) (sinp/2)” +1
It is clear that w,(cN) = d)(ﬁJZ}N, where the former measure defines by (5.6)

the measure X(ﬁN). On the other hand, this new Gaussian measure may

also be written in the coordinates {S(v),» = 0,... N — 1}, related to
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{S(p), p € Py} by the transformation (5.32), as follows

o (dS) = " exp {—mN2 2 [S(v+1) = SW))°

CbJV 252 v=0
_ % - [s(y)]Q} ®d$(y), (5.39)

with the convention S(N) = S(0) and the normalizing constant C’[gN).

Therefore, the measure ¢(ﬁN) may be regarded as the Gibbs measure
of a chain of unbounded (Gaussian) spins. Due to the choice of the
numbers (5.38), the interaction is ferromagnetic and of the nearest-
neighbor type.

Now we define the measure which will correspond to X},NA) given by
(5.10). It is

o5 (dSy) = R o5 (dS) (5.40)

leA

_ ;exp{ V" YN Silv +1) = Siw))?

[Cpn]™ 207 =

_ %Z i [sl(y)f} 0% ® dSi(v).

leA v=0

By construction we have that

| PO )8R e den) (541
QBaA

_ CoaX) (N ) V
B Yﬂ,A(é‘) <ﬂ> /RN|A|G(SA( 1)""’SA( n))pB,A(dSA|X),

where the measure pg A (-|X) is given by (5.20), (5.21). O

(NI

6. BASIC INEQUALITIES

In this section we use the lattice approximation to prove a number
of basic inequalities for the moments, like (5.8), of the measure (5.1)
with the function w satisfying (V1).

Theorem 6.1. [FKG Inequality] Given A, 3, and 1,...,7, € Iz,
let the functions F,G € §p,a increase when every chosen wi(t;), | € A,
j=1,...,n increases. Then the following inequality

SFG >p5 010 2 < F >p5,0019< G >05 4(16); (6.1)
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holds for all § € 234

The proof follows from Theorem 5.1, 5.2 and the fact that the mea-
sure (5.20) corresponds to a general type ferromagnet, for which the
FKG inequality holds (see Theorem VIIIL.16 of [75]).

Below g3 will stand for the measure (5.1) with £ = 0.

Theorem 6.2. [GKS Inequalities] Given A and 3, let the real val-
ued functions Ay, ..., Apim € ‘]35\1), n,m € N have the properties:
(a) every A; depends only on the values of x;; with certain l; € A;

(b) every A; is either an odd monotone growing function of
or an even positive function, monotone growing on [0, 400).

Then the following inequalities hold
< Ay(wa(m)) - - An(walTa)) >0 >0, (6.2)

< Ap(wa(m)) - Ap(wa(m)) X (6.3)
X Api1(Wa(Tat1)) - - - Angm (WA (Tatm)) > 050
> < Ap(wa(m)) - An(wa(Ta)) >g54 X
x < App1(Wa(Tar1)) - - Angm(Wa(Togm)) >og.a

The proof follows from Theorem 5.1, 5.2 and the fact that the mea-
sure (5.20) with X = 0 corresponds to an even ferromagnet, for which
the GKS inequalities hold (see Theorem VIII.14 of [75]).

Corollary 6.1. For all m,...,Thim € I, the Green functions (2.62),
(2.63) obey the following inequalities:

DN () 20, D% (mm) >0, (6.4)
FZ’IA,...,AMm (T, -y Tngm) >
Pt A (T ) X (6.5)
XFﬁ’fﬂ,...,AHm (Tnt1s -+ Tntm)
gilﬁ,’.[.x.,AHm (Tt oy Tngm) >
LA (Tiye ey Ta) X
XF?&E;AI,...,A,LM (Tat1s - - s Tntm)-

For px = (¢1),ep € AXs,a, We set

F(pa) :/X exp {Z(%wz)ﬂ} 08, (dwy ) (6.6)

leA
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F(pp) is an entire real analytic function, which means that the expan-
sion

1
ZEF CTPNIVE (6.7)
n=0

where every F() (+,...,-)is an-linear bounded functional on Xj 4, con-

verges absolutely on the whole Hilbert space X5 ,. These functionals
may be written in the integral form

F(n)(gOA,...,gOA) =
Z / Fiyonn (1, ma)n (1) oo, (To)dmy ... dry, (6.8)
11,0eey In€A

with the kernels being the moments of the measure gg 4, i.e.

El,...,ln (T17 s 7Tn) =< Wiy (Tl) - W, (Tn) >Qﬂ,A’

which means in turn that they are the Green functions (5.14) with
Aj(zn) = wy;. These kernels are continuous as functions of 4, ..., 7,.
Since F'(0) = 1, the function log F'(p,) is a real analytic function in a
neighborhood of the point ¢, = 0, where it can be expanded similarly
o (6.7)

— 1
U(gpA) logF op) = Z; U TNTIN) (6.9)
n=0
and
= Z / Uy (71, o) (11) - oo, (1) dTy, - . d,.
lyeln€A 7 15

Theorem 6.3. [Lebowitz Inequalities] Given A and (3, the follow-
ing inequality
Ull,...,l4(7—17---77—4) S 0, (611)
holds for all 7y,..., 74 € Ig and ly,...,l4 € A.
The proof follows from Theorem 5.1, 5.2 and the fact that the Lebowitz
inequality holds for the measure (5.20) with the function w satisfying
(V1) and with X = 0 (see Theorem 2.4 and Corollary 2.5 of [83]).

For Gaussian random variables X1, ..., X5,, n € N with zero mean,
one has

< X1 .. .X2n >= Z H < Xg(Zkfl)Xo'@k) >,

o€Sy k=1
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where the sum is taken over all partitions of the set {1,...,2n} into

)

the pairs. If in the latter expression one has ”<” instead of "=",
the variables X1,..., X5, are said to obey the Gaussian upper bound
principle.

Theorem 6.4. [Gaussian Upper Bound]| Given A and (3, the fol-

lowing inequality

<wy () .. wiy, (Ton) > 050

< Z H < wla(zkfl)(TU(Zkfl))wla(zk)(TU(Zk)) > 05,n5 (6'12)

o€Sy k=1
holds for all values of ly,...,la, € A and 7y, ..., T, € Ij.
The proof follows from Theorem 5.1, 5.2 and the fact that the Gauss-

ian upper bound principle holds for the measure (5.20) with X = 0 (see
Section 12 of [39])

Theorem 6.5. Under the conditions of Theorem 6.3 let the potential
W, which defines the measures (5.1), (5.20), have the form

1
W(r) = §ax2 +bzt, a€R, b>0. (6.13)
Then the following inequalities
(=)™ Uyt (71, -+ T2n) >0, (6.14)

hold for all € N, all 7y,..., 79, € Ig and ly,...,ls, € A

The proof follows from Theorem 5.1, 5.2 and the fact that the above
sign rule holds for the measure (5.20) with X = 0 and W given by
(6.13), which can be deduced from Shlosman’s results [74] for the Ising

model by means of the classical Ising approximation (for more details
see Ch.IX of book [75]).

7. MORE INEQUALITIES

7.1. Scalar Domination. Here we assume that the measures (2.60),
(2.61) and the Green functions (2.62), (2.63) describe the vector model
(2.1) — (2.9) with D > 1 and with the potential V' (2.3) obeying the
condition (V2). Since we will compare the Green functions for this
model with similar functions for the corresponding scalar model, we
need a special notation for the latter ones. Let the Green functions
%4 and %% be defined also by (2.62) and (2.63) respectively but for
the model (2.1) - (2.9) with D = 1.
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Theorem 7.1. [Scalar Domination] For a boz A, let the local Gibbs
measures be defined by (2.60), (2.61) with the potential V' obeying
the condition (V2) and with arbitrary D > 1. Let the functions

A, . A, € ‘BA , n € N have the followmg property there ex-
ists a € {1,2,...,D} and the functions Al,.. A € ‘I}A satisfy—
ing the conditions of Theorem 6.2 and such that Aj(xy) = Aj(xﬁ),
j=1,...,n. Then for arbitrary 7y,...,7, € Ls,

0< FﬁylA,...,An (Tla - Tn) < Fﬁ i (7_1, ce ,Tn)- (71)

Remark 7.1. It is important that all A, depend on their x§ with one
and the same «. The first above inequality is a D-dimensional ver-
sion of the first GKS inequality (6.4). The second inequality in (7.1)
describes scalar domination. The same inequalities hold for zero bound-
ary conditions as well.

Proof of Theorem 7.1. For the a mentioned in the hypothesis, let
us decompose

.)C;(;’A = )E/;’A X .)C:Ba’A, Xﬂ = )Eﬂ X )C:Ba,

which means that every wy € X, is regarded as wy = (wy,wy), where
a (D — 1)-dimensional vector @, belongs to Xz (or to X for one-
element A), whereas the scalar w$ is supposed to belong to the Hilbert
space X, (respectively to A for one-element A). Then the Gaussian
measure Xz can also be decomposed

xp(dw) = (X5 ® Xx3)(dw, dw®), (7.2)
where the Gaussian measures Y, xj are defined on the Hilbert spaces
X and X§ respectively. The potential V' (2.3), may be written

Viz) =v((z, 7)) + +Z )¥B,(%), B(z)>0. (7.3)

The nonnegativity of B(T) follows from the condition (V2). Set

o) % /I % B, (7)) dr. (7.4)

§=2

Then by means of the decomposition (7.2) one may write the measure
(2.60) as follows

f.a(dwy) = (7.5)

= Cpaexp {— > Q, wza)} (7,0 ® pj p)(dwy, dwy),

leA
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where Cj 5 is the normalization constant and the Gibbs measures fig s
and p 4 describe systems of (D —1)— and one-dimensional interacting
anharmonic oscillators respectively. This allows us to rewrite (2.62) in
the following way

DN (T ) = (7.6)

= Con [ 2w, )OI A (d2),
XﬁA

where, for ¥ € [0, 1], we have set

5(19|(I)A,7'1,...,7'n) = m/xa Al(WA(Tl)) .- -An(wA(Tn)) X

X €Xp {—192 Q(wr, Wza)} pG A (dwf a), (7.7)

leA

and

Ofos) = [ ew {—ﬁzcz(wl,wﬁ} WAdeg).  (7.8)

Aga leA

Now let the functions ZI, ce A, be such that Aj(wa(ry)) = Zj (W} (7)),
as it is supposed in Theorem 7.1. Then

E(0]@a, T1y vy Th) :/XD‘ gl(wﬁ(ﬁ))...An(wf‘\(m))ug’,\(dwﬁ)

B,A
= FZJIA’“.’K” (T1y- -y Tn)- (7.9)

As a function of ¥, = is continuous on [0, 1] and differentiable on (0, 1),
where

%E(lﬂa)/\ﬂ}, . ..,Tn) = _ZZ/IB Bs(@l(t)) X

x {< D@(n) - An(wi (7)) (@ () >4
— < A (Wi(1)) - A (W) >4 X
X < (Wi (1) >4} dt. (7.10)

Here (see (2.30)), for a fixed wy € X3, the measure ¢ is defined on
X, as follows

p(dwyy) = m exp {—19 Z Q(wr, wza)} iz A (dwy).

leA
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Since the measure p§ 4 and the functions Ay A w(t) = (W ()™,
satisfy the conditions of Theorem 6.2, the estimate (6.5) yields in (7.10)
9,

— =W o, 11,5 T) <0,

09
1), @p € X0, and 71, ...,7, € Zz. The latter fact and
A4

for all ¥ € (0

the estimate (6.4) yield in turn
0< E(1|QA7 Tiyeo- 77_71) < E(0|(D1\7 Tiyee- 77_71) (711)
~5A
= Fél,---,gn (T1y vy Th)-

Using this double inequality in (7.6) we obtain

0< Ff{ﬁm’An(ﬁ,...,Tn) <P (m, o m) %

- Al,...,An
XCﬂyA/ ~ exp {_ZQ(G)Z,M?)} (ﬂﬂy[\ ®M%7A)(d@57/\,dwf<)
A A XA leA

~ ,A _ - ’A
- Fglv"-y‘&n (Tl, o ,Tn) /A/' /L/B’A(dwj\) - F%ly-..,z&n (Tl, Y ,Tn)-
B,A

g
The above theorem admits a generalization. One observes that (7.1)
may be rewritten

0 < < Ap(wa(m)) -+ An(waln)) >ps0 <
< < Ay(wa(m)) .. An(wa(7)) >ps, -

Theorem 7.2. Let the conditions of Theorem 7.1 be satisfied. Then
for every pg a-integrable function F': Qg x — Ry, which does not de-
pend on x§ mentioned in this theorem, the following inequalities

0 < < Ay(wa(m)) .. Ap(walmn)) Fwa) >p5, < (7.12)
< < Aj(wa(m)) - Ap(@a(T)) >, - < Flwa) >,
hold for all 7, ..., 7, € Lg.
To prove this theorem one writes (c.f. (7.6))
< Ay(wa(m)) - Ap(Wa (7)) Fl(wa) >p5,=

= C,B,A/ E(1wa, 7150, Tn) Fl(wa)O(L|wa) fig,a (dwy ).

XB,A

Then employing (7.11) one gets (7.12).
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7.2. Zero Boundary Domination. Here we consider the scalar case,
thus the measures (2.60), (2.61), and (2.66) describe the model (2.1)
- (2.9) with D = 1. The potential V' is supposed to obey (V2). This
model will be compared with the model described by the Hamiltonian
(2.1), (2.2) but with the following one-particle potential

Viz) € 2v <%) - 5%2 +) 2™, zER, (7.13)
§=2

instead of V' given by (2.3). Here the parameters a, and all by, s =
2,...,r are the same as in (2.3). The polynomials V', V' obey the
relation

' (fv\}gy> v < \/§y> = V(@) + V() + W(aly), (7.14)

where

W(zly) = W(ylz) = Zb (7.15)
bs(z) = zT: 2p 1P 2 P=9)
] 2¢ p

p=s+1

Then the measures constructed with V' by (2.60) and (2.61) will be
written as fig A, and ﬂ(ﬁ[f)A, respectively. Let also

KS(r,m) € < w(Nwe (') > — < wy(r) ><wp(r') >, (7.16)
s Qg, l,l, €A, T,T’ EIB,

where the expectations are taken with respect to the measure pig 4 (.|()
(2.66). Further, for the same [,1" and 7,7, let

K(r,r) & / wi(T)wp (T) i\ (dwy). (7.17)
XBA

Theorem 7.3. For arbitrary ¢ € Qp, all 7,7 € Iz and [,I' € A, the
following estimates hold

0< K5 (r,7) < Kpy(r,7). (7.18)
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Proof. The case ¢ € Q3\Qj is trivial. For ¢ € Qf, we rewrite (7.16)
as follows

— (:)1(7')
KlClI(T 7— //Xﬂ AXAXB A 2 g
y wy( )\;5(")!’( ) exp{ Z d)\/\l )N +CD)\7CX>/3_
_% Z A [{wr, wx)p + (Ox, )] —
_ Z/I [V (wr(2)) +V(@A(t))]dt} X
x R (x5 ® Xs) (do, dy).

Now we apply the following orthogonal transformation in the space
Xﬁ,A X Xﬁ,AZ

which yields

K () = Zan@1 [ [ GO

xexp{—\/i Z Ay (1rs O ) p—

AEA N EAC

_ % Z o [(Ex, Ex)a + (a, M) ) —

AN EA

=) Q& m) -

AEA

_ Z/z )+ V()] dt} x

A€A

x Q) (x5 @ x5) (déx, dnp), (7.20)
AEA
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where (see (7.14), (7.15))

QEnm) = / W (at) I (£))

-3 | mm@yisora (7.21)

Since, for V' obeying the condition (V2), all b, are nonnegative, all the
coefficients by, (1 (¢)) are nonnegative for all ,(¢). For ¥ € [0, 1], we set

Zu(Olna, 7, 7) E < &) > 600 (7.22)

where the expectation is taken with respect to the measure

Go(dEnlnn) = m exp {—192 Q& m) —

AEA

—% Z A {€xs Ex)s —

AN EA
- Z/ V(fx(t))dt} ) xa(dgy), (7.23)
xen VI8 AeA
where
O(d|na) def / exp{—ﬂZQ(f/\,nA) (7.24)
X AEA
_Z Z dax (€x, Ex ) —Z/ (& (1) dt} ®Xﬁ dg,).
M’EA AEA AEA

One observes that = is a continuous function of ¥ € [0,1]. It is
differentiable on (0, 1), where its derivative is

0 _ :
%5”1(19“]/\, T, T )

5 ZZ / () {< (5O &) >0

p=1 XeA

- < [f/\(t)] > g (-|na) < 61(7)&’ (T) >¢9("77A)} dt.

For every 1y € 54, the measure (7.23) has the form (5.1) with £ =0,
thus the GKS inequalities (6.2), (6.3) hold for its moments. This yields

0
o

—Eu (s, 1,7) <0,
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hence
0 < Ep(0fna, 7,7) < Zw(llga, 7, 7") = K (7, 7"), (7.25)

for all na, 1,I' € A, 7,7" € Ig. On the other hand, (7.20) may be
rewritten

chl’ (T, ’/'J) = [Zﬁ,A(C)]Z/X E”/(1|7’]A, T, ’/'J)@(HT]A) X
B,A

1
XeXP{—\@ > dAA’(UAaCA'>ﬁ_§ > daw (s a)s—

AEANEAC AN >EA
_ Z/ (m(t))dt} ® xs(dny). (7.26)
xen 18 xEA
Applying here (7.25) one arrives at (7.18). a

Now let us return to the measures (2.60), (2.61), for which one may
write

1
f.A(dwy) = % exp {_5 Z [dyr — du] (wz,wz'>ﬁ} Mg),Z\(dWA)-
LIEA

Taking into account (D2) and the GKS inequalities, one easily proves
the following statement.

Proposition 7.1. For every pair [,I' € A and all 7,7" € I3, the fol-
lowing estimate holds

K (r,7) < / wi(T)wr (T ipaldwy) € Kp(r, ).  (7.27)
XﬂA

Combining this estimate with (7.18) one obtains that
Ky (1,7') < Ky (7, 7'), (7.28)
which holds for arbitrary ¢ € Q3, all 7,7 € Zg and [,I' € A.

7.3. Refined Gaussian Upper Bound. For the periodic local Gibbs
measure (2.60), we write

Ku(r,7) = / (P (P apn (deon), (7.29)
Xﬁ A
and
A Z/ K”l T T deT (730)

—E K”/TT T

I'eA
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For the one-point box A = {l}, we write simply K. This parameter
depends on 3, m, and the parameters of the potential V. We show that
varying these quantities, K can be made arbitrarily small. Set

0=—) dy. (7.31)

Recall that the limit A 7 IL is taken over a sequence of boxes L.

Theorem 7.4. For the model described by the Hamiltonian (2.1), (2.2)
with D = 1 and with the one-particle potential V' satisfying (V1), let
K, defined by (7.30) with A = {l}, obey the condition

K <1/o. (7.32)

Then there exist Ay € L such that for all A > Ag, the following estimate

(7.33)

holds.

Proof. For the potential V' satisfying (V1), we set

os(dw) exp{— /I V(wl(t))dt} X (dw), (7.34)

where yg is the Gaussian measure defined by (2.27). Clearly, o4 is a
finite measure on X, which belongs to the BFS class (see [39]). For
v € [0,1], we set

pi(dwy) & 1 exp {_g > dﬁ,@)l,wl,)ﬂ} Q) os(dw), (7.35)

ZsA(0) LA leA

o 9
Zg.n(9) dzf/ exp {—5 > dﬁf(ﬂdz,wz%} ) s (dwy).
XB’A

LI'eA leA

This measure has the form (5.1) with £ = 0, thus its moments obey
the GKS and the FKG inequalities. Let us set

Ky (|, ") =< wi(r)wr (7") >, (7.36)

For every ¥ € [0, 1], this is a nonnegative (e.g., by (6.1)) and continuous
(by Theorem 4.2) function of 7,7’. One can easily show that it is also
continuous on [0,1] and differentiable on (0,1), as a function of ¥.
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Further, set (see (6.9), (6.10))
Unods (Ot oo ts) =<wy, (1) .- owy, (t1) >, (7.37)
— <wp (t)wiy (t2) >u< wiy (ts)wi, (ta) >
— < wy (t)wiy (t3) >u< wi, (t2)wi, (ta) >#
— < wy, (t)wiy (ts) >p< wi, (t2)wis (t3) >, -

For V satisfying (V1) and for a ferroelectric interaction 9d.),, the semi-
invariant Uy, __;, satisfies the Lebowitz inequality (6.11). It is also con-
tinuous as a function of tl, ..., 1y and 9. From (7.35), (7.36) one has

0 '
%K”I(lﬂ’/' T = —= Z d/\)\l /ﬂ {U)\,/\’,l,l’(ﬁ|tat77_77_)

2 Ve
+ 2K (0t ) Ky (9)t, 7) } dt. (7.38)
Setting

A ﬁ| | Z/ K”/ ’l9|7' T)deT (739)
Iz

LI'eA

= K”/(’l9|7',7'l)d7'l

ren”Is
we get from (7.38)
d
S5 EA(0) = =¥ (D) + 0, [KA(9)]°. (7.40)
Here
= dy S, AL (7.41)
IreA
and

() & 2|A|ﬂ > oAb, Uy, O, 7t tydrdr'dt > 0, (7.42)
[1,..,l4EA

for all ¥ € [0,1]. Where we have taken into account (2.7), (6.11), and
(D2). Set

K, (0)
1 — KA (0)9
By (7.35), (7.39) Kx(0) = K. In view of (7.32) and (7.41) one has
Koy <1, VAeL,
which means that, for any A, R, (?) is differentiable on (0, 1), where
d

%RAW) = 0x [RA(9)]°. (7.44)

Ry(0) = (7.43)
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Set
Py(0) = Ka(9) + BA(9) 20,  Qa(V) = Ka(Y) — Ra(9). (7.45)
Employing (7.40), (7.44) one has

%QA@?):—\P(ﬁ)HAPA(ﬂ)QAw), Q4(0) = 0. (7.46)

In view of (7.42) one has

d
— 0) <0
dﬁQA( ) >~ U,
which implies
QAr(9) <0, v € [0,1]. (7.47)
In fact, @5 () < 0 in a right neighborhood of zero. Since the function
( is continuous, to become positive it should vanish at a point, where

its derivative should be positive. But this is impossible in view of (7.46)
and (7.42). Then Q5 (1) < 0, which yields (7.33). O

Remark 7.2. The measure (7.35) would be Gaussian if one took V in
(7.34) to be identically zero. In this case one would get an equality in
(7.35). This is the reason why the latter estimate is called Gaussian
upper bound. It is in fact a refined upper bound because K is computed
for the non-Gaussian measure (7.54).

8. APPLICATIONS

8.1. Existence of the Long Range Order. The appearance of the
long range order is an effect of the phase transition, which occurs when
the fluctuations of the displacements of particles become large. In this
subsection, we show this for the model (2.1) — (2.3) with D =1 and

dll’ = _J6|l—l’\,1; J > 0. (81)

To describe the appearance of the long range order one introduces
an order parameter. Here we will use the following one (more on this
theme one may find in [37])

| 1 ’
T(B) = lim v5a (quz> , (8.2)

leA

where 3 4 is the periodic local Gibbs state introduced in (2.10). The
value (3, of the inverse temperature (3, such that

[I(5) =0, for 3<fB, and II(B) >0, for > 3,

will be called a critical inverse temperature.
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Theorem 8.1. For the system of anharmonic oscillators described by
the Hamiltonian (2.1) — (2.3) with D = 1, d > 3, and with the poly-
nomial v which 1s strictly conver on Ry and such that the polynomial
£/2 + v(€) has a minimum at some & = &, there exists m such that,
for m > m there exists a critical inverse temperature.

Proof. Having in mind the periodic conditions on the boundaries of
the box

A= (=L IL'(\L, LEeN,

we will use the Fourier transformation of the following form

exp(ipl), p=(p1,..., S 8.3
Gp = \/WZQZ p(ipl), p=(p1,.--,pa) (8.3)

leA

AN p = —7T+Ly], v;=1,2,...,2L, j=1,...,d}.
Denote

Da(p) = /I DO (0, 7)dr. (8.4)

Suppose that there exist positive B, and C,, independent of A and
such that

Da(p) < By, v5.n {ldp: [Ha, G-l1} < G, (8.5)

where [.,.] stands for the commutator. By means of the estimate ob-
tained in [37], p.363 one gets the following bound

. 1 C
V8. {dpd-p} < 5\/BpC’p coth (g #’) : (8.6)

p

In our case

. . 1
[qIH [HA, qu]] = a

On the other hand, the infrared estimates [37], [41] yield

)= TEG)

where J is taken from (8.1) and

d
Z [1 — cos(p;)]
Jj=1
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Employing these estimates in (8.6) one obtains

Yoa {dpd—p} S% \/7 th(ﬁ\/ )

( z{; |A|(I0 (8-9)

By (8.3)

On the other hand,

qu =g+ Z IpG—p (8.10)

leA peEA*\{0}
which yields
el = IMysa{a’} - Z Va.a{dpd—p}- (8.11)
peA-\{0}

Here we have taken into account that the periodic Gibbs state vz is
invariant under translations from ¥/%(A). Then by (8.9)

A ( ] > ql> (8.12)

1 .
= yoaldt} — T > vsalipd -
peA=\{0}
Making use of (8.8) and passing to the limit A 7 IL one obtains the
following estimate for the order parameter (8.2)

1(8) > ysalar} — (8.13)
L B JE(p)
2 (2m) /[Wﬂf]d \/m t (6 2m ) ap-

The latter integral is convergent for d > 3. Getting back to the repre-
sentations (2.11), (2.12), (2.22), (2.62), (7.35), and (7.36) one obtains

/Vﬂ,A{QZZ} = Kll(1|07 0)7

with dy given by (8.1). By means of (7.37) one may rewrite (7.38) as
follows

0 ,
g KW 7') = =5 Z dyy {< wi(T)wp (7w (H)wx (t) >,
)\/\'EA

- < wl( )wy(T) >u< wA(t)wX(t) >M} > 0.
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Here, to obtain the latter estimate, we have used the GKS inequality
(6.3), which obviously holds for the moments of the measure (7.35).
This estimate yields

vealar} = Ku(1]0,0) > K;(0]0,0) =< w;(0)? >0y (8.14)

_ trace {q} exp(—(H,)}
~ trace {exp(—3H,)} ’

where the Hamiltonian H; and the measure o4 are given by (2.2) and
(7.34) respectively. Now, as above, we shall use the spectral proper-
ties of the Hamiltonian H;. Its spectrum consists of nondegenerate
eigenvalues €5, s € N, €, < €511, which correspond to the eigenfunc-
tions v, constituting an orthonormal base of the space L?(R). Setting

= (¢7%s, s) 12(r), We have

K3;(0]0,0) = (Zq ﬂes) (Ze—ﬁfs)

seN seEN

Multiplying numerator and denominator by e’ and passing to the
limit 8 — +o00 we get

lim K,(0)0,0) = / 22(x)dx. (8.15)
B—+o0 R

In [31, 77, 78] there was proven the following semi-classical result. For

a double-well potential V'(x) + x?/2 possessing nondegenerate minima

at the points +x(, and for any £ > 0, one has
.. 9 1
lim inf Yy (x) de = 2’

m——+00 B:l:

(8.16)

where B* = [+x¢ — €, &1 + ¢]. Therefore, given £ > 0 and any ¢ > 0,
one may find m. 5 > 0, such that for all m > m,,

Vi(r)dr > (1 —9).

Be

l\')l»—t

Then, for such m,

/x%/;f(x)dx > 2/ 222 (z)dx
R B

> (v9 — ¢)* . Yi(z)dr > (zo —)*(1 - 9).
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Suppose that the parameters of the model are such that the following
inequality

1 1 d o 1
22> — / b a2 (8.17)
smJ  (2m)% J_rmi /E(p) sm.J

holds. The latter integral converges for d > 3. Then one may choose
positive € and 0 such that

Iy
sm.J

Since coth z is a monotone decreasing function on R, and cothx > 1
for all x > 0, one may find, taking into account also (8.15), fy(e,d) > 0
such that,

Ku(0|0,0) >

>%®/[ w4 /2mTE(p) (ﬂ\/ )

for all 8 > fy(e,9). Then by (8.14) and (8.13) one gets
1(3) >0,

(zo —2)*(1 —0) > (8.18)

for m > m(e,d) and B > [y(g,0). Now we fix € and § in such a way
that (y(s,0) has its smallest possible value 3,. Then we put m being
the value of m(e, d) at such ¢ and 0. O

8.2. Normality of Fluctuations and Suppression of Critical
Points. In this subsection, we consider the model described by (2.1) -
(2.3) with arbitrary D € N and with the potential V' satisfying (V2).
At the critical point of the model the strong dependence between the
oscillations of particles appears. At this point the fluctuations of the
displacement of particles become large (abnormal). More about ab-
normal fluctuations in such and similar systems one may find in [3],
[28], [45], [85]. To describe the fluctuations we introduce a fluctuation
operator

Qa © \/WZ% (8.19)
leA

where A is again a box. If the Green functions (2.62), (2.63), con-
structed with the help of 5, remain bounded when A 7 IL, the fluctu-
ations may be regarded as normal (under certain additional conditions
this implies normality in the usual sense [61]). At the critical point
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the fluctuations become so large that in order to preserve the men-
tioned boundedness one should use an abnormal normalization, i.e., to
describe them one should employ the following operator

Qua = MA)Qs = % S (8.20)

where {A(A) € R | A € L} is a converging to zero sequence and L is a
sequence of boxes exhausting the lattice IL. Typically, A(A) ~ |A|7,
where o < 1/2 is a critical exponent. For § > [, the fluctuations
destroy the O(D)-symmetry and A(A) is to be set |[A|7Y/2 (c.f. (8.2)).
In what follows, the above mentioned normality of fluctuations corre-
sponds to the suppression of the critical point behaviour of the model
considered.

Definition 8.1. Given 3 > 0, let the sequence of the Green functions
B,A
{FQ(al)’“.’Q(azn) (7_17 s 77_271) | A € E};

be bounded uniformly on Ig for allm € N, any aq,...c0, = 1,2,..., D,
and any sequence of bozes L. Then the fluctuations of the displacements
of particles are said to be normal at this temperature.

Let H; be the Hamiltonian (2.2) describing a one-dimensional (i.e.
D = 1) oscillator. Its spectrum consists of the nondegenerate eigenval-
ues €5, s € N. Set

A =min{e; 1 — €, : s €N} (8.21)

Theorem 8.2. Let the particle mass m, the interaction parameter 0
given by (7.31), and the spectral parameter A obey the condition

mA? > . (8.22)

Then, for any D € N, the fluctuations of the displacements of particles
remain normal at all temperatures.

The proof of this theorem will be given below. Our next statement
shows that the condition (8.22) may be satisfied for small values of the
mass m.

Theorem 8.3. There exists k > 0 such that

lim m=/ 0D (mA?) = g, (8.23)
m\,0

where 1 is the same as in (2.5).
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Proof. Recall that the Hamiltonian H; acts in the Hilbert space
H; = L*(R). Given § > 0, consider the following unitary operator on
H,

(Ust) () = 6"*4p(6).
Then

d 7 [ d _
Us <%> Uit=06" <%> : UsqUy ' = dq. (8.24)

Set § = m~!/(+2) Then the operator
Hy=m™/CtOR R Y Ri4m/0OR, (8.25)

is unitary equivalent to H; given by (2.2). Here

2 \dx
and
1 L L
R, = 5(1 +a)mrig® + Zmﬁbsq%.
s=2

Let Agr and Ay be defined by (8.21) but with the eigenvalues of the
operators I and R, respectively. Then

A =m = Ag. (8.26)

One observes that the operator R is a perturbation of Ry, which is
analytic with respect to the variable A = mY+1) at the point A\ = 0.
Thus

lim Ap = Ay.
ml{‘% R 0

Taking into account (8.26) one gets (8.23). O
Due to the O(D)-symmetry of the model the following function (c.f.
(7.29))

Ka(r,r) = [ a0l (upaldon),
XBaA

does not depend on @« = 1,...,D. Let K, be defined by (7.30) with
the above function K. Further, set

Ka(v) = / rg’g) o (0 7) cos (2mvr/B)dr, v € L. (8.27)
Is A WA
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Then KA == KA(O) and

2Ty
B,A
FQ(AM’Q(AQ)(T T ﬂ VEEZ Ka(v) cos [ 3 (-1 )] . (8.28)
Lemma 8.1. The following estimate
52
<K — 8.29

holds for all v € Z\ {0}.
Proof. By (2.12), (2.22)

A
r Q@ Q(a)(07 T) =

trace {QE\O‘) exp [—TH] Q' exp [~ (8 — T)HA]} :
A

The Hamiltonian H, has a discrete spectrum consisting of positive
eigenvalues E, s € N (see (2.17)). We set

st’ = (Q(a)\lls, \I]s’)L2(RD\A\)-
This yields in (8.27)

E Es,

X [eXp(_ﬁEs’) o eXp(_BEs)] :
Thus K, (v) > 0. Further, for v # 0,

KA(V) 27”/ ZZﬁA Z st’ ]

s'€N
X [exp(—fFEy) — exp(—[(Ejy)]
__& (@ @]y _ P
= o U [0 0]} = e 830
where [-, -] stands for commutator. |

As a corollary of (8.29) one gets from (8.28)

7A A
Fgg\a),QE\a)( ) < r? o, (a)((),()), VT, e Zs. (8.32)

Below we will use the scalar domination estimate (7.1). To this end
we compare the D-dimensional model we consider with the correspond-
ing scalar model. Let us set

fgkA(Tl,...,Tgn) FBA ~ (7_17---77_271,)7 (833)
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where @ is defined by (8.19) but for the one-dimensional model. For
this model, the Gaussian domination inequality (6.12) and the estimate
(8.32) imply that the following estimate

(@2n)!
2nn,

holds for all n € N. Let K be defined by (8.27) with v = 0 and with
[ instead of " (i.e., it is K for the one-dimensional model). As above,
K will stand for a one-point box A. Since the estimates (8.29) are

valid for all D, they hold also for K,. Moreover, the scalar domination
inequality (7.1) yields

0 < T, ... on) < 0 [F*“(O 0)] (8.34)

Ky < Kj. (8.35)
Lemma 8.2. Let A be defined by (8.21). Then

K < 8.36
A (8.36)
Proof. By (8.30)
_ 68 ﬂes’ _ e_ﬁES]
= Z it ;
(€5 — €s1)

seN

IN
I>\H N

Z Qoo (€5 — €5)[e e — 7663]_ A27
s'eN

where
Zg = trace exp[—ﬂfll],

and H, is the one-particle Hamiltonian (2.2) for a one-dimensional os-
cillator. a
Corollary 8.1. Let (8.22) hold. Then the following estimate

1

Ky<Ky < ——
A=A = maz oy

(8.37)
holds for all 3, A, and D.

Lemma 8.3. Let (8.22) hold. Then for every 3 > 0, the sequence
{T52(0,0) | A € £} is bounded.

Proof. By (8.28), (8.33),

240,0) = ZKA =

VEZ

1
B

I?A+2§f{//\(l/)] ’

v=1
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hence by (8.29), which hold also for D = 1, and by (8.37)

1~ B gt B def

r2%0,0) < =K < < I 8.38
2(’)—5 A om S wA? =0 Tom g (8:38)
Thus, the stated property follows from the boundedness of the sequence
{K\ | A € L}, which in turn follows from (8.37). |
Proof of Theorem 8.2. To estimate the Green functions
Fg([}ll) ..... Q(D‘2n)(7_1""’7_2n)’ ,Oél,...,Oégnzl,...,D, (839)

we use the scalar domination inequality (7.1) and the Gaussian upper
bound (8.34). We recall that one may apply (7.1) only to the functions
with coinciding o;. Let us gather the indices ¢ in (8.39) into the groups
gk, k=1,2,...,6 < D numbered in such a way that |gx| > |gr+1|. Set
|gk| = sk, then sq + -+ + s5 = 2n. Hence

Lo Toyer Tan) =< X1 Xy >, 1, (8.40)

Qla1) Q(O‘Zn)(

.....

where
€ I ( 3w ) . (8.41)
Jio Egg \/7 leA
Now we apply repeatedly the Schwarz inequality and obtain

92—k 27(571)

<Xy X5>,,, | < H [< X2 >W] [< X2 >,W] (8.42)

The Green function < X2* >, CONtaIns QE{J‘) with the same «, thus
we may employ the scalar domination inequality (7.1) and the Gaussian
upper bound (8.34). This yields

2]0718]6

< X2 >, < Oulsh) ['ﬁg’A(o, 0)] , (8.43)

Or(s) € 1-3-5...(2Fs — 1) = (2Fs — 1)L,
In Appendix we show that, for all n € Z,, all D € N, and for all

possible combinations of ay, ..., as,, the following estimate holds
5—1 o
27t~ n
o H [Ok(sk)] @5(55)] < cp, (8.44)
k=1
where
227D

a=1 c¢p=2[2"?)] , D>2 (8.45)
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Thus

o k 27k 51 2-@=D

H[<X,§ >W] .[< X2 s < 2n)! [epD4]", (8.46)
k=1

where we have taken into account (8.38). Applying this estimate in
(8.42) one gets the boundedness to be proven. 0

8.3. Uniqueness of Gibbs States. In this subsection we again con-
sider the scalar version of the model (2.1) - (2.5) with the potential V/
obeying (V2). As it has been proved in [14] (see also [11] and the refer-
ences therein), the class of tempered Gibbs measures Gs (see Definition
2.2), for this model, is actually nonempty. Moreover, by Theorem 8.1,
the model has a critical point, which implies that, for one and the
same value of the model parameters, Gg contains more than one ele-
ment. The suppression of the critical points, proved above, implies in
turn that one may have uniqueness of tempered Gibbs measures for
small values of m. In fact, we prove this in the current subsection.

Theorem 8.4. For the model with the Hamiltonian described by (2.1)
- (2.5) with the potential obeying (V2), for every (3, there exists a
positive m, = m, () such that for all values of the mass m € (0, m,),
the class of tempered Gibbs measures Gz consists of exactly one element,
that is |Gg|.

To prove this theorem we need to create corresponding tools, which
is done just below. Let (X, p) be a complete separable metric space
and B(X) be the Borel algebra of its subsets. Let also M be the set of
all probability measures on (X, B(X)), and

Mo {ueml [ poomntan <sef,  san

for some yy € X. Further, Lip(X) will stand for the set of Lipschitz
functions f : X — R, for which we write

[f]Lip:sup{W s r,ye X, a:;éy}, (8.48)
Lipy (X) = {f € Li(¥) | [y < 1. (5.49)

Given piq, 1o € My, we set
R(p1, o) (8:50)

def {
= sup

/X f () (da) — /X £ (&) aa(d)

: fe Lipl(X}.
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A key role in the proof of Theorem 8.4 will be played by Dobrushin’s
matrix. It is defined by the conditional Gibbs measures 5.4 (+|C), given
by (2.65) - (2.68), with ¢ € ©f and a one-point box A = {/}. To simplify
notations we set

Cye = G, ps, 3 (11€) = (-[€). (8.51)

Then the elements of Dobrushin’s matrix (Cy )i ren are

Cy = sup { T =l &= (8.52)

They will be used to check Dobrushin’s condition [33], [34], [42], [57].

Proposition 8.1. [Dobrushin’s Uniqueness Condition| Let

sup Z Cy :lelly<l. (8.53)
l'eIL\{l}

Then there exists exactly one tempered Gibbs measure.

Taking into account (D2) one has from (2.65) - (2.68)

m(dw@=%exp{<w,ms>>ﬁ— / v<w(t>>dt}><ﬁ<dw>, (8.54)

where

pi) == D dinéy, (8.55)

Ae{l}e

and Z;(§) is the normalization constant. Given = € Xj, set

T

(i) = - exp {<w,x>ﬁ - /I V(w(t))dt} ya(dw),  (8.50)
and

€ R .’t, Y
c sup{M D x,y € X, x%y}. (8.57)
|z —ylls

For £ # n, such that & = 7}, one has

1) — er(mlls = —duw & — 15
Then by (8.52), (8.54) - (8.57)

sup Z Cp :lel ; <00, (8.58)
U'eL\{l}
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where 9 was defined by (7.36). Then the condition (8.53) would be
satisfied if

c<%. (8.59)

Having this in mind let us estimate R(u®, p¥). To this end we will
estimate the variance of the following function

Xgdr =< f>= f(w)p®(dw) € R, (8.60)
s

with a fixed f € Lip,(Xj). This function is Fréchet differentiable [11],
its derivative on a certain 1) € X has the following form

(Vo< f>e ) =< fg> — <[f>:<g>e (861)
def
= Cov,e (f,9), gw) = (w,¥)s.
By the Schwarz inequality one has

(Vi < f>u,0)5] < /Var f - y/Var,eg, (8.62)
where
1
Var,: f = = — F ()2 () (de .
ary: f 2/){ﬁ/){ﬁ[f(bd) F (W) p* (dw) i (dw'), (8.63)
1 ! T T /
Var,.g = 5/253 /Xﬁ(w—w L) 5" (dw) p” (dw'). (8.64)

The idea how to prove Theorem 8.4 may be outlined as follows. Sup-
pose that we have estimated, uniformly for all z € X3, the first variance
by a positive continuous function of 3, of the parameters of the poten-
tial V' (2.3), (2.5), and of the mass m. Let also the second variance be
bounded by a positive function of the same parameters multiplied by
||| Then the mean-value theorem together with (8.57) would im-
ply that the condition (8.59) be satisfied provided the product of the
mentioned bounds is sufficiently small. Below we shall implement this
idea.
One observes that (8.64) defines a quadratic form on Xjp

Varyeg = (T, ¥)s,

with the operator 7% given as follows

(rwquézwﬂﬂwwmﬁ re1, (8.65)
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The kernel of this integral operator is

To(r. ') (8.66)
— %/Xﬁ /Xﬁ [w(r) = w'(7)] - [w(T') = W'(7)]1" (dw) p* (dw’).

Comparing this kernel with the function given by (7.16) with ¢ € Qf,
and taking into account (8.56) and (2.66) - (2.68), one concludes that

Tx(T,TI) :KZCZ(T,T,), r = —Zdulgl. (867)
Vel
This yields, in particular, that 7%(7,7’) is a continuous nonnegative
function of 7, 7" € Z; (see Theorem 4.2). Clearly, for every x € Xj, the
operator 7% is symmetric and positive. Moreover,

1
trace(T*) = 3 /X /X o — 20" (dw) (') < o0, (8.68)
B B

which follows from (2.37). Let K : X3 — X3 stand for the integral
operator with the kernel K (7,7') defined by (7.17) with I’ = I. Then
this operator is also positive and trace class, its trace may be computed
as above with the help of the measure ,&g},){l}.

For a bounded linear operator A : X3 — Xjp, let 0(A) be its pure
point spectrum and ||A|| stand for its operator norm. For a positive
compact operator, one has

|Al| = maxo(A). (8.69)
On the other hand, for such an operator (see e.g. [69], p.216)
A,
I|A]| = sup {% e X\ {0}} . (8.70)
B

The construction of the above mentioned bounds is based upon the
following lemmas, which will be proved at the end of this subsection.

Lemma 8.4. For every z,v¢ € X3, one has

(T, ) < [IK|1¢1]5- (8.71)
Lemma 8.5. For every v € X, one has
trace(T?) < trace(K). (8.72)

Lemma 8.6. The following estimate holds
1

mA2’

max o (K) < (8.73)
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where A is defined by (8.21) but with the eigenvalues of the one-particle
Hamiltonian (2.2) with the potential V' (7.13) instead of V' (2.3), (2.5).

Lemma 8.7. Let r in (2.5) be set v = 2. Then, for all v € X5 and
any f € Lip,(X3), one has

25 [ a \*
+f < hePo 0p= — | — .74
Va‘ru f = € ) 0 288 <\/E> ) (8 7 )

where the constant h depends only on the interaction parameter 0.

The proof of the above statement may be done by means of the
logarithmic Sobolev inequality, just as it was done in [11]. Another
estimate of the variance of f is linear in 3. We will use it for r > 2.

Lemma 8.8. There exists a parameter hg, independent of m and (3,
such that the estimate

Varg. f < Bhom™ Y+, (8.75)
holds for all x € X5 and any f € Lip,(Xp).

Proof of Theorem 8.4. First we estimate Var,. g given by (8.64).
By Lemma 8.4, (8.69), and Lemma 8.6 one has

10115
mA2’

By Theorem 8.3, one may find my and kg such that, for m € (0, m,),
the following estimate holds

1
T < kom{r /1), (8.76)

Varyeg = (T, ¥)s < | K||[0|I5 = maxo (K)[|y|5 <

Then one has
Var,:g < womTD/+D|jg)|12, (8.77)

that holds for m € (0, my). For r > 2, one may use (8.75), which yields
the following estimate of the distance (8.50)

R(p®, 1) < ||z = yllsv/Bhorio - m0,
holding for all m € (0,mg). Employing this estimate in (8.57) one
obtains that the uniqueness condition (8.59) holds true if

1
m < m,(f) = min {mg, [Bhotiod?] } . (8.78)
For r = 2, we use (8.74) and obtain
R(u*, 1) < lle = ylls/Bheoe™m'/°,
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which yields that the uniqueness condition holds in this case if
6—3,350

m < m,(f3) = min {mg, W} . (8.79)

a
Proof of Lemma 8.4. Here we use (8.67) and the zero boundary
domination estimate (7.18). Then taking into account that the kernel
T*(r,7') is nonnegative one obtains

(T, 65 = (T, )] < / / T* () () [ (')

s/ K (7, )| (n)|[¢ () drdr" < | K| 1[I} = [|K]1¢]3.
]

a
The proof of Lemma 8.5 immediately follows from the estimate (7.18).
Proof of Lemma 8.4. By (8.27), (8.30), and (8.69) one has

maxo(K) = ||K|| = [ K(0,7)dr
Zs
1 o .. e Pl —emh
=7 Qosr(€s — €t )5
Z,B ot ss(s 8) (65—65')2
1 1 . . 1
S == (e, —ég) {e7Per — 7Pl = —
A? BS;N vt } ma’
a

Proof of Lemma 8.8. For a Lipschitz function f, one obtains by
means of (8.48) , (8.49), (8.68), and Lemma 8.5

Var,. [ < / / |lw — &' gu” (dw) p® (dw') = trace(T™)
X J X

< trace(K) = | K(r,7) = BK(0,0). (8.80)
Zs

Further, as in (8.31) one has

A 1 : e
K(0,0) = 2 trace [qZ exp{—ﬂHl}] o>,

B

A~

It turns out that max o(K) may be expressed in terms of the Duhamel
two-point functions [37] and hence estimated from below as follows

B<q>f (L> < maxo(K), (8.81)

dm < ¢ >
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where the function f : (0,+00) — (0,+00) was introduced and esti-
mated in [37]. It has the following bound

1) < (o). (8.82)
Then by (8.73) and (8.76) one gets in (8.81)
<@>< %\/K—Om—l/(rﬁ—l),
that holds for m € (0, mg). Applying this estimate in (8.80) one obtains
(8.75). 0
9. APPENDIX

Here we prove the estimate (8.44). For s € Nand N > k > 2, we
write

2k—1
Or(s) = (25 — DI [ Yau(s) < (9.1)
k=2
< 95 g19s(2571—1) [(Qkfl)!]s Ss(zkflq),
where
2ks — 1)!!
T aw | < (2ks)".
() = Gu s = k)
Let M, stand for the left-hand side of (8.44). One may write
Mn - KI,O . Kgy() ‘e K571,0 . LU) (92)
where
—k —(6—1)
Kio = [Ok(se)/(2n)11" ", Lo =[05(s5)/(2n)1]” " 7. (9.3)
From now on we fix n. For N 3 s < 2n, we write
e 2n)!
] ¥ (s+1)...(2n) = (S—Tf) (9.4)
Then one has
(251 — D! 2%

1/2 e
Kio = [:(s0)/ )] = | | <

251! [s1]
Applying this estimate in (9.2) we obtain

M, <2°PKy, Ky, ... K5 1114, (9.5)
where

ef _9— ef
Ky « Ko - [s1]7? oL E Ly - [s1]
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Let us estimate Ky ; as follows

(28, = DI Ya(sx) ]
()l s [521]

S 252/2(2!)52/4 |: (

Sl

All multipliers in the products [s1] , [s2] are greater than sy (we recall
that s, > spyq for all k = 1,2,...,6, and s; + 5o+ --- + 55 = 2n).
Therefore, one may find the numbers oy > sy, 03 > s9, both less than
2n, such that o9 > 03 and 09 + 03 = s1 + 2s5. Then one gets

(52)°2 _ (82)% . 1 < 1
[s1][sa]  (s1+1)...02-(sa+1)...03 [o9][o3] ~ [o2][o3]

Here we have taken onto account that the number of multipliers in the
product (s;+1)...09-(s9+1)...0318 03 — 1+ 03 — S5 = $9 and that
every such multiplier is greater than s,. This yields in (9.7)

Ky < 222205/ (0] - 03]} 7H/%.

Ky, = { (9.7)

1]
)
[

Applying this estimate in (9.5) we get
M, < 26+s22(o02/ Ky Ky o K1 9L, (9.8)
where we have set o7 = s; and
Kiz = Kio{low] - [02] - [os]} 2", Lo = Lo{[o] - [oa] - [os]} 72 .
Proceeding in this way one obtains
M, < 20srt+s)/2(9rys2/4(41)58/8 || [(2F-1)1)ok/2" (9.9)
XKpiip - K1k Ly,
where £k =2,3,...,0 — 1l and for j =2,3,...,k+1,
K = Kjp{[on]loo] - fows 1]} 7,
Ly = Lo{[on][] .. [oe ]} 27,

Ogi=1 + Ogim1 g + Aoy =2 s + 27 (s + -+ 51),
o1+ oyt tog =2 s b s 4 51)
o111 < 07 < 2n.
Finally, we arrive at
M, < 2(51+...55)/2(2!)52/4(4!)53/8 o [(2571)!](55,1“5)/25—1
27 (21)2/4(41)58/8 (207 1)1](se-1t88)/2 T
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Taking into account that [(29)!]%/2 < [(27+1)1]5+/2"" j € N, and that
d < D, one obtains (8.44).

Acknowledgements Yuri Kozitsky is grateful for the kind hospi-
tality extended to him at Bielefeld and Bonn Universities. His research
was supported in part by the Polish Scientific Research Committee
through the grant KBN 2 PO3A 02915 that is also acknowledged. Fur-
ther financial support by the DFG through the SFB 343, the BiBoS
Research Center and the EU-TMR Project ERB-FMRX-CT96-0075 is
gratefully acknowledged.

[1]
2]
[3]

[4]
[5]

[6]

[7]

REFERENCES

S. Albeverio, R. Hgegh—Krohn, Homogeneous Random Fields and Quan-
tum Statistical Mechanics,J. Funct. Anal., 19 242-279 (1975).

S. Albeverio, R. Hgegh—Krohn, Mathematical Theory of Feynman Path
Integrals, Lecture Notes in Math. 523, Springer, Berlin, 1976.

S. Albeverio, A. Daletskii, Yu. Kondratiev, M. Réckner, Fluctuations
and Their Glauber Dynamics in Lattice Systems, J. Func. Anal. 166,
148-167 (1999)

S. Albeverio, Yu. Kondratiev, Yu. Kozitsky, Quantum Hierarchical
Model, Methods of Funct. Anal. Topology, 2, 1-35 (1996).

S. Albeverio, Yu. Kondratiev, Yu. Kozitsky, Absence of Critical Points
for a Class of Quantum Hierarchical Models, Commun. Math. Phys.,
187, 1-18 (1997).

S. Albeverio, Yu. Kondratiev, Yu. Kozitsky, Suppression of Critical Fluc-
tuations by Strong Quantum Effects in Quantum Lattice Systems, Com-
mun. Math. Phys., 194, 493-512 (1998).

S. Albeverio, Yu. Kondratiev, Yu. Kozitsky, Classical Limits of Euclidean
Gibbs States for Quantum Lattice Models, Letters in Math. Phys., 48,
221-233 (1999).

S. Albeverio, Yu. Kondratiev, Yu. Kozitsky, M. Réckner, Uniqueness for
Gibbs Measures of Quantum Lattices in Small Mass Regime, Ann. Inst.
H. Poincaré, 37, 43-69 (2001)

S. Albeverio, Yu. G. Kondratiev, R.A. Minlos, A.L. Rebenko, Small Mass
Behaviour of Quantum Gibbs States for Lattice Models with Unbounded
Spins, J. Stat. Phys., 92, 1153-1172 (1998)

S. Albeverio, Yu. G. Kondratiev, R.A. Minlos, G.V. Shchepan’uk,
Uniqueness Problem for Quantum Lattice Systems with Compact Spins,
Letters in Math. Phys., 52, 185-195 (2000)

S. Albeverio, Yu. Kondratiev, M.R6ckner, T.V. Tsikalenko, Uniqueness
of Gibbs States for Quantum Lattice Systems, Probab. Theory Relat.
Fields, 108, 193-218 (1997).

S. Albeverio, Yu. Kondratiev, M. Rockner, T.V. Tsikalenko, Unique-
ness of Gibbs States on Loop Lattices, C.R. Acad. Sci. Paris, Proba-
bilités/Probability Theory, 342, Série 1, 1401-1406 (1997)



72 S. ALBEVERIO, YU. KONDRATIEV, YU. KOZITSKY, AND M. ROCKNER

[13] S. Albeverio, Yu. Kondratiev, M. Réckner, T.V. Tsikalenko, Dobrushin’s
Uniqueness for Quantum Lattice Systems with Nonlocal Interaction,
Commun. Math. Phys., 189, 621-630 (1997)

[14] S. Albeverio, Yu. Kondratiev, M.Réckner, T.V. Tsikalenko, Glauber Dy-
namics for Quantum Lattice Systems, Rev. Math. Phys., (to appear)

[15] N. Angelescu, A. Verbeure, V.A. Zagrebnov, Quantum n-vector An-
harmonic Crystal. I. 1/n-expansion, Comm. Math. Phys., 205, 81-95
(1999).

[16] V.S. Barbulyak, Yu.G. Kondratiev, Functional Integrals and Quantum
Lattice Systems: I. Existence of Gibbs States, Rep. Nat. Acad. Sci of
Ukraine, No 9, 38-40 (1991).

[17] V.S. Barbulyak, Yu.G. Kondratiev, Functional Integrals and Quantum
Lattice Systems: II. Periodic Gibbs States, Rep. Nat. Acad. Sci of
Ukraine, No 8, 31-34 (1991).

[18] V.S. Barbulyak, Yu.G. Kondratiev, Functional Integrals and Quantum
Lattice Systems: ITI. Phase Transitions, Rep. Nat. Acad.Sci of Ukraine,
No 10, 19-21 (1991).

[19] V.S. Barbulyak, Yu.G. Kondratiev, The Quasiclassical Limit for the
Schrodinger Operator and Phase Transitions in Quantum Statistical
Physics, Func. Anal. Appl., 26(2), 61-64 (1992).

[20] V.S. Barbulyak, Yu.G. Kondratiev, A Criterion for the Existence of Pe-
riodic Gibbs States of Quantum Lattice Systems, Selecta Math. (N.S.),
12, 25-35 (1993).

[21] M.T. Barlow, M. Yor, Semi-martingale Inequalities via the Garsia-
Rodemich-Rumsey Lemma, and Applications to Local Times, J. Func.
Anal., 49, 198-229 (1982).

[22] Yu.M. Berezansky, Yu.G. Kondratiev, Spectral Methods in Infinite Di-
mensional Analysis, Kluwer Academic Publishers, Dordrecht Boston
London, 1994.

[23] F.A. Berezin, M.A. Shubin, The Schrédinger Equation, Kluwer Aca-
demic Publishers, Dordrecht Boston London, 1991.

[24] P. Billingsley, Convergence of Probability Measures, John Wiley & Sons,
Inc., New York, 1968

[25] T. Bodineau, B. Helffer, The log-Sobolev Inequality for Unbounded Spin
Systems, J. Func. Anal. 166, 168-178 (1999)

[26] O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical
Mechanics, 1, 11, Springer, New York, 1981.

[27] J. Bricmont, The Gaussian Inequality for Multicomponent Rotators, J.
Stat. Phys. 17, 289-300 (1997)

[28] M. Broidoi, B. Momont, A. Verbeure, Lie Algebra of Anomalously Scaled
Fluctuations, J. Math. Phys. 36, 6746-6757 (1995)

[29] A.D. Bruce, R.A. Cowley, Structural Phase Transitions, Taylor and
Francis Ltd., 1981.

[30] Ph. Choquard, The Anharmonic Crystal, W.A. Benjamin, New York,
1967

[31] J.M. Combes, P. Duclos, R. Seiler, Krein’s Formula and One-
Dimensional Multiple Well, J. Funct. Anal., 52, 257-301 (1983)

[32] J.-D. Deuschel, D.W. Strook, Large Deviations, Academic Press, Inc.,
London, 1989.



EUCLIDEAN GIBBS STATES OF QUANTUM LATTICE SYSTEMS 73

[33] R.L. Dobrushin, Prescribing a System of Random Variables by Condi-
tional Distributions, Theory Prob. Appl. 15, 458-486 (1970).

[34] R.L. Dobrushin, S.B. Shlosman, ” Constructive Criterion for the Unique-
ness of Gibbs field”, pp. 347-370 in Statistical Physics and Dynamical
Systems. Rigorous Results, Birkhaeuser, Basel, 1985.

[35] W. Driessler, L. Landau, J.F.Perez, Estimates of Critical Lengths and
Critical Temperatures for Classical and Quantum Lattice Systems, J.
Stat. Phys. 20, 123-162 (1979).

[36] F. Dunlop, Correlation Inequalities for Multicomponent Rotators,
Comm. Math. Phys. 49, 247-256 (1976)

[37] F.J. Dyson, E.H. Lieb, B. Simon, Phase transitions in quantum spin
systems with isotropic and nonisotropic interactions, J. Stat. Phys. 18,
335-383, (1978).

[38] M. Fannes, A. Verbeure, Correlation Inequalities and Equilibrium States,
Comm. Math. Phys. 55, 125-131 (1977)

[39] R. Fernandez, J. Frohlich, A. Sokal, Random Walks, Critical Phenomena
and Triviality in Quantum Field Theory, Springer, Berlin - Heidelberg -
New York - Paris - Tokyo - Hong Kong, 1992.

[40] J.K. Freericks, Mark Jarrell, G.D. Mahan, The Anharmonic Electron-
Phonon Problem, Phys. Rev. Lett., 77, 4588-4591 (1996).

[41] J. Frohlich, B. Simon, T. Spencer, Infrared Bounds, Phase Transitions
and Continuous Symmetry Breaking, Commun. Math. Phys. 50, 79-85
(1976).

[42] H.O. Georgii, Gibbs Measures and Phase Transitions. Vol 9, Walter de
Gruyter, Springer, Berlin New York, 1988.

[43] S.A. Globa, A Class of Quantum Lattice Models and their Gibbs States,
Ukrainian Math.J. 40, 787-792 (1988).

[44] S.A. Globa, Yu.G. Kondratiev, The Construction of Gibbs States of
Quantum Lattice Systems, Selecta Math. Sov., 9, 297-307 (1990).

[45] D. Goderis, A. Verbeure, P. Vets, Dynamics of Fluctuations for Quantum
Lattice Systems, Comm. Math. Phys. 128, 533-549 (1990)

[46] F. Guerra, L. Rosen, B.Simon, Boundary Conditions for the P(¢), Eu-
clidean Field Theory, Ann. Inst. H.Poincaré 15, 231-234 (1976).

[47] B. Helffer, Splitting in Large Dimensions and Infrared Estimates. IL
Moment Inequalities, J. Math. Phys. 39, 760-776 (1998)

[48] R. Hgegh—Krohn, Relativistic Quanum Statistical Mechanics in Two-
dimensional Space-time, Comm. Math. Phys. 38, 195-224 (1974)

[49] A. Inoue, Tomita-Takesaki Theory in Algebras of Unbounded Operators.
Lecture Notes in Math. 1699, Springer-Verlag, Berlin Heidelberg New
York, 1998.

[50] A. Inoue, A Survey of Tomita-Takesaki Theory in Algebras of Un-
bounded Operators. II. Physical Applications, Fukuoka Univ. Sci. Rep.
30, 49-66 (2000).

[51] A. Klein, L. Landau, Stochastic Processes Associated with KMS States,
J. Funct. Anal. 42, 368-428 (1981).

[52] Ju.G. Kondratiev, ”Phase Transitions in Quantum Models of Ferro-
electrics”, pp. 465-475 in Stochastic Processes, Physics, and Geometry
I, World Scientific, Singapore New Jersey, 1994.



74 S. ALBEVERIO, YU. KONDRATIEV, YU. KOZITSKY, AND M. ROCKNER

[53] Yu. Kozitsky, Quantum Effects in a Lattice Model of Anharmonic Vector
Oscillators, Lett. Math. Phys. 51, 71-81 (2000).

[54] Yu. Kozitsky, Scalar Domination and Normal Fluctuation in N-Vector
Quantum Anharmonic Crystals, Lett. Math. Phys. 53, 289-303 (2000).

[55] Yu. Kozitsky, Quantum Effects in Lattice Models of Vector Anharmonic
Oscillators, in: Stochastic Processes, Physics and Geometry: New Inter-
plays, II (Leipzig, 1999), 403-411, CMS Conf. Proc., 29, Amer. Math.
Soc., Providence, RI, 2000.

[56] Yu. Kozitsky, Gibbs States of a Lattice Systems of Quantum Anharmonic
Oscillators, in: Noncommutative Structures in Mathematics and Physics,
NATO ASI Series (eds. S. Duplij and J. Wess) (to appear).

[57] H. Kiinsch, Decay of Correlations under Dobrushin’s Uniqueness Condi-
tion and its Applications, Commun. Math. Phys. 84, 207-222 (1982)

[58] V.A. Malyshev, R.A. Minlos, Linear Infinite Particle Operators, AMS,
1995.

[59] R.A. Minlos, A. Verbeure, V.A. Zagrebnov, A Quantum Crystal Model
in the Light-Mass Limit: Gibbs States, Reviews in Math. Phys. 12, 981—
1032 (2000)

[60] E. Nelson, Feynman Integrals and the Schrédinger Equation, J. Math.
Phys. 5, 332-343 (1964)

[61] C.M. Newman, Normal Fluctuations and the FKG inequalities, Comm.
Math. Phys. 74, 119-128 (1980).

[62] E. Olivieri, P.Picco, Yu.M. Suhov, On the Gibbs States for One-
Dimensional Lattice Boson Systems with a Long-Range Interaction, J.
Stat. Phys. 70, 985-1028 (1993)

[63] Y.M. Park, HH Yoo, A Characterization of Gibbs States of Lattice
Boson Systems, J. Stat. Phys. 75, 215-239 (1994).

[64] Y.M. Park, H.H Yoo, Uniqueness and Clustering Properties of Gibbs
States for Classical and Quantum Unbounded Spin Systems, J. Stat.
Phys. 80, 223-271 (1995)

[65] K.R. Parthasarathy, Probability Measures on Metric Spaces, Academic
Press, New York, 1967.

[66] L.A. Pastur. B.A. Khoruzhenko, Phase Transitions in Quantum Models
of Rotators and Ferroelectrics, Theoret. Math.Phys. 73, 111- 124 (1987).

[67] R.T. Powers, Self-Adjoint Algebras of Unbounded Operators, Comm.
Math. Phys. 21, 85-124 (1971)

[68] A. Procacci, B. Scoppola, On decay of Correlations for Unbounded Spin
Systems with Arbitrary Boundary Conditions, Preprint TAMP 00-462
(2000) (http://www.ma.utexas.edu/mp_arc/)

[69] M. Reed, B. Simon, Methods of Modern Mathematical Physics. I. Func-
tional Analysis, Academic Press: New York, London, 1972

[70] T. Schneider, H. Beck, E. Stoll, Quantum Effects in an n-component
Vector Model for Structural Phase Transitions, Phys. Rev. B13, 1123—
1130 (1976).

[71] G.L. Sewell, Unbounded Local Observables in Quantum Statistical Me-
chanics, J. Math. Phys. 11, 1868-1884 (1970)

[72] G.L. Sewell, Quantum Theory of Collective Phenomena, Clarendon
Press, Oxford, 1986



EUCLIDEAN GIBBS STATES OF QUANTUM LATTICE SYSTEMS 75

[73] B.V. Shabat, Introduction to Complex Analysis. II: Functions of Several
Variables, Nauka, Moscow, 1985 (in russian)

[74] S. Shlosman, Signs of the Ising Model Ursell Functions, Commun. Math.
Phys. 102, 679-686, (1986).

[75] B.Simon, The P(yp)2 Euclidean (Quantum) Field Theory, Princeton
Univ. Press, Princeton, 1974.

[76] B. Simon, Functional Integration and Quantum Physics, Academic
Press, New York San Francisco London, 1979.

[77] B.Simon, Instantons, Double Wells and Large Deviations, Bulletin of the
AMS (New Series) 8, 323-326 (1983).

[78] B.Simon, Semiclassical Analysis of Low Lying Eigenvalues, II. Tunneling,
Ann. Math. 120, 89-118 (1984).

[79] B.Simon, Schrodinger Operators in the Twentieth Century, Preprint
TAMP 00-77 (2000) (http://www.ma.utexas.edu/mp_arc/)

[80] S. Stamenkovié, Unified Model Description of Order-Disorder and Dis-
placive Structural Phase Transitions, Condensed Matter Physics (Lviv),
1(14), 257-309 (1998).

[81] I.V. Stasyuk, Local Anharmonic Effects in High-T,. Superconductors.
Pseudospin-Electron Model, Condensed Matter Physics (Lviv), 2(19),
435-446 (1999)

[82] L.V. Stasyuk, Approximate Analitical Dynamical Mean-Field Approach
to Strongly Correlated Electron Systems, Condensed Matter Physics
(Lviv), 3(22), 437-456 (2000)

[83] G.Sylvester, Inequalities for Continuous-Spin Ising Ferrromagnets, J.
Stat. Phys. 15, 327-341 (1976)

[84] J.E. Tibballs, R.J. Nelmes, G.J. McIntyre, The Crystal Structure of
Tetragonal KHy PO4 and KD2 POy as a Function of Temperature and
Pressure, J. Phys. C: Solid State Phys., 15, 37-58 (1982).

[85] A. Verbeure, V.A. Zagrebnov, Phase Transitions and Algebra of Fluc-
tuation Operators in Exactly Soluble Model of a Quantum Anharmonic
Crystal, J. Stat. Phys. 69, 37-55 (1992).

[86] A. Verbeure, V.A. Zagrebnov, No-Go Theorem for Quantum Structural
Phase Transition, J.Phys.A: Math.Gen. 28, 5415-5421 (1995).



76 S. ALBEVERIO, YU. KONDRATIEV, YU. KOZITSKY, AND M. ROCKNER

ABTEILUNG FUR STOCHASTIK, UNIVERSITAT BONN,, D 53115 BoNN (GER-
MANY); SFB 256;, BIBoS RESEARCH CENTER, BIELEFELD (GERMANY);, CER-
FIM, LOCARNO AND USI (SWITZERLAND)

E-mail address:  albeverio@uni-bonn.de

ABTEILUNG FUR STOCHASTIK, UNIVERSITAT BONN,, D 53115 BoNN (GER-
MANY); SFB 256;, BIBoS RESEARCH CENTER, BIELEFELD (GERMANY);, INSTI-
TUTE OF MATHEMATICS, KIEV (UKRAINE),

E-mail address: kondratiev@uni-bonn.de

INSTYTUT MATEMATYKI, UNIWERSYTET MARII CURIE-SKLODOWSKIEJ, PL
20-031 LuBLIN (POLAND)
E-mail address: jkozi@golem.umcs.lublin.pl

FAKULTAT FUR MATHEMATIK,, UNIVERSITAT BIELEFELD, D 33615 BIELE-
FELD (GERMANY)
E-mail address: roeckner@mathematik.uni-bielefeld.de



