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Abstract. An approach to the description of the Gibbs states
of lattice models of interacting quantum anharmonic oscillators,
based on integration in in�nite dimensional spaces, is described
in a systematic way. Its main feature is the representation of the
local Gibbs states by means of certain probability measures (lo-
cal Euclidean Gibbs measures). This makes possible to employ
the machinery of conditional probability distributions, known in
classical statistical physics, and to de�ne the Gibbs state of the
whole system as a solution of the equilibrium (Dobrushin-Lanford-
Ruelle) equation. With the help of this representation the Gibbs
states are extended to a certain class of unbounded multiplication
operators, which includes the order parameter and the uctua-

tion operators describing the long range ordering and the critical
point respectively. It is shown that the local Gibbs states con-
verge, when the mass of the particle tends to in�nity, to the states
of the corresponding classical model. A lattice approximation tech-
nique, which allows one to prove for the local Gibbs states analogs
of known correlation inequalities, is developed. As a result, cer-
tain new inequalities are derived. By means of them, a number
of results describing physical properties of the model are obtained.
Among them are: the existence of the long-range order for low
temperatures and large values of the particle's mass; the suppres-
sion of the critical point behaviour for small values of the mass
and for all temperatures; the uniqueness of the Euclidean Gibbs
states for all temperatures and for the values of the mass less than
a certain threshold value, dependent on the temperature.
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1. Introduction

Gibbs states of quantum systems living on a lattice IL are constructed

as positive normalized functionals on von Neumann algebras whose

elements (observables) represent physical quantities characterizing a

given system (see [26], [51]). If the algebra of observables of each

subsystem in a �nite � � IL may be regarded as a C�{algebra of

bounded operators on a Hilbert space, the construction of the Gibbs

states is performed within an algebraic approach, which now is quite

well elaborated [26]. But if one needs to include into consideration also

unbounded operators, the situation becomes much more complicated

and the construction of Gibbs states even for simple models turns into

a very hard task (for more details on this see the discussion in [49],

Chapter IV, pp. 169, 170 and [50]).

In 1975, in [1], an approach to the construction of Gibbs states of lat-

tice systems of interacting quantum particles performingD-dimensional

oscillations around their equilibrium positions has been initiated. This

approach employs the integration theory in path spaces (see also [2],

[16], [17], [20], [43], [44], [51], [60], [76]). It is based on the fact, dis-

covered by R. H�egh-Krohn [48], that the C�-algebra of observables of
every subsystem in a �nite subset � � IL is spanned by the operators

of a certain type constructed with bounded multiplication operators.

The essence of the approach is that the states at a given temperature

T = ��1 taken on such operators (Green functions) are written as

expectations with respect to a probability measure ��;� on a certain
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in�nite-dimensional space, obtained as a perturbation of a Gaussian

measure. Then, for `nice' perturbating functions, it was proved that,

in the thermodynamic limit when � % IL, the weak limit ��;� ) ��
exists. The Gibbs state of the whole system as a functional was re-

constructed by means of ��, analogously to the case of the Euclidean

quantum �eld theory (see [1], Section 4, in particular Theorem 4.1 for

the reconstruction of the Gibbs state). That is the reason why �� is of-
ten called a Euclidean Gibbs state of a quantum system. This approach

was further developed in [16] { [20], [43], [44], [52]. As a result, it has

become possible to develop substantially the theory of Gibbs states

in the models of quantum anharmonic crystals employing unbounded

operators. In particular, for a model of this type, the convergence at

the critical point of the states taken on uctuation operators - the only

result of this kind obtained for quantum models - was proven [4]. In

this article, we intend to describe the most important aspects of this

approach in a systematic way. Though being mainly a review article

based on our works [5] { [8], [18], [19], [52] { [56], this paper contains

some new results (see the last paragraph of this introduction).

Since the Euclidean Gibbs state �� is a measure, in order to estab-

lish the set of all possible such states, one can apply the machinery

of conditional probability distributions, known in classical statistical

physics (see [33], [34], [42]). This was done in [8], [11] { [14], [63].

Certain information regarding the properties of the systems with large

values of D may be obtained by means of perturbation arguments with

respect to 1=D, as it has been done in [15]. Starting from [1], as a

main tool in studying such states, various cluster expansion techniques

were employed [10], [59], [62], [64], [68]. As a result, the existence and

certain properties of the Euclidean Gibbs states (ergodicity, decay of

correlations) were obtained for high temperatures [64], or for all tem-

peratures in the case of the one-dimensional lattice [62], [64]. In [59],

for small values of the particle's mass, the convergence of correspond-

ing cluster expansions was proved for all values of the temperature

including zero. This made possible to prove the existence of tempera-

ture and ground states and to describe a number of properties of these

states. The convergence of cluster expansions implies analyticity in the

coupling parameter which, for systems of particles moving on compact

manifolds (considered in [10]), or for the case of `gentle' anharmonicity

(studied in [1]), corresponds to the uniqueness of the Euclidean Gibbs

states. However, for systems with unbounded oscillations (and hence

described by unbounded operators), as in the case considered in this

work, it is impossible to recover the uniqueness of the states from the

convergence of a cluster expansion. An alternative approach consists in
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establishing correlation inequalities, as it has been used in solving var-

ious problems of classical statistical physics [25], [27], [35] { [41], [47],

[61], [74], [83]. To apply such inequalities to the Euclidean Gibbs states

one should approximate them by classical (i.e. non-quantum) Gibbs

measures. In the Euclidean quantum �eld theory this is known as the

lattice approximation technique [75], [76]. As it has been mentioned

above, an essential role in the theory of equilibrium properties of the

models considered is played by unbounded operators. Starting from

the early seventies great e�orts to generalize the traditional algebraic

schemes of the construction of states on C�-algebras to the algebras of
unbounded operators have been done [67], [71], [72]. The status quo in

this domain, as well as an extensive bibliography, may be found in [49],

[50]. It should be stressed here that within such an algebraic approach

only the states for �nite families of particles of the type considered in

this work have been constructed. Thus the Euclidean approach remains

so far the only method which allows one to construct the Gibbs states

for the in�nite systems of quantum particles described by unbounded

operators.

We consider the following quantum lattice system. To each point

of the lattice IL = Z
d, d 2 N , there is attached a quantum particle

(oscillator) with the reduced mass m = mph=~
2 (mph being the phys-

ical mass), which has an unstable equilibrium position at this point.

Such particles perform D-dimensional oscillations around their equilib-

rium positions and interact among themselves via an attractive poten-

tial. Similar objects have been studied for many years as quite realistic

models of crystalline substance undergoing structural phase transitions

{ one of the most spectacular phenomena of contemporary statistical

physics (see [29], [30], [70], [80]). They also are used as parts of the

models which describe strong electron-electron correlations caused by

the interaction of electrons with oscillating ions [40], [81], [82]. In the

case considered, the phase transition is connected with the appear-

ance of macroscopic displacements of particles (a long{range order),

which break the O(D)-symmetry possessed by the model, when the di-

mensions d, D, the mass m, the temperature ��1, and the parameters

of the potential energy satisfy certain conditions. These phenomena

were studied mathematically in various papers, see e.g. [18], [52], [66],

[85], [86]. The essential problem in this context is to understand how

does a quantum model become more and more classical, i.e. how (and

whether) do the quantum Gibbs states converge to the corresponding

classical Gibbs states. On the other hand, of the same importance is

to understand the role of quantum e�ects in phase transitions in such
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models. As was justi�ed on the physical level [70] and observed ex-

perimentally (see [84] and Chapter 2.5.4.3 of the book [29]), quantum

e�ects may suppress the long-range ordering. For the one-dimensional

oscillations (i.e. for D = 1), this was proved in [86]. Later on it was

shown in [5], [6] (D = 1), and [53], [54], [55] (D 2 N) that not only the

long-range order but also any critical anomaly of the displacements of

particles from the equilibrium positions are suppressed at all tempera-

tures if the model is `strongly quantum', which may occur in particular

if the mass m is small enough.

Another important problem of the mathematical theory of models

which exhibit such phenomena is the uniqueness of their Gibbs states.

Such uniqueness would imply the absence of all critical anomalies and

all the more of the long{ range ordering. Therefore, one may expect the

uniqueness of Gibbs states at all values of the temperature for `strongly

quantum' models. First the uniqueness of the Euclidean Gibbs states

for the model considered in this work (for D = 1) was proved to occur

under conditions which were irrelevant to the `quantumness' of the

model (e.g. for high temperatures). This was done in [11] { [14] by

means of logarithmic Sobolev inequalities. Then in [8] the mentioned

uniqueness was proved to hold for D = 1 and for every �xed inverse

temperature � if the mass m is less than some threshold value m�
(depending on �).
The present paper is organized as follows. In Section 2 we describe

the models which will be considered throughout the article. Neces-

sary facts from the theory of local Gibbs states of such models are also

presented there. Thereafter, we introduce a Gaussian measure on an

in�nite-dimensional Hilbert space. This measure plays a key role in

our approach. Then its properties, which we use in the sequel, are de-

scribed in details. By means of this measure we de�ne local Euclidean

Gibbs measures corresponding to di�erent boundary conditions. The

Green functions constructed by bounded multiplication operators for

the periodic and zero boundary conditions are written as moments of

the Euclidean Gibbs measures. Moreover, by means of such measures,

we introduce the Green functions corresponding to nonzero boundary

conditions. Then we give the de�nition of the Euclidean Gibbs state

for the whole system as a solution of the Dobrushin-Lanford-Ruelle

equation. In Section 3, the results of which were announced in [7], we

show that such states converge, when m ! +1, to states isomorphic

to the Gibbs states of the corresponding classical models. Section 4

is based on [53] { [56]. It is dedicated to the extension of the Green

functions (and hence of the local Gibbs states) to a certain class of
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unbounded operators, which includes the order parameter and uc-

tuation operators describing the long-range ordering and the critical

points of the models considered. In Section 5 we prove that the local

Euclidean Gibbs measures may be approximated by �nite-dimensional

measures corresponding to general ferromagnets. This allows us to

prove analogs of known correlation inequalities for the moments of the

local Euclidean Gibbs states (Section 6). In Section 7 we use these

inequalities to prove a number of new inequalities, such as scalar dom-

ination, zero boundary domination, re�ned Gaussian upper bound. In

Section 8, which is based on [5], [6], [8], [18], [52] { [56], we apply these

results to the description of certain physical properties of the models

considered. Thus, we prove the existence of the long-range order (The-

orem 8.1). By means of the scalar domination inequality we show that

the uctuations of the displacement of particles remain normal, at all

temperatures and for all dimensions of the oscillations, if the energy of

zero-point oscillations of a given particle exceeds a certain value pro-

portional to the energy of its interaction with the rest of the particles.

In particular, this occurs when the smallest distance between the en-

ergy levels of the corresponding one-dimensional isolated oscillator is

large enough or its mass is small enough (Theorem 8.3). Under a sim-

ilar condition we prove that the Euclidean Gibbs state of the whole

system is unique (Theorem 8.4). To this end we use the zero boundary

domination inequality. General in�nite dimensional methods we use in

this article may be found in [22], [58].

Now let us mention which new results are contained in the present

article. In Section 2 we give a complete description of the properties

of the basic Gaussian measure (Lemmas 2.2 { 2.4). In Section 3 we

give a complete proof of Theorems 3.2, 3.3 - in [7] these theorems were

only announced. In Section 4 we prove that the Green functions, con-

structed in the Euclidean region by certain unbounded operators, may

be analytically continued to the same domain as the functions corre-

sponding to bounded operators, although the former functions cannot

be bounded uniformly in this domain (Theorem 4.1). Here we also

prove that the Green functions corresponding to nonempty boundary

conditions, and constructed by certain unbounded multiplication op-

erators, are continuous in the Euclidean domain (Theorem 4.2). The

lattice approximation technique was known in the context of quantum

�elds at least since the seventies [75]. Section 5 gives a version of this

technique with a complete proof adapted to the models we consider.

The proof of Theorem 7.4 is also new. A similar statement was proved

in [6] but by means of a much more complicated technique. Theo-

rem 8.2, proved in Section 8, is a generalization of a similar statement
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proved in [53]. Finally, the uniqueness of Euclidean Gibbs states (The-

orem 8.4) here is proved for more general models than it was done in

[8].

2. Euclidean Formalism for Quantum Gibbs States

2.1. Local Gibbs States. As it was mentioned above, we consider

a countable system of interacting quantum particles with the reduced

mass m, performing D-dimensional oscillations around their equilib-

rium positions which form a lattice IL = Z
d. The oscillations of the

particle having its equilibrium position at l 2 IL are described by the

momentum and displacement operators fpl; qlg obeying the canoni-

cal commutation relations and densely de�ned on the complex Hilbert

space Hl = L2(RD
l ). The whole system is described by the formal

Hamiltonian

H =
1

2

X
l;l02IL

dll0(ql; ql0) +
X
l2IL

Hl; (2.1)

Hl =
1

2m
(pl; pl) +

1

2
(ql; ql) + V (ql); (2.2)

where ( : ; : ) stands for the scalar product in R
D and dll0 form a

dynamical matrix. The one-particle potential V is supposed to be

O(D)-invariant, i.e.,

V (x) = v((x; x)): (2.3)

Generally, regarding the function v we will assume that it is continuous

on R+
def
= [0;+1) and obeys the following condition

v(�) � a� + b; 8� 2 R+ ; (2.4)

with certain positive a and b 2 R. Sometimes we will impose more

restrictive conditions:

(V1) v is a polynomial of order r � 2, convex on R+ ;

(V2) v has the form

v(�) =
1

2
a� +

rX
s=2

bs�
s; r � 2; a 2 R; bs � 0; br > 0: (2.5)

Clearly, a function v which obeys (V2), also obeys (V1). For p 2 Z,

let

Sp =
(
x = (xl)l2IL j

X
l2IL

(1 + jlj)2p x2l <1
)
;
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where jlj is the Euclidean distance on IL = Z
d � R

d . Let also

S def
=
\
p2N

Sp; S 0 def
=
[
p2N

S�p: (2.6)

These sets, equipped with the projective-limit (S) and inductive-limit

(S 0) topologies respectively, constitute a mutually dual, with respect

to the Hilbert space S0 = l2(IL), pair of Schwartz spaces.
The dynamical matrix (dll0)l;l02IL is supposed to possess the following

properties:

(D1) dll0 is invariant under translations on IL;

(D2) dll0 � 0 (ferroelectricity), dll = 0;

(D3) for every l 2 IL, (dll0)l02IL belongs to S.
The formal Hamiltonian cannot be de�ned directly and is "repre-

sented" by local Hamiltonians H� { indexed by �nite subsets � � IL
essentially self-adjoint and lower bounded (due to (2.4)) operators act-

ing in the complex Hilbert space H� = L2(RDj�j), (j � j stands for

cardinality). In standard situations, also in this article, it is enough to

consider Hamiltonians indexed by the boxes

� = fl = (l1; : : : ; ld) j l0j � lj � l1j ; j = 1; : : : ; d; l0j < l1j ; l
0
j ; l

1
j 2 Zg:

For a box �, let P(�) denote the partition of IL by the boxes which are

obtained as translations of �. Let also T be the group of all translations

of IL, and T(�) � T be its subgroup consisting of the translations which

generate P(�), i.e. P(�) = ft(�) j t 2 T(�)g, where t(�) = ft(l) j l 2
�g. Then the dynamical matrix (d�ll0)l;l02�, obeying periodic conditions
on the boundaries of �, and the corresponding local Hamiltonian H�

are introduced as follows

d�ll0 = minfdlt(l0) : t 2 T(�)g; (2.7)

H� =
1

2

X
l;l02�

d�ll0(ql; ql0) +
X
l2�

Hl: (2.8)

The dynamical matrix (d�ll0)l;l02� is invariant with respect to the trans-

lations on the torus which one obtains by identifying the boundaries of

the box �. These translations constitute a factor-group T=T(�). The
local Hamiltonian which corresponds to the zero boundary conditions

is

H
(0)

� =
1

2

X
l;l02�

dll0(ql; ql0) +
X
l2�

Hl: (2.9)
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For a box �, a local periodic Gibbs state �;� at a given value of the

temperature T = ��1 is de�ned on A� { the C�-algebra of all bounded
operators on H�, as the following positive normalized functional

�;�(A) =
trace (A exp (��H�))

trace exp (��H�)
: (2.10)

The state 
(0)

�;� corresponding to the zero boundary conditions is de�ned

in the same way but with the Hamiltonian H
(0)

� (2.9) instead of H�.

Given a box � and t 2 R, we introduce the following automorphisms

of A�

a
�
t (A) = exp (itH�)A exp (�itH�) ; (2.11)

a
0;�
t (A) = exp

�
itH

(0)

�

�
A exp

�
�itH(0)

�

�
:

A signi�cant role in the construction of the Gibbs states on the algebras

A� is played by multiplication operators. Recall that, for a function

A : RDj�j ! C , the multiplication operator A 2 A� acts on 	 2 H� as

follows

(A	) (x) = A(x)	(x):

The components q
(�)
l , � = 1; 2; : : : ; D, l 2 � of the displacement oper-

ator are multiplication operators, but they do not belong to A� since

they are unbounded. R. H�egh-Krohn in [48] proved the following as-

sertion (for more details see also [1] and [44]).

Proposition 2.1. Let t1; : : : ; tn 2 R and A1; : : : An be bounded con-

tinuous functions Aj : R
Dj�j ! C . Then A� is the smallest strongly

closed linear space containing all operators of the form

a
�
t1
(A1)a

�
t2
(A2) : : : a

�
tn
(An):

The same remains true if one replaces a
�
t with a

0;�
t .

For A1; : : : ; An 2 A� and t1; : : : tn 2 R, the temporal Green functions

corresponding to the periodic and zero boundary conditions are

G
�;�
A1;:::;An

(t1; : : : ; tn) = �;�
�
a
�
t1
(A1) : : : a

�
tn(An)

�
; (2.12)

G
0;�;�
A1;:::;An

(t1; : : : ; tn) = 
(0)

�;�

�
a
0;�
t1 (A1) : : : a

0;�
tn (An)

�
: (2.13)

For a domain O � C
n , let Hol(O) stand for the set of all holomorphic

in O complex valued functions. Let also

D�
n

def
= f(t1; : : : ; tn) 2 C

n j (2.14)

0 < =(t1) < =(t2) � � � < =(tn) < �g:
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By virtue of [1], Sect.3 and [48], Sect.2, we prove the following state-

ment.

Lemma 2.1. For every A1; : : : ; An 2 A�,

(a) G
�;�
A1;:::;An

may be extended to a holomorphic function on D�
n;

(b) this extension (which will also be written as G
�;�
A1;:::;An

)

is continuous on the closure D�

n of D�
n, moreover,

for all (t1; : : : ; tn) 2 D
�

n,���G�;�
A1;:::;An

(t1; : : : ; tn)
��� � kA1k � � � � � kAnk; (2.15)

where k � k stands for operator norm;

(c) for every �1; : : : ; �n 2 R, the set

D�
n(�1; : : : ; �n) (2.16)

def
= f(t1; : : : ; tn) 2 D�

n j <(tj) = �j; j = 1; : : : ; ng;
is such that for arbitrary F;G 2 Hol(D�

n), the equality

F = G on D�
n(�1; : : : ; �n) implies that these functions

are equal on the whole D�
n.

The Green function G
0;�;�
A1;:::;An

has the same properties.

Proof. It is known (see [23], p. 57) that the Hamiltonian H� (2.8)

has a discrete spectrum consisting of positive eigenvalues Es, s 2 N .

The corresponding eigenfunctions 	s constitute an orthonormal base

of the space L2(RDj�j). We set

H�	s = Es	s; As;s0 = (A	s;	s0)L2(RDj�j) : (2.17)

Then

G
�;�
A1;:::;An

(t1; : : : ; tn)

=
1

Z�;�

X
s1;:::;sn2N

(A1)s1;s2 exp [i(t2 � t1)Es2]�

� � � � � (An�1)sn�1;sn
exp [i(tn � tn�1)Esn ]�

� (An)sn;s1 exp [i(t1 � tn + i�)Es1 ] ; (2.18)

where

Z�;� = trace fexp (��H�)g : (2.19)

Each element of the Dirichlet series (2.18) is an entire function of

(t1; : : : ; tn). Hence its module achieves the maximal on D�

n value on
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the boundaries of this set, that is at the points =(t1) = =(t2) = � � � =
=(tk) = 0 and =(tk+1) = � � � = =(tn) = � with k running from 1 to n.

For such (t1; : : : ; tn), one has����a�t1(A1) : : : a
�
tn
(An) exp [��H�] 	s;	s

�
L2(RNj�j)

��� (2.20)

�
���(Kk+1 : : :KnK1 : : :Kk	s;	s)L2(RDj�j)

��� exp [��Es] ;

where

Kj = a
�
�j
(Aj); �j = <(tj); j = 1; : : : ; n: (2.21)

The number k depends on s. Obviously,���(Kk+1 : : :KnK1 : : :Kk	s;	s)L2(RDj�j)

��� � kKk+1 : : :KnK1 : : :Kkk
� kK1k : : :kKnk;

yielding

trace
�
a
�
t1
(A1) : : : a

�
tn
(An) exp [��H�]

	
� kK1k : : : kKnkZ�;�:

Moreover,

kKjk = kAjk;
since a�� is a norm preserving automorphism of A�. Thus, the men-

tioned Dirichlet series converges uniformly on D�

n, which proves claims

(a) and (b). To prove (c) one observes that D�
n(�1; : : : ; �n) is a gen-

erating manifold (see e.g. [73], p. 444), hence it is an inner unique-

ness set for the functions from Hol(D�
n). The latter means that every

F 2 Hol(D�
n), which is zero on this set is identically zero on the whole

D�
n.

The restrictions of the functions G�;�, G0;�;� to D�
n(0; : : : ; 0), i.e.

�
�;�
A1;:::;An

(�1; : : : �n) = G
�;�
A1;:::;An

(i�1; : : : i�n); (2.22)

�
0;�;�
A1;:::;An

(�1; : : : �n) = G
0;�;�
A1;:::;An

(i�1; : : : i�n); (2.23)

are called temperature (Matsubara) Green functions. Writing them in

the form of the series (2.18) one immediately concludes that they have

the following property

�
�;�
A1;:::;An

(�1 + �; : : : �n + �) = �
�;�
A1;:::;An

(�1; : : : �n); (2.24)

�
0;�;�
A1;:::;An

(�1 + �; : : : �n + �) = �
0;�;�
A1;:::;An

(�1; : : : �n);

for every � 2 I� def
= [0; �], where addition is modulo �.

In view of Proposition 2.1, the Green functions de�ned by (2.12),

(2.13) with bounded multiplication operators fully determine the states

�;�, 
(0)

�;�. Claim (c) of the latter assertion yields in turn that these
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states are determined by the Matsubara functions (2.22), (2.23) con-

structed with such operators.

2.2. Basic Gaussian Measure. The essence of the Euclidean ap-

proach is that the Matsubara functions may be written as moments of

probability measures. We begin the construction of such measures with

the introduction of a Gaussian measure, which plays a key role in the

sequel. Given �, let X� stand for the real Hilbert space L2(I� ! R
D )

equipped with the scalar product and norm respectively

h!; !0i� =
Z
I�
(!(�); !0(�))d�; k!k� =

q
h!; !i�: (2.25)

On this space we de�ne the following operator

S� = (�m�� + 1)
�1
1; (2.26)

where �� is the Laplacian, m is the reduced mass, and 1 is the iden-

tity operator in R
D . This operator is strictly positive and trace class.

Thus it determines on X� an isotropic (i.e. O(D){invariant) Gaussian
measure �� having the Laplace transformZ

X�
exp fh'; !i�g��(d!) = exp

�
1

2
hS�'; 'i�

�
: (2.27)

This measure describes a D-dimensional quantum harmonic oscillator

with the mass m. Sometimes to indicate its dependence on the mass

we shall write �m� . The integral kernel of the operator (2.26) may be

written as follows

S��0

� (�; � 0) = (2.28)

=
���0

2
p
m
� exp

�
(� � j� � � 0j)=pm

�
+ exp(j� � � 0j=pm)

exp(�=
p
m)� 1

;

where ���0 , �; �
0 = 1; : : : ; D stands for the Kronecker delta. Employing

this kernel one can show that

< (!(�)� !(� 0); !(�)� !(� 0)) >���
D

m
� j� � � 0j�; (2.29)

where j� � � 0j� def
= minfj� � � 0j; � � j� � � 0jg. Here and further on we

write

< f >�=

Z
fd�: (2.30)

Given �; � 0 2 I�, we set
�1 = !(�)� !(� 0); �2 = !(�); j�jj2 = (�j; �j):
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For the random variables �j, j = 1; 2, one can show that

< j�jj2p >��=
�
Cp < j�jj2 >��

�p
; p 2 N ; (2.31)

where Cp is a constant depending only on p and D. Thus, one has from
(2.29)

< j!(�)� !(� 0)j2p >��� (CpD=m)
p j� � � 0jp�: (2.32)

Further, by means of (2.29), (2.31) one gets thatZ
X�

exp [a(!(�); !(�))]��(d!) <1; 8a < a�; (2.33)

where

a� =
2
p
m

D
� e

�=
p
m � 1

e�=
p
m + 1

: (2.34)

We set

C� = f! 2 C(I�) j !(0) = !(�)g; (2.35)

and

C�� = f! 2 C� j (8� 2 (0; 1=2)) (9K�(!) > 0) (2.36)

(8�; � 0 2 I�) j!(�)� !(� 0)j � K�(!)j� � � 0j��g:
Clearly, C� is a subspace of the Banach space C(I�), thus in the topol-
ogy induced from this space it is also a Banach space. The periodicity

of the functions from C� is related to the property (2.24).

Lemma 2.2. The measure �� is concentrated on C�� . There exists a >
0 such that Z

X�
expfak!k2C�g��(d!) <1: (2.37)

Proof. The proof of the �rst statement follows from the estimate

(2.32) and Theorem 5.1 from [76], p. 43. Since the measure � is

concentrated on C� � C�� , one can apply Fernique's theorem (see e.g.

[32], p. 16), which gives (2.37).

The result just proven allows us to consider �� as a measure on the

Banach space C�. Recall that a family of probability measuresM on a

topological space X is called tight in this space if, for any " > 0, there

exists a compact subset A" � X such that �(X nA) � " for all � 2 M.

A measure � is called tight if the family f�g is so.
Lemma 2.3. For every m0 > 0, the family of measures f�m� j m � m0g
is tight in C�.
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The proof of this lemma will be based on a tightness criterium, for

which we take Theorem 8.2 from Billingsley's book [24], p. 55 1. The

modulus of continuity of a ! 2 C� is set as follows

�(!; �) = supfj!(�)� !(� 0)j j j� � � 0j� < �g; 0 < � � �=2: (2.38)

Proposition 2.2. The family of measures f�� j � 2 �g is tight in C�
if and only if these two conditions hold:

(i) For each positive �, there exists an a such that

��(f! j j!(0)j > ag) � �; 8 � 2 �: (2.39)

(ii) For each positive " and �, there exists a � 2 (0; �=2) such that

��(f! j �(!; �) � "g) � �; 8 � 2 �: (2.40)

If f�� j � 2 �g is a sequence f�M j M 2 Ng, the above condition is to

be satis�ed only for M > M0, with M0 depending on " and � only.

To employ this criterium we shall use the Chebyshev inequality (see

e.g. [24], p. 223)

��(f! j F (!) � ag) � 1

a
� < F >�� ; (2.41)

which holds for any nonnegative and integrable function.

Proof of Lemma 2.3. First we prove that the condition (i) holds.

By (2.28) and (2.41) one has

�m� (f! j j!(0)j > ag) = (2.42)

= �m� (f! j j!(0)j2 > a2g) � 1

a2
� < (!(0); !(0)) >�m

�

=

DX
�=1

S��
� (0; 0) =

D

2a2
p
m
� exp(�=

p
m) + 1

exp(�=
p
m)� 1

� D

2a2
p
m0

� exp(�=
p
m0) + 1

exp(�=
p
m0)� 1

; 8m � m0:

To prove (ii) we shall use the estimates obtained in [21] by means of

the Garsia-Rodemich-Rumsey lemma. For ! 2 C�� , one has (see (2.36))

�(!; �) � K�(!)�
�; 8� 2 (0; 1=2): (2.43)

1This theorem gives a criterium for sequences, but just after the proof the author
remarks how it can be generalized to an arbitrary family of measures.
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Given � 2 (0; 1=2), let us take p 2 N such that p > (1 � 2�)�1. For

this � and p, one has by 2.41) and (2.43)

�m� (f! j �(!; �) � "g) = (2.44)

= �m� (f! j [�(!; �)]2p � "2pg) � �2p�

"2p
� < [K�(!)]

2p >�m
�

Taking into account (2.32) and applying the estimate (3b) from [21],

p. 203, we get

< [K�(!)]
2p >�m

�
� 1

mp
� Cp;�D

p

p(1� 2�)� 1
�p(1�2�);

with a constant Cp;� depending only on D, p, and �. Employing this

estimate in (2.44) one gets (2.40).

As a strictly positive trace class operator, S� possesses eigenvectors,
the set of which, E�, spans the space X�. This set may be written as

follows

E� = f�k j k 2 Kg; K def
= fk = 2�

�
� j � 2 Zg; (2.45)

�k = (��k )�=1;:::;D ; ��k (�) = ek(�)�
�;

ek(�) =

r
2

�
cos k� (k > 0); ek(�) = �

r
2

�
sin k� (k < 0);

e0(�) = 1=
p
�;

where ��, � = 1; : : : ; D form the canonical base of RD . Let P �
k , k 2

K, � = 1; : : : ; D stand for the projector from X� onto the subspace

spanned by ��k . Then the operator S� may be written in the canonical

form

S� =

DX
�=1

X
k2K

(mk2 + 1)�1P �
k : (2.46)

Below we consider the sequences f��;M j M 2 Z+g, Z+
def
= N [ f0g

of Gaussian measures on X� having zero means and the covariance

operators

S�;M =

DX
�=1

X
k2K

�
(M)

k P �
k ; �

(M)

k � 0: (2.47)

We shall assume that each a sequence f�(M) = (�
(M)

k )k2K j M 2 Z+g
converges in l1 to � = ([mk2 + 1]�1)k2K, when M ! 1. Therefore,

the sequence of operators fS�;M j M 2 Z+g converges to S� in the

trace norm. Given a measure ��;M (resp. ��), a �nite-dimensional
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approximation �
(N)

�;M (resp. �
(N)

� ), N 2 2Z+, i.e., N = 2L; L 2 Z+,

is the measure which has the covariance operator S
(N)

�;M (resp. S
(N)

� ),

given as follows

S
(N)

�;M =

DX
�=1

X
k2KN

�
(M)

k P �
k ; (2.48)

S
(N)

� =

DX
�=1

X
k2KN

(mk2 + 1)�1P �
k :

Here

KN
def
= fk = 2�

�
� j � = �(L� 1); : : : ; Lg: (2.49)

Throughout this paper we deal with the weak convergence of measures

on metric spaces (see e.g. [24], [65]). For a measure space (X;B(X)),

where X is a real separable metric space and B(X) is the Borel �-
algebra of its subsets, letM(X) be the space of all probability measures

de�ned on X. Let Cb(X) stand for the space of all bounded real-

valued continuous functions on X. The weak topology on the space

M(X) is de�ned in such a way that a net of measures f��g converges
to � 2 M(X) (then we write �� ) �) in this topology ifZ

fd�� !
Z
fd�; 8f 2 Cb(X):

Regarding the measures on separable Hilbert spaces, Lemma 5.1 of [65],

p.182 implies the following

Proposition 2.3. Let a net of Gaussian measures f��g on a separable

Hilbert space H be given. Let also each �� have zero mean and covari-

ance S�, which is a positive trace class operator on H. Suppose that

the net fS�g converges in the trace norm to an operator S. Then there

exists a Gaussian symmetric measure on H, such that its covariance

operator is S and �� ) � in H.

Employing this fact we prove the following lemma.

Lemma 2.4. Let the sequence fS�;M j M 2 Z+g converges to S� in

the trace norm. Then the sequence of measures f��;M j M 2 Z+g
converges weakly in the Banach space C� to the measure ��, i.e., for

every F 2 Cb(C�), one hasZ
C�
F (!)��;M(d!) �!

Z
C�
F (!)��(d!); M !1:
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Proof. By Proposition 2.3 the assumed convergence of the sequence
fS�;Mg yields the weak convergence in X� of the sequences of �nite-

dimensional approximations �
(N)

�;M to �
(N)

� for every N 2 2Z+. Since

all these measures are concentrated on �nite-dimensional subspaces of

C� � X�, each a sequence f�(N)

�;M j N 2 2Z+g converges weakly to �
(N)

�

also in C�. If we show that the sequence f��;M j M 2 Z+g is tight in
C�, the stated convergence will follow from Theorem 8.1 of Billingsley's

book [24], p. 54. One observes that

< (!(0); !(0)) >��;M=

DX
�=1

S��
�;M(0; 0) = traceS�;M :

Since the sequence ftraceS�;M j M 2 Z+g is bounded, the condition

(i) of Proposition 2.2 is satis�ed. Similarly,

< (!(�)� !(� 0); !(�)� !(� 0) >��;M= (2.50)

= 2

DX
��

[S��
�;M(0; 0)� S��

�;M(�; �
0)]:

But

S��
�;M(0; 0)� S��

�;M(�; �
0) =

S��
� (0; 0)� S��

� (�; � 0) +

+[S��
�;M(0; 0)� S��

� (0; 0)]�
�[S��

�;M(�; �
0)� S��

� (�; � 0)]

def
= S��

� (0; 0)� S��
� (�; � 0) +

+IM(0; 0)� IM(�; �
0): (2.51)

Further,

IM(0; 0) = trace [S�;M � S�]! 0; M ! +1; (2.52)

jIM(�; � 0)j = j
X
k2K

([S�;M � S�] �k; �k) j (2.53)

� 2D

�

X
k2K

j�(M)

k � (mk2 + 1)�1j ! 0; M ! +1:

Taking into account (2.52), (2.53) in (2.51) and (2.32), one concludes

that there exists M0 such that the estimate

< j!(�)� !(� 0)j2p >��;M� (CpD=m)
p j� � � 0jp�;

holds for all M > M0. Now we may proceed as in proving Lemma 2.3,

where the estimate (2.32) and the Garsia-Rodemich-Rumsey lemma
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implied (ii) of Proposition 2.2. Thus the sequence f��;M j M 2 Z+g is
tight.

2.3. Euclidean Gibbs States. Given � and a box �, we write


�;� = f!� = (!l)l2� j !l 2 C�g; (2.54)

and

X�;� = f!� = (!l)l2� j !l 2 X�g: (2.55)

Since � is �nite, one may equip 
�;� and X�;� with the usual Banach

space and Hilbert space structures respectively. Then the space 
�;�

may be densely embedded into X�;�. Let B(
�;�) stand for the Borel

�{algebra of the subsets of 
�;�. Further, set

��;�(d!�) =
O
l2�

��(d!l): (2.56)

The latter measure is concentrated on


�
�;� = f!� = (!l)l2� j !l 2 C��g: (2.57)

Set

EV
�;�(!�) =

1

2

X
l;l02�

d�ll0h!l; !l0i� +
X
l2�

Z
I�
V (!l(�))d�; (2.58)

and

EV
�;�(!�j0) =

1

2

X
l;l02�

dll0h!l; !l0i� +
X
l2�

Z
I�
V (!l(�))d�: (2.59)

Under the assumptions made regarding V and (dll0)l;l02IL, both EV
�;�,

EV
�;�(�j0) are continuous functions from 
�;� to R.

Thereafter, we may introduce the local Euclidean Gibbs measures

corresponding to the periodic and zero boundary conditions. These

are respectively the following probability measures on the Hilbert space

X�;�, supported on 
�;�,

��;�(d!�) =
1

Z�;�

exp
�
�EV

�;�(!�)
	
��;�(d!�); (2.60)

��;�(d!�j0) =
1

Z�;�(0)
exp

�
�EV

�;�(!�j0)
	
��;�(d!�); (2.61)

where Z�;�, Z�;�(0) are the normalizing constants.

By means of these measures one can write the Green functions (2.22),

(2.23), constructed with the multiplication operators A1; : : : An 2 A�,
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as follows [1], [44]

�
�;�
A1;:::;An

(�1; : : : ; �n) (2.62)

=

Z
X�;�

A1(!�(�1)) : : : An(!�(�n))��;�(d!�);

�
0;�;�
A1;:::;An

(�1; : : : ; �n) (2.63)

=

Z
X�;�

A1(!�(�1)) : : : An(!�(�n))��;�(d!�j0):

The Gibbs states of the whole lattice system which correspond to

the periodic and zero boundary conditions are obtained as limits of

the above states �;�, 
(0)

�;� when � % IL. More precisely, let L be

a sequence of boxes ordered by inclusion and such that [�2L� = IL.

For �1 � �2, one may introduce a natural norm-preserving embedding

A�1
� A�2

, which de�nes an increasing sequence of algebras fA� j � 2
Lg. In a standard way [26], this sequence de�nes a quasi-local algebra

of observables A. Two sequences L, L0 are set to be equivalent if the

corresponding quasi-local algebras coincide. A standard sequence L is

the sequence of boxes f�L j L 2 Ng, where �L = (�L; L]d \Zd. In the

sequel, all (thermodynamic) limits �% IL are taken over a sequence L,
which is equivalent to the standard one. The mentioned Gibbs states

of the whole lattice system are de�ned as the thermodynamic limits of

the local Gibbs states �;�, 
(0)

�;�. The existence of periodic Gibbs states

for similar models was shown in [20] (see also [62] { [64]).

As it was mentioned above, the great advantage of the Euclidean

approach lies in the fact that due to the above relationship between

the Green functions and local Gibbs states one may apply to the quan-

tum case the machinery of conditional probability distributions, which

form the base of modern classical equilibrium statistical physics (see

e.g. [33], [34], [42] and the references therein). To this end, along with

the Gibbs measures (2.60), (2.61), which correspond to the periodic

and zero boundary conditions respectively, we introduce conditional

local Gibbs measures. They will describe the Gibbs states of the par-

ticles contained in the box � and interacting between themselves and

with �xed con�gurations of particles outside �. Such con�gurations

determine conditions for the measures we are going to introduce.

Since the complements of boxes �, in which we shall �x con�gura-

tions, are in�nite subsets of the lattice IL, we employ the spaces 
�;�,

introduced (2.54), (2.55) also for in�nite subsets �, in particular, we

shall use 
� standing for 
�;IL. We equip such spaces with the product

topology and with the �-algebra B(
�;�) generated by the cylinder
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subsets

f!� = (!l)l2� j (!l)l2� 2 B�g; B� = �l2�Bl;

with �nite � � IL and Borel subsets fBl � C� j l 2 �g. For � � � �
IL, we write !� � ��n� for the con�guration (�l)l2� such that �l = !l
for l 2 �, and �l = �l for l 2 � n�. Given a sequence of boxes L, in
order to have the collections of all the spaces f
�;�;� 2 Lg ordered

by inclusion, we introduce the following mappings. For � � �, we set

!� 7! !� � 0�n� 2 
�;�, where 0� is the zero con�guration in 
�;�.

Hence one may consider every con�guration !� as an element of all


�;� with � � �. Besides, we de�ne


�;� 3 !� 7! (!�)�0 2 
�;�0 ;

as a con�guration such that !l = 0 for l 2 �0 n �. Obviously, (!�)�0 =

0�0 if � \ �0 = ;. Let


t
�

def
= f� 2 
� j (k�lk�)l2IL 2 S 0g: (2.64)

Given � 2 
� and a box �, we put

��;�(Bj�) = 0; � 2 
� n 
t
�; B 2 B(
�;�); (2.65)

and for � 2 
t
�,

��;�(d!�j�) =
1

Z�;�(�)
exp

�
�EV

�;�(!�j�)
	
��;�(d!�); (2.66)

where

Z�;�(�)
def
=

Z

�;�

exp
�
�EV

�;�(!�j�)
	
��;�(d!�);

is the local partition function subject to the external boundary condi-

tion ��c, �
c = IL n �, and

EV
�;�(!�j�) = E�;�(!�j�) +

X
l2�

Z
I�
V (!l(�))d�; (2.67)

E�;�(!�j�) =
1

2

X
l;l02�

dll0h!l; !l0i� +
X

l2�;l02�c
dll0h!l; �l0i�: (2.68)

Here V is the same as in (2.2). Under the assumptions made regarding

V and dll0, both E�;�(�j�), EV
�;�(�j�) are continuous functions from 
�;�

to R for all � 2 
t
�. The function E�;�(�j�) describes the interaction

between the particles in � and with the �xed con�guration ��c. Clearly,

for � 2 
t
�, ��;�(�j�) is a probability measure. For � = 0, it coincides

with the measure (2.61).
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Thus, along with the Green functions (2.62), (2.63) we introduce the

temperature Green function which corresponds to the external bound-

ary condition ��c

�
�;�;�
A1;:::;An

(�1; : : : ; �n) (2.69)

=

Z
X�;�

A1(!�(�1)) : : :An(!�(�n))��;�(d!�j�):

Here A1; : : : ; An are multiplication operators such that for every

�1; : : : ; �n 2 I�, the function

�;� 3 !� 7! A1(!�(�1)) : : : An(!�(�n));

is ��;�(�j�) integrable for every � 2 
�, which obviously holds for

A1; : : : ; An 2 A�. Note that the above temperature Green function

is de�ned only for multiplication operators, there is no a priori in-

formation regarding its analytic and continuity properties (except for

� = 0), even in the case of bounded operators.

For B 2 B(
�) and ! 2 
�, let �B(!) take values 1, resp. 0, if !
belongs, resp. does not belong, to B. Then for a �nite � � IL, � 2 
�,

B 2 B(
�), we set

��;�(Bj�) def
=

Z

�;�

�B(!� � ��c)��;�(d!�j�): (2.70)

These probability kernels satisfy the consistency conditionsZ

�

��;�(d!j�)��;�(Bj!) = ��;�(Bj�); (2.71)

which holds for arbitrary pairs of �nite subsets � � � � IL, and any

B 2 B(
�), � 2 
� (for the meaning of such consistency conditions see

e.g. [42]).

De�nition 2.1. A probability measure � on the measure space

(
�;B(
�)) is said to be a Euclidean Gibbs state of the model considered

at the inverse temperature � if it satis�es the Dobrushin-Lanford-Ruelle

(DLR) equilibrium equationZ

�

�(d!)��;�(Bj!) = �(B); (2.72)

for all �nite � � IL and B 2 B(
�).

In order to exclude the states with no physical relevance we impose

some a priori conditions restricting the growth of the sequences of

moments (see [11], [46]).
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De�nition 2.2. The class G� of tempered Gibbs measures consists of

the Gibbs states � de�ned above, the moments of which obey the con-

dition

(< k!lk� >�)l2IL 2 S 0:

3. Classical Limits

In this section L, L�n will stand for the set of all, respectively of all

�nite, subsets of IL. Given � 2 L, let us consider the subset of 
�;�

consisting of constant trajectories, that is



qc
�;�

def
= f!� 2 
�;� j (8l 2 �) (9xl 2 R

D ) (3.1)

(8� 2 I�) !l(�) = xlg '
�
R
D
��
:

We also set


� � 

qc
�;IL

def
= 


qc
� '

�
R
D
�IL
: (3.2)

For � 2 L, let Bqc
�;� be the �-algebra generated by the cylinder subsets

of 

qc
�;�, which is isomorphic to the corresponding �-algebraB

��
R
D
���

generated by the cylinder subsets of
�
R
D
��

but, on the other hand, is

a subalgebra of B�;�
def
= B (
�;�). For every B 2 B�;�, let

C(B)
def
= B \ 


qc
�;�: (3.3)

We write

B
qc
�;� 3 C ' A 2 B

��
R
D
���

; (3.4)

for the pair of subsets C 2 Bqc
�;� , A 2 B

��
R
D
���

which are isomor-

phic in the above sense. This means that they consist of exactly those

!� and x�, for which !l(�) = xl for all � 2 I� and l 2 �.

Consider the following Gaussian measure

$�;�(dx�)
def
=
Y
l2�

$�(dxl); x� 2
�
R
D
��
; � 2 L�n; (3.5)

$�(dxl)
def
=

�
�

2�

�D=2

exp

�
��
2
(xl; xl)

�
dxl; xl 2 R

D : (3.6)

For � 2 L�n, let �
qc
�;� be the Gaussian measure on 
�;� such that for

every B 2 B�;� one has

�
qc
�;�(B) = $�;�(A); (3.7)
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where A ' C(B), which is de�ned by (3.3), (3.4). This means that

�
qc
�;�(B) = �

qc
�;�(C(B)); (3.8)

i.e. �
qc
�;� is supported on B

qc
�;�. Making use of these measures we

construct the periodic and conditional Gibbs measures following the

scheme (2.60), (2.58) and (2.66) { (2.67). Thus we set

�
qc
�;�(d!�)

def
=

1

Z
qc
�;�

exp
�
�EV

�;�(!�)
	
�
qc
�;�(d!�); (3.9)

and for � 2 
t
�,

�
qc
�;�(d!�j�) def

=
1

Z
qc
�;�(�)

exp
�
�EV

�;�(!�j�)
	
�
qc
�;�(d!�); (3.10)

where EV
�;�(�) and EV

�;�(�j�) are given by (2.58) and (2.67) respectively.

Here, as above,

Z
qc
�;�

def
=

Z

�;�

exp
�
�EV

�;�(!�)
	
�
qc
�;�(d!�); (3.11)

and

Z
qc
�;�(�)

def
=

Z

�;�

exp
�
�EV

�;�(!�j�)
	
�
qc
�;�(d!�); (3.12)

are the normalizing constants. We remark that the measures (3.9),

(3.10) are de�ned on the same space as ��;�(�) and ��;�(�j�) given by

(2.60) and (2.66) respectively. Further, (3.8) implies that

�
qc
�;�(B) = �

qc
�;�(C(B)); �

qc
�;�(Bj�) = �

qc
�;�(C(B)j�); 8� 2 
�: (3.13)

By means of the conditional Gibbs measures (3.10) we de�ne the family

of probability kernels f�qc�;�(�j�) j � 2 L�ng (setting as above �qc�;�(�j�) =
0 for � 2 
�n
t

�), and hence the corresponding Euclidean Gibbs states.

The family of such Euclidean tempered Gibbs states will be denoted

Gqc
� . The members of this family will be called quasiclassical Gibbs

states.

Now let us construct the Gibbs states for the classical model de-

scribed by the Hamiltonian

Hcl =
X
l2IL

[(xl; xl)=2 + V (xl)] +
1

2

X
l;l02IL

dll0(xl; xl0); (3.14)

where V is the same as in (2.2), which means that in this case only the

potential energy of the oscillators described by (2.1) { (2.3) is taken
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into account. Heuristically, this potential energy may be obtained from

(2.1) by passing to the limit m! +1. For � 2 L�n, we set

I�(x�) =
X
l2�

V (xl) +
1

2

X
l;l02�

d�ll0(xl; xl0); (3.15)

and

I�(x�jy) =
X
l2�

V (xl) +
1

2

X
l;l02�

dll0(xl; xl0) +
X

l2�;l02�c
dll0(xl; yl0); (3.16)

where y = (yl)l2IL 2 S 0 determines the boundary conditions outside �

and plays here the same role as � does in the case of quantum Euclidean

Gibbs states. It is not di�cult to show that I�(�) and I�(�jy) are

continuous functions on
�
R
D
��
, � 2 L�n. The periodic and conditional

Gibbs measures for the classical model are introduced respectively as

��;�(dx�) =
1

Y�;�
exp f��I�(x�)g$�;�(dx�); (3.17)

��;�(dx�jy) =
1

Y�;�(y)
exp f��I�(x�jy)g$�;�(dx�); (3.18)

where Y�;�, Y�;�(y) are the corresponding normalizing constants. As

above, f��;�(�jy) j � 2 L�ng de�nes the family of probability kernels,

and, thereby, the family of classical Gibbs states. We will denote this

family by Gcl
� .

For �; ~� 2 
�, we write � � ~� if for every l 2 IL,Z
I�
�l(�)d� =

Z
I�

~�l(�)d�: (3.19)

For y 2
�
R
D
�IL
, let ��(y) be the equivalence class consisting of such �

that

��1
Z
I�
�l(�)d� = yl; 8l 2 IL: (3.20)

We write y 2 ��(y) assuming that the former y stands for the constant
loop !l(�) = yl, l 2 IL and � 2 I�.
Since all the quasiclassical kernels �

qc
�;�(�j�), as measures on 
�, are

concentrated on 

qc
� (see (3.8), (3.10)), every solution of the DLR equa-

tion constructed by means of such kernels has the same property .

Proposition 3.1. For every � 2 Gqc
� and all B 2 B�,

�(B) = �(C(B)); (3.21)
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i.e. every quasiclassical Euclidean Gibbs state is supported on the con-

�gurations consisting of constant loops.

Our �rst theorem in this section establishes the relationship between

the families Gqc
� and Gcl

� .

Theorem 3.1. For every � 2 Gqc
� , there exists � 2 Gcl

� , such that

�(A) = �(B) = �(C(B)); (3.22)

for all A 2 B

��
R
D
�IL�

and B 2 B�, where C(B) ' A in the sense

(3.2). The mapping � 7! � (3.22) is a bijection.

Proof. By construction, the measure spaces
�


qc
� ;B

�


qc
�

��
and��

R
D
�IL
;B
��
R
D
�IL��

are isomorphic. On the other hand, since ev-

ery equivalence class �� contains exactly one element of 

qc
� , the latter

space and the corresponding factor space are isomorphic as well. Also

by construction (3.7), (3.10), (3.18), every solution � of the DLR equa-

tion constructed with the help of the quasiclassical kernels de�nes by

(3.22) a measure � on
��
R
D
�IL

;B
��
R
D
�IL��

, which solves the corre-

sponding DLR equation in this space, and vice versa.

In this section �m� , �
m

�;�, �
m

�;�(�j�) will stand for the measures (2.27),

(2.56), (2.66) respectively. In such a way we indicate their dependence

on the massm. We shall speak about a net of measures f�m�;�g assuming
the net f�m�;�(�j�) j m � m0g with a certain positive m0.

Theorem 3.2. Let � > 0, � 2 L�n, and y 2
�
R
D
�IL

be chosen. Then

for every � 2 ��(y), the net of measures f�m�;�(�j�)g converges weakly

in 
�;�, when m! +1, to the measure �
qc
�;�(�j�) = �

qc
�;�(�jy)

Theorem 3.3. For every � > 0, � 2 L�n, and � 2 

qc
� , the conditional

Gibbs measure �
qc
�;�(�j�), given by (3.10), is a weak limit in 
�;�, when

m! +1, of the net of measures f�m�;�(�j�)g with arbitrary � 2 ��(�).

Remark 3.1. Similar statements may be proven also for the measures

(2.60) and corresponding quasiclassical periodic measures.

The proof of the two just stated theorems is based upon the following

lemmas.

Lemma 3.1. For every box � and any � > 0, the net of measures �m�;�
converges weakly in the Hilbert space X�;� to the measure �

qc
�;� given by

(3.7).
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Proof. Since, for a box �, �m�;� is a product measure (see (2.56)),

it is enough to prove this lemma for a one-point box. By (3.6), (3.7),

one has Z
X�

expfh'; !i�g�qc
� (d!) (3.23)

= (�=2�)
D=2

Z
RD

exp

( 
x;

Z
I�
'(�)d�

!)
�

� expf��(x; x)=2gdx =

= exp

(
� 1

2�

Z
X�

Z
X�
('(�); '(� 0))d�d� 0

)
=

= expf�h�0; 'i2�=2g;
where �k belongs to the base E� given by (2.45). This implies that the

covariance operator S
qc
� of this measure may be written as follows

S
qc
� =

DX
�=1

P �
0 : (3.24)

Then by (2.46) one obtains

trace
�
S� � S

qc
�

�
=

X
k2Knf0g

D

mk2 + 1
�

X
k2Knf0g

D

mk2
(3.25)

=
�2D

2�2m

X
n2N

n�2 �! 0; when m! +1:

Now one may use Proposition 2.3 which yields the convergence to be

proven.

Lemma 3.2. For every box � and any � > 0, the net of measures

f�m�;�g converges weakly in the Banach space 
�;� to the measure �
qc
�;�.

Hence, for arbitrary F 2 Cb(
�;�), one hasZ

�;�

F (!�)�
m

�;�(d!�) �!
Z

�;�

F (!�)�
qc
�;�(d!�); m! +1:

Proof. Again, it is enough to prove this lemma for a one-element

box �. By Lemma 2.3 the net f�m� g is tight in the Banach space C�. On
the other hand, by the above lemma, each a net of �nite-dimensional

approximations f�m;M� g converges to �qc;M
� in C� since it converges in

the Hilbert space X� (see also the proof of Lemma 2.4). Thus, by

mentioned Theorem 8.1 of Billingsley's book [24], p. 54, the same

convergence holds for the net f�m� g.
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Proof of Theorems 3.2 and 3.3. Let y 2
�
R
D
�IL n S 0, then every

� belongs to 
� n 
t
� since by (3.20)

k�lk� � k�lkC(I�) � jylj; 8l 2 IL:

Thus, every member of the net f�m�;�(�j�)g, as well as its limit, are zero
measures. For y 2 S 0, one has � 2 
t

�, and the members of the net

given by (2.66) - (2.67) now may be written as follows

�m�;�(d!�j�) = F�;�(!�j�)�m�;�(d!�); (3.26)

where

F�;�(!�j�) =
1

Z�;�(�)
exp

(
�

X
l2�;l02�c

dll0h!l; �l0i�
)
� (3.27)

�	�;�(!�);

where

	�;�(!�) = exp

(
�1

2

X
l;l02�

dll0h!l; !l0i�� (3.28)

�
X
l2�

Z
I�
V (!l(�))d�

)
:

Since � 2 
t
� and the dynamical matrix satis�es (D3), both F�;�(�j�),

	�;� belong to Cb(
�;�). Moreover, GF (�j�) 2 Cb(
�;�), for all � 2 
t
�

and any G 2 Cb(
�;�). Thus by Lemma 3.2, one has

Z

�;�

G(!�)�
m

�;�(d!�j�) = (3.29)

=

Z

�;�

G(!�)F�;�(!�j�)�m�;�(d!�)

�!
Z

�;�

G(!�)F�;�(!�j�)�qc
�;�(d!�);
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when m!1. ButZ

�;�

G(!�)F�;�(!�j�)�qc
�;�(d!�) =

=
1

Z�;�(�)

Z

�;�

G(!�)	�;�(!�)�

� exp

(
�

X
l2�;l02�c

dll0h!l; �l0i�
)
�
qc
�;�(d!�)

=
1

Z�;�(�)

Z
RDj�j

Ĝ(x�)	̂�;�(x�)�

� exp

(
�

X
l2�;l02�c

dll0

 
xl;

Z
I�
�l0(�)d�

!)
$�;�(dx�)

=
1

Z�;�(�)

Z

�;�

G(!�)	�;�(!�)�

� exp

(
�

X
l2�;l02�c

dll0h!l; yl0i�
)
�
qc
�;�(d!�)

=

Z

�;�

G(!�)�
qc
�;�(d!�jy);

where

Ĝ(x�) = G(!�); !�(�) = x�;

and similarly 	̂�;�. The proof of Theorem 3.3 is straightforward.

4. Green Functions for Unbounded Operators

The most spectacular phenomenon described by the model consid-

ered in this work is the spontaneous O(D)-symmetry breaking, which

occurs when the uctuations of displacements of particles become large.

Since the displacement operators ql, l 2 IL are unbounded, to study

this phenomenon we should extend the local Gibbs states, as well as the

corresponding Green functions, to certain classes of unbounded multi-

plication operators. To this end we will use representations like (2.62),

(2.63), which makes possible to replace bounded functions by suitable

integrable unbounded functions.

Theorem 4.1. Let the functions A1; : : : ; An : R
Dj�j ! C be such

that for every � > 0 and every � 2 I�, the functions 
�;� 3 !� 7!
Aj(!�(�)), j = 1; : : : n, are ��;� (resp. �

(0)

�;�) integrable. Then, for the

corresponding multiplication operators A1; : : : ; An, the Green function
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(2.62) (resp. (2.63)) can be analytically continued to the domain D�
n

de�ned by (2.14).

Proof. In view of the statement (c) of Lemma 2.1, it is enough to

show that there exists a function F 2 Hol(D�
n), such that its restriction

to the set D�
n(0; : : : ; 0) coincides with the function (2.62) (resp. (2.63)).

Let us show this in the case of periodic boundary conditions. By (2.62),

for any � > 0, the operators Âj
def
= Aj exp(��H�), j = 1; : : : ; n are

bounded since

trace fAj exp(��H�)g = Z�;�

Z
X�
Aj(!�(0))��;�(d!�) <1: (4.1)

Given � 2 (0; �), we take positive �1; : : : ; �n, such that �1+ � � �+�n = �.
Then, for 0 � �1 � � � � � �n � �, one has

�
�;�
A1;:::;An

(�1; : : : ; �n) =
Z���;�

Z�;�

�
���;�
Â1;:::;Ân

(�̂1; : : : ; �̂n); (4.2)

where the arguments of the Green function on the right-hand side are

�̂1 = �1; �̂k = �k � (�1 + � � �+ �k�1); k = 2; : : : ; n; (4.3)

and satisfy the condition

0 � �̂1 � � � � � �̂n � � � �:

By Lemma 2.1, the function on the right-hand side of (4.2) can be

continued to a function holomorphic in (t̂1; : : : ; t̂n) 2 D���
n . Let bD���

�1;:::;�n

stand for the set of values of (t1; : : : ; tn) 2 D�
n, such that t1 = t̂1,

tk = t̂k+ i(�1+ � � �+ �k�1), k = 2; : : : ; n with (t̂1; : : : ; t̂n) 2 D���
n . Then

the left-hand side of (4.2) can be continued to a function of (t1; : : : ; tn)

holomorphic in bD���
�1;:::;�n

, which is an open subset of D�
n. But

D�
n =

[ bD��(�1+���+�n)
�1;:::;�n

;

where summation is taken over all �1; : : : ; �n running through the in-

terval (0; �) and obeying the condition �1+ � � �+�n < �. Thus �
�;�
A1;:::;An

can be continued to the whole D�
n.

In contrast to the case of bounded operators (c.f. statement (b) of

Lemma 2.1), one cannot expect that, for unbounded operators, the

extended Green functions G
�;�
A1;:::;An

are uniformly bounded on D�

n and

continuous on its boundaries. To get such a continuity we impose

additional restrictions on the functions A1; : : : ; An.
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De�nition 4.1. A continuous function A : RDj�j ! C belongs to the

family P
(D)

� if for arbitrary a > 0, the function

R
Dj�j 3 x� 7! jA(x�)j exp

(
�a
X
l2�

jxlj2
)
; (4.4)

is bounded on R
Dj�j

.

Here jxlj stands for the Euclidean norm of xl 2 R
D . In the case of

one-point boxes, i.e. for j�j = 1, we will simply write P(D). It is worth

noting that under point-wise multiplication P
(D)

� is an algebra.

Corollary 4.1. For arbitrary A1; : : : ; An 2 P(D)

� , the temperature Green

functions (2.62), (2.63) may be continued analytically in accordance

with Theorem 4.1.

Indeed, by (2.33), functions from P
(D)

� are integrable.

Theorem 4.2. Given a box �, let A1; : : : ; An belong to P
(D)

� . Then for

all � 2 
�, the Green functions (2.62), (2.63), (2.69) are continuous

functions of (�1; : : : ; �n) 2 In� .
Proof. In view of (2.66) one may rewrite (2.69) as follows

�
�;�;�
A1;:::;An

(�1; : : : ; �n) =

Z

�;�

A1(!�(�1)) : : : An(!�(�n)) (4.5)

�	�;�(!�j�)��;�(d!�);

where

	�;�(!�j�) def
=

1

Z�;�(�)
exp

�
�EV

�;�(!�j�)
	
: (4.6)

All Aj are continuous, thus all the functions 
�;� 3 !� 7! Aj(!�(�))
are continuous as well. Set

R(!�)
def
= max

j=1;:::;n
sup
�j2I�

jAj(!�(�j))j : (4.7)

By Lemma 2.2 the latter function is ��;�-integrable since all Aj belong

to P
(D)

� . Hence

�(d!�)
def
= [R(!�)]

n
	�;�(!�j�)��;�(d!�);

is a measure on 
�;�. It is tight because, for �nite �, 
�;� is a Polish

space. Therefore, for every " > 0, there exists a compact subset 
"
�;� �


�;� such that

�(
�;� n 
"
�;�) <

"

4
: (4.8)
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For � > 0, let

��
def
= sup

�����;�;�A1;:::;An
(�1; : : : ; �n)� �

�;�;�
A1;:::;An

(�1
0; : : : ; �n

0)
��� ; (4.9)

where the supremum is taken over the subset of I2n� de�ned by the

condition

max
j=1;:::;n

j�j � �j
0j < �:

For such � and !� 2 
�;�, we set

W�(!�)
def
= max

j=1;:::;n
sup

j�j��j 0j<�
jAj(!�(�j))� Aj(!�(�j

0))j : (4.10)

Since allAj are continuous functions from R
Dj�j to C , in order that 
"

�;�

be compact it is necessary and su�cient that the following conditions

be satis�ed simultaneously (see [65] p. 213):

(i) lim
�&0

sup
!�2
"�;�

W�(!�) = 0; (4.11)

(ii) sup
!�2
"�;�

R(!�) <1; (4.12)

where R was de�ned by (4.7). Now let us estimate ��. From (4.9) and

(4.7), (4.10) one obtains

�� � n

Z

"
�;�

W�(!�) [R(!�)]
n�1

	�;�(!�j�)��;�(d!�)

+ 2�(
�;� n 
"
�;�):

In view of (4.11), (4.12) one can choose � small enough making the �rst
term in the right-hand side of the latter formula less than "=2. The

second one has already been estimated by (4.8). The stated continuity

of the Green functions (2.62), (2.63) may be proven just in the same

way.

5. Lattice Approximation

In the following two sections our aim is to prove, for the Euclidean

measures (2.60), (2.61), (2.66), correlation inequalities analogous to

the inequalities known in the Euclidean quantum �eld theory (see e.g.

[75], [76]). In the subsequent sections we use these basic inequalities to

get a number of new correlation inequalities, which in turn are used in

studying physical properties of our models. The basic inequalities we

are going to prove concern the one-dimensional oscillations, that does

not preclude from their application to the vector case which will be

given below. Thus, we put in this section and in the next one D = 1.

Since we will use the mentioned inequalities for the moments not only
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of the above introduced local Gibbs measures, we prove them in a more

general setting.

Given a box � and � 2 
�;�, we de�ne the following measure

%�;�(d!�j�) = ��;�(!�j�)��;�(d!�) (5.1)

def
=

1

Y�;�(�)
exp

(
�1

2

X
l;l02�

Jll0h!l; !l0i� �
X
l2�
h!l; �li�

�
X
l2�

Z
I�
W (!l(�))d�

)
��;�(d!�);

with certain nonpositive Jll0 = Jl0l, � 2 X� and W (x) = w((x; x)),
w being a polynomial satisfying (2.4). Clearly, every measure (2.60),

(2.61), (2.66) may be written in this form.

The Gaussian measure �� is determined by its covariance operator

S� given by (2.26). Since D = 1, the base E� (2.45) consists of the

eigenfunctions fek j k 2 Kg. In this case the canonical representation

(2.46) may be rewritten as follows

S� =
X
k2K

1

mk2 + 1
Pk: (5.2)

Now we choose N = 2L, L 2 N and set

�
(N)

k

def
=

1

m

�
2N
�

�2 �
sin
�

�
2N

�
k
�2
+ 1

; (5.3)

and

S
(N)

�

def
=

X
k2KN

�
(N)

k Pk; (5.4)

It is a technical exercise to prove the following statement.

Proposition 5.1. The sequence of �nite-rank operators fS(N)

� g con-

verges in the trace norm, when N !1, to the operator S�.

Let �
(N)

� be the Gaussian measure on X� having S
(N)

� as a covariance

operator. This measure may also be written in a coordinate represen-

tation. To this end we introduce Gaussian measures on R, �
(N)

k ; k 2 K,
such that Z

R

exp (ixy)�
(N)

k (dy) = exp

�
�1

2
�
(N)

k x2
�
; (5.5)
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with �
(N)

k given by (5.3). Then

�
(N)

� (d!) =
O
k2KN

�
(N)

k (d!̂k)
O

k2KnKN

�(!̂k)d!̂k; (5.6)

where

!(�) =
X
k2K

!̂(k)ek(�); !̂(k) =

Z
I�
!(�)ek(�)d�; (5.7)

and � is the Dirac �-function on R. Proposition 5.1 and Lemma 2.4

immediately yield

Lemma 5.1. The sequence of Gaussian measures f�(N)

� g converges

weakly in the Banach space C� to the measure ��.

Employing the sequence f�(N)

� j N 2 Ng we will construct by means

of (2.60), (2.66) approximations of the measure %�;�(�j�) (5.1), and

hence of its moments such as the Green functions (5.14). This means

that, for integrable functions F : 
�;� ! C , the integrals

< F >%�;�(�j�)
def
=

Z

�;�

F (!�)%�;�(d!�j�)

=

Z

�;�

F (!�)��;�(!�j�)��;�(d!�); (5.8)

will be approximated byZ

�;�

F (!�)��;�(!�j�)�(N)

�;�(d!�) (5.9)

=

Z

�;�

F (N)(!�)�
(N)

�;�(!�j�)�(N)

�;�(d!�);

where

�
(N)

�;�(d!�)
def
=
O
l2�

�
(N)

� (d!l); (5.10)

and

F (N)(!�)
def
= F (!

(N)

� ); �
(N)

�;�(!�j�) def
= ��;�(!

(N)

� j�); (5.11)

!
(N)

� =
�
!
(N)

l

�
l2�

; !
(N)

l

def
=

X
k2KN

Pk!l: (5.12)

The reason to use such approximations is that the integrals on the right-

hand side of (5.9) may be rewritten as integrals over �nite-dimensional

spaces. To the latter integrals one may apply the classical ferromag-

netic interpretation, which would yield the correlation inequalities we



34 S. ALBEVERIO, YU. KONDRATIEV, YU. KOZITSKY, AND M. R�OCKNER

are going to get. To do this we should make more precise de�nition

of the class of functions F , for which such an interpretation may make

sense. First of all we will need the following functions

F (!�) = A1(!�(�1)) : : : An(!�(�n)); (5.13)

with A1; : : : ; An 2 P(1)

� , which determine the Green functions

�
(�)
A1;:::;An

(�1; : : : ; �n) =

Z

�;�

A1(!�(�1)) : : : An(!�(�n))%�;�(d!�j�)

def
= < A1(!�(�1)) : : : An(!�(�n)) >%�;�(�j�) : (5.14)

The latter functions are continuous on In� in view of Theorem 4.2. Since

the !
(N)

� belong to a �nite-dimensional subspace of X�;�, they can be

written as linear combinations of !�((�=N)�), � = 0; : : : ; N � 1, which

may be chosen as variables for the mentioned �nite-dimensional inte-

grals. Therefore, for F given by (5.13), it would be much more conve-

nient to construct such approximations if the arguments �1; : : : ; �n be-

longed to Q� � I�, where Q� consists of the values of � , for which �=�
is rational. Then, for given �1; : : : ; �n 2 Q�, one can �nd �1; : : : ; �n; N 2
N , such that �j = (�j=N)�, j = 1; : : : ; n. In this case, we obtain fer-

romagnetic approximations of the Green functions (5.14) only for the

arguments belonging to Q�. But in view of the continuity of these

functions, this will be enough since Q� is dense in I�.
Following this way we will deal with such basic types of functions


�;� ! R:

(i) !� 7! !�(�); � 2 Q�; (5.15)

(ii) !� 7! h!l; !l0i�; !� 7! h!l; �li�; l; l0 2 �; � 2 
�;�;

(iii) !� 7!
Z
I�
W (!l(�))d�:

De�nition 5.1. Given �1; : : : ; �n, n 2 Z+, the family

F�;�(�1; : : : ; �n) consists of the continuous functions F : 
�;� ! C

which are compositions of the functions

!� 7! (!�(�1); : : : ; !�(�n));

with functions R
nj�j ! C , such that for all a1; : : : ; an > 0,

jF (!�)j exp
(
�
X
l2�

nX
j=1

aj [!l(�j)]
2

)
<1: (5.16)

Clearly, the functions F having the form (5.13) with A1; : : : ; An 2
P

(1)

� belong to the family just introduced.
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Thereafter, we choose �1; : : : ; �n 2 Q�, n 2 Z+, � 2 
�;� and keep

them �xed. Then for n � 1, there exist tending to in�nity sequences

fN (m) j m 2 Ng, f�(m)
j j m 2 Ng, j = 1; : : : ; n, such that for all m 2 N ,

�j =
�
(m)

j

N (m)
�; j = 1; : : : ; n: (5.17)

Below we drop the superscript (m) assuming that N and �j tend to

in�nity in such a way that (5.17) holds. We also suppose that all N
are even. The set of values of such N satisfying (5.17) depends on the

choice of f�j; j = 1; : : : ; ng, we denote it by N (�1; : : : ; �n).

The basic element of our construction is the following statement.

Theorem 5.1. For every F 2 F�;�(�1; : : : ; �n) and all � 2 
�;�, the

following convergence, when N (�1; : : : ; �n) 3 N !1,Z

�;�

F (N)(!�)�
(N)(!�j�)�(N)

�;�(d!�) (5.18)

�!
Z

�;�

F (!�)�(!�j�)��;�(d!�);

holds.

Proof. By (5.6) and (5.10) one hasZ

�;�

F (N)(!�)�
(N)(!�j�)�(N)

�;�(d!�) =

=

Z

�;�

F (!�)�(!�j�)�(N)

�;�(d!�):

By Lemma 5.1, for any box �, the sequence of product measures

f�(N)

�;� j N 2 N (�1; : : : ; �n)g converges weakly in 
�;� to the measure

��;�. On the other hand, for every � 2 
�;�, the function F�(�j�) is
bounded and continuous on 
�;�, which yields (5.18).

Now let G : Rnj�j ! C be such that F (!�) = G(!�(�1); : : : ; !�(�n)).

Then F (N)(!�) = G(!
(N)

� (�1); : : : ; !
(N)

� (�n)). Our next statement gives

the ferromagnetic representation of the above approximating integrals.

Theorem 5.2. For every �1; : : : ; �n 2 Q�, all F 2 F�;�(�1; : : : ; �n),

any � 2 
�;�, and all N 2 N (�1; : : : ; �n) the following representation
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holds Z

�;�

F (N)(!�)�
(N)

�;�(!�j�)�(N)

�;�(d!�) (5.19)

= K
(N)

�;� (�)

Z
RNj�j

G (S�(�1); : : : ; S�(�n)) ��;�(dS�jX)

= K
(N)

�;� (�) < G (S�(�1); : : : ; S�(�n)) >��;�(�jX) :

Here K
(N)

�;� (�) is a positive constant, �j = (�j=�)N , j = 1; : : : ; n, and

the probability measure ��;�(�jX) has the form

��;�(dS�jX)
def
=

1

C�;�(X)
� (5.20)

� exp

(
�1

2

X
l;l02�

Jll0

N�1X
�=0

Sl(�)Sl0(�)�
X
l2�

N�1X
�=0

Sl(�)Xl(�)

� mN2

2�2

X
l2�

N�1X
�=0

[S(� + 1)� S(�)]
2

)O
l2�

N�1O
�=0

�(N)(dSl(�));

where the coe�cients Jll0 are the same as in (5.1), fXl(�) j l 2 �; � =
0; : : : ; N � 1g is a certain, dependent on �, real vector (X = 0 for

� = 0), and

�(N)(dSl(�)) (5.21)

= exp

(
� �

N
W

 s
N

�
Sl(�)

!
� 1

2
[Sl(�)]

2

)
dSl(�):

It should be noted here that by [75] the measure ��;�(�jX) corre-

sponds to a general type ferromagnet, whereas ��;�(�j0) corresponds to
an even ferromagnet.

Proof of Theorem 5.2 . First we change the variables in the

integral on the right-hand side of (5.9) by means of the following Fourier

transformations (c.f. (5.7))

!l(�) =
X
k2K

!̂l(k)ek(�); !̂l(k) =

Z
I�
!l(�)ek(�)d�; (5.22)

where the functions ek, k 2 K were de�ned by (2.45). Then, for Q� 3
� = (�=N)�, one has

!
(N)

l (�) =
X
k2KN

!̂l(k)ek

� �
N
�
�
=

s
N

�

X
p2PN

!̂l

�
N

�
p

�
"p(�); (5.23)
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where

PN
def
= fp = 2�

N
� j � = �(L� 1); : : : ; Lg; (5.24)

and for � = 0; 1; : : : ; N � 1, (c.f. (2.45))

"p(�) =

r
2

N
cos p� (p > 0); "p(�) = �

r
2

N
sin p� (p < 0);

"0(�) =
1p
N
: (5.25)

For the functions of the type (ii) taken at !
(N)

� , one has

h!(N)

l ; !
(N)

l0 i� =
X
k2KN

!̂l(k)!̂l0(k) =
X
p2PN

!̂l

�
N

�
p

�
!̂l0

�
N

�
p

�
; (5.26)

and

h!(N)

l ; �li� =
X
k2KN

!̂l(k)�̂l(k); �̂l(k) =

Z
I�
�l(�)ek(�)d�: (5.27)

As for functions of the type (iii), instead of (5.22) it is more convenient

to use the following transformation

!l(�) =
1p
�

X
k2K

~!l(k) exp (ik�) ; (5.28)

~!l(k) =
1p
�

Z
I�
!l(�) exp (�ik�) d�:

Then one hasZ
I�
W
�
!
(N)

l (�)
�
d� =

rX
s=1

ws

Z
I�

h
!
(N)

l (�)
i2s

d�: (5.29)

Further Z
I�

h
!
(N)

l (�)
i2s

d� = ��s
X

k1;:::;k2s2KN

~!l(k1) : : : ~!l(k2s)

�
Z
I�
exp [i(k1 + � � �+ k2s)� ] d�

= ��s+1
X

k1;:::;k2s2KN

~!l(k1) : : : ~!l(k2s)

� � (k1 + � � �+ k2s) : (5.30)
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Here �(0) = 1, �(k) = 0 if k 6= 0. Now we introduce the variables

(quasi-spins) Sl(�):

Sl(�) =

r
�

N
!l

� �
N
�
�
; l 2 �; � = 0; 1; : : : ; N � 1; (5.31)

Ŝl(p) = !̂l

�
N

�
p

�
; ~Sl(p) = ~!l

�
N

�
p

�
; p 2 PN ;

for which one has

Sl(�) =
X
p2PN

Ŝl(p)"p(�) =
1p
N

X
p2PN

~Sl(p) exp(ip�); (5.32)

Ŝl(p) =

N�1X
�=0

Sl(�)"p(�); ~Sl(p) =
1p
N

N�1X
�=0

Sl(�) exp(�ip�):

Then (5.30) may be rewritten in the following wayZ
I�

h
!
(N)

l (�)
i2s

d� =

��s+1
X

k1;:::;k2s2KN

~Sl

�
�

N
k1

�
: : : ~Sl

�
�

N
k2s

�
�

� � (k1 + � � �+ k2s)

=
1

N s�s�1

N�1X
�1;:::;�2s=0

Sl(�1) : : : Sl(�2s)�

�
X

k1;:::k2s2KN

�(k1 + � � �+ k2s)�

� exp

�
� i�
N
(k1�1 + � � �+ k2s�2s)

�
=

1

N s�s�1

N�1X
�1;:::;�2s=0

Sl(�1) : : : Sl(�2s)�

�
LX

�1;:::;�2s�1=�L+1

exp

�
�2�i

N
�1(�1 � �2s)

�
� : : :

� exp

�
�2�i

N
�2s�1(�2s�1 � �2s)

�
=

=
N2s�1

N s�s�1

N�1X
�=0

[Sl(�)]
2s
=

�

N

N�1X
�=0

"s
N

�
Sl(�)

#2s
:
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Returning to (5.29) one obtainsZ
I�
W
�
!
(N)

l (�)
�
d� =

�

N

N�1X
�=0

W

 s
N

�
Sl(�)

!
: (5.33)

Accordingly,

h!(N)

l ; !
(N)

l0 i� =
X
p2PN

Ŝl(p)Ŝl0(p) =

N�1X
�=1

Sl(�)Sl0(�); (5.34)

and

h!(N)

l ; �li� =
X
k2KN

!̂l(k)�l(k) =

N�1X
�=0

Sl(�)Xl(�); (5.35)

Xl(�)
def
=
X
p2PN

�l

�
N

�
p

�
"p(�):

At last, (5.23) takes the form

!l(�j) = !l

��j
N
�
�
=

s
N

�
Sl(�j); j = 1; : : : ; n: (5.36)

The next step is to introduce the measure on �nite-dimensional space

which would have the above mentioned ferromagnetic properties and

such that the integral on the right-hand side of (5.9) could be substi-

tuted by the integral over this �nite-dimensional space. Here we use

the representation (5.6) and construct a �nite-dimensional analogue of

�
(N)

� . To this end we introduce the following Gaussian measure on RN :

�
(N)

� (dŜ) =
O
p2PN

�(N)
p (dŜ(p)); (5.37)

where the measure �
(N)
p satis�es (5.5) with (c.f.(5.3))

�(N)
p

def
=

1

m

�
2N
�

�2
(sin p=2)

2
+ 1

= �
(N)

Np=�: (5.38)

It is clear that$
(N)

k = �
(N)

�k=N , where the former measure de�nes by (5.6)

the measure �
(N)

� . On the other hand, this new Gaussian measure may

also be written in the coordinates fS(�); � = 0; : : : N � 1g, related to
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fŜ(p); p 2 PNg by the transformation (5.32), as follows

�
(N)

� (dS) =
1

C�;N

exp

(
�mN

2

2�2

N�1X
�=0

[S(� + 1)� S(�)]
2

� 1

2

N�1X
�=0

[S(�)]
2

)
N�1O
�=0

dS(�); (5.39)

with the convention S(N) = S(0) and the normalizing constant C
(N)

� .

Therefore, the measure �
(N)

� may be regarded as the Gibbs measure

of a chain of unbounded (Gaussian) spins. Due to the choice of the

numbers (5.38), the interaction is ferromagnetic and of the nearest-

neighbor type.

Now we de�ne the measure which will correspond to �
(N)

�;� given by

(5.10). It is

�
(N)

�;�(dS�)
def
=
O
l2�

�
(N)

� (dSl) (5.40)

=
1

[C�;N ]
j�j exp

(
�mN

2

2�2

X
l2�

N�1X
�=0

[Sl(� + 1)� Sl(�)]
2

� 1

2

X
l2�

N�1X
�=0

[Sl(�)]
2

)O
l2�

N�1O
�=0

dSl(�):

By construction we have thatZ

�;�

F (N)(!�)�
(N)

�;�(!�j�)�(N)

�;�(d!�) (5.41)

=
C�;�(X)

Y�;�(�)

�
N

�

�n

2
Z
RNj�j

G (S�(�1); : : : ; S�(�n)) ��;�(dS�jX);

where the measure ��;�(�jX) is given by (5.20), (5.21).

6. Basic Inequalities

In this section we use the lattice approximation to prove a number

of basic inequalities for the moments, like (5.8), of the measure (5.1)

with the function w satisfying (V1).

Theorem 6.1. [FKG Inequality] Given �, �, and �1; : : : ; �n 2 I�,
let the functions F;G 2 F�;� increase when every chosen !l(�j), l 2 �,

j = 1; : : : ; n increases. Then the following inequality

< FG >%�;�(�j�) � < F >%�;�(�j�)< G >%�;�(�j�); (6.1)
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holds for all � 2 
�;�.

The proof follows from Theorem 5.1, 5.2 and the fact that the mea-

sure (5.20) corresponds to a general type ferromagnet, for which the

FKG inequality holds (see Theorem VIII.16 of [75]).

Below %�;� will stand for the measure (5.1) with � = 0.

Theorem 6.2. [GKS Inequalities] Given � and �, let the real val-

ued functions A1; : : : ; An+m 2 P(1)

� , n;m 2 N have the properties:

(a) every Aj depends only on the values of xlj with certain lj 2 �;

(b) every Aj is either an odd monotone growing function of xlj
or an even positive function, monotone growing on [0;+1).

Then the following inequalities hold

< A1(!�(�1)) : : : An(!�(�n)) >%�;� � 0; (6.2)

< A1(!�(�1)) : : : An(!�(�n))� (6.3)

� An+1(!�(�n+1)) : : : An+m(!�(�n+m)) >%�;�

� < A1(!�(�1)) : : : An(!�(�n)) >%�;� �
� < An+1(!�(�n+1)) : : : An+m(!�(�n+m)) >%�;� :

The proof follows from Theorem 5.1, 5.2 and the fact that the mea-

sure (5.20) with X = 0 corresponds to an even ferromagnet, for which

the GKS inequalities hold (see Theorem VIII.14 of [75]).

Corollary 6.1. For all �1; : : : ; �n+m 2 I�, the Green functions (2.62),

(2.63) obey the following inequalities:

�
�;�
A1;:::;An

(�1; : : : ; �n) � 0; �
0;�;�
A1;:::;An

(�1; : : : ; �n) � 0; (6.4)

�
�;�
A1;:::;An+m

(�1; : : : ; �n+m) �
�
�;�
A1;:::;An

(�1; : : : ; �n)� (6.5)

���;�An+1;:::;An+m
(�n+1; : : : ; �n+m)

�
0;�;�
A1;:::;An+m

(�1; : : : ; �n+m) �
�
0;�;�
A1;:::;An

(�1; : : : ; �n)�
��0;�;�

An+1;:::;An+m
(�n+1; : : : ; �n+m):

For '� = ('l)l2� 2 X�;�, we set

F ('�) =

Z
X�;�

exp

(X
l2�
h'l; !li�

)
%�;�(d!�): (6.6)
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F ('�) is an entire real analytic function, which means that the expan-

sion

F ('�) =

1X
n=0

1

n!
F (n)('�; : : : ; '�); (6.7)

where every F (n)(�; : : : ; �) is a n{linear bounded functional on X�;�, con-

verges absolutely on the whole Hilbert space X�;�. These functionals

may be written in the integral form

F (n)('�; : : : ; '�) =X
l1;:::;ln2�

Z
In
�

Fl1;:::;ln(�1; : : : ; �n)'l1(�1) : : : 'ln(�n)d�1 : : : d�n; (6.8)

with the kernels being the moments of the measure %�;�, i.e.

Fl1;:::;ln(�1; : : : ; �n) =< !l1(�1) : : : !ln(�n) >%�;�;

which means in turn that they are the Green functions (5.14) with

Aj(x�) = xlj . These kernels are continuous as functions of �1; : : : ; �n.

Since F (0) = 1, the function logF ('�) is a real analytic function in a

neighborhood of the point '� = 0, where it can be expanded similarly

to (6.7)

U('�)
def
= logF ('�) =

1X
n=0

1

n!
U (n)('�; : : : ; '�); (6.9)

and

U (n)('�; : : : ; '�) (6.10)

=
X

l1;:::;ln2�

Z
In
�

Ul1;:::;ln(�1; : : : ; �n)'l1(�1) : : : 'ln(�1)d�n : : : d�n:

Theorem 6.3. [Lebowitz Inequalities] Given � and �, the follow-

ing inequality

Ul1;:::;l4(�1; : : : ; �4) � 0; (6.11)

holds for all �1; : : : ; �4 2 I� and l1; : : : ; l4 2 �.

The proof follows from Theorem 5.1, 5.2 and the fact that the Lebowitz

inequality holds for the measure (5.20) with the function w satisfying

(V1) and with X = 0 (see Theorem 2.4 and Corollary 2.5 of [83]).

For Gaussian random variables X1; : : : ; X2n, n 2 N with zero mean,

one has

< X1 : : :X2n >=
X
�2Sn

nY
k=1

< X�(2k�1)X�(2k) >;
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where the sum is taken over all partitions of the set f1; : : : ; 2ng into

the pairs. If in the latter expression one has "�" instead of "=",

the variables X1; : : : ; X2n are said to obey the Gaussian upper bound

principle.

Theorem 6.4. [Gaussian Upper Bound] Given � and �, the fol-

lowing inequality

< !l1(�1) : : : !l2n(�2n) >%�;�

�
X
�2Sn

nY
k=1

< !l�(2k�1)
(��(2k�1))!l�(2k)(��(2k)) >%�;�; (6.12)

holds for all values of l1; : : : ; l2n 2 � and �1; : : : ; �2n 2 I�.

The proof follows from Theorem 5.1, 5.2 and the fact that the Gauss-

ian upper bound principle holds for the measure (5.20) with X = 0 (see

Section 12 of [39])

Theorem 6.5. Under the conditions of Theorem 6.3 let the potential

W , which de�nes the measures (5.1), (5.20), have the form

W (x) =
1

2
ax2 + bx4; a 2 R; b > 0: (6.13)

Then the following inequalities

(�1)n�1Ul1;:::;l2n(�1; : : : ; �2n) � 0; (6.14)

hold for all 2 N, all �1; : : : ; �2n 2 I� and l1; : : : ; l2n 2 �

The proof follows from Theorem 5.1, 5.2 and the fact that the above

sign rule holds for the measure (5.20) with X = 0 and W given by

(6.13), which can be deduced from Shlosman's results [74] for the Ising

model by means of the classical Ising approximation (for more details

see Ch.IX of book [75]).

7. More Inequalities

7.1. Scalar Domination. Here we assume that the measures (2.60),

(2.61) and the Green functions (2.62), (2.63) describe the vector model

(2.1) { (2.9) with D > 1 and with the potential V (2.3) obeying the

condition (V2). Since we will compare the Green functions for this

model with similar functions for the corresponding scalar model, we

need a special notation for the latter ones. Let the Green functionse��;� and e�0;�;� be de�ned also by (2.62) and (2.63) respectively but for

the model (2.1) - (2.9) with D = 1.
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Theorem 7.1. [Scalar Domination] For a box �, let the local Gibbs

measures be de�ned by (2.60), (2.61) with the potential V obeying

the condition (V2) and with arbitrary D > 1. Let the functions

A1; : : : ; An 2 P
(D)

� , n 2 N have the following property: there ex-

ists � 2 f1; 2; : : : ; Dg and the functions eA1; : : : ; eAn 2 P
(1)

� satisfy-

ing the conditions of Theorem 6.2 and such that Aj(x�) = eAj(x
�
�),

j = 1; : : : ; n. Then for arbitrary �1; : : : ; �n 2 I�,
0 � �

�;�
A1;:::;An

(�1; : : : ; �n) � e��;�
eA1;:::; eAn

(�1; : : : ; �n): (7.1)

Remark 7.1. It is important that all Aj depend on their x�� with one

and the same �. The �rst above inequality is a D-dimensional ver-

sion of the �rst GKS inequality (6.4). The second inequality in (7.1)

describes scalar domination. The same inequalities hold for zero bound-

ary conditions as well.

Proof of Theorem 7.1. For the � mentioned in the hypothesis, let

us decompose

X�;� = �X�;� �X �
�;�; X� = �X� � X �

� ;

which means that every !� 2 X�;� is regarded as !� = (�!�; !
�
�), where

a (D � 1)-dimensional vector �!� belongs to �X�;� (or to �X� for one-

element �), whereas the scalar !�� is supposed to belong to the Hilbert

space X �
�;� (respectively to X �

� for one-element �). Then the Gaussian

measure �� can also be decomposed

��(d!) = (��� 
 ���)(d�!; d!
�); (7.2)

where the Gaussian measures ���, �
�
� are de�ned on the Hilbert spaces

�X� and X �
� respectively. The potential V (2.3), may be written

V (x) = v((�x; �x)) + v((x�)2) +

r�1X
s=2

(x�)2sBs(�x); Bs(�x) � 0: (7.3)

The nonnegativity of Bs(�x) follows from the condition (V2). Set

Q(�!; !�)
def
=

Z
I�

r�1X
s=2

(!�(�))
2s
Bs (�!(�)) d�: (7.4)

Then by means of the decomposition (7.2) one may write the measure

(2.60) as follows

��;�(d!�) = (7.5)

= C�;� exp

(
�
X
l2�

Q(�!l; !
�
l )

)
(���;� 
 ���;�)(d�!�; d!

�
�);
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where C�;� is the normalization constant and the Gibbs measures ���;�
and ���;� describe systems of (D�1)� and one-dimensional interacting

anharmonic oscillators respectively. This allows us to rewrite (2.62) in

the following way

�
�;�
A1;:::;An

(�1; : : : ; �n) = (7.6)

= C�;�

Z
�X�;�

�(1j�!�; �1; : : : ; �n)�(1j�!�)���;�(d�!�);

where, for # 2 [0; 1], we have set

�(#j�!�; �1; : : : ; �n) =
1

�(#j�!�)

Z
X�

�;�

A1(!�(�1)) : : :An(!�(�n))�

� exp

(
�#
X
l2�

Q(�!l; !
�
l )

)
���;�(d!

�
�;�); (7.7)

and

�(#j�!�;�) =
Z
X�

�;�

exp

(
�#
X
l2�

Q(�!l; !
�
l )

)
���;�(d!

�
�): (7.8)

Now let the functions eA1; : : : ; eAn be such that Aj(!�(�j)) = eAj(!
�
�(�j)),

as it is supposed in Theorem 7.1. Then

�(0j�!�; �1; : : : ; �n) =

Z
X�

�;�

eA1(!
�
�(�1)) : : :

eAn(!
�
�(�n))�

�
�;�(d!

�
�)

= e��;�
eA1;:::; eAn

(�1; : : : ; �n): (7.9)

As a function of #, � is continuous on [0; 1] and di�erentiable on (0; 1),
where

@

@#
�(#j�!�; �1; : : : ; �n) = �

X
l2�

r�1X
s=1

Z
I�
Bs(�!l(t))�

�
n
< eA1(!

�
�(�1)) : : :

eAn(!
�
�(�n)) (!

�
l (t))

2s
>�

� < eA1(!
�
�(�1)) : : :

eAn(!
�
�(�n)) >� �

� < (!�l (t))
2s
>�

	
dt: (7.10)

Here (see (2.30)), for a �xed �!� 2 �X�;�, the measure � is de�ned on

X �
�;� as follows

�(d!��) =
1

�(#j�!�)
exp

(
�#
X
l2�

Q(�!l; !
�
l )

)
���;�(d!

�
�):



46 S. ALBEVERIO, YU. KONDRATIEV, YU. KOZITSKY, AND M. R�OCKNER

Since the measure ���;� and the functions
~A1; : : : ; ~An, !

�
�(t) 7! (!�l (t))

2s
,

satisfy the conditions of Theorem 6.2, the estimate (6.5) yields in (7.10)

@

@#
�(#j�!�; �1; : : : ; �n) � 0;

for all # 2 (0; 1), �!� 2 �X�;�, and �1; : : : ; �n 2 I�. The latter fact and
the estimate (6.4) yield in turn

0 � �(1j�!�; �1; : : : ; �n) � �(0j�!�; �1; : : : ; �n) (7.11)

= e��;�
eA1;:::; eAn

(�1; : : : ; �n):

Using this double inequality in (7.6) we obtain

0 � �
�;�
A1;:::;An

(�1; : : : ; �n) � ~�
�;�
~A1;:::; ~An

(�1; : : : ; �n)�

�C�;�

Z
X�

�;�

Z
�X�;�

exp

(
�
X
l2�

Q(�!l; !
�
l )

)
(���;� 
 ���;�)(d�!�;�; d!

�
�)

= ~�
�;�
~A1;:::; ~An

(�1; : : : ; �n)

Z
X�;�

��;�(d!�) = ~�
�;�
~A1;:::; ~An

(�1; : : : ; �n):

The above theorem admits a generalization. One observes that (7.1)

may be rewritten

0 � < A1(!�(�1)) : : : An(!�(�n)) >��;� �
� < eA1(!�(�1)) : : : eAn(!�(�n)) >��

�;�
:

Theorem 7.2. Let the conditions of Theorem 7.1 be satis�ed. Then

for every ��;�-integrable function F : 
�;� ! R+ , which does not de-

pend on x�� mentioned in this theorem, the following inequalities

0 � < A1(!�(�1)) : : : An(!�(�n))F (!�) >��;� � (7.12)

� < eA1(!�(�1)) : : : eAn(!�(�n)) >��
�;�
� < F (!�) >��;�

hold for all �1; : : : ; �n 2 I�.

To prove this theorem one writes (c.f. (7.6))

< A1(!�(�1)) : : :An(!�(�n))F (!�) >��;�=

= C�;�

Z
�X�;�

�(1j�!�; �1; : : : ; �n)F (!�)�(1j�!�)���;�(d�!�):

Then employing (7.11) one gets (7.12).
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7.2. Zero Boundary Domination. Here we consider the scalar case,
thus the measures (2.60), (2.61), and (2.66) describe the model (2.1)

- (2.9) with D = 1. The potential V is supposed to obey (V2). This
model will be compared with the model described by the Hamiltonian

(2.1), (2.2) but with the following one-particle potential

V̂ (x)
def
= 2V

�
xp
2

�
=

1

2
ax2 +

rX
s=2

21�sbsx
2s; x 2 R; (7.13)

instead of V given by (2.3). Here the parameters a, and all bs, s =

2; : : : ; r are the same as in (2.3). The polynomials V , V̂ obey the

relation

V

�
x + yp

2

�
+ V

�
x� yp

2

�
= V̂ (x) + V̂ (y) +W (xjy); (7.14)

where

W (xjy) =W (yjx) =
r�1X
s=1

bs(x)y
2s; (7.15)

bs(x) =

rX
p=s+1

�
2p

2s

�
21�pbpx

2(p�s):

Then the measures constructed with V̂ by (2.60) and (2.61) will be

written as �̂�;�, and �̂
(0)

�;�, respectively. Let also

K
�
ll0(�; �

0)
def
= < !l(�)!l0(�

0) > � < !l(�) >< !l0(�
0) >; (7.16)

� 2 
�; l; l0 2 �; �; � 0 2 I�;

where the expectations are taken with respect to the measure ��;�(:j�)
(2.66). Further, for the same l; l0 and �; � 0, let

K̂0
ll0(�; �

0)
def
=

Z
X�;�

!l(�)!l0(�
0)�̂

(0)

�;�(d!�): (7.17)

Theorem 7.3. For arbitrary � 2 
�, all �; �
0 2 I� and l; l0 2 �, the

following estimates hold

0 � K
�
ll0(�; �

0) � K̂0
ll0(�; �

0): (7.18)
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Proof. The case � 2 
� n
t
� is trivial. For � 2 
t

�, we rewrite (7.16)

as follows

K
�
ll0(�; �

0) =
1

[Z�;�(�)]
2

Z Z
X�;��X�;�

!l(�)� ~!l(�)p
2

�

� !l0(�
0)� ~!l0(�

0)p
2

exp

(
�

X
�2�;�02�c

d��0h!� + ~!�; ��0i��

� 1

2

X
�;�02�

d��0 [h!�; !�0i� + h~!�; ~!�0i�]�

�
X
�2�

Z
I�
[V (!�(t)) + V (~!�(t))] dt

)
�

�
O
�2�

(�� 
 ��) (d!�; d~!�):

Now we apply the following orthogonal transformation in the space

X�;� �X�;�:

�l(�) = (!l(�)� ~!(�)) =
p
2; !l(�) = (�l(�) + �l(�)) =

p
2; (7.19)

�l(�) = (!l(�) + ~!(�)) =
p
2; ~!l(�) = (��l(�) + �l(�)) =

p
2;

which yields

K
�
ll0(�; �

0) = [Z�;�(�)]
�2
Z Z

X�;��X�;�
�l(�)�l0(�

0)�

� exp

(
�
p
2

X
�2�;�02�c

d��0h��; ��0i��

� 1

2

X
�;�02�

d��0 [h��; ��0i� + h��; ��0i�]�

�
X
�2�

Q(��; ��)�

�
X
�2�

Z
I�

h
V̂ (��(t)) + V̂ (��(t))

i
dt

)
�

�
O
�2�

(�� 
 ��) (d��; d��); (7.20)



EUCLIDEAN GIBBS STATES OF QUANTUM LATTICE SYSTEMS 49

where (see (7.14), (7.15))

Q(��; ��) =

Z
I�
W (��(t)j��(t))dt

=

r�1X
p=1

Z
I�
bp(��(t))[��(t)]

2pdt: (7.21)

Since, for V obeying the condition (V2), all bp are nonnegative, all the
coe�cients bp(��(t)) are nonnegative for all ��(t). For # 2 [0; 1], we set

�ll0(#j��; �; � 0) def
= < �l(�)�l0(�

0) >�#(�j��); (7.22)

where the expectation is taken with respect to the measure

�#(d��j��) =
1

�(#j��)
exp

(
�#
X
�2�

Q(��; ��) �

� 1

2

X
�;�02�

d��0h��; ��0i� �

�
X
�2�

Z
I�
V̂ (��(t))dt

)O
�2�

��(d��); (7.23)

where

�(#j��) def
=

Z
X�;�

exp

(
�#
X
�2�

Q(��; ��) (7.24)

�1

2

X
�;�02�

d��0h��; ��0i� �
X
�2�

Z
I�
V̂ (��(t))dt

)O
�2�

��(d��):

One observes that �ll0 is a continuous function of # 2 [0; 1]. It is

di�erentiable on (0; 1), where its derivative is

@

@#
�ll0(#j��; �; � 0)

= � 1

�(#j��)

r�1X
p=1

X
�2�

Z
I�
bp(��(t))

�
< [��(t)]

2p
�l(�)�l0(�

0) >��(�j��)

� < [��(t)]
2p
>��(�j��)< �l(�)�l0(�

0) >��(�j��)
	
dt:

For every �� 2 
�;�, the measure (7.23) has the form (5.1) with � = 0,

thus the GKS inequalities (6.2), (6.3) hold for its moments. This yields

@

@#
�ll0(#j��; �; � 0) � 0;
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hence

0 � �ll0(0j��; �; � 0) � �ll0(1j��; �; � 0) = K̂0
ll0(�; �

0); (7.25)

for all ��, l; l
0 2 �; �; � 0 2 I�. On the other hand, (7.20) may be

rewritten

K
�
ll0(�; �

0) = [Z�;�(�)]
�2
Z
X�;�

�ll0(1j��; �; � 0)�(1j��)�

� exp

(
�
p
2

X
�2�;�02�c

d��0(��; ��0i� �
1

2

X
<�;�0>2�

d��0h��; ��0i��

�
X
�2�

Z
I�
V̂ (��(t))dt

)O
�2�

��(d��): (7.26)

Applying here (7.25) one arrives at (7.18).

Now let us return to the measures (2.60), (2.61), for which one may

write

��;�(d!�) =
Z

(0)

�;�

Z�;�

exp

(
�1

2

X
l;l02�

�
d�ll0 � dll0

�
h!l; !l0i�

)
�
(0)

�;�(d!�):

Taking into account (D2) and the GKS inequalities, one easily proves

the following statement.

Proposition 7.1. For every pair l; l0 2 � and all �; � 0 2 I�, the fol-

lowing estimate holds

K̂0
ll0(�; �

0) �
Z
X�;�

!l(�)!l0(�
0)�̂�;�(d!�)

def
= K̂ll0(�; �

0): (7.27)

Combining this estimate with (7.18) one obtains that

K
�
ll0(�; �

0) � K̂ll0(�; �
0); (7.28)

which holds for arbitrary � 2 
�, all �; �
0 2 I� and l; l0 2 �.

7.3. Re�ned Gaussian Upper Bound. For the periodic local Gibbs
measure (2.60), we write

Kll0(�; �
0) =

Z
X�;�

!l(�)!l0(�
0)��;�(d!�); (7.29)

and

K� =
1

�j�j
X
l;l02�

Z Z
I2
�

Kll0(�; �
0)d�d� 0 (7.30)

=
X
l02�

Z
I�
Kll0(�; �

0)d� 0:
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For the one-point box � = flg, we write simply K. This parameter

depends on �, m, and the parameters of the potential V . We show that

varying these quantities, K can be made arbitrarily small. Set

d = �
X
l02IL

dll0: (7.31)

Recall that the limit �% IL is taken over a sequence of boxes L.

Theorem 7.4. For the model described by the Hamiltonian (2.1), (2.2)

with D = 1 and with the one-particle potential V satisfying (V1), let
K, de�ned by (7.30) with � = flg, obey the condition

K < 1=d: (7.32)

Then there exist �0 2 L such that for all � > �0, the following estimate

K� �
K

1� dK ; (7.33)

holds.

Proof. For the potential V satisfying (V1), we set

��(d!l)
def
= exp

(
�
Z
I�
V (!l(t))dt

)
��(d!l); (7.34)

where �� is the Gaussian measure de�ned by (2.27). Clearly, �� is a

�nite measure on X�, which belongs to the BFS class (see [39]). For

# 2 [0; 1], we set

�(d!�)
def
=

1

Z�;�(#)
exp

(
�#
2

X
l;l02�

d�ll0h!l; !l0i�
)O

l2�

��(d!l); (7.35)

Z�;�(#)
def
=

Z
X�;�

exp

(
�#
2

X
l;l02�

d�ll0h!l; !l0i�
)O

l2�
��(d!l):

This measure has the form (5.1) with � = 0, thus its moments obey

the GKS and the FKG inequalities. Let us set

Kll0(#j�; � 0) =< !l(�)!l0(�
0) >� : (7.36)

For every # 2 [0; 1], this is a nonnegative (e.g., by (6.1)) and continuous
(by Theorem 4.2) function of �; � 0. One can easily show that it is also

continuous on [0; 1] and di�erentiable on (0; 1), as a function of #.
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Further, set (see (6.9), (6.10))

Ul1;:::;l4(#jt1; : : : ; t4) =< !l1(t1) : : : !l4(t4) >� (7.37)

� < !l1(t1)!l2(t2) >�< !l3(t3)!l4(t4) >�

� < !l1(t1)!l3(t3) >�< !l2(t2)!l4(t4) >�

� < !l1(t1)!l4(t4) >�< !l2(t2)!l3(t3) >� :

For V satisfying (V1) and for a ferroelectric interaction #d�ll0 , the semi-
invariant Ul1;:::;l4 satis�es the Lebowitz inequality (6.11). It is also con-

tinuous as a function of t1; : : : ; t4 and #. From (7.35), (7.36) one has

@

@#
Kll0(#j�; � 0) = �

1

2

X
�;�02�

d���0

Z
I�
fU�;�0;l;l0(#jt; t; �; � 0)

+ 2K�l(#jt; �)K�0l0(#jt; � 0)g dt: (7.38)

Setting

K�(#) =
1

�j�j
X
l;l02�

Z Z
I2
�

Kll0(#j�; � 0)d�d� 0 (7.39)

=
X
l02�

Z
I�
Kll0(#j�; � 0)d� 0;

we get from (7.38)

d

d#
K�(#) = �	(#) + d� [K�(#)]

2
: (7.40)

Here

d�
def
= �

X
l02�

d�ll0 % d; �% IL; (7.41)

and

	(#)
def
=

1

2j�j�
X

l1;:::;l42�

d�l1l2Ul1;:::;l4(#j�; � 0; t; t)d�d� 0dt � 0; (7.42)

for all # 2 [0; 1]. Where we have taken into account (2.7), (6.11), and

(D2). Set

R�(#) =
K�(0)

1� d�K�(0)#
: (7.43)

By (7.35), (7.39) K�(0) = K. In view of (7.32) and (7.41) one has

Kd� < 1; 8� 2 L;
which means that, for any �, R�(#) is di�erentiable on (0; 1), where

d

d#
R�(#) = d� [R�(#)]

2
: (7.44)



EUCLIDEAN GIBBS STATES OF QUANTUM LATTICE SYSTEMS 53

Set

P�(#) = K�(#) +R�(#) � 0; Q�(#) = K�(#)�R�(#): (7.45)

Employing (7.40), (7.44) one has

d

d#
Q�(#) = �	(#) + d�P�(#)Q�(#); Q�(0) = 0: (7.46)

In view of (7.42) one has

d

d#
Q�(0) � 0;

which implies

Q�(#) � 0; 8# 2 [0; 1]: (7.47)

In fact, Q�(#) � 0 in a right neighborhood of zero. Since the function

Q� is continuous, to become positive it should vanish at a point, where

its derivative should be positive. But this is impossible in view of (7.46)

and (7.42). Then Q�(1) � 0, which yields (7.33).

Remark 7.2. The measure (7.35) would be Gaussian if one took V in

(7.34) to be identically zero. In this case one would get an equality in

(7.35). This is the reason why the latter estimate is called Gaussian

upper bound. It is in fact a re�ned upper bound because K is computed

for the non-Gaussian measure (7.34).

8. Applications

8.1. Existence of the Long Range Order. The appearance of the
long range order is an e�ect of the phase transition, which occurs when

the uctuations of the displacements of particles become large. In this

subsection, we show this for the model (2.1) { (2.3) with D = 1 and

dll0 = �J�jl�l0j;1; J > 0: (8.1)

To describe the appearance of the long range order one introduces

an order parameter. Here we will use the following one (more on this

theme one may �nd in [37])

�(�) = lim
�%IL

�;�

8<:
 

1

j�j
X
l2�

ql

!2
9=; ; (8.2)

where �;� is the periodic local Gibbs state introduced in (2.10). The

value �� of the inverse temperature �, such that

�(�) = 0; for � � ��; and �(�) > 0; for � > ��;

will be called a critical inverse temperature.
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Theorem 8.1. For the system of anharmonic oscillators described by

the Hamiltonian (2.1) { (2.3) with D = 1, d � 3, and with the poly-

nomial v which is strictly convex on R+ and such that the polynomial

�=2 + v(�) has a minimum at some � = �0, there exists �m such that,

for m > �m there exists a critical inverse temperature.

Proof. Having in mind the periodic conditions on the boundaries of
the box

� = (�L; L]d
\

IL; L 2 N ;

we will use the Fourier transformation of the following form

q̂p =
1p
j�j
X
l2�

ql exp(ipl); p = (p1; : : : ; pd) 2 ��; (8.3)

��
def
= fp j pj = �� + �

L
�j; �j = 1; 2; : : : ; 2L; j = 1; : : : ; dg:

Denote

D�(p) =

Z
I�
�
�;�
q̂�p;q̂p

(0; �)d�: (8.4)

Suppose that there exist positive Bp and Cp, independent of � and

such that

D�(p) � Bp; �;� f[q̂p; [H�; q̂�p]]g � Cp; (8.5)

where [:; :] stands for the commutator. By means of the estimate ob-

tained in [37], p.363 one gets the following bound

�;� fq̂pq̂�pg �
1

2

p
BpCp coth

 
�

2

s
Cp

Bp

!
: (8.6)

In our case

[q̂p; [H�; q̂�p]] =
1

m
:

On the other hand, the infrared estimates [37], [41] yield

D�(p) �
1

JE(p)
; (8.7)

where J is taken from (8.1) and

E(p) =

dX
j=1

[1� cos(pj)] :
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Employing these estimates in (8.6) one obtains

�;� fq̂pq̂�pg �
1

2
� 1p

2mJE(p)
coth

 
�

r
JE(p)

2m

!
: (8.8)

By (8.3)  
1

j�j
X
l2�

ql

!2

=
1

j�j q̂
2
0: (8.9)

On the other hand, X
l2�

q2l = q̂20 +
X

p2��nf0g

q̂pq̂�p; (8.10)

which yields

�;�fq̂20g = j�j�;�fq2l g �
X

p2��nf0g

�;�fq̂pq̂�pg: (8.11)

Here we have taken into account that the periodic Gibbs state �;� is

invariant under translations from T=T(�). Then by (8.9)

�;�

8<:
 

1

j�j
X
l2�

ql

!2
9=; (8.12)

= �;�fq2l g �
1

j�j
X

p2��nf0g

�;�fq̂pq̂�pg:

Making use of (8.8) and passing to the limit � % IL one obtains the

following estimate for the order parameter (8.2)

�(�) � �;�fq2l g � (8.13)

� 1

2
� 1

(2�)d

Z
[��;�]d

1p
2mJE(p)

coth

 
�

r
JE(p)

2m

!
dp:

The latter integral is convergent for d � 3. Getting back to the repre-

sentations (2.11), (2.12), (2.22), (2.62), (7.35), and (7.36) one obtains

�;�fq2l g = Kll(1j0; 0);
with dll0 given by (8.1). By means of (7.37) one may rewrite (7.38) as

follows

@

@#
Kll0(#j�; � 0) = �1

2

X
�;�02�

d���0

Z
I�
f< !l(�)!l0(�

0)!�(t)!�0(t) >�

� < !l(�)!l0(�
0) >�< !�(t)!�0(t) >�g � 0:
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Here, to obtain the latter estimate, we have used the GKS inequality

(6.3), which obviously holds for the moments of the measure (7.35).

This estimate yields

�;�fq2l g = Kll(1j0; 0) � Kll(0j0; 0) =< !l(0)
2 >�� (8.14)

=
trace fq2l exp(��Hl)g
trace fexp(��Hl)g

;

where the Hamiltonian Hl and the measure �� are given by (2.2) and

(7.34) respectively. Now, as above, we shall use the spectral proper-

ties of the Hamiltonian Hl. Its spectrum consists of nondegenerate

eigenvalues �s, s 2 N , �s < �s+1, which correspond to the eigenfunc-

tions  s constituting an orthonormal base of the space L2(R). Setting

q2s = (q2l  s;  s)L2(R), we have

Kll(0j0; 0) =
 X

s2N
q2se

���s

!
=

 X
s2N

e���s

!
:

Multiplying numerator and denominator by e��1 and passing to the

limit � ! +1 we get

lim
�!+1

Kll(0j0; 0) =
Z
R

x2 2
1(x)dx: (8.15)

In [31, 77, 78] there was proven the following semi-classical result. For

a double-well potential V (x) + x2=2 possessing nondegenerate minima
at the points �x0, and for any " > 0, one has

lim inf
m!+1

Z
B�
"

 1(x)
2dx =

1

2
; (8.16)

where B�
" = [�x0 � ";�x0 + "]. Therefore, given " > 0 and any � > 0,

one may �nd m";� > 0, such that for all m � m";�,Z �

B"

 2
1(x)dx �

1

2
(1� �):

Then, for such m,Z
R

x2 2
1(x)dx � 2

Z
B+
"

x2 2
1(x)dx

� (x0 � ")2
Z
B+
"

 2
1(x)dx � (x0 � ")2(1� �):
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Suppose that the parameters of the model are such that the following

inequality

x20 >
1p
8mJ

� 1

(2�)d

Z
[��;�]d

dpp
E(p)

def
=

Idp
8mJ

; (8.17)

holds. The latter integral converges for d � 3. Then one may choose

positive " and � such that

(x0 � ")2(1� �) >
Idp
8mJ

: (8.18)

Since coth x is a monotone decreasing function on R+ and coth x > 1

for all x > 0, one may �nd, taking into account also (8.15), �0("; �) > 0

such that,

Kll(0j0; 0) >

>
1

2
� 1

(2�)d

Z
[��;�]d

1p
2mJE(p)

coth

 
�

r
JE(p)

2m

!
dp;

for all � > �0("; �). Then by (8.14) and (8.13) one gets

�(�) > 0;

for m � m("; �) and � > �0("; �). Now we �x " and � in such a way

that �0("; �) has its smallest possible value ��. Then we put �m being

the value of m("; �) at such " and �.

8.2. Normality of Fluctuations and Suppression of Critical
Points. In this subsection, we consider the model described by (2.1) -

(2.3) with arbitrary D 2 N and with the potential V satisfying (V2).
At the critical point of the model the strong dependence between the

oscillations of particles appears. At this point the uctuations of the

displacement of particles become large (abnormal). More about ab-

normal uctuations in such and similar systems one may �nd in [3],

[28], [45], [85]. To describe the uctuations we introduce a uctuation

operator

Q�
def
=

1p
j�j
X
l2�

ql; (8.19)

where � is again a box. If the Green functions (2.62), (2.63), con-

structed with the help of Q�, remain bounded when �% IL, the uctu-
ations may be regarded as normal (under certain additional conditions

this implies normality in the usual sense [61]). At the critical point
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the uctuations become so large that in order to preserve the men-

tioned boundedness one should use an abnormal normalization, i.e., to

describe them one should employ the following operator

Q�;� = �(�)Q� =
�(�)p
j�j
X
l2�

ql; (8.20)

where f�(�) 2 R j � 2 Lg is a converging to zero sequence and L is a

sequence of boxes exhausting the lattice IL. Typically, �(�) � j�j��,
where � < 1=2 is a critical exponent. For � > ��, the uctuations

destroy the O(D)-symmetry and �(�) is to be set j�j�1=2 (c.f. (8.2)).
In what follows, the above mentioned normality of uctuations corre-

sponds to the suppression of the critical point behaviour of the model

considered.

De�nition 8.1. Given � > 0, let the sequence of the Green functions

f��;�
Q(�1);:::;Q(�2n)

(�1; : : : ; �2n) j � 2 Lg;

be bounded uniformly on I� for all n 2 N, any �1; : : : �2n = 1; 2; : : : ; D,

and any sequence of boxes L. Then the uctuations of the displacements

of particles are said to be normal at this temperature.

Let Hl be the Hamiltonian (2.2) describing a one-dimensional (i.e.

D = 1) oscillator. Its spectrum consists of the nondegenerate eigenval-

ues �s, s 2 N . Set

� = minf�s+1 � �s : s 2 Ng: (8.21)

Theorem 8.2. Let the particle mass m, the interaction parameter d

given by (7.31), and the spectral parameter � obey the condition

m�2 > d: (8.22)

Then, for any D 2 N, the uctuations of the displacements of particles

remain normal at all temperatures.

The proof of this theorem will be given below. Our next statement

shows that the condition (8.22) may be satis�ed for small values of the

mass m.

Theorem 8.3. There exists � > 0 such that

lim
m&0

m
(r�1)=(r+1)

�
m�2

�
= �; (8.23)

where r is the same as in (2.5).
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Proof. Recall that the Hamiltonian Hl acts in the Hilbert space

Hl = L2(R). Given � > 0, consider the following unitary operator on

Hl

(U� )(x) = �1=2 (�x):

Then

U�

�
d

dx

�
U�1
� = ��1

�
d

dx

�
; U�qU

�1
� = �q: (8.24)

Set � = m
�1=(2r+2). Then the operator

Hm = m
�r=(r+1)R; R

def
= R0 +m

1=(r+1)R1; (8.25)

is unitary equivalent to Hl given by (2.2). Here

R0 = �1

2

�
d

dx

�2

+ brq
2r;

and

R1 =
1

2
(1 + a)m

r�2
r+1 q2 +

r�1X
s=2

m
r�s�1
r+1 bsq

2s:

Let �R and �0 be de�ned by (8.21) but with the eigenvalues of the

operators R and R0 respectively. Then

� = m
� r

r+1�R: (8.26)

One observes that the operator R is a perturbation of R0, which is

analytic with respect to the variable � = m
1=(r+1) at the point � = 0.

Thus

lim
m&0

�R = �0:

Taking into account (8.26) one gets (8.23).

Due to the O(D)-symmetry of the model the following function (c.f.

(7.29))

Kll0(�; �
0) =

Z
X�;�

!
(�)
l (�)!

(�)
l0 (� 0)��;�(d!�);

does not depend on � = 1; : : : ; D. Let K� be de�ned by (7.30) with

the above function Kll0. Further, set

K�(�) =

Z
I�
�
�;�

Q
(�)

�
;Q

(�)

�

(0; �) cos (2���=�) d�; � 2 Z: (8.27)
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Then K� = K�(0) and

�
�;�

Q
(�)

�
;Q

(�)

�

(�; � 0) =
1

�

X
�2Z

K�(�) cos

�
2��

�
(� � � 0)

�
: (8.28)

Lemma 8.1. The following estimate

0 � K�(�) �
�2

4m�2�2
; (8.29)

holds for all � 2 Z n f0g.

Proof. By (2.12), (2.22)

�
�;�

Q
(�)

�
;Q

(�)

�

(0; �) =
1

Z�;�

trace
n
Q

(�)
� exp [��H�]Q

(�)
� exp [�(� � �)H�]

o
:

The Hamiltonian H� has a discrete spectrum consisting of positive

eigenvalues Es, s 2 N (see (2.17)). We set

Qss0 = (Q(�)	s;	s0)L2(RDj�j):

This yields in (8.27)

K�(�) =
1

Z�;�

X
s;s02N

Q2
ss0

Es � Es0

(Es � Es0)2 + (2��=�)2
� (8.30)

� [exp(��Es0)� exp(��Es)] :

Thus K�(�) � 0. Further, for � 6= 0,

K�(�) �
�2

(2��)2Z�;�

X
s;s02N

Q2
ss0[Es � Es0 ]

2 �

� [exp(��Es0)� exp(��Es)]

=
�2

(2��)2
�;�

nh
Q

(�)
� ;
h
H�; Q

(�)
�

iio
=

�2

4m�2�2
; (8.31)

where [�; �] stands for commutator.
As a corollary of (8.29) one gets from (8.28)

�
�;�

Q
(�)

�
;Q

(�)

�

(�; � 0) � �
�;�

Q
(�)

�
;Q

(�)

�

(0; 0); 8�; � 0 2 I�: (8.32)

Below we will use the scalar domination estimate (7.1). To this end

we compare the D-dimensional model we consider with the correspond-
ing scalar model. Let us sete��;�2n (�1; : : : ; �2n) = e��;�

eQ�;:::; eQ�

(�1; : : : ; �2n); (8.33)
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where eQ� is de�ned by (8.19) but for the one-dimensional model. For

this model, the Gaussian domination inequality (6.12) and the estimate

(8.32) imply that the following estimate

0 � e��;�2n (�1; : : : ; �2n) �
(2n)!

2nn!

he��;�2 (0; 0)
in

(8.34)

holds for all n 2 N . Let eK� be de�ned by (8.27) with � = 0 and withe� instead of � (i.e., it is K� for the one-dimensional model). As above,eK will stand for a one-point box �. Since the estimates (8.29) are

valid for all D, they hold also for eK�. Moreover, the scalar domination

inequality (7.1) yields

K� � eK�: (8.35)

Lemma 8.2. Let � be de�ned by (8.21). Then

eK � 1

m�2
: (8.36)

Proof. By (8.30)

eK =
1eZ�

X
s;s02N

q2ss0
(�s � �s0)[e

���
s0 � e���s]

(�s � �s0)2

� 1

�2
� 1eZ�

X
s;s02N

q2ss0(�s � �s0)[e
���

s0 � e���s] =
1

m�2
;

where eZ� = trace exp[�� eHl];

and eHl is the one-particle Hamiltonian (2.2) for a one-dimensional os-

cillator.

Corollary 8.1. Let (8.22) hold. Then the following estimate

K� � eK� �
1

m�2 � d ; (8.37)

holds for all �, �, and D.

Lemma 8.3. Let (8.22) hold. Then for every � > 0, the sequence

fe��;�2 (0; 0) j � 2 Lg is bounded.

Proof. By (8.28), (8.33),

e��;�2 (0; 0) =
1

�

X
�2Z

eK�(�) =
1

�

" eK� + 2

+1X
�=1

eK�(�)

#
;
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hence by (8.29), which hold also for D = 1, and by (8.37)

e��;�2 (0; 0) � 1

�
eK� +

�

12m
� ��1

m�2 � d +
�

12m

def
= ��: (8.38)

Thus, the stated property follows from the boundedness of the sequence

f eK� j � 2 Lg, which in turn follows from (8.37).

Proof of Theorem 8.2. To estimate the Green functions

�
�;�

Q(�1);:::;Q(�2n)
(�1; : : : ; �2n); ; �1; : : : ; �2n = 1; : : : ; D; (8.39)

we use the scalar domination inequality (7.1) and the Gaussian upper

bound (8.34). We recall that one may apply (7.1) only to the functions

with coinciding �j. Let us gather the indices �j in (8.39) into the groups

gk, k = 1; 2; : : : ; � � D numbered in such a way that jgkj � jgk+1j. Set
jgkj = sk, then s1 + � � �+ s� = 2n. Hence

�
�;�

Q(�1);:::;Q(�2n)
(�1; : : : ; �2n) =< X1 : : :X� >��;� ; (8.40)

where

Xk
def
=

Y
j:�j2gk

 
1p
j�j
X
l2�

!
(�j)

l (�j)

!
: (8.41)

Now we apply repeatedly the Schwarz inequality and obtain

j < X1 : : :X� >��;� j �
��1Y
k=1

h
< X2k

k >��;�

i2�k
�
h
< X2��1

� >��;�

i2�(��1)

:(8.42)

The Green function < X2k

k >��;� contains Q
(�)
� with the same �, thus

we may employ the scalar domination inequality (7.1) and the Gaussian

upper bound (8.34). This yields

< X2k

k >��;�� �k(sk)
he��;�2 (0; 0)

i2k�1sk
; (8.43)

�k(s)
def
= 1 � 3 � 5 : : : (2ks� 1) = (2ks� 1)!!:

In Appendix we show that, for all n 2 Z+, all D 2 N , and for all

possible combinations of �1; : : : ; �2n, the following estimate holds

1

(2n)!

��1Y
k=1

[�k(sk)]
2�k

[��(s�)]
2�(��1) � cnD; (8.44)

where

c1 = 1; cD = 2
��
2D�2

�
!
�22�D

; D � 2: (8.45)
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Thus

��1Y
k=1

h
< X2k

k >��;�

i2�k
�
h
< X2��1

� >��;�

i2�(��1)

� (2n)! [cD��]
n
; (8.46)

where we have taken into account (8.38). Applying this estimate in

(8.42) one gets the boundedness to be proven.

8.3. Uniqueness of Gibbs States. In this subsection we again con-

sider the scalar version of the model (2.1) - (2.5) with the potential V
obeying (V2). As it has been proved in [14] (see also [11] and the refer-
ences therein), the class of tempered Gibbs measures G� (see De�nition
2.2), for this model, is actually nonempty. Moreover, by Theorem 8.1,

the model has a critical point, which implies that, for one and the

same value of the model parameters, G� contains more than one ele-

ment. The suppression of the critical points, proved above, implies in

turn that one may have uniqueness of tempered Gibbs measures for

small values of m. In fact, we prove this in the current subsection.

Theorem 8.4. For the model with the Hamiltonian described by (2.1)

- (2.5) with the potential obeying (V2), for every �, there exists a

positive m� = m�(�) such that for all values of the mass m 2 (0;m�),
the class of tempered Gibbs measures G� consists of exactly one element,

that is jG�j.
To prove this theorem we need to create corresponding tools, which

is done just below. Let (X ; �) be a complete separable metric space

and B(X ) be the Borel algebra of its subsets. Let alsoM be the set of

all probability measures on (X ;B(X )), and

M1
def
=

�
� 2 M j

Z
X
�(y; y0)�(dy) <1

�
; (8.47)

for some y0 2 X . Further, Lip(X ) will stand for the set of Lipschitz

functions f : X ! R, for which we write

[f ]Lip = sup

� jf(x)� f(y)j
�(x; y)

: x; y 2 X ; x 6= y

�
; (8.48)

Lip1(X ) = ff 2 Lip(X ) j [f ]Lip � 1g: (8.49)

Given �1; �2 2 M1, we set

R(�1; �2) (8.50)

def
= sup

�����Z
X
f(x)�1(dx)�

Z
X
f(x)�2(dx)

���� : f 2 Lip1(X
�
:
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A key role in the proof of Theorem 8.4 will be played by Dobrushin's

matrix. It is de�ned by the conditional Gibbs measures ��;�(�j�), given
by (2.65) - (2.68), with � 2 
t

� and a one-point box � = flg. To simplify
notations we set

�flgc = �cl ; ��;flg(�j�) = �l(�j�): (8.51)

Then the elements of Dobrushin's matrix (Cll0)l;l02IL are

Cll0 = sup

�
R (�l(�j�); �l(�j�))

k�l0 � �l0k�
: �cl0 = �cl0

�
: (8.52)

They will be used to check Dobrushin's condition [33], [34], [42], [57].

Proposition 8.1. [Dobrushin's Uniqueness Condition] Let

sup

8<: X
l02ILnflg

Cll0 : l 2 IL

9=; < 1: (8.53)

Then there exists exactly one tempered Gibbs measure.

Taking into account (D2) one has from (2.65) - (2.68)

�l(d!j�) =
1

Zl(�)
exp

(
h!; 'l(�)i� �

Z
I�
V (!(t))dt

)
��(d!); (8.54)

where

'l(�) = �
X
�2flgc

dl���; (8.55)

and Zl(�) is the normalization constant. Given x 2 X�, set

�x(d!) =
1

Zx

exp

(
h!; xi� �

Z
I�
V (!(t))dt

)
��(d!); (8.56)

and

C
def
= sup

�
R(�x; �y)

kx� yk�
: x; y 2 X�; x 6= y

�
: (8.57)

For � 6= �, such that �cl0 = �cl0, one has

k'l(�)� 'l(�)k� = �dll0k�l0 � �l0k�:
Then by (8.52), (8.54) - (8.57)

sup

8<: X
l02ILnflg

Cll0 : l 2 IL

9=; � dC; (8.58)
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where d was de�ned by (7.36). Then the condition (8.53) would be

satis�ed if

C <
1

d
: (8.59)

Having this in mind let us estimate R(�x; �y). To this end we will

estimate the variance of the following function

X� 3 x 7!< f >�x=

Z
X�
f(!)�x(d!) 2 R; (8.60)

with a �xed f 2 Lip1(X�). This function is Fr�echet di�erentiable [11],

its derivative on a certain  2 X� has the following form

hrx < f >�x;  i� = < fg >�x � < f >�x< g >�x (8.61)

= Cov�x(f; g); g(!)
def
= h!;  i�:

By the Schwarz inequality one has

jhrx < f >�x;  i�j �
p
Var�xf �

p
Var�xg; (8.62)

where

Var�xf =
1

2

Z
X�

Z
X�
[f(!)� f(!0)]2�x(d!)�x(d!0); (8.63)

Var�xg =
1

2

Z
X�

Z
X�
h! � !0;  i2��x(d!)�x(d!0): (8.64)

The idea how to prove Theorem 8.4 may be outlined as follows. Sup-

pose that we have estimated, uniformly for all x 2 X�, the �rst variance

by a positive continuous function of �, of the parameters of the poten-
tial V (2.3), (2.5), and of the mass m. Let also the second variance be

bounded by a positive function of the same parameters multiplied by

k k�. Then the mean-value theorem together with (8.57) would im-

ply that the condition (8.59) be satis�ed provided the product of the

mentioned bounds is su�ciently small. Below we shall implement this

idea.

One observes that (8.64) de�nes a quadratic form on X�

Var�xg = hT x ;  i�;
with the operator T x given as follows

(T x )(�) =

Z
I�
T x(�; � 0) (� 0)d� 0; � 2 I�: (8.65)
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The kernel of this integral operator is

T x(�; � 0) (8.66)

=
1

2

Z
X�

Z
X�
[!(�)� !0(�)] � [!(� 0)� !0(� 0)]�x(d!)�x(d!0):

Comparing this kernel with the function given by (7.16) with � 2 
t
�,

and taking into account (8.56) and (2.66) - (2.68), one concludes that

T x(�; � 0) = K
�
ll(�; �

0); x = �
X
l02IL

dll0�l0: (8.67)

This yields, in particular, that T x(�; � 0) is a continuous nonnegative

function of �; � 0 2 I� (see Theorem 4.2). Clearly, for every x 2 X�, the

operator T x is symmetric and positive. Moreover,

trace(T x) =
1

2

Z
X�

Z
X�
k! � !0k2��x(d!)�x(d!0) <1; (8.68)

which follows from (2.37). Let K̂ : X� ! X� stand for the integral

operator with the kernel K̂(�; � 0) de�ned by (7.17) with l0 = l. Then

this operator is also positive and trace class, its trace may be computed

as above with the help of the measure �̂
(0)

�;flg.

For a bounded linear operator A : X� ! X�, let �(A) be its pure

point spectrum and kAk stand for its operator norm. For a positive

compact operator, one has

kAk = max �(A): (8.69)

On the other hand, for such an operator (see e.g. [69], p.216)

kAk = sup

(
hA ;  i�
k k2�

:  2 X� n f0g
)
: (8.70)

The construction of the above mentioned bounds is based upon the

following lemmas, which will be proved at the end of this subsection.

Lemma 8.4. For every x;  2 X�, one has

hT x ;  i� � kK̂kk k�: (8.71)

Lemma 8.5. For every x 2 X�, one has

trace(T x) � trace(K̂): (8.72)

Lemma 8.6. The following estimate holds

max�(K̂) � 1

m�̂2
; (8.73)
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where �̂ is de�ned by (8.21) but with the eigenvalues of the one-particle

Hamiltonian (2.2) with the potential V̂ (7.13) instead of V (2.3), (2.5).

Lemma 8.7. Let r in (2.5) be set r = 2. Then, for all x 2 X� and

any f 2 Lip1(X�), one has

Var�xf � he��0 ; �0 =
25

288

�
ap
b2

�2

; (8.74)

where the constant h depends only on the interaction parameter d.

The proof of the above statement may be done by means of the

logarithmic Sobolev inequality, just as it was done in [11]. Another

estimate of the variance of f is linear in �. We will use it for r > 2.

Lemma 8.8. There exists a parameter h0, independent of m and �,
such that the estimate

Var�xf � �h0m
�1=(r+1); (8.75)

holds for all x 2 X� and any f 2 Lip1(X�).

Proof of Theorem 8.4. First we estimate Var�xg given by (8.64).

By Lemma 8.4, (8.69), and Lemma 8.6 one has

Var�xg = hT x ;  i� � kK̂kk k2� = max�(K̂)k k2� �
k k2�
m�̂2

:

By Theorem 8.3, one may �nd m0 and �0 such that, for m 2 (0;m0),

the following estimate holds

1

m�̂2
� �0m

(r�1)=(r+1): (8.76)

Then one has

Var�xg � �0m
(r�1)=(r+1)k k2�; (8.77)

that holds for m 2 (0;m0). For r > 2, one may use (8.75), which yields

the following estimate of the distance (8.50)

R(�x; �y) � kx� yk�
p
�h0�0 �m

r�2
2(r+1) ;

holding for all m 2 (0;m0). Employing this estimate in (8.57) one

obtains that the uniqueness condition (8.59) holds true if

m < m�(�) = min
n
m0;

�
�h0�0d

2
�� r+1

r�2

o
: (8.78)

For r = 2, we use (8.74) and obtain

R(�x; �y) � kx� yk�
p
�h�0e

��0=2m
1=6;
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which yields that the uniqueness condition holds in this case if

m < m�(�) = min

�
m0;

e�3��0

[h�0d2]3

�
: (8.79)

Proof of Lemma 8.4. Here we use (8.67) and the zero boundary

domination estimate (7.18). Then taking into account that the kernel

T x(�; � 0) is nonnegative one obtains

hT x ;  i� = jhT x ;  i�j �
Z
I�

Z
I�
T x(�; � 0)j (�)jj (� 0)jd�d� 0

�
Z
I�

Z
I�
K̂(�; � 0)j (�)jj (� 0)jd�d� 0 � kK̂kj jk2� = kK̂k k2�:

The proof of Lemma 8.5 immediately follows from the estimate (7.18).

Proof of Lemma 8.4. By (8.27), (8.30), and (8.69) one has

max�(K̂) = kK̂k =
Z
I�
K̂(0; �)d�

=
1

Ẑ�

X
s;s02N

q2ss0(�̂s � �̂s0)
e���̂s0 � e���̂s

(�̂s � �̂s0)2

� 1

�̂2
� 1

Ẑ�

X
s;s02N

q2ss0(�̂s � �̂s0)
�
e���̂s0 � e���̂s

	
=

1

m�̂2
;

Proof of Lemma 8.8. For a Lipschitz function f , one obtains by
means of (8.48) , (8.49), (8.68), and Lemma 8.5

Var�xf �
Z
X�

Z
X�
k! � !0k��x(d!)�x(d!0) = trace(T x)

� trace(K̂) =

Z
I�
K̂(�; �) = �K̂(0; 0): (8.80)

Further, as in (8.31) one has

K̂(0; 0) =
1

Ẑ�

trace
h
q2 expf��Ĥlg

i
def
= < q2 > :

It turns out that max�(K̂) may be expressed in terms of the Duhamel

two-point functions [37] and hence estimated from below as follows

� < q2 > f

�
�

4m < q2 >

�
� max�(K̂); (8.81)
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where the function f : (0;+1) ! (0;+1) was introduced and esti-

mated in [37]. It has the following bound

1

t
(1� e�t) � f(t): (8.82)

Then by (8.73) and (8.76) one gets in (8.81)

< q2 > � 1

2

p
�0m

�1=(r+1);

that holds for m 2 (0;m0). Applying this estimate in (8.80) one obtains

(8.75).

9. Appendix

Here we prove the estimate (8.44). For s 2 N and N 3 k � 2, we

write

�k(s) = (2s� 1)!!

2k�1Y
k=2

�2k(s) � (9.1)

� 2ss!2s(2
k�1�1) ��2k�1�!�s ss(2k�1�1);

where

�2k(s)
def
=

(2ks� 1)!!

(2(k � 1)s� 1)!!
� (2ks)

s
:

Let Mn stand for the left-hand side of (8.44). One may write

Mn = K1;0 �K2;0 : : :K��1;0 � L0; (9.2)

where

Kk;0 = [�k(sk)=(2n)!]
2�k

; L0 = [��(s�)=(2n)!]
2�(��1)

: (9.3)

From now on we �x n. For N 3 s < 2n, we write

[s]
def
= (s+ 1) : : : (2n) =

(2n)!

s!
: (9.4)

Then one has

K1;0 = [�1(s1)=(2n)!]
1=2

=

�
(2s1 � 1)!!

2s1s1!
� 2

s1

[s1]

�1=2
� 2s1=2[s1]

�1=2:

Applying this estimate in (9.2) we obtain

Mn � 2s1=2K2;1 �K3;1 : : :K��1;1L1; (9.5)

where

Kk;1
def
= Kk;0 � [s1]�2

�k

; L1
def
= L0 � [s1]�2

�(��1)

: (9.6)
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Let us estimate K2;1 as follows

K2;1 =

�
(2S2 � 1)!!

2s2(s2)!
� 2s2 � �4(s2)

[s1][s2]

�1=4
(9.7)

� 2s2=2(2!)s2=4
�
(s2)

s2

[s1][s2]

�1=4
:

All multipliers in the products [s1] , [s2] are greater than s2 (we recall
that sk � sk+1 for all k = 1; 2; : : : ; �, and s1 + s2 + � � � + s� = 2n).

Therefore, one may �nd the numbers �2 > s1, �3 > s2, both less than

2n, such that �2 � �3 and �2 + �3 = s1 + 2s2. Then one gets

(s2)
s2

[s1][s2]
=

(s2)
s2

(s1 + 1) : : : �2 � (s2 + 1) : : : �3
� 1

[�2][�3]
� 1

[�2][�3]
:

Here we have taken onto account that the number of multipliers in the

product (s1+1) : : : �2 � (s2+1) : : : �3 is �2� s1+ �3� s2 = s2 and that

every such multiplier is greater than s2. This yields in (9.7)

K2;1 � 2s2=2(2!)s2=4f[�2] � [�3]g�1=4:
Applying this estimate in (9.5) we get

Mn � 2(s1+s2)=2(2!)s2=4K3;2K4;2 : : :K��1;2L2; (9.8)

where we have set �1 = s1 and

Kk;2 = Kk;0f[�1] � [�2] � [�3]g�2
�k

; L2 = L0f[�1] � [�2] � [�3]g�2
�(��1)

:

Proceeding in this way one obtains

Mn � 2(s1+���+sk)=2(2!)s2=4(4!)s3=8 : : : [(2k�1)!]sk=2
k � (9.9)

�Kk+1;k : : :K��1;kLk;

where k = 2; 3; : : : ; � � 1 and for j = 2; 3; : : : ; k + 1,

Kj;k = Kj;0f[�1][�2] : : : [�2k�1]g�2
�j

;

Lk = L0f[�1][�2] : : : [�2k�1]g�2
�(��1)

;

�2l�1 + �2l�1+1 + � � �+ �2l�1 = 2l�1sl + 2l�2(sl�1 + � � �+ s1);

�1 + �2 + � � �+ �2l�1 = 2l�1(sl + sl�1 + � � �+ s1)

�l+1 � �l < 2n:

Finally, we arrive at

Mn � 2(s1+:::s�)=2(2!)s2=4(4!)s3=8 : : : [(2��1)!](s��1+s�)=2
��1

2n(2!)s2=4(4!)s3=8 : : : [(2��1)!](s��1+s�)=2
��1

:
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Taking into account that [(2j)!]sj=2
j � [(2j+1)!]sj+1=2

j+1

, j 2 N , and that

� � D, one obtains (8.44).
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