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Abstract. We consider lower order perturbations M of symmetric diffusions
M0 and prove that M is locally absolutely continuous with respect to M0 up
to life time. The novelty is that the absolute value of the drift b and zero order
part c are merely assumed to be in Ld(Rd)+L∞(Rd), and L

d
2 (Rd)+L∞(Rd).

So, |b|2 and c are not in the Kato- class ( as is the case when |b|2, |c| ∈
Lp(Rd) + L∞(Rd) with p > d

2
). We also consider the case where an adjoint

drift is present. Finally, we use these results to prove new convergence results
for diffusions.

1. Introduction and framework.

As usual, let Rd denote the Euclidean space. We assume d ≥ 3. Let
aij(x), 1 ≤ i.j ≤ d be real-valued Borel measurable functions such that
aij(x) = aji(x) and the matrix-valued function (aij(x))1≤i,j≤d is uniformly
elliptic,i.e., there exists a constant δ such that

1

δ

d
∑

i=1

y2
i ≤

d
∑

i,j=1

aij(x)yiyj ≤ δ
d

∑

i=1

y2
i (1)

for all y1, y2, ..., yd ∈ R.
It is well known that

E0(u, v) :=
1

2

∫

Rd

d
∑

i,j=1

aij(x)
∂u(x)

∂xi

∂v(x)

∂xj

dx

D(E0) := H1
2 (Rd) (2)

defines a regular Dirichlet form on L2(Rd), where H1
2 (Rd) stands for the

Sobolev space of order 1. Let M0 := {Ω,F ,Ft, Xt, Px, x ∈ Rd} denote the
diffusion process associated with (E0, D(E0)) (see [1]). Then, Fukushima’s
decomposition holds :

Xt = x + Mt + Nt Px − a.s., (3)

where Mt = (M1
t , ..., Md

t ) is a Ft-square integrable martingale additive func-
tional with

< M i, M j >t=
∫ t

0
aij(Xs)ds (4)
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Nt is a continuous additive functional of zero energy. Let γt be the reverse
operator defined on the path space Ω by γt(ω)(s) = ω(t − s) if s ≤ t. One
also has the Lyons-Zheng decomposition:

Xs − X0 =
1

2
Ms −

1

2
(Mt ◦ γt − Mt−s ◦ γt) for 0 ≤ s ≤ t,

where Ms ◦ γt is a F̂s = σ(Xt−u, u ≤ s)-martingale with

< M i
s ◦ γt, M

j
s ◦ γt >=

∫ s

0
aij(Xt−u)du 0 ≤ s ≤ t.

The process Xt in (3) is called a Dirichlet process. Let b = (b1, b2, ..., bd) be
a measurable vector field on Rd such that bi ∈ Ld(Rd) + L∞(Rd), 1 ≤ i ≤ d,
where Lp(Rd), p ∈ (0,∞] stands for the standard Lp space with respect to
Lebesgue measure dx. We note that considering Ld(Rd) + L∞(Rd) instead
of each space separately widens the range of applicability essentially. For
example, it includes functions like bi = xi

|x|α+1 , α < 1 . Consider the quadratic
form:

E(u, v) :=
1

2

∫

Rd

d
∑

i,j=1

ai,j(x)
∂u(x)

∂xi

∂v(x)

∂xj
dx −

∫

Rd
< b(x),∇u(x) > v(x)dx

D(E) := H1
2 (Rd) (5)

It is proved in [7] that for some α ∈ (0,∞), (Eα, D(E)) is a closed, local
,semi-Dirichlet form. Here as usual Eα := E + α(, )L2. Therefore, there is an
associated diffusion, which we denote by M = {Ω,F ,Ft, Xt, Qx, x ∈ Rd}.
The corresponding semigroup will be denoted by Tt, t ≥ 0. One can regard
(E , D(E)) as a drift perturbation of (E0, D(E0)). If b ∈ Lp(Rd) + L∞(Rd) for
some p > d, then b is in the Kato class of M0. In this case, it is shown in
[4] that M is a Girsanov transform of M0, and that the Girsanov density
is a true exponential martingale since Novikov’s condition is fullfiled. In the
present situation , b is merely in Ld(Rd) + L∞(Rd) and |b|2 is no longer in
the Kato class of M0. The question is whether M can still be written as a
Girsanov transform of M0. The problem seems to have been open for some
time. The aim of this paper is to give a positive answer to the question.

The rest of the paper is organized as follows. In section 2, we prove a Girsanov
representation for M and extend the representation to the case where an
adjoint drift and a zero order term are added. Section 3 is devoted to the
weak convergence of diffusion processes associated with quadratic forms of
type (5).

2. Girsanov Representation.
Let c(x) be a non-negative measurable function on Rd. Define

α0 = inf{k ≥ 0;
∫

{c(x)>k}
c(x)

d
2 dx ≤ λ−d(

1

2δ
)

d
2 } (6)
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where λ := (2
2
3 (d − 1))/((d − 2)d1/2) and δ is the constant specified in (1).

Lemma 2.1. Let c(x) and α0 be as above. Then

(
∫

Rd
(Ex[exp(

∫ t

0
c(Xs)ds)f(Xt)])

2dx
)

1
2

≤ eα0t|f |L2(Rd) for all f ∈ L2(Rd)

(7)

Proof. We can assume f ≥ 0. Set cn(x) := c(x) ∧ n. We introduce the
quadratic form:

Qn(u, v) = E0(u, v) −
∫

Rd
cn(x)u(x)v(x)dx + α0

∫

Rd
u(x)v(x)dx

D(Qn) := H1
2 (Rd) (8)

Using the Sobolev inequality,

|u|L2d/(d−2)(Rd) ≤ λ(
∫

Rd
|∇u|2dx)1/2 u ∈ H1

2 (Rd),

we find that

Qn(u, u) = E0(u, u)−
∫

cn≤α0

cn(x)u2(x)dx+α0

∫

Rd
u2(x)dx−

∫

cn>α0

cn(x)u2(x)dx

≥ E0(u, u) − (
∫

cn>α0

cd/2
n (x)dx)2/d|u|2L2d/(d−2)(Rd)

≥ E0(u, u) − (
∫

c>α0

cd/2(x)dx)2/dλ2
∫

Rd
|∇u|2dx

≥ E0(u, u) − (
∫

c>α0

cd/2(x)dx)2/dλ22δE0(u, u) ≥ 0

by the choice of α0. By the boundeness of cn, it is easy to see that (Qn, D(Qn))
is also a closed form on L2(Rd). Thus there exists a strongly continuous
contraction semigroup on L2(Rd), denoted by P n

t , t ≥ 0, associated with
(Qn, D(Qn)) . Moreover, the Feynman-Kac representation holds:

P n
t f(x) = Ex[exp(

∫ t

0
cn(Xs)ds − α0t)f(Xt)],

where Ex denotes expectation with respect to Px. Hence,

∫

Rd
(Ex[exp(

∫ t

0
cn(Xs)ds − α0t)f(Xt)])

2dx ≤ |f |2L2(Rd) (9)

Letting n → ∞ in (9 ), the assertion follows by Fatou’s lemma.

Since (a−1b)T ∈ L2
loc(R

d, dx), by [1]
∫ t
0(a

−1b)T (Xs)dMs defines a continuous
local-martingale additive functional. Hence

Zt := exp{
∫ t

0
(a−1b)T (Xs)dMs −

1

2

∫ t

0
ba−1bT (Xs)ds} (10)
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is a supermartingale multiplicative functional. For x ∈ Rd, define

dQ̂x|Ft∩{t<ξ} = ZtdPx (11)

where ξ stands for the life time. Then by a result of Kunita [2], M̂ :=
{Ω,F ,Ft, Xt, Q̂x, x ∈ Rd

∆} gives rise to a diffusion process, where ∆ denotes
the cemetery of the process. We want to show that M and M̂ are equivalent,
i.e. Qx = Q̂x for dx − a.e. x ∈ Rd. For this end, it suffices to prove that the
semigroup Tt, t ≥ 0 of M is given by

Ttf(x) = Ex[Ztf(Xt)]

This will be a consequence of Theorem 2.3 below. For f ∈ B(Rd) with f = 0
on {∆}, define

T̂tf(x) := Êx[f(Xt)], (12)

where Êx denotes expectation with respect to Q̂x. First we show that each
T̂t, t > 0 extends to a bounded linear operator on L2(Rd). Let b ∈ Ld(Rd →
Rd) + L∞(Rd → Rd). Choose a sequence bn ∈ L∞(Rd → Rd), n ≥ 1, of
functions such that limn→∞(bn − b) = 0 in Ld(Rd → Rd). For n ≥ 1, define

En(u, v) :=
1

2

∫

Rd

d
∑

i,j=1

aij(x)
∂u(x)

∂xi

∂v(x)

∂xj
dx −

∫

Rd
< bn(x),∇u(x) > v(x)dx

D(En) := H1
2 (Rd) (13)

Let T n
t , t ≥ 0 be the semigroup associated with (En, D(En)). It is known (

for example , see [5]) that the Girsanov’s formula holds:

T n
t f(x) = Ex[Z

n
t f(Xt)] (14)

where

Zn
t := exp{

∫ t

0
(a−1bn)T (Xs)dMs −

1

2

∫ t

0
bna−1bT

n (Xs)ds}

Lemma 2.2. For any t ≥ 0, T̂t extends to a bounded linear operator on
L2(Rd).

Proof. Define for n ≥ 1,

αn = inf{k ≥ 0;
∫

{|bn|(x)>
√

k}
|bn|

d(x)dx ≤ (2δλ)−d}

and set α = supn αn. Then α < ∞ and

|
∫

Rd
< bn(x),∇u(x) > u(x)dx| ≤

1

4δ

∫

Rd
|∇u|2(x)dx + δ

∫

Rd
|bn|

2(x)u2(x)dx

≤
1

4δ

∫

Rd
|∇u|2(x)dx + δα

∫

Rd
u2(x)dx
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+δ
∫

|bn|>
√

α
|bn|

2(x)u2(x)dx

≤
1

4δ

∫

Rd
|∇u|2(x)dx + δα

∫

Rd
u2(x)dx

+δ
(

∫

|bn|>
√

α
|bn|

d(x)dx
)

2
d

λ2
∫

Rd
|∇u|2(x)dx

≤
1

2δ

∫

Rd
|∇u|2(x)dx + δα

∫

Rd
u2(x)dx

≤ E0(u, u) + δα
∫

Rd
u2(x)dx (15)

Hence, En
δα(u, u) = En(u, u) + δα(u, u) ≥ 0. Thus it follows that

∫

Rd
(T n

t f(x))2dx ≤ exp(2δαt)
∫

Rd
f 2(x)dx (16)

Since bn − b → 0 in Ld(Rd → Rd), it follows from (16 ) and Fatou’s Lemma
that ∫

Rd
(T̂tf(x))2dx ≤ exp(2δαt)

∫

Rd
f 2(x)dx (17)

which completes the proof.

Next we prove a general Girsanov representation result for the semigroup
associated with a quadratic form, which also contains an adjoint drift and a
zero order term. Vector field b is the same as before. Let d(x) be an another
vector field such that d ∈ Ld(Rd → Rd) + L∞(Rd → Rd) and c(x) be a

measurable real-valued function on Rd with c ∈ L
d
2 (Rd)+L∞(Rd). Consider

the bilinear form

Q(u, v) :=
1

2

∫

Rd

d
∑

i,j=1

aij(x)
∂u(x)

∂xi

∂v(x)

∂xj
dx −

∫

Rd
< b(x),∇u(x) > v(x)dx

−
∫

Rd
< d(x),∇v(x) > u(x)dx −

∫

Rd
c(x)u(x)v(x)dx

D(Q) := H1
2 (Rd) (18)

It was shown in [7] that (Q, D(Q)) is a closed ,lower bounded sectorial bi-
linear form on L2(Rd). Let us denote by Qt, t ≥ 0, the associated strongly
continuous semigroup .

Theorem 2.3. Let f ∈ L2(Rd). Then for dx − a.e.x ∈ Rd,

Qtf(x)

= Ex[f(Xt)exp{
∫ t

0
(a−1b)T (Xs)dMs −

∫ t

0
(a−1d)T (Xt−s)d(Ms ◦ γt)
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−
1

2

∫ t

0
(b − d)a−1(b − d)T (Xs)ds +

∫ t

0
c(Xs)ds}] (19)

Remark. Here
∫ t
0(a

−1d)T (Xt−s)d(Ms ◦ γt) denotes the stochastic integral
with respect to the backward martingale under Pdx :=

∫

Rd Pxdx, which ap-
pears in the well known Lyons-Zheng decomposition (see [4].

Proof of Theorem 2.3. Choose bn, dn ∈ L∞(Rd → Rd) and cn ∈ L∞(Rd →

R) such that both bn−b → 0, dn−d → 0 in Ld(Rd) and cn−c → 0 in L
d
2 (Rd).

Let a quadratic form (Qn, D(Qn)) be defined as in (18) with bn, dn, cn in
place of b, d, c. The corresponding semigroup is denoted by Qn

t , t ≥ 0. It was
shown in [8] that Qn

t f(x) → Qtf(x) in L2(Rd) for any f ∈ L2(Rd). Let now
f, g ∈ L2(Rd) ∩ L∞(Rd). Then, it is shown in [5] that,

∫

Rd
Qn

t f(x)g(x)dx

=
∫

Rd
dxEx[f(Xt)g(X0)exp{

∫ t

0
(a−1bn)T (Xs)dMs−

∫ t

0
(a−1dn)T (Xt−s)d(Ms◦γt)

−
1

2

∫ t

0
(bn − dn)a

−1(bn − dn)T (Xs)ds +
∫ t

0
cn(Xs)ds}] (20)

Thus it reduces to show
∫

Rd
dxEx[f(Xt)g(X0)exp{

∫ t

0
(a−1bn)T (Xs)dMs −

∫ t

0
(a−1dn)

T (Xt−s)d(Ms ◦γt)

−
1

2

∫ t

0
(bn − dn)a

−1(bn − dn)T (Xs)ds +
∫ t

0
cn(Xs)ds}]

converges to
∫

Rd
dxEx[f(Xt)g(X0)exp{

∫ t

0
(a−1b)T (Xs)dMs −

∫ t

0
(a−1d)T (Xt−s)d(Ms ◦ γt)

−
1

2

∫ t

0
(b − d)a−1(b − d)T (Xs)ds +

∫ t

0
c(Xs)ds}] (21)

for f, g ∈ C+
0 (Rd). Define a measure m on (Ω,F) by

m(A) :=
∫

Rd
dxEx[f(Xt)g(X0)χA], A ∈ F .

Denote by Em the integral with respect to m. By the choice of bn, dn, cn, we
see that

Ẑn
t := exp{

∫ t

0
(a−1bn)T (Xs)dMs −

∫ t

0
(a−1dn)T (Xt−s)d(Ms ◦ γt)

−
1

2

∫ t

0
(bn − dn)a−1(bn − dn)

T (Xs)ds +
∫ t

0
cn(Xs)ds}

converges in measure m to

exp{
∫ t

0
(a−1b)T (Xs)dMs −

∫ t

0
(a−1d)T (Xt−s)d(Ms ◦ γt)
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−
1

2

∫ t

0
(b − d)a−1(b − d)T (Xs)ds +

∫ t

0
c(Xs)ds}.

So, all we need to show is that

sup
n

Em[(Ẑn
t )2] < ∞. (22)

By Hölder’s inequality,

Em[(Ẑn
t )2] ≤ (An

t × Bn
t × Cn

t )
1
3

where

An
t := Em[exp{6

∫ t

0
(a−1bn)T (Xs)dMs − 18

∫ t

0
bna−1bT

n (Xs)ds}]

Bn
t := Em[exp{−6

∫ t

0
(a−1dn)T (Xt−s)d(Ms ◦ γt) − 18

∫ t

0
dna−1dT

n (Xs)ds}]

Cn
t := Em[exp{18

∫ t

0
dna−1dT

n (Xs)ds + 18
∫ t

0
bna−1bT

n (Xs)ds−

3
∫ t

0
(bn − dn)a−1(bn − dn)T (Xs)ds + 6

∫ t

0
cn(Xs)ds}].

By the supermartingale property of

exp{6
∫ t

0
(a−1bn)T (Xs)dMs − 18

∫ t

0
bna−1bT

n (Xs)ds}

it is seen that An
t is bounded by ||f ||L∞(Rd)||g||L∞(Rd). Interchanging the role

of f and g, and using the reversibility of the process Xt with respect to
∫

Rd Pxdx, we see that the same is also true for Bn
t . By Lemma 2.1,

Cn
t ≤ ||g||L∞(Rd)(

∫

Rd
(Ex[|f |(Xt)exp{18

∫ t

0
dna−1dT

n (Xs)ds+18
∫ t

0
bna−1bT

n (Xs)ds−

3
∫ t

0
(bn − dn)a−1(bn − dn)

T (Xs)ds + 6
∫ t

0
cn(Xs)ds}])2dx)

1
2

≤ ||g||L∞(Rd)e
βt|f |L2(Rd) (23)

where β can be chosen independently of n. Thus (22) is proven, hence the
Theorem.

Corollary 2.4. Ttf(x) = Ex[Ztf(Xt)] and hence M is equivalent to M̂.

3. Convergence of Diffusions.

As before, we consider the diffusion process M = {Ω,F ,Ft, Xt, Qx, x ∈ Rd}
associated with the quadratic form.

E(u, v) =
1

2

∫

Rd

d
∑

i,j=1

ai,j(x)
∂u

∂xi

∂v

∂xj
dx −

∫

Rd
< b(x),∇u(x) > v(x)dx
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D(E) = H1
2 (Rd) (24)

In addition to the assumption b ∈ Ld(Rd → Rd) + L∞(Rd → Rd), we also
impose the following condition

(3.1).
∫

Rd < b(x),∇u(x) > dx ≤ 0 for all non-negative u ∈ C∞
0 (Rd).

Remark. It is easy to see that (3.1) always implies that we even have
∫

Rd < b(x),∇u(x) > dx = 0 for u ∈ H1
2 (Rd).

In this section, we will study the convergence of the diffusion processes when
the corresponding coefficients converge.

Proposition 3.1. Assume (3.1). Then the associated diffusion M =
{Ω,F ,Ft, Xt, Qx, x ∈ Rd} is conservative, i.e., Qx(ξ = ∞) = 1 for dx −
a.e.x ∈ Rd, where ξ stands for the life time of M.

Proof. Recall that Tt, t ≥ 0, stands for the semigroup of M. Under assump-
tion (3.1), the adjoint semigroup T ∗

t of Tt is also Markovian, which implies
that Tt is a contraction semigroup on L1(Rd). Hence,

∫

Rd
dxQx[(

∫ t

0
|b|2(Xs)ds)

d
2 ] ≤ Ct

∫ t

0
ds

∫

Rd
dxTs|b|

d(x)dx

≤ Ctt
∫

Rd
dx|b|d(x) < ∞.

In particular,
∫ t
0 |b|

2(Xs)ds < ∞ Qx − a.e for dx almost all x ∈ Rd. Define
τn = inf{t > 0,

∫ t
0 |b|

2(Xs)ds > n}. Then limn→∞ τn = ∞ , Qx-a.e., for
almost all x ∈ Rd. For t > 0, we have

Qx(τn ∧ t < ξ) = Ex[Zτn∧t] = 1.

Letting n, t → ∞, we obtain Qx(ξ = ∞) = 1 which completes the proof.

In general, the diffusion M = {Ω,F ,Ft, Xt, Qx, x ∈ Rd} is not a semimartin-
gale since aij(x) are merely measurable. One consequence of our next result
is that M = {Ω,F ,Ft, Xt, Qx, x ∈ Rd} can be approximated weakly by semi-
martingales. Let (an

ij(x))1≤i,j≤d be a sequence of matrix-valued functions such
that an

ij(x) = an
ji(x) and

1

δ

d
∑

i=1

y2
i ≤

d
∑

i,j=1

an
ij(x)yiyj ≤ δ

d
∑

i=1

y2
i (25)

for all y1, y2, ..., yd ∈ R, where δ is independent of n.
Let bn be a sequence of vector fields that satisfy (3.1). For example, bn =
φn ∗ b for some φn ∈ C∞

0 (Rd). Define quadratic forms (E0,n, D(E0,n)) and
(En, D(En)) as in (2) and (5) with aij(x), b(x) replaced by an

ij(x) and bn. Let
M0,n := {Ω,F ,Ft, Xt, P

n
x , x ∈ Rd} and Mn := {Ω,F ,Ft, Xt, Q

n
x, x ∈ Rd}

8



denote respectively the diffusion processes associated with (E 0,n, D(E0,n))
and (En, D(En)). These processes are semimartingales if the coefficients
are smooth. Denote by Mn

t the martingale part of M0,n in (3). Take
h ∈ L1(Rd) ∩ L∞(Rd) with h(x) > 0 dx-a.e. and

∫

Rd h(x)dx = 1. Define
probability measures on the path space C([0, 1] → Rd) by

P n
h (·) =

∫

Rd
h(x)P n

x (·)dx Qn
h(·) =

∫

Rd
h(x)Qn

x(·)dx (26)

Theorem 3.2. Assume an
ij(x) → aij(x) dx-almost everywhere and bn → b

weakly∗ in Ld(Rd). Then Qn
h converges weakly to Qh on the path space

C([0, 1] → Rd) equipped with the topology of uniform convergence.

Proof. Let 0 < t1 < t2 < t3 < · · · < tm ≤ 1 and f1, f2, · · ·fm ∈ C∞
0 (Rd).

Since T n
t → Tt strongly in L2(Rd), we have that

Qn
h[f1(Xt1)f2(Xt2)···fm(Xtm)] =

∫

Rd
h(x)dxT n

t1
[f1T

n
t2−t1

[f2···T
n
tm−tm−1

[fm]···]](x)dx

converges to

∫

Rd
h(x)dxTt1 [f1Tt2−t1 [f2···Ttm−tm−1 [fm]···]](x)dx = Qh[f1(Xt1)f2(Xt2)···fm(Xtm)].

Thus, it only remains to show that the family {Qn
h, n ≥ 1} is tight. By the

Girsanov’s transform in section 2,

dQn
h = ZndP n

h (27)

where

Zn = exp{
∫ 1

0
((an)−1bn)T (Xs)dMn

s −
1

2

∫ 1

0
bn(an)−1bT

n (Xs)ds}

Observe that
P n

h [ZnlogZn]

= P n
h [Zn(

∫ 1

0
((an)−1bn)T (Xs)dMn

s −
1

2

∫ 1

0
bn(an)−1bT

n (Xs)ds)]

=
1

2
P n

h [
∫ 1

0
Zn

s bn(an)−1bT
n (Xs)ds] ≤

1

2
cP n

h [
∫ 1

0
Zn

s |bn|
2(Xs)ds]

≤
1

2

1

δ

∫ 1

0
ds(Qn

h[|bn|
d(Xs)])

2
d ≤

1

2

1

δ

∫ 1

0
ds(

∫

Rd
T n

s (|bn|
d)(x)dx)

2
d

≤ sup
n
{
1

2

1

δ
(
∫

Rd
|bn|

d(x)dx)
2
d } = K < ∞

where we have used the fact that {T n
t } is a contraction semigroup on L1(Rd),

due to (3.1). Now we are ready to pove {Qn
h, n ≥ 1} is tight. Given ε > 0,

9



choose first L > 0 so that K
logL

< ε
2
. By [3], the family {P n

h , n ≥ 1} is

tight. Therefore, there exists a compact subset F ⊂ C([0, 1] → Rd) so that
P n

h (F c) < ε
2L

for all n. Thus, we have for all n ≥ 1

Qn
h(F c) = P n

h [ZnχF c] = P n
h [ZnχF c, Zn > L] + P n

h [ZnχF c, Zn ≤ L]

≤
supn P n

h [ZnlogZn]

logL
+ LP n

h (χF c) ≤
ε

2
+ L

ε

2L
= ε

which proves the tightness.
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