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Abstract

We consider the law v of the 3-d Bessel Bridge on the convex
set Ky of continuous non-negative paths on [0,1]. We prove an inte-
gration by parts formula on Ky w.r.t. to v, where an integral with
respect to an explicit infinite-dimensional boundary measure o ap-
pears. We apply this to the solution (u,n) of the reflected stochastic
partial differential equations studied by Nualart and Pardoux, where
u : [0,00) x [0,1] = R is a random function and 7 is a random pos-
itive measure on [0,00) x (0,1). First, we prove that u can be re-
alized as the radial part of the solution to a R3-valued stochastic
heat equation. Then we prove that 1 has the following structure:
s+ 2n([0, s],(0,1)) is the Additive Functional of v with Revuz mea-
sure o; for n(ds, (0,1))-a.e. s, there exists a unique r(s) € (0,1) s.t.
u(s,r(s)) = 0, and n(ds,d§) = d,(5)(d€) n(ds, (0,1)), where §, is the
Dirac mass at a € (0,1). This gives a complete description of (u,7n)
as solution to a Skorokhod Problem in an infinite-dimensional non-
smooth convex domain.

MSC 2000 subject classification: 60H15, 60H07, 60J55, 37140, 31C25, 35R45.



1 Introduction

Consider the Brownian Bridge (8;)r¢[0,1) and the 3-dimensional Bessel Bridge
(er)refo], and call 1 and v, respectively, their laws on the space Cy(0,1) of
continuous z : [0, 1] — R with 2(0) = z(1) = 0.

The aim of this paper is to prove the following infinite-dimensional in-
tegration by parts formulae with respect to 4 and v on the convex sets of
paths K, :={z:[0,1]] » R: 2 > —a}, a > 0:

[ vt == [ oo | ar n0) [ oot ) (1)

(o7

/K 0(V<p, hydv = — /K 0 o(x) (z, ") dv — /0 ar h(r) / o(x) oo(r, dz). (2)

In (1) and (2), (-, -) is the scalar product in H := L*(0,1), ¢ : H — R
is bounded and Fréchet differentiable with bounded gradient Vo : H — H,
h € W22NW,(0,1) C H and A" € H is the second derivative of h. Moreover
we set for a« > 0, r €10, 1[:

\/5&2 efaz/(Zr(lfr))
mr3(1 —r)3
1
/(p(x) oolr,dz) := 2r3(1 —r)3

where ef ,, € , are two independent copies of the 3-d Bessel Bridge on [0, 7]
between 0 and a > 0, and for (y,z) € L*(0,7) x L?(0,1 —r):

/go(x) oo(r,dz) = E [gp (eg’a D, é(l);l’" — a)] (3)

E [ (¢bo ®r e0")] (4)

y®rz€ H, [y, 2] (1) =ylr—7)1lpm+2(T —7) 161 (5)

Formulae (1) and (2) provide examples of infinite-dimensional Caccioppoli
sets, for which boundary measures and outer normal vectors can be explicitely
computed: we refer to [Gi 84] for the classical theory. Recall that, by the
Divergence Theorem in finite dimension, we have:

/O((?hw)pdfv = - /()w(ahlogp)pdfv - /aown,h)pdﬁ (6)

where O is a regular bounded open subset of RY, h € R?, p,p € CL(O),
0 <A< p<A<oo,nisthe inward-pointing normal vector to the boundary
00 and o is the surface measure.



Since p is equal to the Gaussian measure N (0, (—2A) '), where 24 :=
0%/0&* with Dirichlet Boundary Condition on [0, 1], the Cameron-Martin
Theorem gives:

/H Onpy = — /H () {z, B d.

Therefore, the first term in the right-hand side of (1) comes from the well-
known fact that the measure p admits as logarithmic derivative the map
x—x.

On the other hand, the second term in the right-hand side of (1) is essen-
tially of a different type, and can be interpreted as a boundary term: indeed,
it is concentrated on the set {x € Cy(0,1) : infx = —a}, i.e. the topological
boundary of K, N Cy(0,1) in the sup-norm, which has zero u-measure.

Recall that a.s. the Brownian Bridge / attains its minimum on [0, 1]
at an unique time ¢, and ( is uniformly distributed on [0,1]: a trajectory
z(-) € K, of 3 lies on the boundary of K, if and only if 2({(z)) = —a. We
define for all r € (0,1):

0K, = {z:[0,1] = [—a, 00) continuous :
z(0)=2z2(1)=0, z(§) = —a<=E=r},

and 9K, := U,cq1) 07 Ko Then 07K, r € (0,1), are the faces with
lowest co-dimension in 0* K,. Moreover, the factor h(r) = (d,, h) corresponds
in the finite-dimensional case (6) to the scalar product (n,h), where n is
the inward-pointing normal vector to the boundary: this suggests that the
inward-pointing normal vector to 0* K, is equal to the Dirac mass d,. at r, on
each face 07 K,, r € (0,1). Notice that J, ¢ H, which is related to the fact
that K, is not a C' domain in H.

Following De Giorgi, we say that 0* K, is the p-reduced boundary of K,.
This terminology is justified, since 0* K, is smaller than the boundary of K,
in any reasonable topology: see [Gi 84].

Formulae (1) and (2) find also applications in the study of the stochastic
partial differential equation with reflection of Nualart and Pardoux [NP 92
[ Ouq  10%u, N o*wW
ot 2 02 OtoE

+ 1a(t, §)

ua(0,8) = z(€), ualt,0) =uq(t,1) =0 (7)

[ U+ >0, J(ug +a)dn, =0
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where u, is a continuous function of (t,£) € O := [0,+00) x [0,1], 7, a
positive measure on O := [0,+00) x (0,1), z € Cy(0,1) N Ky, @ > 0 and
{W(t,€): (t,€) € O} is a Brownian sheet.

In [Za 00] we proved that the process Cy(0,1) N Ky 3 x +— ug(t,-) is
symmetric with respect to v, := (| K,) if @ > 0 and to vy := v if a = 0.
The same results were stated in [Ot 98] for o > 0 and [FO 00] for o = 0.

Formulae (1) and (2) allow to prove that u, is associated with a gradient-
type Dirichlet Form on the space (K,,v,) and that:

1. For all Borel set I C (0,1), the process t — 7,(]0,¢] x I) is an Additive
Functional of u,, with Revuz-measure 3 [, dr o4 (r, )

2. There exists a Borel set S C R* and a map r : S — (0,1), such that
Na((R*\S) x (0,1)) =0, and for all s € S, uqs(s,-) € Ops) Ka, i€

ua(s,7(s)) = 0, ua(s,8) >0 VE€ (0,1)\{r(s)}
3. The measure 7, admits the decomposition:

na(dsa df) = Op(s) (df) na(dsﬂ (0’ 1)) (8)

In particular, we can provide a full interpretation of (7) as an infinite-
dimensional Skorokhod problem, writing (7) in the following way:
162 1
du = Eg—gdt+dw+§n(u)-dL ()

where n is the inward-pointing normal vector to the boundary, i.e. n(z) = ¢,
if x € 0f Ky, and L, := 27([0,¢] x (0,1)) is the Additive Functional associated
with the boundary measure [ droy(r,-). For the finite-dimensional theory
of Skorokhod Problems, see e.g. [Ta 67|, [LS 84], [BH 90] and the references
therein.

In order to apply the Theory of Additive Functionals to u,, we first have
to prove that, for all a > 0, the symmetric bilinear form

E*(¢,v) :=/ (Vo, V) dve, ¢, € Cy(H)

[e3

is closable, the closure (€%, D(£%)) is a Dirichlet form and that the process
Co(0,1) N K4 3 x > ug(t,-) is the diffusion associated with £¢.
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In the case o = 0, this allows to prove that (ug(Z,-)):>o is the radial
part of the solution of a R3-valued linear SPDE with additive white-noise.
More precisely, we denote by (Zs(t,,%)):>o the Gaussian process with values
in H® := L?(0,1;R?), solving the following R3-valued linear SPDE with
additive white-noise:

((0Zy 10°Zy O°W

ot 20 T otoe

Z5(t,7)(0) = Z3(t,7)(1) = 0 (10)

| Z5(0,7) = T€ H?

where T € H? and W := (W, Wy, W3) — R and (W;) are three independent
copies of W. It is well known that Z3 is the Markov process associated with
the Dirichlet Form:

N(F,G) = / (VE, VG s du®, F.G € W2(H?, y%%),

H3

where VF : H?® + H? is the gradient of F in H3. If we set ® : H =
L*(0,1;R®) — Ky, ®(y)(7) := |y(7)|rs, then (€%, D(E%)) is the image Dirich-
let Form of A® under ®, i.e. D(E%) = {p € L*(v) : po ® € WH2(H?, u®%)}
and:

ENp,p) = N(po®,9p0®), ¢,9 € Cy(H).

Recall that M. Fukushima has given in [Fu 00] a general theory of stochas-
tic equations in domains with reflecting boundary on an abstract Wiener
Space. However, the results presented here are not covered by this theory:
indeed, in the Abstract Wiener Space setting one would consider, in our
notations, the triple (H, D((—A)'?), ), where A is the second derivative
operator on L2(0,1) with Dirichlet boundary conditions, and the Dirichlet
Form:

(e.0) = | (=4)7Vo, (~4) 291 d,
which is different from £¢, a > 0. In particular, only SDEs with values in
H but no SPDEs arise in general from the Abstract Wiener Space analysis.
Furthermore, £° has a p-negligible set as state space.



Moreover, recall that in [DP 93] existence of a solution (v, 7) was proved,
for a semilinear reflected SPDE and with a reaction-diffusion type nonlin-
earity f and a non-constant diffusion coefficient . Then, in [DP 97], under
suitable smoothness assumption on f and o, it was proved that for all ¢ > 0,
¢ € (0,1), the law of v(¢,&) is absolutely continuous w.r.t. the Lebesgue
measure on (0,00). A Strong Feller property of x — ug(¢,-) in L?(0,1) and
the explicit knowledge of the invariant measure v of (7) allow to prove that, if
o =1, then forall t > 0, £ € (0, 1), the law of v(t, £) is absolutely continuous
w.r.t. the measure y? dy on the whole of [0, 00).

Finally, recall that Funaki and Olla proved in [FO 00], that the fluctua-
tions around the hydrodynamical limit of a V¢ interface model on a hard wall
converge in law to the solution of a Nualart-Pardoux equation. Therefore,
we hope that the results of this paper can also be applied to these problems.

2 Definitions and setting of the problem

We introduce the following notations: (¢,&) € O := [0,+00) x [0,1], H :=
L*(0,1) with the canonical scalar product (-, -) nd norm || - ||,

(o ) = / WEKE) g, Bl = (b, ),

Co :=Cy(0,1) :={c:[0,1] = R continuous, ¢(0) = ¢(1) = 0},
1 2
A:D(A) CHw H, D(A):=W»nw,?0,1), A:= 538—52.
We denote by C*(0, 1), k € NU{oo}, the subset of Cy(0, 1) of all C* functions
with support being compact in (0, 1).

We set K, :={h € H: h> —a} with a > 0, and we denote by Ik, : H —
K, the projection from H onto the closed convex set K, C H. Recall that
Ik, is 1-Lipschitz continuous. We introduce the following function spaces:

e If D C H, we denote by C,(D) the space of all ¢ : D +— R being
bounded and uniformly continuous in the norm of H. If D C H and

¢ € Cy(D), we denote the modulus of continuity of ¢ by w, : [0,00) —
[0, 1]:

wy(r) = sup{[p(z) — p(a’)|Al:2,2" € D, ||z —a'|| <r}.
We let ||¢]|co := sup |¢|. Then (Cy(D), || - ||o) is a Banach space.
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For all a > 0, we identify Cy(K,) with a subspace of Cy(H) by means
of the injection: Cy(K,) 2 ¢ — pollk, € Cy(H). If 0 < o < 3, then
Cy(K,) C Cp(Kp).

We denote by Exp 4(H) the linear span of {1, cos({-, h)),sin({-,h)) : h €
D(A)}; Exp,(K,) is equal to the restrictions of Exp,(H) to K,.

If D C H, the space Lip(D) is the set of all ¢ € Cy(D) such that:

wy (1)

lellup == ll@lle + sup —— < oo.
r>0 r

The space C}(H) is defined as the set of all Fréchet-differentiable ¢ €
Cy(H), with continuous gradient Vo : H — H; finally, C}(K,) C
Cy(K,) is equal to the set of all ¢ such that:

1. For all z € K,, there exists a vector Vo(z) € H such that for all
h € Ky, we have:

lim 5 (2 + 1) = p(a)) = (Vi(a), ).

2. K, 22+ Vp(z) € H is continuous and bounded.

For all ¢ € C}(K,) we call Vo : H — H the gradient of ¢.

If {my}, U {m} is a sequence of probability measures on (H,B(H)), where
B(H) is the Borel o-field of H, we say that m,, converges weakly to m, if
limy, o0 [ @dmy, = [, @dm, Vo € Cy(H). Recall the following lemma:

Lemma 1 Let T be a Polish metric space, and let {m,},U{m}, respectively
{&n}n, a sequence of probability measures, resp. of real-valued continuous
functions, on T, satisfying:

e m, converges weakly to m.

o The family {pn}, is uniformly bounded and equicontinuous on T.

e ©,(x) has a limit p(x) as n — oo Vx € S, with S C T Borel and
m(S) = 1.

Then: lim, o0 [ ondm, = [g@dm.
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Given a Markov process {Y(t,z) : t > 0,2 € D} on D C H, we say that a
probability measure m on D is symmetrizing for Y, or that Y is symmetric
w.r.t. m, if, setting for all ¢ € Cy(D): PY(z) :== Elp(Y (¢,2))], z € D, we
have:

[ervan = [6Ppin Ve ecun),
D D

A symmetrizing measure is in particular invariant, i.e.:

/Ptyapdm = /cpdm, Vo € Cy(D).
D D

We denote by 1p(-) the characteristic function of a set D. We sometimes
write: m(¢p) for [, odm, ¢ € Cy(H).

By W = {W(t,§) : (t,£) € O} we denote a two-parameter Wiener process
defined on a complete probability space (2, F,P), i.e. W is a Gaussian
process with zero mean and covariance function

EW (W, =EAt)EAE), (4, 0.

We denote by F; the o-field generated by the random variables {W(s,£) :
(s,€) € [0,¢] x [0,1]}.

Let (Bt)i>o a linear Brownian Motion, and (B});> a R3-valued BM. We set
the following notations:

e 1 is the law on L?(0,1) of a Brownian Bridge 3 between 0 and 0 on
[0,1], i.e. the law of (B;),¢[o,1] conditioned on {B; = 0}.

® chq 7 €(0,1), a>0,is a 3-d Bessel Bridge on [0, 7] between 0 and a:
i.e. the process {ef ,(7)}-epo,1) has the law of the modulus of (B})e[o,1],
conditioned on {|B}| = a}.

e v is the law on L*(0,1) of e := eg, i.e. of a 3-d Bessel Bridge between
0 and 0 on [0, 1].

We recall the following Proposition, see e.g. [DPZ 96], Chap. 8.

Proposition 1



The positive symmetric bilinear form:
1
0 € Cy(H) = 5 / (Vo, Vi)dp
H

is closable in L*(H, ). We denote by (A, WY(H, u)) its closure.

The semigroup associated with A is the Ornstein-Uhlenbeck semigroup
(ITy)t>0, given by the Mehler Formula:

Myp(z) := /H<p(y) N(ez, Q) (dy), Vo € Cy(H), z € H, (11)

where Q; = fot e*4ds. The infinitesimal generator (M, D(M)) of
(IL})t>0 is the closure in L*(H, 1) of the Ornstein-Uhlenbeck operator:

Mop(z) = %Tr [D2<p(a:)] + (2, AVp(z)), ¢ €Expy(H). (12)

(IIt)s>o is the transition semigroup of the Markov process {Z(t,x) : t >
0,z € H} in H, satisfying the linear SPDE:

(02 _ 187 oW
ot 208 Otoe’

\ Z(t,x) € Cy, t>0 (13)

| Z(0,z) =r € H
For allt > 0 and ¢ € L*(H, i1), we have Tlyp € WH2(H, 1) and:

WY (H,p) = {(p € L*(H,pu) : stlig AT, L) < oo} . (14)

For allt > 0 and p € L™(H, i), we have I, € CL(H): in particular,
I is Strong Feller. Moreover, for all ¢ € Cy(H) and x € H, the map
0 <t Ip(x) is continuous, i.e. 11 is weakly continuous: see [Ce 94].

Lip(H) C WY2(H, ) with continuous inclusion.



The last assertion in Proposition 1 follows from (14), since

[IVILp()|| = sup (VILp(z), h)l
(s

1
= sup lim -
[hl|<1 840 8

/ (¢ (e (z + sh) +y) — ¢ (e“'z +y)) N(0,Q:)(dy)
< llellLip

We study the following SPDE with reflection:

( Ou, 10%u, o*wW

o zoe )T g

+ na(t, &)

10 (0,€) = (&), ual(t,0) =uy(t,1) =0 (15)

L Ua+ >0, [(ug+a)dn, =0
where f(u,) := f(-, ua(t,-)) and we assume that:
(H1) f:[0,1] x R+— R is measurable.

(H2) f(&, -) is continuously differentiable for all £ € [0,1], and there exists
¢ > 0 such that

fl<e, 10,f(&y)| <c VEE0,1], yeR

(H3) There exists C' > 0 such that for all £ € [0, 1]:

/0 F(e.u)du

<O, Vt>0.

Hypothesis (H1)-(H3) do not aim at the greatest generality, and we think
that the results of this paper can be proved also for more general f.

Following [NP 92], we set the:

Definition 1 A pair (uq,na) is said to be a solution of equation (15) with
reflection in —a < 0 and initial value x € K, N Cy(0,1), if:
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(i) {ua(t,€) : (t,€) € O} is a continuous and adapted process, i.e. uq(t,§)
is Fi-measurable for all (t,€) € O, a.s. uu(,-) is continuous on O,
Ua(t,+) € Ko NCy(0,1) for allt > 0, and ua(0,-) = x.

(1) no(dt,d€) is a random positive measure on O such that 1,([0,T] X
[0,1 —4]) < +oc for all T,6 > 0, and 1, is adapted, i.e. n(B) is
Fi-measurable for every Borel set B C [0,t] x (0,1).

(iii) For allt >0 andl e C*(0,1)

(ua(t, -),0) = (z,1) — / [(uals, -), Al) = {f (- uals, -)), D] ds

/ / W (ds, d€) + / / ) na(ds,d€),  as. (16)

(W) [o(ua +a)dn, = 0.
In [NP 92], the following theorem is proved:

Theorem 1 For allz € K,NCy(0,1), there exists a unique solution (tuq, Na)
of equation (15) with reflection at —a and initial value x.

3 Integration by parts formulae

In this section we prove formulae (1) and (2). The main tools are the follow-
ing:

Theorem 2 (Biane, [Bi 86]) Let (e;),cjo,1) be a 8-d Bessel Bridge, and let
¢ be a random variable with uniform distribution on [0, 1] and independent
of e. Then the process:

(Br)repo,u; Br = erg¢ — €,
where @& denotes the sum mod 1, is a Brownian Bridge.
Theorem 3 For all continuous ¢ : H — R such that for some w < 72,

lp(z)| < elol for all v € H, we have: [@dva — [@dvy as o | 0. In
particular, v, converge weakly as o | 0 to vy = v.
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Theorem 3 was proved in [DIM 77]: in [Za 00], we gave a different proof,
based on Theorem 2. The key observation there was that 8 = e.qc —e; € K,
if and only if e < a: a remarkable semplification, which reduced an infinite-
dimensional information, namely that 5(7) > —a« for all 7 € [0,1], to an
information on two independent real valued random variables, namely ¢ and
e, r €10,1[. Now formula (1) says in particular that 8 = e.g¢ — e¢ is in the
boundary of K, if and only if e, = c: the proof of (1) is formalization of this
intuitive fact.

Proof of (1) and (2)—Recall the notations given in (3), (4) and (5). For
x € H, we set 7 € H, z*(7) := sup{x(7),0}, 2~ := 27 — 2. Notice that
hy == AM(A — A)7'h converges to h in D(A) as A — co. Moreover, we have
hy = (h+))\ — (h_))\, with (h+))\, (h_))\ € D(A), (h+))\, (h_),\ > 0 and:

Onyp = (Vip, ha) = (Vo(z), (h7)x) — (Ve(), (7)),

Then, we can suppose that h > 0, so that K, C K, — th, t > 0. Moreover,
since ¢ is bounded and V(¢ — inf ¢) = V¢, we can suppose ¢ > 0. Recall
that O (z) = limy o (¢(z) — p(x —th))/t. By the Cameron Martin Theorem:

% / (ole) — ol — 1) p(z) = —% /(Ka_m)\Ka o(x) p(dz)
(17)
bt (1-ew (Gl ) ) uiao)

LetneN, ¢, >cpoy >--->¢ > ¢ =0, {[,...,I,} a Borel partition of
[0,1] and I, := (), and set:

n

hi::Z(cj/\ci)llja 121,,71

Jj=1

The key point is the following: for + = 1,...,n, since h; > h;_;, and
hi = hi_y on \J;_} I;, then for all r € (0,1)

C.or — €r € (Ka — thz)\(Ka - thi_l) <~

n
eor—6€ € Ky—1th;, 1—r¢ UIZ' and e, € [a+tc; 1,a+t¢).
j=i
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Indeed, recall that e.q, — e, attains its minimum —e, only at time 1 — r.
Applying Theorem 2 we obtain for all¢ > 0andt=1, ..., n:

1
/ p@) ud) = [ EBlo- 1, (cor— )] dr
(Ko —thi)\Kq 0
1
= / E [SD' [1(Ka—thi_1)\Ka + 1(Ka—th,-)\(Ka—thi_1)} (6-@r - er)} dr
0
1
= / E [¢ - Lixo—thi 1)\ Ka (€0r —€r)] dr
0

+ / K [SD “L(ko—thy) (e.or — €r) 1[a+t6i—1,a+t6i[(er)] dr,
1-un_.I

where 1 — I := {1 — 7 : 7 € I'}. Proceeding by induction on n we obtain:

/ () plde)
(Ka—thn)\Ka

n
= Z/ E [SD *L(Ka—thy) (€.0r — €r) 1[a+t0¢71,a+tc¢'[(er)} dr
.: U"." I]

zzz/ dr/a

i=1 j=i +tci—1

a+te;
€r = ai|

da \(r,a) E [90 L(ko—th;) (€@r — €r)

where A(r, a)da, law of e, is defined by

2 2
—a7>, rel0,1], a> 0,
r)

o 2
Alra) = ar3(l —r)3 @ exp < 2r(1 —

and for all bounded Borel ¢ : H — R and a > 0:

E [1/1 (eor — €r)

e,«:a} = E[¢ (€], ®r €50 —a)] - (18)

The measure defined by (18) depends continuously on ¢ > 0. Then we obtain,
since A\(1 —r,a) = A(r,a):
1

lim — ¢(x) p(dz)
00t J(Ky—thy)\Ka

13



= 2": z": (¢ — cim1) / A(r,a) E [90 (e-@(l—r) - a)

i=1 j=i I;

el_y = a] dr

€1y = a] dr

= Z/ cj/\(r,a)lE[so (eaa-rn —a)
j=1 I;
1
_ / dr h(r) Mr, @) E [ (€5 @y 602 — )]
0

= /01 dr hn (1) /@(Z) 04(r,dz).

Set now I; := h='([(i — 1)/n,i/n)), 1 € N,

o o0

o= = Y

i=1 =1

where both sums are finite, since h is bounded. Then f, < h < g,, f, and
gn, converge uniformly on [0,1] to h as n — oo and: K, —tf, C K, —th C
K, —tg,, t > 0. Therefore we have, since ¢ > 0,

/0 Car falr) / ¢(2) 0a(r,dz) < liminf % /(Kath)\Ka o(z) p(dz)

£10

1 1
< limsup — / o(z) p(dz) < / dr g,(r) /gp(z), Oo(r,d2)
3 (Ko —th)\Kqa 0

£10

1
and by (17) : Onpdp = lim= [ (p(x) — o(x — th))u(dx)
K, to t Jg,

=~ [ ot~ [ arnir) [ oot

[e3

so that (1) is proved. In order to prove (2), we recall that p(K,) = 1 —
exp(—2a?). We divide (1) by u(K,) and let o | 0: in the second term of the
right-hand side, we have for all r €10, 1:

1 [ (r)]

o2rr3(1 —r)3 202

1
lim —A(r, ) = A(r,0) :=

<
al0 202 A(r, a) < [h(r)[A(r,0),
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which is integrable, since h € W2 N W,(0,1) implies |h(r)| < Cr(1 —7),
r € [0, 1], for some C > 0. Moreover, the laws of €, are continuous in o > 0.
Then we apply Theorem 3 to the first and second term in (1) and the proof
of (2) is complete. [

Corollary 1 For all ¢ € Lip(Ky) and h € K, there exists the limit in L?(v):

1
lim - (p(z +th) — p(2)) = (Ve(2),h) @€ Ko (19)
We call Vo € L*(Ky,v; H) the generalized gradient of ¢. Then (2) holds
for all p € Lip(Ky), setting Opp := (V, h).

Proof-The family {(¢(- + th) — v¥))/t}i>0 is bounded in L?(v). For all
¢ € Exp,(H):

lim [ S((+th) ) pdv = — [ (Ve hydv

ti0 Ko t Ko

(20)
_ /K () (@) (@, h") v(dz) + /0 h(r) /K o(x) 6 (x) oo (r, dx).

Indeed, (20) holds for all ¢y € C}(H); moreover, the family of functionals

CUH) 3 Yo [ S0 +th) = b)pds, £>0,

Ko

is uniformly bounded in the sup-norm, by (2). By the density of C}(H) in
Cy(H) in the sup-norm, we obtain (20) for all ¢ € Cy(H). Then, (20) allows
to identify any limit point in the weak topology of L?(v) of (¢(-+th) —1))/t
ast] 0. O

Corollary 2 For all ¢ € Cy(H), o> 0, h € W22 N W,?(0,1):

iip [ (o) (@ +0)7, 1) exp (—

Iz + o) |I*

)MM@



Proof—We can suppose h > 0. If ¢ € Cj (H), then by (1):

R T e S o)
=~ [ et + 1) ot e (LEE Y i
R / (Ve(x), h) + (z, h") () u(dz) as e L0. (22)

(e}

Setting ¢ = 1, we see that the family of finite measures on H defined by
(21) have equibounded mass by (22). Since C} (H) is dense in Cy(H) in the
uniform norm, the thesis follows for all p € Cy(H). O

Corollary 3 For all v € CL(H), ¢(x) € Exp,(H),

1 1 [t

§/a<w,vw>du=— Kastodu—§/o dr/<w,5,«>wdaa(r,-)
23

l/(v Voydr = — [ oM dy—l/ldr/W 6)wd0(r-§ |

2K0 Qoa - Ko (P 20 QD:T Oa(a)
24

where M is the Ornstein-Uhlenbeck operator, defined in (12), and denoting
by i the imaginary unit, for ¢ = exp(i(h,-)), h € D(A):

(Vo(x),0,) := ih(r) exp(i(h,)), x € H. (25)

4 The process X,, a > 0
We introduce the following problem:

ou;,  10%u, . W (a+ug)”
ot 5 862 - f('aua(ta )) + OtOE + e (26)

ui(0,-) =z € H, wui(t,0)=ui(t,1) =0, Vt > 0.

o

with € > 0, (r)™ := sup{—r,0} and o > 0. This is a SPDE in L?(0,1) with
additive noise and monotone or Lipschitz-continuous drift terms, for which

16



existence and uniqueness of a solution are well known: see e.g. [DPZ 92].
We write for all a > 0, & > 0:

X (t,x) == u(t,-) € Cy(0,1) t>0, x € H.

(67

Let a,e > 0, and set:

L e
F.HoR Flz) = /0 i [ (e s (27)
By (H1)-(H3), F € Cj(H) and VF(z) = f(-,z(-)) for all z € H. Set also:
e d) ( - Mex ot ”2) u(de), ze€H,
E**(p, ¢ %/ (Vo,Vpydus,, Vo, € Cy(H),
Lo(z) = My(z) — (VF(z),Vo(z)), ¢ € Expy(H),

Lap(z) = Lo(z) + E(($4r04) , Vo(x)), ¢ € Exp,(H),

where ZZ is a normalization constant such that u5(H) = 1 and M is the
Ornstein-Uhlenbeck operator defined in (12). Finally, set for all ¢ € Cy(H):

RE(V(a) = /0 T e ME[p(XE (L o) dt,  z€H, A0,

Then we have the following:
Theorem 4

1. (B>, Exp,(H)) is closable in L*(1i5,): we denote by (E4¢, D(E*F)) the
closure. We have WY2(H, ) C D(E%¢) with continuous immersion.

2. (Lt Exp,(H)) is essentially self-adjoint in L*(15,): we denote the clo-
sure by (L2, D(LE)). We have that D(£%¢) = D((—£5)'/?) and:

/H P LP s = —E%%(p,y), Vo€ D(E), ¥ D).  (28)

17



3. The process (X (t, x))i>0zen s the diffusion generated by £¢, i.e. for
all A >0 and ¢ € Cy(H), R (N)p € D(E**) and:

A [ BVevai + €4 (RWew) = [ v, v e DL,
H H
4. 1, 18 the unique invariant probability measure of X;. Moreover, X is

symmetric with respect to .

Proof-This result is well known: see [MR 92], [DP 98], [DP 00]. O

The existence statement in Theorem 1 is proved in the following way: let
u, be the solution of (26). Then:
(a) ué(t,-) € Cy(0,1) for all ¢ > 0, and u, is continuous on O.

[e%

(b) The map 0 < ¢ — u, (¢, €) is non-increasing for all (¢,£) € O. The limit
lim, g us (£, &) = sup,sous(t, &) =: ua(t,€) is finite for all (¢,€) € O,
ua(t, ) € Ko N Cy(0,1) for all £ > 0, and w, is continuous on O.

(c) The measure on O, 15 (dt,d€) := (1/e)(a + )~ dtd€, converges distri-
butionally as ¢ | 0 to a Radon measure 7,/(dt, d§) on O.

(d) The pair (¢, 1) is the solution of (15) with reflection in —« and initial
value z € K, N Cy(0,1).

We set for all o > 0:
Xo(t, ) := uqn(t, <) € Co(0,1), t>0, z€ K,NCy(0,1).

Since X,, a > 0 satisfies for all z, 2’ € K,NCy(0,1): || Xa(t,z) —Xo(t, 2')|| <
C||z —z'||, we can uniquely extend X,(¢,-) to a map from K, to K,, that we
denote by the same symbol. In particular we can also define 7, for x € K,,,
using (16). Then we can set:

o Li(t)p: H= R, Pr(t)p(x) = Ep(Xg(t 2))], =€ H,
o P(t)p: Koy R, Pu(t)p(z) :=Ep(Xa(t,x))], z € K,.
In [Za 00] it was proved that:

o lim, o P(t)p(x) = Py(t)e(x), V€ K,,

18



If p € Cy(H), then {P:(t)p, P,y(t)p : o> 0,e > 0} is an equibounded
and equicontinuous family.

(Pu(t))e>0 is a Markov semigroup acting on Cy(K,).

For all ¢ € Cy(H), limyyo Pa(t)p(z) = Po(t)p(x), t > 0, 2 € K.

P, is symmetric with respect to v, o > 0, where: v, := u(-|K,) for
a>0,y =v,

df = ﬁ exp(—2F (x)) vo(dz), (29)

where F' is defined as in (27). Moreover, we have:
e v is the unique invariant probability measure of X,.

Indeed, let m! and m? be two invariant probability measures for X, and let
¢' and ¢? be K,-valued random variables, such that the law of ¢* is m* and
{q',¢*, W} is an independent family. Setting b := || X2 (¢, ¢") — X:(¢, ¢%)|| we

have:

ib2 < -7 + b < —7r—2b?+c*2
dt — - 2 ’

IX5(tq") — Xa(t. )| < Ce™ g = ||, Vt>o0.
Then for all ¢ > 0:

1 Xa(t,p') = Xa(t, )| = lgiglllXZ(t,pl) — X5 (t,p°) < Ce M |pt = p).

Since the law of X (¢,q") is equal to m® for all £ > 0, this implies m' = m?.
In particular, X, is v5-ergodic.
Finally, we have:

Proposition 2 For all o > 0 and ¢ : H — R bounded and Borel we have:
1
|Pa(t)p(z) = Pa(t)o(y)| < Cllelle(1At) 2 lz—yll, 2,y € Ko, £ > 0. (30)

In particular, the process X, is Strong Feller.
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Proof—Fix € > 0, « > 0 and set for v > 0:

[(r) 7, r<(d+y)t
sy R R sy(r) ==
r—y(14+y)77, e > (1)

Then s, is C'(R), monotone non-decreasing, and for all 7 € R, s,(r) 1 ()
as v J 0. Consider the following equation:

oa, 10%, W . . s(a+i)
o 202 Tawe T

(31)
i,(0,-) =z € H, 1i,(t,0)=1,(t1)=0, V¢ >0.

We set X, (t,2) := @,(t,-). Equation (31) is a white-noise driven SPDE with
differentiable non-linearity of Nemytskii type, satisfying the hypothesis of
Proposition 8.3.3 of [Ce 99]. Then, we have for ¢ € Cy(H), z,y € H:

Elp(X, (¢ 2))] = Blp(X, (ty)]| < Cllelle(l At) 2] —yl. (32)

By the monotonicity properties of s, and the uniqueness of solutions of (26),
we have that @, 1 ug, as v | 0. Then letting v | 0 in (32), we obtain:

£ I3 -1
|Pap(z) = Pap(y)] < Cllello(IAL) |z —yl.
The thesis follows letting € | 0 and using the Monotone Class Theorem. [

Recall that Donati-Martin and Pardoux proved in [DP 93] the existence
of a minimal solution (v, @) of the following semilinear SPDE with reflection
at 0:

(Ov  10% O*W

5 = 258~ J000) +0((t,0) o

+0(t,€)

v(0,€) = z(€), v(t,0) =v(t,1) =0 (33)

(| v>0,d0 >0 [,vdn=0.

and in [DP 97], under the assumptions that f, o are differentiable on R with
bounded derivative, that for allt > 0, £ € (0, 1), the law of v(¢, £) is absolutely
continuous w.r.t. the Lebesgue measure dy on (0,00). If 0 = 1, we can
improve this result. Indeed, we have:

20



Corollary 4 For allt > 0, x € H, the law of X,(t,x) is absolutely contin-
uous with respect to v,. In particular, for allt > 0 and £ €]0,1|, the law of
ug(t, &) is absolutely continuous w.r.t. y*dy on [0, c0).

5 The Dirichlet Form E¢, o > 0

The aim of this section is to apply (1) and (2) to the symmetric bilinear
forms

CHH) 5 0,1 s E%(p, 1) = / (Ve Vi) dvF, > 0.

N | =

The main result is that E® is closable in L*(v,) for all @ > 0, and X, is
the associated diffusion. We refer to [FOT 94] and [MR 92] for all basic
definitions. We set for all ¢ € Cy(H):

Ra(\)o(z) = /0 T (Xa (b o)) dt, me Ky A> 0.

Since v is invariant for X,, R,()\) extends to a bounded linear operator in

L%(vE) for all A > 0: we denote also such extension by R,()). We also set:

of (r,dz) = ﬁ exp(—2F(z)) o4(r, dz), a>0,re(0,1). (34)

Theorem 5 Let o > 0. Set for all p,vp € WY2(H, u):

E*(p0) = 5 [ (Vi Vu) dvf.

o

Then the positive symmetric bilinear form

Cy(Ka) 2 ¢, — E*(,9)

is closable in L?(vE). We denote by (€%, W12(vE)) the closure. The family
(Ra(N))aso on L2(vE) is the strongly continuous resolvent associated with £*,
Lip(K,) C WH2(vE) and Exp,4(K,) is a core for £©.
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Proof-Let ¢ € Expy(H), ¥ € Cy(H). Set VE := R (1)y), V, = Ru(1)9.
Then, by Lemma 1, Proposition 2 and Corollary 2:

e (Vi) = = [ Vi i i
=~ [ Vet i~ [ Vile) @ +a) Vo) silo)

S [ Valpaf - %/ dr / Val2) (Vp(2),6) oF (1, d2),
Ko 0

as € | 0. On the other hand, we have

/ Ve odu, + E¥(Vs / Y du;,, so that:

| Wa-wygant= [ vaLsodu5+§/ ar [ V(.0 ok r.d2)
« Kqo 0
(39)

Notice that V, o Ilg, is Lipschitz on H: therefore it is in WY2(H, u). Set
{n}n = I/n(Voollg, ), where (II;);>¢ is the Ornstein-Uhlenbeck semigroup
defined in (11). Then {v,} C C}{(H), sup, ||7a]lcc < 0o and =, converges to
Vo ollg, in WH2(H, i) and pointwise. By (23) and (35):

—E*(Va,p) = — lim E%(y, ¢)

i ([ reat 4} [ / e (VQO(Z),@)U(T(T,dZ))
:/Kavwdu . /dr/ 2),6,) ot (r, dz)

= / (Va — ¥) pdv).

(o}

Let now 1 € Lip(K,): then 9 ollg, € Lip(H), and by Proposition 1 we can
find a sequence ¢,, € Exp,(H) converging to 1 o Ik, in WH2(H, 1). Then
we obtain

B (Vi) = / (W — Vi) o dE Vi € Lip(Ka),

[e3
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and analogously, R, () o Ik, € W?(H, i) and for all A > 0:

E*(Ra(\h, ) = / (6 — ARa(\¥) @ df Ve € Lip(Ka).  (36)

(7

Since (Rq(A))aso is a strongly-continuous resolvent in L?(v[), then there
exists a Dirichlet Form (E®, D(E®)) with D(E®) dense in L*(vl), associated
with (R, (\))aso- Consider ¢ € Lip(K,): by the general theory of Dirichlet
Forms,

e D(E) sup/ AU — ARS(\W) & dvf < oo (37)

x>0 JK,

By (30) and (36), we have:

[ A= AR) 6 0l = B RN 8) < C i
for some C' > 0, so that Lip(K,) € D(E®). Then, by (36), E is closable on
R, (1)(Lip(Ky,)), the closure (€%, W"2(vF)) coincides with (E%, D(E®)) and
(Ra(X))aso is the resolvent associated with (€%, W2 (v1)).

Finally, since for all ¢ € Lip(K,) there exists a sequence ¢, € Exp ,(H)
converging to 1 o I, in WY?(H, u), then we have that Exp,(H) is a core
for £¢, and the Theorem is proved. [

We turn now to the case « = 0. We have the following:

Theorem 6 Set for all p,1 € Lip(Kj):

1
Be0) = 5 [ (Vo.Vu)af,
Ko

where Vi and Vi are defined by (19). Then the positive symmetric bi-
linear form (E°, Lip(Ky)) is closable in L*(v}'). We denote the closure of
(E° Lip(Ky)) by (EC,W'2(u{)). The family (Ro(\))xso on L*(v) is the
strongly continuous resolvent associated with £° and Exp 4(Ky) is a core for
&v.

We set H? = @} | H = L*(0,1;R3), &3 : H® — K, ®3(y)(1) := |y(7)|gs,

7 € (0,1). We denote by (A3, W12(4®3)) the closure of the symmetric bilinear
form:

1 _
Cy(H?) 3 G1,Gy — ) (VG1,V Go) gadp®, (38)

H3

23



where VG € Cy(H?; H?) is the usual gradient of G. If G € Wh?(u®?),
then we denote the generalized gradient of G by VG € L?(H?, u®3; H?).
Moreover, if ¢ € Lip(K)), then ¢ o ®3 € Lip(H?) C W12(u®3).

Proof of Theorem 6.—Since the image measure of 43 under ®; is v, there
exists a measurable set Oy C H® with u®3(Qy) = 1, such that for all y € €,
ly| > 0 on (0,1). Then, for all h € K, the following map is well-defined:

Q > th% e C(0,1;R%)

Notice that an analogue of Proposition 1 also holds for the Gaussian space
(H3, u®3): in particular, for all G € Lip(H?) there exists a sequence {G,} C
C}(H?®), such that

||Gn||Lip(H3) S ||G||Lip(H3)a Gn — G in W1’2(H3,,U,®3).

Then, by a density argument, for all G € Lip(H?):
lim1 [G (y + th£> - G(y)} = (VG(y),hﬁ)Hg in L%(u®?%).
to ¢ |y [y

Then, for h € Cy(0,1) and G := p o &3 with ¢ € Lip(H):

(Vellyl), b == Tim 5 (o(ly] + k) = o(lu])

= lgfg% [[woés] (y + th%) — [ip 0 ®s] (y)}
= (Vipo®al ()b e in L2(%).
For all ¢, € Lip(H), it follows that:
Dp.v) = 5 [ (Ve = N poty vty (39)

Since A3 is a closed form, (D3 Lip(H)) is closable: we denote the closure by
(D3, Wh2(v)). Then (39) holds for all ¢, € WH2(v).

By (H1)-(H3), we have that 0 < e 2¢ < exp(—2F) < €*¢ < oo, so that
L*(v) = L?(v{") with equivalence of norms, and D? in (39) is equivalent to E°
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on Lip(Kp). This implies closability of (E° Lip(Kjy)) in L*(vf): we denote
the closure by (€%, Wh2(v)).

As in the proof of Theorem 5, let ¢(z) € Exp,(H) and ¢ € Cy(H). Set
Ve = R5(1)y, V := Ry(1)y. Then, by Lemma 1 and Proposition 2, letting
e} 0in (35) we obtain:

1 [
/ (V=) pd{ = / V Lodyy + = / dr / V{(Vp,d,) ol (r,dz). (40)
Ko Ko 2 0
By Corollary 3, for all v € C}(H) and h € D(A), denoting the imaginary
unit by ¢ and setting ¢, := exp(i(h, z)):
1

Ty = 5 [ L0+t =) gula) of ()

1

ds | (Vy(z+sth),ih) o, (dz)

Ko

S—

N~

ds (Vy(z +sth), V) vg (dz)

Ko

|| Il
DN | =
N c\

ds [ (- +sth) Moy, dvf

+ % /0 dr /7(- + sth) (Vn, 6,) ol (r, dZ)} :

Tiy| < Clloos
with C' > 0 independent of v € C}(H). By the density of C}(H) in Cy(H)
in the sup-norm, by (40) and (19), we obtain:

A
EVign) = limy [ S(VE+th) V) o = [ 0= V)pndsf.
10 2 Jg, t Ko

and for all ¢ € Exp,(H):

B(Vie) = [ w-V)pdrf,
Ko
and analogously for all A > 0, ¢ € Exp,(H):

E(Ro(\), ) = /K (6 — ARy(\) @ dof’ (41)
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For all ¢ € Lip(H), by a standard approximation argument, we can find a
net {¢;}icr C Exp,y(H), such that: sup;, [pi(z)| < oo, lim; pi(z) = ¢(z)
Vz € H, and ¢; — ¢ weakly in WH2(ul"). Therefore (41) holds for all
¢ € Lip(H) and moreover Exp 4(H) is dense in Lip(H) with respect to the
weak topology of W12(vf): by Hahn-Banach Theorem, this implies that
Exp,(H) is a core in WH2(uf). O

Corollary 5 Formulae (1) and (2) hold for all ¢ € Lip(H), where for fized
a >0, Opp = (Vp,h) € L*(v,).

For all o > 0, the Dirichlet Form £¢ enjoys the following properties:
(i) Lip(K,) is dense in WhH2(vF).

(ii) Exp,(K,) separates the points of K, and is contained in W12(v1).

a

By Definition IV.3.1 in [MR 92], £¢ is quasi-regular if moreover:

(iii) There exists a sequence of compact sets Fj in K,, such that the set:

U {go eWhWl): p=0v" —ae. on Ka\Fk}
k

is dense in W12 (v,

On the other hand, by Nualart-Pardoux’s Theorem 1, the process X, is
continuous, with infinite life-time and Strong Markov. Therefore X, is a
Hunt process on K, properly associated with £, see Chapter IV in [MR 92]:
indeed, for all Borel bounded ¢ : K, — R and t > 0, P,(t)¢ € Cy(K,), and
by Theorems 5-6, P, is the semigroup associated with £%. Then we have:

Theorem 7 Let « > 0. The process {Xo(-,2)}s s a continuous Hunt
process on K, with infinite life-time, properly associated with the Dirichlet
form E*. In particular, £ is quasi-reqular.

The last assertion in Theorem 7 is a consequence of Theorem IV.5.1 in
[MR 92|, which states the necessity of quasi regularity for a Dirichlet Form
to be properly associated with a nice Markov process. Theorem 7 plays a
crucial role in the next section.
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Corollary 6 The Log-Sobolev and the Poincaré inequalities hold for the
Nualart-Pardouz equation (15) for all a > 0, i.e. there exists C > 0 such
that for all ¢ € Wh2(vE):

2
/ lo—vF () dvf < C© / Vel duF,
K, K,

/ Flog(e?) dvf < C / IV dv? + [19l22e o862,

(e} Ka

For the proof, see e.g. [St 93], [DPDG 00] and [DP 01]. Finally, in the case
f =0, we also have the following:

Theorem 8 The Dirichlet Form D3:

W) 3 ¢,9 = D*(p,0) = %/ (Vo, Vpy dv

Ko
is the image of A® under the map ®5, i.e.
W) ={p € L*(v) : p € &3 € W (1)},
D3 (p,) = N (po®3,p0d3) Yo,ip € WH(w).

Proof-In the whole proof, we consider the case f = 0 in equation (15). Recall
(39). It remains to prove only that if ¢ € L?(v) satisfies ¢ o &3 € W?(u®3),
then o € W2(v). Set V3 := {po®3: ¢ € NW2(v)}. By (39), Vs is a closed
subspace of W12(u®3®): we denote by 'z : WH2(u®3) — Vs the symmetric
projection operator w.r.t. the scalar product A} := (-,-)2(,es) + A?, ie. for
all G € Wh2(u®3), T'sG € Y5 is characterized by:

A(G —T3G,G—T3G) < A2(G—-G',G—-G") VG €)s.
Since G € Y5 implies (G V 0) A1 € )5, we have:
|ID3G[ Lo uesy < ||G||poeuesy, VG € WE2(u®) N L= (u®?).

By Theorem 6, D? is a quasi-regular symmetric Dirichlet form: see [MR 92].
Then, for all h € D(A), p € W?(v) N L®(v):

/K (o, Y dv = — /K o*(2) (@ ") + w(3) (@™, 1Y) w(dz),
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where ¢* is a D3*-quasi-continuous v-version of . For all ¢ € Lip(H) we
have:

AY(G, [Ro(1)¢] 0 @3) = AJ(T'sG, [Ro(1)¢] 0 @3) = / (T3G)* 4 o By du®

o3

for all G € Wh2(u®3) N L*°(u®?). Then there exists Cy > 0 such that:
[A}(G, [Ro()Y] 0 @3) < Cy[|Glloe VG € WH(u®5) 0 L (1),

and by Theorem 4.2 in [Fu 99], there exists a finite signed measure X, on H?,
charging no A3-exceptional set, such that for all G € Wh2(u®3) N L (u®3):

A3 (G, [Ro(1)9h] 0 B3) = — /H Gz, (42)

where G* is a A3-quasi-continuous p®3-version of G, and for all ¢ € Cy(H):

/@0@3d2w=/ po®s - 1hobgdu®.
3 i3

Now, to complete the proof, it is enough to prove that {[Ro(1)¢)] o @3 : v €
Lip(H)} is dense in {¢p o @3 : ¢ € L?*(v)} N WH2(u®3) w.r.t. A3. Suppose
that ¢ € L2(v), ¢ o ®3 € WH2(u®3), and:

Al(po @, [Ro(1)¥] 0o @3) = 0 V4 € Lip(H),
We set ¢, := (¢* Am)V (—m), m € N, and

Gn,m(y) = Pm © @3(23(1/77;, y))’ y e H°.

where Z3 is the solution of (10). Then (Gnm) C Ci(H?), |Gum| < m,
Grnm — omo®3 A3-quasi everywhere as n — oo and in W2(u®3). Moreover:

A?(Gn,ma[RO(l)w]oq)?)) = = /Gﬂ,m dETP’

and passing to the limit in n — oo and m — oo, we obtain for all ¢ € Lip(H):

0 = Ad(po®;,[Re(1)h] 0 ®3) = — /[(pocb3]*d21/,

= - [‘PO(I’?,]* - 1o Py dﬂ®3,

Ko

which implies ¢ =0. O
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6 The Revuz-measure of 7

The aim of this section is to characterize 7, as a family of Positive Continuous
Additive Functionals of X, and to prove the decomposition formula (8).
Notice that Theorem 7 has the following important consequences: by the
transfer method of Chapter VI in [MR 92], several statements of the theory
of Dirichlet Form can rephrased from the classical locally-compact case into
our setting. In particular, we can apply the results of Chapter 5 in [FOT 94].
We refer to [MR 92] and [FOT 94] for all basic definitions.

Let now E := C([0,00); H) and define X; : E— H, t > 0, X(e) :=e(t),

N = o{X,,5€[0,00)}, N = o{X,, s€]0,t]}.

Fix a > 0. For all z € K, we denote by P, the law of X,(-,x) on (E,N2),
and for all probability measure A on K,, we define the probability measure
P, on (E,N2):

N2 S A Py :=/ P, (A) A(dz).

[e3

Then we denote by N2 (resp. N})) the completion of N2 (resp. completion
of N in N3) with respect to Py. We also set N := Nyep(r,) Ny N :=
Miep(k,) N7, where P(K,) denotes the set of probability measures on K,.
By an Additive Functional (AF) of X,, we mean a family of functions A(¢) :
E — R*, t >0, such that:

(A.1) A(t) is (M;)-adapted

(A.2) There exist a set A € N, and a £*exceptional set V' C K,, such that
P,(A) =1for all z € K,\V, 6;(A) C A for all ¢ > 0, and for all w € A:
A(-)(w) is continuous, A(0)(w) = 0 and for all ¢, s > 0:

A (w) < 00, A(t+s)(w) = A(s)(w) + AW)(Bw).  (43)

where (65)s>0 is the time-translation semigroup on C([0, 00); H). We say that
an AF A is a Positive Continuous Additive Functional (PCAF) is A satisfies
moreover:

(A.3) For all w € A: A(-)(w) is non-decreasing.
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Two AFs A; and A, are said to be equivalent if for each ¢ > 0, P,(A,(t) =
Ay(t)) =1, for £%-q.e. x. Moreover, we say that A is a PCAF in the strict
sense if one can choose V = ) in (A.1). Recall that X, is Strong Feller and
Corollary 4 implies the “absolute continuity condition” of [FOT 94]. This
condition often allows to avoid the restriction: z € K,\V of (A.2) above:
see e.g. Theorems 5.1.6 and 5.1.7.

In the sequel, when it is necessary to stress the dependence of 7, on the
initial datum x and the Brownian sheet W, we write ¢ or n®". By the
uniqueness statement of Theorem 1, we have a.s. for all £ > 0:

g™ (0,2 + s),0) = 2" ((0,4],1) + n2=“ ([0, s1,0) (44)

where W' := W (- +t,-) — W(t, -) is a Brownian sheet, independent of
F:. Notice that Formula (44) is reminiscent of (43). However, it is not clear
whether 7, is a PCAF of X,: in fact, 7, is adapted to the filtration of the
noise W, but a priori not to the natural filtration of X,.

Recall that, since X, is conservative with unique invariant measure v’
the Revuz-measure of a AF (A(t))i>o is defined as:

SUSEFEY [ | a2y dan(o)| o8 (aa),
where :  A%(t) := A(t) (Xal-, 7)), t>0.

In the proof of Theorem 10 below, we use several results of the Theory
Additive Functionals. In the next theorem we collect the results we need,
stating them in our setting in order to avoid notational confusion. For the
general statements and the proofs, we refer to Theorem 2.4 in [MR 92] and
Theorem 4.2 in [Fu 99].

Theorem 9 Let o > 0. For ¢ € WY2(uY), the next three conditions are
equivalent:

(i) For some constant C > 0 we have:

(e, ¥)] < Clllloo, VO € W (1) NL=(ry).  (45)

(1) There exists a finite signed measure m charging no E*-exceptional set
such that:

£, 1)) = / bdm, Ve W) NCy(KL),  (46)
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where Ef = (-, ) p2ry + E*. We say that m is a £*-smooth measure
with 1-potential .

(m) There e:m'sts a AF (A(t ))t of X, unique up to equivalence, such that
E,[[;° e7'dA(t)] for £*-q.e. w.

If (Z)—(m) hold, then m in (ii) is the Revuz-measure of A in (ii).

Moreover, we shall use that for all AF A w1th Revuz-measure m and for all
¢ bounded and Borel, we have that (f - A)( fo (Xy)dA(t), t > 0, is a
AF with Revuz-measure f - dm: see e.g. Lemma 5.1.3 in [FOT 94].

Theorem 10

1. Let a > 0, x € K, N Cy. Almost surely, there exrist a measurable
random set S, C Rt with n%(RT\Sy, (0,1)) = 0, and a measurable
map 7o : So —> (0,1), such that:

Vit € Sa, ualt,ra(t)) = —, and ua(t,€) > —a VE € (0,1)\{ra(t)}.

Almost surely, for all continuous | with compact support in [0,00) X
(0,1), we have:

/@ L = / Tt ralt)) mEd, (0,1)), (47)

e mg(dt, d€) = br,)(d€) ma(dt, (0,1))  on O.

Finally, t — n4([0,t] x (0,1)) is a PCAF in the strict sense of X, with
Revuz measure given by 0% ((0,1),): i.e. there exists a PCAF in the
strict sense of Xa, (A0,1)(t))i>0, such that

Ta([0,7] x (0,1)) = Aey()(Xal 7)) V120, 2 € Ko,

/QE[/Olgo(Xa(t,x))dAfo,l)( } / dT/ F (1 dz).

2. Let « = 0, x € KoyNCy. Almost surely, there erist a measurable
random set Sy C R with nf(RT\Sy, (0,1)) = 0, and a measurable map
7o : So — (0,1), such that:

Vit € So, wo(t,ro(t)) =0, and wue(t,&) >0 V&€ (0,1)\{ro(t)}
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Almost surely, for any § € (0,1/2) and for all continuous | with compact
support in RT x [0,1 — 0], we have:

[ = [ "1t rolt)) i (dt, (0,1)) (48)

- / Ut rol®) e, 16,1 — ),

e g (dt,d€) = b,y (d) (a1, (0,1)) on O.

Finally, for all 6 € (0,1/2), there exists a PCAF in the strict sense
(Aps1-(t))e>0 of Xo with Revuz measure given by 1o ([6,1—6],-) such
that:

M6 ([0,8] X [6,1=10]) = Ap1-(t)(Xo(-,z)) V>0, z€ Ky,

/ E [ /0 (Xl x))dAﬁ;’l_J](t)} VF (dz) = % /5 R / oo (r, dz),

The family (Ajs1-61)sc(0,1/2) Satisfies the consistency condition:
t 1
A[J’,l—ﬁ’](t) = / 1[5/,1_51](7‘0(8)) dA[()',l_(j'](S), VO<d< § < 5
0

Proof-We divide the proof into two steps.

Step 1. Let o > 0 and h € C?(0,1), h > 0. We claim that there exists a
PCAF (Ax(t))i>0 of X, with Revuz measure:

[ =[] Xt ) i) v ) = 3 [ arno) [ ootirae

and such that for P-a.e. w:
/0 h(&) 15 ([0, 1], d&) (w) =: 1g([0,¢], h)(w) = An(t) (Xa(, z)(w))-

In particular, t — 7,([0, ], h) is adapted to the filtration of X,.
We can restrict to a dense countable family {h,,} C D(A). We set for all
x € H:

U9(z) := E [ /O N e%(h, (XE(t,2) + o) )t |
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U%(z):=E [/ e 'nZ(dt, h)} .
0
Then we have for all ¢ € Exp,(H):

! /H (@) (B, (2 + a)) 15 (da)

3

= /Us’”‘god,ufx + E5YU%, ) = /U”‘((p — L) di,
For o > 0, letting ¢ | 0, we find by Corollary 2:
1 !
Junte = oy - 5 [ ar [(Velo)6) U@ ok
0
(49)
1 1
=5 [ arnt) [ ook,
0

Notice that we have for all @ > 0:

/00 e~'nZ(dt,h) = —{(z,h) + /00 e X, (t,x),h — Ah) dt
T / " et (Xat, 2)), ) dt — / " eh(E) W (dt, de),

U (z) = — (2, b + /000 e E[(Xo(t, ), h — ARY + (F(Xalt,2)), )] dt.

Then U%(z) — U°(z) as @ | 0 for all z € K,, and by Proposition 2 {U*}4>9
is an equi-Lipschitz family. Moreover, 0 < U® oIlg, < C(1+|-]). Then
Lemma 1 and Theorem 3 yield (49) for every o > 0. Moreover, U® €
Lip(K,) C D(€%). By (49), Corollary 5 and the density of Exp,(K,) in
D(&?*), we obtain for all ¢ € D(E*) N Cy(K,), a > 0:

ewe) = 3 [ 10) [eotnd) =} [ oot has)

EF(U, @) < 04 (h, Ka) [0lleo, 05 (B, Ka) < o0, (50)

where £ = (-, ) 20,7 +E% If o € D(EY)NL>(VE), we set @, 1= Pa(1/n)e.
Since P, is Strong Feller, letting n — oo, we obtain that (50) holds for all
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0 € D(E*)NL>®(vY). Now we can apply Theorem 9: U? satisfies (i), o (h, -)
is equal to the measure given by (ii), so that by (iii) there exists a PCAF
(An(t))i>0 with Revuz measure ol (h, -) and a-potential equal to U%: in
particular, we have U%(z) = E [ [;° e ' dA%(t)] for all z € K,\V,, for some
E*-properly exceptlonal set V
Since U? is continuous and therefore locally bounded on K,, we can
repeat the proof of Theorem 5.1.6 in [FOT 94|, and extend (Ax(t))i>0 to a
PCAF in the strict sense, which we still denote by (A(t))i>0. In particular,
E [ e"dA;(t)] for all z € K,. Now we can mimic the proof of
Theorem 5.1.2 in [FOT 94]: by (44), we have for all z € K,:

([ dAi(t)>2] = 28| [, a0

25| [T ([T et n ) aro),

([ et h)ﬂ = 22| [T et un () n(an, )
o[ ([ o) ]
o[t ]

B| [Tetman [T tano]

e[ [ ]

o o0 2_
(/ e~'n%(dt, h) — / e’ dAﬁ(t)) = 0, and analogously :
0 0

E

E

so that : E

00 00 2
( / My (gt B) — / N dA;(t)) —0, VA0,
0 0

which implies 7Z([0,t], h) = A7 (t) for all z, t, a.s.

E
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Step 2. Let a > 0, and I C (0, 1) be an interval. Denote by v; the indicator
function of the Borel set {z € K, N Cy: x-1¢,1y)\s > —a}. The key point is
that the following holds:

/01 dr /gowf( (r,dz) /dr / (r,dz), Vo € Cy(K,).

(51)
Set now:

_ /Ot Vr(Xa(s,2)) 7E(ds, (0,1)), >0,z € H.

By Step 1, we have that A; is a PCAF of X, with Revuz measure equal to
¥r(2) - 0£((0,1),dz). In particular, by (51):

[ & [ ot 0 et 0.10)] valan)

/dr/gawf szz /dr/ sz

which is the Revuz measure of ¢ — nZ([0,t],I). By (iii) in Theorem 9, A,
and 7,( -, I) are equivalent, i.e. there exists a £*-properly exceptional set V,
such that for all z € K,\V,, and for every interval I C (0,1) with rational
extremes, we have

w2 ([0, T, / Ur(Xa(s,2)) n2(ds, (0,1) VT >0, as.  (52)

We claim that (52) holds for all z € K, N Cy. First, nZ({0},(0,1)) = 0 for
all z € K,. Moreover, by Corollary 4, if ¢ > 0 then P(X,(t,z) € V,) =
Then, for all z € K, N Cy, t > 0, a.s. X,(t,z) € K,\V, and by (52):

ne(t,T),1) = nX>®2W (0,7 -], 1)
- /] PO 2 s, (0,1)
_ /tTdJI(Xa(s,:v))nﬁ(ds,(0,1)), VT >0, as.
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and the claim is proved. Now, fix + € K, N Cy and consider a regular
conditional distribution of 7 on [0, 00) x (0, 1), w.r.t. the Borel map (t,§) — t:
i.e., a measurable kernel (¢, J) — (¢, J), where t > 0, J C (0, 1) Borel, such
that

(7). 7) = j{ (s, J) 2 (ds, (0,1)), (53)

forall0 <t <T,J C(0,1) Borel. By (52) and (53) we obtain that a.s. and
for n%(ds, (0,1))-a.e. s:

’7($a [ana bn]) = w[an,bn](Xa(S: CC)), vana bn € Q N (Oa 1) (54)

Notice that, since 9, is an indicator function, the right hand side of (54)
assumes only the values 0 and 1. Therefore the measure I — (s, ) takes
only the values 0 and 1 on all intervals I with rational extremes in (0, 1), and
the value 1 is assumed, since 91y = 1x,nc,- Then (s, -) is a Dirac mass
at some point r,(s) € (0,1).

Consider s € S, ¢u,pn € Q, gn T 7a(8), Pn 4 7(5), and set I, := [gn, Pu):
then 1 = 7(s,I,,) = ¢, (Xa(s,x)), which means u,(s,&) > —a for all £ €
(0,1)\I,,. Therefore, r,(s) is the unique £ € (0,1) such that X,(s,z)(§) =
Ua (s, &) = —

Let now « = 0, and for all interval I C (0,1) define ¢; as the indicator
function of the Borel set {z € KoNCy : z(§) > 0, V€ € (0,1)\I}. Notice
that in this case it is not known whether 7Z([0,77],(0,1)) is finite or not.
However, n%([0,7], (4,1 — 6)) < oo for all § > 0. Therefore, the proof can
proceed as in the case of @ > 0, provided one replaces 7n3(dt, (0,1)) with
n&(dt,(1/n,1 —1/n)) and then let n — co. O

To our knowledge, it is still unknown, whether 7,(]0,¢] x [0,1]) is finite
or infinite for ¢ > 0. In [NP 92] Nualart and Pardoux proved the estimate:

//51— Yno(dt,dé) < oo, VT > 0.

Recall the definition (4) of oy, and in particular the factor (r(1 — r))=3/2,
€ (0,1): Theorem 10 allows to improve the Nualart-Pardoux estimate, and
obtain the following

Corollary 7 For all Borel p : ) — R

-Am(%W%<”:$//‘ &m(d,de) < oo, VT 20.

36



References

[BH 90]

[Bi 86]

[Ce 94]

[Ce 99]

[DP 98]

[DP 00]

[DP 01]

R.F. Bass, P. Hsu (1990), The semimartingale structure of re-
flecting Brownian Motion, Proc. of the Amer. Math. Soc., Vol.
108, No. 4, pp. 1007-1010

P. Biane (1986), Relations entre pont et excursion du mouvement
Brownien réel, Ann. Inst. Henri Poincaré, Vol. 22, n.1, 1-7.

S. Cerrai (1994), A Hille-Yosida Theorem for weakly continuous
semigroups, Semigroup Forum, 49, pp. 349-367.

S. Cerrai (1999), Ergodicity for stochastic reaction-diffusion sys-
tems with polynomial coefficients, Stoch. and Stoch. Rep., Vol.
67, pp-17-51.

G. Da Prato (1998), The Ornstein- Uhlenbeck generator perturbed
by the gradient of a potential, Bollettino UMI, (8) I-B, pp. 501-
519.

G. Da Prato (2000), Monotone gradient systems in L? spaces, to
appear in “Proceedings of the Ascona Conference on Stochastic
Analysis, Random Fields and Applications,” 1999.

G. Da Prato (2001), Some Properties of Monotone Gradient Sys-
tems, to appear in Dynam. Contin. Discrete Impuls. Systems.

[DPDG 00] G. Da Prato, A. Debussche, B. Goldys (2000), Invariant mea-

[DPZ 92]

[DPZ 96]

[DP 93]

sures of non symmetric stochastic systems, Preprint SNS.

G. Da Prato, J. Zabczyk (1992), STOCHASTIC EQUATIONS IN
INFINITE DIMENSIONS, Encyclopedia of Mathematics and its Ap-
plications, Cambridge University Press.

G. Da Prato, J. Zabczyk (1996), ERGODICITY FOR INFINITE
DIMENSIONAL SYSTEMS, London Mathematical Society Lecture
Notes, n.229, Cambridge University Press.

C. Donati-Martin, E. Pardoux (1993), White-noise driven SPDEs
with reflection, Prob. Theory and Rel. Fields, Vol. 95, pp. 1-24.

37



[DP 97]

[DIM 77]

[Fu 80]

[Fu 99

[Fu 00]

[FOT 94]

[FO 00]

[Gi 84]

[HS 99]

LS 84]

[MR 92]

INP 92]

C. Donati-Martin, E. Pardoux (1997), EDPS Réfiéchies et Calcul
de Malliavin, Bull. Sci. Math., Vol. 121, pp. 405-422.

R.T. Durrett, D.L. Iglehart, D.R. Miller (1977), Weak conver-
gence to Brownian meander and Brownian excursion, Ann. Prob-
ability, 5, no. 1, pp. 117-129.

M. Fukushima (1980), DIRICHLET FORMS AND MARKOV PRO-
CESSES, North Holland Publishing Company.

M. Fukushima (1999), On semi-martingale characterizations of
functionals of Symmetric Markov Processes, Electr. Journ. of
Prob., Vol.4, pp. 1-32.

M. Fukushima (2000), BV Functions and Distorted Ornstein
Uhlenbech Processes over the Abstract Wiener Space, Journ. of
Funct. Anal., Vol. 174, pp. 227-249.

M. Fukushima, Y. Oshima, M. Takeda (1994), DIRICHLET
FOrMS AND SYMMETRIC MARKOV PROCESSES, Walter de
Gruyter, Berlin-New York.

T. Funaki, S. Olla (2000), Fluctuations for V¢ interface model
on a wall, preprint.

E. Giusti (1984), MINIMAL SURFACES AND FUNCTIONS OF
BOUNDED VARIATION, Birkhauser, Boston.

F. Hirsch, S. Song (1999), Two-parameter Bessel processes, Stoch.
Processes and their Appl., Vol. 83, pp. 187-209.

P.L. Lions, A.S. Sznitman (1984), Stochastic differential equa-
tions with reflecting boundary conditions, Comm. Pure Appl.
Math. 37, no. 4, pp. 511-537.

Z. M. Ma, M. Rockner (1992), INTRODUCTION TO THE THEORY
OF (NoN SYMMETRIC) DIRICHLET FORMS, Springer-Verlag,
Berlin/Heidelberg/New York.

D. Nualart, E. Pardoux (1992), White noise driven quasilinear
SPDEs with reflection, Prob. Theory and Rel. Fields, Vol. 93,
pp- 77-89.

38



[Ot 98] Y. Otobe (1998), White noise driven stochastic diffusion equa-
tions defined on infinite interval with reflection, Master Thesis,
University of Tokio.

[St 93] D.W. Stroock (1993), Logarithmic Sobolev inequalities for Gibbs
states, Dirichlet forms (Varenna, 1992), pp. 194-228, Lecture
Notes in Math. 1563, Springer, Berlin.

[Ta 67] H. Tanaka (1967), Stochastic differential equations with reflecting
boundary condition in convex region, Hiroshima Math. J., Vol. 9,
pp- 163-177.

[Za 00] L. Zambotti (2000), A reflected stochastic heat equation as sym-
metric dynamics with respect to the 3-d Bessel Bridge, to appear
in Journ. of Funct. Anal.

39



