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Abstract. Let A = (aij) be a Borel mapping on [0, 1] ×
�

d with values in the space of
nonnegative operators on

�
d and let b = (bi) be a Borel mapping on [0, 1]×

�
d with values in�

d . Let Lu(t, x) = ∂tu(t, x) + aij(t, x)∂xi
∂xj

u(t, x) + bi(t, x)∂xi
u(t, x), u ∈ C∞

0 ((0, 1)×
�

d).
Under broad assumptions on A and b, we construct a family µ = (µt)t∈[0,1) of probability

measures µt on
�

d which solves the Cauchy problem L∗µ = 0 with initial condition µ0 = ν,
where ν is a probability measure on

�
d , in the following weak sense:

∫ 1

0

∫
�

d

Lu(t, x) µt(dx) dt = 0, u ∈ C∞

0 ((0, 1) ×
� d ),

and

lim
t→0

∫
�

d

ζ(x) µt(dx) =

∫
�

d

ζ(x) ν(dx), ζ ∈ C∞

0 (
� d ).

Such an equation is satisfied by transition probabilities of a diffusion process associated
with A and b provided such a process exists. However, we do not assume the existence of a
process and allow quite singular coefficients, in particular, b may be locally unbounded or
A may be degenerate. An infinite dimensional analogue is discussed as well. Main methods
are Lp-analysis with respect to suitably chosen measures and reduction to the elliptic case
(studied previously) by piecewise constant approximations in time.

AMS Subject Classification: 35K10, 35K12, 60J35, 60J60, 47D07

1. Introduction

According to Kolmogorov’s classical result, the transition probabilities of the diffusion
process in � d governed by the stochastic differential equation

dξt = σ(t, ξt)dWt + b(t, ξt)dt

with time-dependent coefficients satisfy the parabolic equation

L∗p = 0,

where A = (aij), A = σ2/2, and L∗ is the formal adjoint to the operator

Lu(t, x) :=
∂u(t, x)

∂t
+ aij(t, x)∂xi

∂xj
u(t, x) + bi(t, x)∂xi

u(t, x).

In the case of uniformly bounded coefficients and classical solutions, the above mentioned
parabolic equation for probability measures was investigated in the important paper by Il’in
and Hasminskii [8], where the main objective was to study the behaviour of solutions and
their stabilization as t → ∞. In recent years, there has been a growing interest in such
equations for measures (defined in the weak sense as explained below) in the situation,
where it is not assumed in advance that there exists a corresponding diffusion and if aij and
bi are not regular. In [5], families of measures satisfying equations of the above type have
been studied in connection with flows of probability measures. An approach to constructing
generalized diffusions via solutions to weak parabolic equations has been recently developed
by W. Stannat [15]. However, in this paper, we do not address probabilistic issues (which
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will be the subject of another work) and consider only analytic problems, although these
problems still keep a certain probabilistic flavour (in particular, we are interested in solutions
that are probability measures). If the elliptic part H of L is time independent and there
exists a probability measure µ on � d such that H∗µ = 0 in the sense that∫

�
d

Hϕdµ = 0 ∀ϕ ∈ C∞
0 ( � d),

then, under broad assumptions (involving the existence of a suitable Lyapunov function),
there exists a strongly continuous Markov semigroup (Tt)t≥0 on L1(µ) (actually, on all Lp(µ),
p ∈ [1,∞)) whose generator coincides with H on C∞

0 ( � d) and which serves as the transition
semigroup of a diffusion process (see [14]). As shown in [1, Section 4], the adjoint semigroup
(T ∗

t )t≥0 can be extended even to bounded measures on � d and, for any probability measure
ν on � d , the family (T ∗

t ν)t≥0 consists of probability measures with densities p(t, x) and the
measure µ = T ∗

t ν dt on [0, 1) × � d satisfies the weak parabolic equation L∗µ = 0. In this
work, we investigate the existence problem in the time-dependent case. The problem is as
follows.

Let A(t, x) = (aij(t, x))1≤i,j≤d be a Borel mapping on [0, 1] × � d with values in the space
of nonnegative operators on � d and let b(t, x) = (bi(t, x)) be a Borel mapping on [0, 1] × � d

with values in � d . Let

Lu(t, x) :=
∂u(t, x)

∂t
+ aij(t, x)∂xi

∂xj
u(t, x) + bi(t, x)∂xi

u(t, x) (1.1)

for u ∈ C∞
0 ((0, 1) × � d). The elliptic part of L is denoted by

Hu(t, x) := aij(t, x)∂xi
∂xj

u(t, x) + bi(t, x)∂xi
u(t, x). (1.2)

We shall say that a family of Radon measures µ = (µt)t∈[0,1) on � d satisfies the weak
parabolic equation

L∗µ = 0 (1.3)

if the functions aij and bi are integrable on every compact set in (0, 1)× � d with respect to
the measure µt dt and, for every u ∈ C∞

0 ((0, 1) × � d), one has
∫ 1

0

∫
�

d

Lu(t, x)µt(dx) dt = 0. (1.4)

We shall say that µ satisfies the initial condition µ0 := ν at t = 0 if ν is a measure on � d

and

lim
t→0

∫
�

d

ζ(x)µt(dx) =

∫
�

d

ζ(x) ν(dx) (1.5)

for all ζ ∈ C∞
0 ( � d). In this case we write µ = (µt)t∈[0,1).

Our principal goal is to construct solutions to such equations so that µt is a probability
measure for every t ∈ [0, 1) (in finite and infinite dimensions) under the assumption that
there exists a suitable Lyapunov function. The corresponding results generalize those ob-
tained in [2] in the elliptic case (however, the latter are used here). It turns out that the
existence of solutions can be proved under quite general assumptions, in particular, with-
out any regularity of aij and bi. In contrast to the case of classical weak solutions, such
solutions may be extremely irregular. For example, if d = 1, b = 0, a(t, x) = α(x) is an arbi-
trary positive measurable function such that 1/α is integrable, then the family of measures
µt ≡ α−1 dx solves the corresponding problem. Our approach to constructing solutions is
based on establishing certain a priori estimates of two types: global, which involve suitable
Lyapunov functions and yield uniform tightness, and local, which yield uniform boundedness
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of Lp-norms on compact sets and enable us to verify (1.3) for measures constructed by means
of tightness.

In the case when A and b are independent of t and satisfy the hypotheses of Theorem 3.1
below, our solution coincides with the aforementioned family (T ∗

t ν)t∈[0,1). In general, under
the hypotheses of Theorem 3.1, all possible solutions possess certain local differentiability
properties (in particular, the density pt of µt belongs to the Sobolev class Hp,1

loc ( � d)), which
enables one to write equation (1.3) in the classical weak form

∫ 1

0

∫
�

d

[∂u
∂t
pt − aij∂xi

pt∂xj
u− pt∂xi

aij∂xj
u+ ptb

i∂xi
u
]
dx dt = 0.

However, typically the functions pt are neither bounded nor square integrable over � d with
respect to Lebesgue measure, i.e., do not belong to the functional classes considered, e.g., in
[7], [11], [12], [13]. If the coefficients aij are not differentiable (as in the corollaries to the main
theorem), then the functions pt may not be differentiable as well (in the case of degenerate A
they even need not exist). As shown in [1], for nondegerate A, the differentiability properties
of pt are essentially the same as those of aij and simple examples show that they may be not
better.

The main novelty of the method in this paper is first to use extensively Lp-analysis with
respect to suitably chosen measures (different from Lebesgue measure) which are deeply
related to the coefficients of the given operator. Second, a piecewise constant approximation
enables us to use our previously obtained results in the elliptic case.

2. Auxiliary results

Let us recall some standard notation for various Sobolev classes on � d or on open sets
U ⊂ � d . The class Hp,1(U) consists of all functions f ∈ Lp(U) with generalized partial
derivatives ∂xi

f ∈ Lp(U). This space is equipped with its natural Sobolev norm ‖f‖p,1. Let

Hp,1
0 (U) be the closure in Hp,1(U) of C∞

0 (U) (the class of infinitely differentiable functions
with compact support in U). For a function u on (0, 1)× � d , we set ∂tu(t, x) := ∂u(t, x)/∂t.

Let B be an open ball in � d . Set S := ([0, 1)× ∂B) ∪ ({0}×B). The space
� p,1([0, 1], B)

consists of all measurable functions w on [0, 1] × B such that, for each t ∈ [0, 1), one has
w(t, · ) ∈ Hp,1(B) and

‖w‖ � p,1 ([0,1],B) :=
(∫ 1

0

‖w(t, · )‖p
p,1 dt

)1/p

<∞.

The space
� p,1

0 ([0, 1], B) is the subspace in
� p,1([0, 1], B) formed by the functions with

w(t, · ) ∈ Hp,1
0 (B) for all t ∈ [0, 1). For convenience of notation all functions defined on

[0, 1) × � d will be considered also as functions on [0, 1] × � d .

Lemma 2.1. If µ = (µt)t∈[0,1) satisfies (1.3) and (1.5), then for almost all t ∈ [0, 1) one has
∫

�
d

ζ(x)µt(dx) −

∫ t

0

∫
�

d

Lζ(s, x)µs(dx) ds =

∫
�

d

ζ(x) ν(dx) for every ζ ∈ C∞
0 ( � d). (2.1)

If, for each ζ ∈ C∞
0 ( � d), the function

∫
�

d

ζ(x)µt(dx) is continuous on [0, 1), then (2.1) holds

for all t ∈ [0, 1) and is equivalent to (1.3) and (1.5).

Proof. Let u(t, x) = ϕ(t)ζ(x), where ϕ ∈ C∞
0 (0, 1) and ζ ∈ C∞

0 ( � d), and let

f(t) :=

∫
�

d

ζ(x)µt(dx), h(t) :=

∫
�

d

Lζ(t, x)µt(dx).
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Then we derive from (1.3), where we use the identity ∂ζ/∂t = 0, that f ′ = h in the sense of
distributions on (0, 1). Taking into account (1.5) we arrive at (2.1), where, however, the full
measure set in t may depend on ζ. Hence such a set can be chosen common for any given
countable set of functions ζj. This enables one to find a common full measure set in (0, 1)
for all ζ ∈ C∞

0 ( � d), since there exists a countable family of functions ζj ∈ C∞
0 ( � d) such

that every function ζ ∈ C∞
0 ( � d) can be approximated uniformly with the first and second

derivatives by a sequence of functions in {ζj} with support in a common ball. Certainly, if∫
ζ(x)µt(dx) is continuous in t, then we obtain the above equality for all t. The converse is

also clear.

It is worth noting that the reason why we require that all measures µt (and not just almost
all) in the next lemma be probabilities is that this is the case when one deals with transition
probabilities. From the analytical point of view, this is not essential, of course.

Lemma 2.2. Let µ = (µt)t∈[0,1) be a family of probability measures on � d satisfying (1.3)
and (1.5), where ν is a probability measure on � d . Suppose that there exists a nonnegative

function Ψ ∈ C2( � d) such that Ψ ∈ L1(ν), lim
|x|→∞

Ψ(x) = +∞, and

LΨ(t, x) ≤ C µt dt-a.e. (2.2)

with some constant C ≥ 0. Then∫
�

d

Ψ(x)µt(dx) ≤ Ct+

∫
�

d

Ψ(x) ν(dx) (2.3)

for a.e. t ∈ [0, 1). If the functions t 7→

∫
�

d

ζ(x)µt(dx), ζ ∈ C∞
0 ( � d), are continuous on

[0, 1), then (2.3) is true for all t ∈ [0, 1).

Proof. It is clear that (2.1) remains true also for ζ ∈ C∞
b ( � d) such that ζ(x) = q = const

outside some ball. Indeed, the function ζ0 := ζ(x) − q is of compact support, Lζ0 = Lζ and∫
�

d

q µt(dx) =

∫
�

d

q ν(dx) = q.

Furthermore, due to the local integrability of the functions aij and bi with respect to µt dt,
(2.1) is clearly still true for ζ ∈ C2

b ( � d) (in place of C∞
0 ) such that ζ(x) = q = const outside

some ball. Now let us fix k ∈ � and take a function θk ∈ C2( � ) such that θk(r) = r if r ≤ k,
θk(r) = k + 1 if r ≥ k + 2, 0 ≤ θ′k(r) ≤ 1, and θ′′k(r) ≤ 0. By our assumption on Ψ, θk ◦ Ψ
is constant outside a sufficiently large ball. Hence, as explained above, (2.1) is true with
ζ(x) = ζk(x) := θk(Ψ(x)). We observe that

Lζk = θ′k(Ψ)LΨ + θ′′k(Ψ)〈A∇Ψ,∇Ψ〉 ≤ θ′k(Ψ)LΨ.

Therefore, for a.e. t ∈ [0, 1)
∫

�
d

θk ◦ Ψ dµt =

∫
�

d

θk ◦ Ψ dν +

∫ t

0

∫
�

d

Lζk dµs ds

≤

∫
�

d

θk ◦ Ψ dν +

∫ t

0

∫
�

d

(θ′k ◦ Ψ)LΨ dµs ds

≤

∫
�

d

Ψ dν + Ct.

By Fatou’s lemma we arrive at the estimate∫
�

d

Ψ dµt ≤

∫
�

d

Ψ dν + Ct.
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Corollary 2.3. Let (µt)t∈[0,1) be as in Lemma 2.2 and let Ψ(x) := |x|2. Suppose that

LΨ(t, x) ≤ C and traceA(t, x) ≤ C ′ + C ′′Ψ(x) µt dt-a.e. for some nonnegative constants

C, C ′ and C ′′, and that ν has all moments. Then, for every m ∈ � , there exists Cm, which

depends only on m, C, and

∫
�

d

|x|2m ν(dx), such that

∫
�

d

|x|2m µt(dt) ≤ Cm (2.4)

for a.e. t ∈ [0, 1). If the functions t 7→

∫
�

d

ζ(x)µt(dx), ζ ∈ C∞
0 ( � d), are continuous on

[0, 1), then (2.4) is true for all t ∈ [0, 1).

Proof. If m = 1 we can take C1 := C +
∫

�
d |x|

2 ν(dx) according to Lemma 2.2. Suppose that
our claim is true for some m ∈ � . Let us consider the function Ψm+1(x) := |x|2m+2. Then
we obtain

LΨm+1(t, x) = 4m(m+ 1)Ψm−1(x)〈A(t, x)x, x〉 + 2(m + 1)Ψm(x)LΨ(t, x)

≤ κ1Ψm + κ2Ψm+1,

where

κ1 := 2C(m+ 1) + 4C ′m(m + 1), κ2 := 4C ′′m(m + 1).

Now the same reasoning as in the proof of the above lemma yields the estimate
∫

�
d

θk ◦ Ψm+1 dµt ≤

∫
�

d

Ψm+1 dν +

∫ t

0

∫
�

d

θ′k(Ψm+1)
(
κ1Ψm + κ2Ψm+1

)
dµs ds

≤

∫
�

d

Ψm+1 dν + κ1Cm + κ2

∫ t

0

∫
�

d

θ′k(Ψm+1)Ψm+1 dµs ds,

where the last step follows by the hypothesis of induction. Let

fk(t) :=

∫
�

d

θk ◦ Ψm+1 dµt.

We observe that θ′k(t)t ≤ k+2
k
θk(t). Indeed, if t < k, then θk(t) = t and θ′k(t) = 1, if

t > k + 2, then θ′k(t) = 0, and if k ≤ t ≤ k + 2, then θk(t) ≥ k and θ′k(t) ≤ 1. Hence
θ′k(Ψm+1)Ψm+1 ≤

k+2
k
θk(Ψm+1) and the above estimate yields that

fk(t) ≤ C ′
m + κ2

k + 2

k

∫ t

0

fk(s) ds,

where C ′
m is some constant. By Gronwall’s inequality we obtain

fk(t) ≤ C ′
m exp

(
κ2
k + 2

k
t
)
.

Letting k → ∞, we arrive at the desired conclusion by Fatou’s lemma.

Corollary 2.4. Let µ = (µt)t∈[0,1) be a family of probability measures on � d satisfying (1.3)
and (1.5), where ν is a probability measure on � d . Let Ψ ∈ C2( � d) be a nonnegative function

such that lim
|x|→∞

Ψ(x) = +∞ and LΨ ≤ C µt dt-a.e., where C ≥ 0 is a constant. Then one can

find a nonnegative function Ψ0 ∈ C2( � d) such that lim
|x|→∞

Ψ0(x) = +∞, LΨ0 ≤ C µt dt-a.e.,

and Ψ0 ∈ L1(ν).
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Moreover, if � is a uniformly tight family of probability measures on � d and for every ν ∈
� there exists a solution µν = (µν

t )t∈[0,1) of the problem (1.3), (1.5) with initial condition ν,
then one can find a function Ψ0 as above such that

sup

{∫
�

d

Ψ0 dµ
ν
t , ν ∈ � , t ∈ [0, 1)

}
≤ sup

{
C +

∫
�

d

Ψ0 dν, ν ∈ �
}
<∞.

Proof. Indeed, one can find a function θ ∈ C2( � ) nonnegative on � + such that Ψ0 := θ◦Ψ ∈
L1(ν), lim

r→+∞
θ(r) = +∞, 0 ≤ θ′ ≤ 1, and θ′′ ≤ 0. Then LΨ0 ≤ θ′ ◦ ΨLΨ ≤ C. Moreover,

for any uniformly tight family of probability measures � , such a function θ can be found
common for all ν ∈ � with sup

ν∈ �
∫

�
d Ψ0 dν <∞.

Remark 2.5. It is obvious from the proof that the condition LΨ ≤ C in Lemma 2.2 can be
relaxed as follows: there exists a measurable set E ⊂ � d such that LΨ(t, x) ≤ C µt dt-a.e.

on (0, 1) × ( � d\E) and C ′ :=

∫ 1

0

∫

E

|LΨ(t, x)|µt(dx) dt <∞. Then in the left-hand side of

(2.3) one should add C ′.
It is also worth mentioning that if in the situation of Lemma 2.2 the functions aij are

bounded on bounded subsets of [0, 1]× � d and (2.2) holds only for x outside some bounded
set, then one can find another nonnegative function Ψ0 ∈ C2( � d) such that Ψ0 coincides
with Ψ outside some bounded set and LΨ0(t, x) ≤ C0 µt dt-a.e., where C0 is a positive
constant. Indeed, let θ ∈ C∞( � 1) be such that θ(s) = 0 if s ≤ −1, θ(s) = s if s ≥
1, 0 ≤ θ′ ≤ 1. There exists k such that LΨ ≤ C µt dt-a.e. if |x| ≥ k. Let M :=
sup

s
|θ′′(s)| sup

t∈[0,1],|x|≤k+2

〈A(t, x)∇Ψ(x),∇Ψ(x)〉 and take Ψ0(x) := θ(Ψ(x) − k). Then

LΨ0(t, x) = θ′(Ψ(x) − k − 1)LΨ(t, x) + θ′′(Ψ(x) − k − 1)〈A(t, x)∇Ψ(x),∇Ψ(x)〉 ≤ C +M,

since θ′(Ψ(x) − k − 1) = 0 if |x| ≤ k, LΨ(x) ≤ C if |x| ≥ k, and θ′′(Ψ(x) − k − 1) = 0 if
|x| ≤ k + 2.

Let us introduce the following conditions on A, b, p ∈ [1,+∞), and an open ball B ⊂ � d :
(C1) there exist two constants M1 = M1(B) and M2(B) such that for all i, j one has

det
(t,x)∈[0,1]×B

A(t, x) ≥M1 and sup
t∈[0,1]

‖aij(t, · )‖Hp,1(B) ≤M2.

(C2) there exists M3 = M3(B) such that for all i one has

sup
t∈[0,1]

‖bi(t, · )‖Lp(B) ≤M3.

It follows from (C1) and the Sobolev embedding theorem that if p > d, then every functions
aij has a jointly measurable version such that all functions x 7→ aij(t, x), t ∈ (0, 1), are Hölder
continuous of order 1 − d/p and bounded on B uniformly in t (their Hölder and sup-norms
on B are estimated by a constant depending on p, d, B and M2). Below we use the same
notation aij for these particular versions.

We need a technical result on weak solutions of the equation

∂tw − aij∂xi
∂xj

w = ∂xi
hi (2.5)

with zero boundary condition on S := ([0, 1) × ∂B) ∪ ({0} ×B), where hi ∈ Lp((0, 1) ×B).
A function w on [0, 1) × � d is said to be a solution of (2.5) with zero boundary condition if

(i) w is continuous and belongs to the space
� p,1

0 ([0, 1], B),
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(ii) for every function ϕ ∈ C∞
0 ( � 1 × � d) with support in [−1, 1) × B, one has

∫ 1

0

∫
�

d

[
−w∂tϕ+ aij∂xi

w∂xj
ϕ+ ϕ∂xi

aij∂xj
w

]
dx dt = −

∫ 1

0

∫
�

d

hi∂xi
ϕdx dt. (2.6)

Note that (2.6) implies also that, for every ξ ∈ C∞
0 (B), one has

∫
�

d

w(0, x)ξ(x) dx = 0,

which expresses the zero boundary value at t = 0, whereas the zero boundary value on
[0, 1] × ∂B is taken care of by the condition w(t, · ) ∈ Hp,1

0 (B). Indeed, let

f(t) :=

∫
�

d

w(t, x)ξ(x) dx, g(t) :=

∫
�

d

[
aij∂xi

w∂xj
ξ + ξ∂xi

aij∂xj
w + hi∂xi

ξ
]
dx.

Then, for every ψ ∈ C∞
0 ( � 1) with support in [−1, 1), we have

∫ 1

0

ψ′(t)f(t) dt =

∫ 1

0

ψ(t)g(t) dt.

Hence f ′ = −g in the sense of distributions. Therefore, f is absolutely continuous and there
is a constant C such that f(t) = C −

∫ t

0
g(s) ds, which yields C = 0.

Let p > d+ 2. Suppose that there exist two constants M1 and M2 (which depend only on
A and B) such that detA(t, x) ≥ M1 and sup

t
‖aij(t, · )‖Hp,1(B) ≤M2. Then, it follows from

the proof of [1, Lemma 3.5] that there exist R > 0 and M > 0 (which depend only on B, d,
p, M1, and M2) such that, for every open ball BR of radius R in B and any solution w of
equation (2.5) with zero boundary condition on ([0, 1) × ∂BR) ∪ ({0} × BR) one has

‖w‖ � p,1 ([0,1],BR) ≤M‖(hi)‖Lp((0,1)×BR). (2.7)

In a similar manner, for bi ∈ Lp([0, 1) × B), we say that a continuous function w on
[0, 1) × � d satisfies the equation

∂tw − aij∂xi
∂xj

w − bi∂xi
w = 0, w(0, x) = ζ(x), (2.8)

on [0, 1) × � d , where bi ∈ Lp([0, 1) × � d) and ζ ∈ C∞
0 ( � d), if, for every ball B ⊂ � d , w

belongs to the space
� p,1([0, 1], B), and, for every function ϕ ∈ C∞

0 ( � 1 × � d) with support
in [−1, 1) × � d , one has

∫ 1

0

∫
�

d

[
−w∂tϕ+ aij∂xi

w∂xj
ϕ+ ϕ∂xi

aij∂xj
w − ϕbi∂xi

w
]
dx dt =

∫
�

d

ζ(x)ϕ(0, x) dx (2.9)

One can verify that (2.9) indeed implies that, for every ξ ∈ C∞
0 ( � d), one has w(0, x) = ζ(x).

Lemma 2.6. Suppose w is a continuous function on [0, 1) × � d satisfying (2.8), where ζ ∈
C∞

0 ( � d), aij(t, · ) ∈ Hp,1
loc ( � d), bi(t, · ) ∈ Lp

loc( � d), t ∈ [0, 1), p > d+2, and for every centered

ball BR of radius R in � d , there exists a constant C(R) such that

sup
t∈[0,1)

[
‖aij(t, · )‖Hp,1(BR) + ‖bi(t, · )‖Lp(BR) + inf

x∈BR

detA−1(t, x)
]
≤ C(R).

Suppose that sup |w| ≤ 1. Then, for all R ∈ (0, 1), x, y ∈ BR/2 and all t, s ∈ [0, R], one has

|w(t, x) − w(s, y)| ≤M(R,C(R), T, d, p, ζ)
[
|t− s|γ + |x− y|γ

]
,

where M(R,C(R), d, p, ζ) and γ = γ(d, p) depend on the indicated objects only.
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Proof. Let us fix a function θ ∈ C∞
0 ( � d) such that 0 ≤ θ ≤ 1, θ|BR/2

= 1, supp θ ⊂ BR. The

function v(t, x) := θ(x)w(t, x) − θ(x)ζ(x) satisfies the equation

∂tv(t, x) − aij(t, x)∂xi
∂xj

v(t, x) − bi∂xi
v(t, x) = −h,

where for H as in (1.2) one has

h := wHθ + 2aij∂xi
w∂xj

θ −H(θζ)

= wHθ −H(θζ) − 2w∂xi

(
aij∂xj

θ
)

+ 2∂xi

(
waij∂xj

θ
)
,

with zero boundary condition on ([0, 1]×∂BR)∪ ({0}×BR). We shall prove that there exist
functions f i ∈ Lp([0, 1] ×BR) such that

∂xi
f i = h

and

‖(f i)‖Lp([0,1]×BR) ≤ K(R,C(R), d, p, ζ, θ),

where K(R,C(R), d, p, ζ, θ) depends only on the indicated objects. Indeed, for every fixed
t, let g(t, · ) be the solution of the Dirichlet problem

∆g = wHθ −H(θζ) − 2w∂xi
aij∂xj

θ − 2waij∂xi
∂xj

θ, x ∈ BR,

with zero boundary condition on ∂BR. Then we can set

f i(t, x) := ∂xi
g(t, x) + 2w(t, x)aij(t, x)∂xj

θ(x)

and employ the fact that the Lp-norm of the gradient of the solution of the above Dirichlet
problem is estimated via the Lp-norm of the right-hand side, which is majorized by

‖aij(t, · )‖Lp(BR) sup
x∈BR

[
|∂xi

∂xj
θ(x)| + |∂xi

∂xj
(θζ)(x)|

]
+ 2‖∂xi

aij(t, · )‖Lp(BR) sup
x∈BR

|∂xi
θ(x)|

+ ‖bi(t, · )‖Lp(BR) sup
x∈BR

[
|∂xi

θ(x)| + |∂xi
(θζ)(x)|

]
.

Therefore, according to (2.7) with hi := bi + f i, we majorize ‖w‖ � p,1 ([0,1],BR/2) by a number,

depending only on R, C(R), d, p, ζ and θ (but θ is fixed for each R). This yields (as in [1,
Theorem 3.8] by an embedding theorem from [10]), the uniform boundedness of the Hölder
norm of a certain order γ (depending only on d and p) of the function w on [0, R]×BR.

We shall say that a function V on � d is compact if lim
|x|→+∞

V (x) = +∞. We recall that

if A and b do not depend on t satisfy (C1) and (C2) with p > d for every ball and if
there is a compact function V such that lim

|x|→∞
HV (x) = −∞ (such a function is called a

Lyapunov function), then there exists a unique probability measure µ on � d satisfying the
equation H∗µ = 0 (see [2], [3]). In addition, µ = % dx, where % ∈ Hp,1

loc ( � d) is strictly positive
and locally Hölder continuous. Finally, as shown by W. Stannat [14], there exists a unique
strongly continuous semigroup (T µ

t )t≥0 on L1(µ) whose generator extends H. This semigroup
is Markovian and µ is its invariant measure and also a unique solution of H∗µ = 0 (see [3]).
Moreover, if p > d + 2, there is a semigroup of probability kernels Kt(x, dy) = %t(x, y) dy
such that for every f ∈ L1(µ) the function

Kµ
t f(x) :=

∫
�

d

f(y)%t(x, y) dy

is a version of T µ
t f and (t, x) 7→ Kµ

t f(x) is locally Hölder continuous on (0,∞) × � d . In
particular, the semigroup (Kµ

t )t≥0 of kernels is strong Feller. The measure µ is a unique
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invariant probability for the semigroup (Kt)t≥0. The proofs of these statements are given in
[1].

Lemma 2.7. Let H = aij∂xi
∂xj

+ bi∂xi
, where aij and bi are independent of t and satisfy

conditions (C1) and (C2) with p > d+ 2 for every ball. Assume that there exists a compact

function V ∈ C2( � d) such that lim
|x|→∞

HV (x) = −∞. Let µ be a probability measure satisfying

the equation H∗µ = 0 and let (T µ
t )t≥0, (Kµ

t )t≥0 be the corresponding semigroups introduced

above. Then there exists a sequence of locally bounded measurable mappings bl : � d → � d

such that, letting Hl := aij∂xi
∂xj

+ bil∂xi
, one has

(i) bl → b in measure µ and |bl(x)| ≤ |b(x)|,
(ii) lim

|x|→∞
HlV (x) = −∞ uniformly in l,

(iii) there exist unique probability measures µl satisfying H∗
l µl = 0 such that µl = %l dx,

the functions %l are locally uniformly Hölder continuous and converge locally uniformly to

the density % of µ, and, for the corresponding Markovian strongly continuous semigroups(
T (t, l)

)
t≥0

given by strong Feller kernels
(
K(t, l)

)
t≥0

, one has T (t, l)f → T µ
t f in L1(µ) for

all bounded measurable functions f . In addition, if f ∈ C∞
0 ( � d), then K(t, l)f(x) → Kµ

t f(x)
for all x ∈ � d .

Proof. Let us fix l ∈ � and consider the closed set Z :=
{
x : ∇V (x) = 0

}
. The function

α(x) := aij(x)∂xi
∂xj

V (x) is continuous and HV (x) = α(x) if x ∈ Z. Let us consider the
sets Sm := {m ≤ |x| < m + 1}, m = 0, 1, . . . . One can pick Nl,m so large that the set
{x ∈ Sm : |b(x)| > Nl,m} has Lebesgue measure less than 2−l−m, There exists δm > 0 such
that if x, x′ ∈ Sm and |x − x′| < δm, then |α(x) − α(x′)| < 1. We shall take δm = δm(l) so

small that the set Dm :=
{
x ∈ Sm : 0 < dist (x, Z) ≤ δm

}
has Lebesgue measure less than

2−l−m. Now, for every x ∈ Dm we set bl(x) := 0. Then we have HlV (x) ≤ sup
y∈Sm

HV (y) + 1

for all x ∈ Dm. If x ∈ Sm ∩ Z and |b(x)| ≤ Nl,m, we set bl(x) := b(x) and if |b(x)| > Nl,m,
we set bl(x) := 0. Next we consider x ∈ Sm\(Dm ∪ Z). Let

Ml,m := Nl,m +
(
inf

{
|∇V (y)| : y ∈ Sm\(Dm ∪ Z)

})−1(
m+ sup

y∈Sm

|α(y)|
)
.

Suppose that 〈b(x),∇V (x)〉 ≤ −1. If |b(x)| ≤ Ml,m, then we set bl(x) := b(x). If |b(x)| >
Ml,m, then we set bl(x) := −Ml,m∇V (x)/|∇V (x)|. We observe that in the latter case,

HlV (x) = α(x) −Ml,m|∇V (x)| ≤ sup
y∈Sm

|α(y)| −Ml,m inf
{
|∇V (y)| : y ∈ Sm\(Dm ∪ Z)

}

≤ −m.

Finally, if 〈b(x),∇V (x)〉 > −1, then bl(x) is defined to be b(x) or 0 depending on whether
|b(x)| ≤ Nl,m or |b(x)| > Nl,m. It follows from the above definitions that bl is locally bounded,
bl(x) = b(x) outside a set of Lebesgue measure less than 2−l and that at every point x ∈ Sm

one has HlV (x) ≤ sup
y∈Sm

HV (y) + 1 or HlV (x) ≤ −m. Therefore, we have (i) and (ii).

As explained above, there exist unique probability measures µl such that H∗
l µl = 0 and

that there exist unique Markovian strongly continuous semigroups
(
T (t, l)

)
t≥0

on L1(µl)

whose generators extend the operators Hl and which are given by strongly Feller kernels(
K(t, l)

)
t≥0

such that µl is invariant for
(
K(t, l)

)
t≥0

. In addition, according to [2], the mea-

sures µl are uniformly tight and possess strictly positive locally uniformly Hölder continuous
densities %l. Hence every subsequence in {µl} has a weak cluster point µ′. Obviously, µ′ has
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a density with respect to Lebesgue measure, hence it is readily verified that H ∗µ′ = 0. Since
µ is a unique probability measure satisfying this equation, we obtain µ′ = µ. Consequently,
{µl} converges weakly to µ. Together with the locally uniform Hölder continuity of the
functions %l this yields that these functions converge locally uniformly to the density % of µ.
So, in particular, lim

l→∞
‖µl − µ‖ = 0, where ‖ · ‖ denotes the variation norm.

Let ϕ ∈ C∞
0 ( � d) and let ul(t, x, ϕ) := K(t, l)ϕ(x). Since |bl(x)| ≤ |b(x)| and bl →

b in measure, one can readily deduce from the results in [1] (see [1, Corollary 3.11 and
Proposition 4.4]) that there is a subsequence {lk} such that the functions ulk converge locally
uniformly in [0,+∞)× � d to a bounded continuous function u(t, x, ϕ). Let us observe that,
given any countable collection {ϕn}, one can choose such a subsequence common for all ϕn.
In order to simply the notation we shall denote this subsequence again by {l} (we shall see
below that the assertion is indeed true for the whole sequence). We can pick the countable
family {ϕn} such that, for every bounded measurable function f , there exists a sequence
{ϕnk

} in {ϕn} convergent to f (Lebesgue) a.e. such that |ϕnk
(x)| ≤ sup |f | + 1. Let f be a

bounded Borel measurable function. We claim that

Ttf := lim
l→∞

T (t, l)f (2.10)

exists in L1(µ) and defines a Markovian strongly continuous semigroup of contractions on
every Lp(µ), p ∈ [1,∞). To prove the claim we may assume that |f | ≤ 1. We note that for
all t ≥ 0, since the measures µ and µl are equivalent, there is no ambiguity in considering
T (t, l)f as an element of L1(µ). Let us fix t > 0 and ε > 0. There exists l0 such that
‖µ − µl‖ < ε for all l ≥ l0. One can find ϕn such that |ϕn(x)| ≤ 2 and ‖f − ϕn‖L1(µ) < ε.
Next we choose l1 > l0 such that ‖T (t, l)ϕn − T (t, k)ϕn‖L1(µ) < ε for all l, k ≥ l1, which
is possible, since T (t, l)ϕn → u(t, · , ϕn) pointwise, hence also in L1(µ) by the dominated
convergence theorem. We observe that for every bounded measurable function g, one has

∫
�

d

|g| dµ ≤

∫
�

d

|g| dµl + ‖µ− µl‖ sup |g(x)|,

(2.11)
∫

�
d

|g| dµl ≤

∫
�

d

|g| dµ+ ‖µ− µl‖ sup |g(x)|.

Therefore, taking into account that T (t, l) is contractive on L1(µl) and |T (t, l)f | ≤ 1,
|T (t, l)ϕn| ≤ 2 for all l, we obtain for all l, k ≥ l1 that

‖T (t, l)f − T (t, k)f‖L1(µ)

≤ ‖T (t, l)f − T (t, l)ϕn‖L1(µ) + ‖T (t, l)ϕn − T (t, k)ϕn‖L1(µ) + ‖T (t, k)ϕn − T (t, k)f‖L1(µ)

≤ ‖T (t, l)f − T (t, l)ϕn‖L1(µl) + 3ε+ ε+ ‖T (t, k)ϕn − T (t, k)f‖L1(µk) + 3ε

≤ ‖f − ϕn‖L1(µl) + ‖f − ϕn‖L1(µk) + 7ε

≤ 2‖f − ϕn‖L1(µ) + 13ε ≤ 15ε.

So, Ttf := lim
l→∞

T (t, l)f exists in L1(µ). Clearly, Tt is Markovian. Furthermore, using (2.11)

again we obtain ∫
�

d

Ttf dµ =

∫
�

d

f dµ,

since µl is invariant for T (t, l). In particular, Tt extends to a contraction on every Lp(µ),
p ∈ [1,+∞). A similar reasoning shows that (Tt)t≥0 is a semigroup on L1(µ). Indeed, for all
t, s ≥ 0, Tt+sf is the limit of T (t + s, l)f = T (t, l)T (s, l)f in L1(µ) and TtTsf is the limit of
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T (t, l)Tsf . Let ε > 0 and let us take l0 such that ‖T (s, l)f − Tsf‖L1(µ) < ε and ‖µ− µl‖ < ε
for all l ≥ l0. Then

‖T (t, l)T (s, l)f − T (t, l)Tsf‖L1(µ) ≤ ‖T (t, l)T (s, l)f − T (t, l)Tsf‖L1(µl) + 2ε

≤ ‖T (s, l)f − Tsf‖L1(µl) + 2ε

≤ ‖T (s, l)f − Tsf‖L1(µ) + 4ε < 5ε.

Since t 7→ Ttϕn is continuous from [0,+∞) to Lp(µ) for all n, {ϕn} is dense in Lp(µ) and
each Tt is a contraction on Lp(µ), we obtain the strong continuity of (Tt)t≥0. The claim is
proved.

To complete the proof of this lemma it remains to show that

T µ
t f = Ttf ∀ t > 0, f ∈ L1(µ). (2.12)

Indeed, (2.12) implies that Tt is independent of the subsequence chosen in its definition,
so T (t, l)f → T µ

t f in L1(µ) for all bounded measurable functions f . Furthermore, for all
ϕ ∈ C∞

0 ( � d) and t > 0, by continuity Kµ
t ϕ(x) = u(t, x, ϕ) for all x ∈ � d , so the last part of

assertion (iii) follows from (2.12). Let
(
Ĥ,D(Ĥ)

)
be the generator of (Tt)t≥0 on L1(µ). By

virtue of the uniqueness result mentioned before this lemma, it suffices to show that for any
ϕ ∈ C∞

0 ( � d), one has

ϕ ∈ D(Ĥ) and Ĥϕ = Hϕ,

which in turn follows from the identity
∫

�
d

Ttϕ g dµ =

∫
�

d

ϕg dµ+

∫ t

0

∫
�

d

Ts(Hϕ) g dµ ds, ∀ t > 0, g ∈ C∞
0 ( � d). (2.13)

To prove (2.13) we need some preparations. Let l ∈ � . Consider the operator
(
H ′

l , C
∞
0 ( � d)

)

on L2(µl) defined by

H ′
lϕ := aij∂xi

∂xj
ϕ+ (2∂xi

aij + 2aij∂xi
%l/%l − bil)∂xj

ϕ.

Then (H ′
l)

∗µl = 0 and by [14] the closure of this operator generates a Markovian strongly
continuous semigroup of contractions T ′(t, l) on L1(µl) such that for all bounded measurable
f and all g one has ∫

�
d

T (t, l)f g dµl =

∫
�

d

fT ′(t, l)g dµl.

By [3, Remark 2.14] the functions ∂xi
%l/%l have uniformly bounded local Lp-norms. There-

fore, by the same arguments as above, T ′
tf := lim

l→∞
T ′(t, l)f exists in L1(µ) for all bounded

measurable functions f (for some subsequence of {lk} again denoted by {l}). By (2.11) we
obtain for all bounded measurable f and g

∫
�

d

Ttf g dµ =

∫
�

d

fT ′
tg dµ. (2.14)

Clearly, (2.14) extends to all g ∈ L1(µ). Now we can prove (2.13). Let ϕ, g ∈ C∞
0 ( � d). Then

∫
�

d

Ttϕ g dµ = lim
l→∞

∫
�

d

T (t, l)ϕ g dµ = lim
l→∞

∫
�

d

T (t, l)ϕ g dµl

= lim
l→∞

(∫
�

d

ϕg dµl +

∫ t

0

T (t, l)

∫
�

d

T (s, l)Hlϕ g dµl ds

)

=

∫
�

d

ϕg dµ+ lim
l→∞

∫ t

0

T (t, l)

∫
�

d

T (s, l)Hϕg dµl ds,
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since lim
l→∞

‖Hlϕ−Hlϕ‖L2(µl) due to the uniform boundedness of L2(U)-norms of %l on every

ball U . It remains to note that on the support of ϕ the densities %l converge uniformly to %
(which is strictly positive continuous), which yields

lim
l→∞

∫
�

d

T (s, l)Hϕg dµl = lim
l→∞

∫
�

d

HϕT (s, l)′g dµl

=

∫
�

d

HϕT ′
sg dµ =

∫
�

d

TsHϕg dµ.

In addition, these integrals are uniformly bounded in s. Hence we arrive at (2.13).

Remark 2.8. We observe that the existence of a Lyapunov function V was only used in
order to obtain the following three properties: (a) the very existence of the measures µl and
µ satisfying H∗

l µl = 0, H∗µ = 0 and generating the semigroups
(
T (t, l)

)
t≥0

and (T µ
t )t≥0,

for which they are invariant; (b) the convergence of µl to µ in the variation norm; (c) the
uniqueness of a probability measure satisfying H∗µ = 0 and the uniqueness of the associated
Markovian semigroup. Therefore, the same assertion is true if we require (a), (b) and (c) in
place of the existence of V , assuming that bl → b in measure µ and |bl(x)| ≤ |b(x)|+ 1 (and
keeping our usual local assumptions on aij and bi).

Lemma 2.9. Let p > d+2. Let us assume that there exist points 0 = τ0 < τ1 < · · · < τn < 1
such that A(t, x) = A(τk, x) and b(t, x) = b(τk, x) if t ∈ [τk, τk+1). Suppose also that, for

every fixed ball U ⊂ � d , one has inf
x∈U

detA(τk, x) > 0, aij(τk, · ) ∈ Hp,1(U), bi(τk, · ) ∈ Lp(U)

for each k. Finally, assume that there exist nonnegative compact functions Vl ∈ C2( � d) such

that one has

lim
|x|→∞

[
aij(τk, x)∂xi

∂xj
Vk(x) + bi(τk, x)∂xi

Vk(x)
]

= −∞. (2.15)

Then, for every probability measure ν, there exists a family µ = (µt)t∈[0,1) of probability

measures on � d satisfying (1.3) and (1.5) such that t 7→

∫
�

d

ζ dµt is continuous on [0, 1) for

all ζ ∈ C∞
0 ( � d).

Proof. Suppose first that the mappings |b(τk, · )| are locally bounded. As explained in the
proof of Lemma 2.7, for every k there exist a probability measure µk on � d and a strongly
continuous Markovian semigroup

(
T (t, k)

)
t≥0

on L1(µk) such that its generator extends the
operator

Hk := aij(τk, x)∂xi
∂xj

+ bi(τk, x)∂xi

and µk is invariant for T (t, k). Let K(t, k) denote the corresponding Markovian kernels. Let
us set

µt := K(t− τk, k)
∗K(τk, k − 1)∗ · · ·K(τ1, 0)∗ν if t ∈ [τk, τk+1).

We shall verify that (µt)t∈[0,1) satisfies (1.3) and (1.5). Indeed, (1.5) is true according to [1,
Proposition 4.4]. In order to verify (1.3), it suffices to consider u of the form ϕ(t)u(x) with
ϕ ∈ C∞

0 (0, 1) and u ∈ C∞
0 ( � d). For each k we have

∫ τk+1

τk

∫
�

d

[
ϕ′(t)u(x) + ϕ(t)Hku(x)

]
K(t− τk, k)

∗µτk
(dx) dt

= ϕ(τk+1)

∫
�

d

u(x)µτk+1
(dx) − ϕ(τk)

∫
�

d

u(x)µτk
(dx).

Here we use that d
dt
T (t − τk, k)u = T (t − τk, k)Hku, where d

dt
is taken in L1(µτk

). Indeed,

this holds by the following reasoning: we know that this is true if d
dt

is taken in L1(µk),
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hence it can be taken in µk-measure (which is equivalent to Lebesgue measure). Since µτk
is

absolutely continuous (which is proved in [1]) and since Hku is a bounded function (this is
the only place where we use the local boundedness of b(τk, · )), it follows by the dominated
convergence theorem that d

dt
can be taken in L1(µτk

). Taking into account the equality
ϕ(0) = ϕ(1) = 0, we arrive at (1.3).

Let us consider the general case. According to Lemma 2.7, for each k = 0, . . . , n, there
exists a sequence of locally bounded mappings bl(τk, · ) such that |bl(τk, x)| ≤ |b(τk, x)| + 1
and lim

|x|→∞
Hk,lV (x) = −∞ uniformly in l, where

Hk,lϕ(x) := aij(τk, x)∂xi
∂xj

ϕ(x) + bil(τk, x)∂xi
ϕ(x).

Let

Hl(t, x) := aij(τk, x)∂xi
∂xj

ϕ(x) + bil(τk, x)∂xi
ϕ(x) if t ∈ [τk, τk+1), k = 0, . . . , n.

As shown above, for each bl there exists a solution (µl
t)t∈[0,1) of the problem (1.3) and (1.5)

corresponding to Hl. The semigroups corresponding to the drifts bl(τk, x) (used above to
construct solutions for Hl) will be denoted by T (t, k, l) and K(t, k, l), respectively. As shown
in [1], the measures µl

t have densities %(l, t) such that, for every interval [c, d] ⊂ (0, 1) and
every closed ball B ⊂ � d , the functions Φl : (t, x) 7→ %(l, t)(x) are Hölder continuous on
[c, d] × B uniformly in l. Therefore, passing to a subsequence, we may assume that the
sequence {Φl} converges locally uniformly on (0, 1) × � d to a continuous function Φ. It is
readily seen that the family of measures µt := Φ(t, x) dx satisfies (1.3). We observe that
the sequence of measures µl

t is uniformly tight for each t ∈ [0, 1). Indeed, by Lemma 2.2,
the family of measures µl

t, t ∈ [0, τ1], l ∈ � , is uniformly tight. It follows by Corollary 2.4
that the family of measures µl

t, t ∈ [τ1, τ2], l ∈ � , is uniformly tight as well. Repeatedly
applying Corollary 2.4 we obtain the uniform tightness of the measures µl

t, t ∈ [0, 1), l ∈ � .
Together with the convergence of densities this yields that the measures µt are probabilities.
It remains to verify (1.5). Let ζ ∈ C∞

0 ( � d). It suffices to show that the functions

t 7→ gl(t) :=

∫
�

d

ζ dµl
t

are uniformly continuous on [0, 1) and are equal to
∫
ζ dν at t = 0. We have for t ∈ [0, τ1]

and u(t, · , l) := K(t, 0, l)ζ that

gl(t) =

∫
�

d

u(t, x, l) ν(dx). (2.16)

So, gl(0) =
∫

�
d ζ dν for all l.

We claim that u(t, · , l), t ∈ [0, τ1], satisfies (2.9). Suppose the claim is proved. Then by
Lemma 2.6 and our assumptions on bl, the functions s 7→ u(t, x, l) are Hölder continuous
on [0, τ1] uniformly in l, x ∈ B, t ∈ [0, τ1], whence it follows that the functions gl are
equicontinuous. Indeed, given ε > 0, one can find a ball B such that ν(B) > 1− ε/4. There
exists δ = δ(ε) > 0 such that |u(t, x, l)−u(t′, x, l)| < ε/4 for all x ∈ B and all l if |t− t′| < δ.
Hence

|gl(t) − gl(t
′)| ≤

ε

2
+ 2ν( � d\B) < ε

for all l if |t− t′| < δ. In particular, we obtain that lim
l→∞

gl(t) =
∫
ζ dν uniformly in l, which

yields (1.5). It remains to prove the claim. To this end we first note that by exactly the
same arguments as used above we see that

d

dt
u(t, · , l) = H0,lu(t, · , l) = T (t, l)H0,lζ
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with d
dt

taken in L1
loc(dx) (instead of L1(µ0)). Furthermore, |u(t, · , l)| ≤ ‖ζ‖∞ and u(t, · , l) ∈

Hp,1
loc ( � d) by [1, Corollary 2.13]. Let ϕ ∈ C∞

0 (−∞, τ1) × � d . Then we have for all u(l) :=
u( · , · , l) integrating by parts

∫ 1

0

∫
�

d

[
−u(l)∂tϕ+ aij∂xi

u(l)∂xj
ϕ+ ϕ∂xi

aij∂xj
u(l) − ϕbil∂xi

u(l)
]
dx dt

= −

∫ 1

0

∫
�

d

d

dt
(u(l)ϕ) dx dt−

∫ 1

0

∫
�

d

H0,lu(l)ϕdx dt+

∫ 1

0

∫
�

d

d

dt
u(l)ϕdx dt

=

∫
�

d

ζ(x)ϕ(0, x) dx.

This completes the proof.

3. Main results

Theorem 3.1. Let p > d+ 2 and let A and b satisfy (C1) and (C2) for every ball. Assume

that for a.e. t ∈ (0, 1), there exist a nonnegative compact function Vt ∈ C2( � d) such that

one has

lim
|x|→∞

[
aij(t, x)∂xi

∂xj
Vt(x) + bi(t, x)∂xi

Vt(x)
]

= −∞. (3.1)

Finally, assume that there exists a nonnegative compact function Ψ ∈ C2( � d) and a constant

C ≥ 0 such that

LΨ ≤ C a.e. in (0, 1) × � d . (3.2)

Then, for every probability measure ν, there exists a family µ = (µt)t∈[0,1) of probability

measures on � d satisfying (1.3) and (1.5) such that t 7→

∫
�

d

ζ dµt is continuous on [0, 1) for

every ζ ∈ C∞
0 ( � d).

Proof. We may assume that (3.1) holds for all t ∈ (0, 1), since for those t which do not satisfy
this condition, we may redefine A and b by setting A(t, x) = A(t0, x), b(t, x) = b(t0, x), where
t0 is any fixed point for which that condition is satisfied. Clearly, this does not affect other
hypotheses and (1.3) is not sensitive to such redefinitions of the coefficients.

Our strategy of proof is as follows. We have already proved the result in the case when
A(t, x) and b(t, x) are piece-wise constant in t. Now we consider a sequence of solutions µk =
(µk

t )t∈[0,1) corresponding to Ak(t, x) and bk(t, x) which coincide with A(tk,j, x) and b(tk,j, x) if
t ∈ [tk,j, tk,j+1), where 0 = tk,0 < tk,1 < . . . < tk,Nk

= 1 is a suitably chosen partition of (0, 1]
into Nk intervals. We shall verify that the measures µk

t , t ∈ [0, 1), k ∈ � , are uniformly tight
on � d . Finally, the desired solution µ will be constructed as a weak cluster point of {µk}.
In order to show that µ satisfies our equation, certain uniform a priori estimates for {µk}
will be established. First of all, let us choose a sequence of decreasing partitions of [0, 1) as
follows (in the case when A and b are continuous in t, one can take tk,j = j2−k, Nk = 2k,
which does not work in general as we shall see). We recall a well-known result of Lebesgue
according to which, for any integrable function f on [0, 1], one can find a decreasing sequence
of partitions [0, tk,1), [tk,1, tk,2), . . . ,[tk,Nk

, 1) (i.e., every partition contains all partition points

of the previous one) such that the Riemann sums
Nk∑
j=1

f(tk,j−1)(tk,j − tk,j−1), where tk,0 = 0,

converge to the integral of f . We shall call such a sequence of partitions a Riemannian
sequence of partitions. Moreover, given a countable family of integrable functions fn, one
can choose common points tk,j for all fn. The simplest way to produce such partitions is
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to employ the fact established by Jessen [9] that, for any function f that has period 1 and

is integrable on [0, 1], the Riemann sums Rk(f, s) := 2−k
2k∑

j=1

f(s + j2−k) converge to the

integral of f over [0, 1] for almost all s. We shall apply Lebesgue’s result to the following
countable collection of functions. Let {ζn} ⊂ C∞

0 (0, 1) and {ϕm} ⊂ C∞
0 ( � d) be two sequences

of functions with the following property: for every function u that is continuous and has
compact support in (0, 1) × � d , there exists a sequence hj of finite linear combinations of
the functions ζnϕm with rational coefficients such that the functions hj vanish outside some
compact set containing the support of u and converge to u uniformly. Let us consider
functions ζn(t)αi,j,m(t) and ζn(t)βi,j,m(t), where

αi,j,m(t) =

∫
�

d

ϕm(x)aij(t, x) dx, βi,m(t) =

∫
�

d

ϕm(x)bi(t, x) dx.

Let us choose for the obtained countable set of functions ζnαi,j,m, ζnβi,j,m a common Rie-
mannian sequence of decreasing partitions formed by the points tk,j, j = 0, . . . , Nk. Let us
set Ak = (aik

k ), bk = (bik), where

aij
k (t, x) = aij(tk,l−1, x), b

i
k(t, x) = bi(tk,l−1, x) if t ∈ [tk,l−1, tk,l).

We observe that the following is true. Let u ∈ C∞
0 ((0, 1)× � d), let J be a closed interval in

(0, 1), let K be a closed ball in � d such that supp u ⊂ J ×K, and let {%n} be a sequence of
continuous functions that converges to a function % uniformly on J × K. Then, for all i, j
one has

lim
k→∞

∫ 1

0

∫
�

d

aij
k (t, x)u(t, x)%k(t, x) dx dt =

∫ 1

0

∫
�

d

aij(t, x)u(t, x)%(t, x) dx dt, (3.3)

lim
k→∞

∫ 1

0

∫
�

d

bik(t, x)u(t, x)%k(t, x) dx dt =

∫ 1

0

∫
�

d

bi(t, x)u(t, x)%(t, x) dx dt. (3.4)

Let us verify (3.3). Considering the functions u%n and u% we arrive at the case where u = 1
and the functions %n vanish outside J ×K. It follows from their uniform convergence that
it suffices to show that

lim
k→∞

∫ 1

0

∫
�

d

aij
k (t, x)%(t, x) dx dt =

∫ 1

0

∫
�

d

aij(t, x)%(t, x) dx dt.

In turn, due to our choice of {ζn} and {ϕm}, it is enough to consider %(t, x) = ζn(t)ϕm(x),
i.e., to show that

lim
k→∞

Nk∑

l=1

αi,j,m(tk,l−1)

∫ tk,l

tk,l−1

ζn(t) dt =

∫ 1

0

ζn(t)αi,j,m(t) dt.

According to our construction, we have

lim
k→∞

Nk∑

l=1

ζn(tk,l)αi,j,m(tk,l−1)(tk,l − tk,l−1) =

∫ 1

0

ζn(t)αi,j,m(t) dt.
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Now it suffices to note that, letting δk = max
l≤Nk

|tk,l − tk,l−1|, one has

∣∣∣
Nk∑

l=1

αi,j,m(tk,l−1)

∫ tk,l

tk,l−1

ζn(t) dt−

Nk∑

l=1

ζn(tk,l−1)αi,j,m(tk,l)(tk,l − tk,l−1)
∣∣∣

≤ sup
s∈(0,1)

|αi,j,m(s)| sup
t,s : |t−s|≤δk

|ζn(t) − ζn(s)|,

which tends to 0 as k → ∞ by the uniform continuity of ζn. The same reasoning proves
(3.4).

We now turn to the main statement. According to Lemma 2.9, for the k-th partition, we
have a solution µk = (µk

t )t∈[0,1) of our problem corresponding to the operator Hk given by

aij
k (t, x) = a(tk,j, x), b

i
k(t, x) = b(tk,j, x) if t ∈ [tk,j, tk,j+1). We have µk

t = %k(t, x) dx, where
the functions %k(t, x) are jointly continuous on (0, 1)× � d . According to Corollary 2.4, there
is a nonnegative function Ψ ∈ C2( � d) such that Ψ(x) → +∞ as |x| → +∞, LΨ ≤ C and
Ψ ∈ L1(ν). By Lemma 2.2, the family of measures µk

t , t ∈ [0, 1), k ∈ � , is uniformly tight.
By the same reasoning as in Lemma 2.9, passing to a subsequence, we may assume that the
functions %k(t, x) converge uniformly on compact subsets in (0, 1)× � d to a function %(t, x).
Therefore, we obtain probability measures µt := %(t, x) dx, which satisfy (1.3).

The last step is to show that µ := (µt)t∈[0,1) satisfies (1.5). It suffices to show that, for
every ζ ∈ C∞

0 ( � d), the functions

gk(t) =

∫
�

d

ζ(x)µk
t (dx)

are equicontinuous on [0, 1/2]. However, this is clear from the analogous step in the proof
of Lemma 2.9, since every gk is the limit of the functions gk,l corresponding to the approxi-
mations constructed in the lemma cited (see (2.16)), and those functions are equicontinuous
also with respect to k, which follows from the proof of the equicontinuity of the functions
in (2.16).

Remark 3.2. (i) It is clear from the proof of the above theorem that in the case when the
functions bi are bounded on bounded subsets of (0, 1)× � d , the nondegeneracy condition on
A can be slightly relaxed as follows: it suffices to have

inf
(t,x)∈[τ1,τ2]×K

detA(t, x) > 0

for every [τ1, τ2] ⊂ (0, 1) and every compact set K ⊂ � d .
(ii) It follows from Remark 2.5 and the above proof that condition (3.2) can be relaxed as

follows: there exists a compact set K ⊂ � d such that LΨ(t, x) ≤ C a.e. in (0, 1) × ( � d\K).
(iii) It is also clear that the solution constructed above has the following property: for

a.e. t, the measure µt has a density from the Sobolev class Hp,1
loc ( � d). As shown in [1], this

is true for any solution of (1.3) under our local assumptions on A and b. Hence, under these
assumptions, equation (1.3) can be written in the classical weak form after integrating by
parts in the term with ∂xi

∂xj
u. Below we consider more general equations whose solutions

do not have such a property.

Corollary 3.3. Suppose that detA(t, x) is uniformly bounded on [0, 1) × � d and, for every

compact set K ⊂ � d and every [τ1, τ2] ⊂ (0, 1), one has

inf
(t,x)∈[τ1 ,τ2]×K

detA(t, x) > 0, sup
(t,x)∈[0,1)×K

|b(t, x)| <∞.
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Assume also that

lim
|x|→∞

〈b(t, x), x〉 = −∞ for a.e. t ∈ (0, 1) and sup
(t,x)∈[0,1)×

�
d

〈b(t, x), x〉 = M <∞. (3.5)

Then, for every probability measure ν on � d , there exists a family (µt)t∈[0,1) of probability

measures on � d satisfying (1.3) and (1.5) such that t 7→

∫
�

d

ζ dµt is continuous on [0, 1) for

every ζ ∈ C∞
0 ( � d).

If, in addition, the functions bi and aij are continuous in x for a.e. fixed t, then the same

is true without the assumption that detA is strictly positive.

Proof. As in the theorem, we may assume that the first relation in (3.5) holds for each t.
We shall find a sequence of smooth mappings Aj(t, x) such that

sup
j

sup
(t,x)∈[0,1)×

�
d

‖Aj(t, x)‖ ≤ S + 1 <∞ (3.6)

and, for every compact set K ∈ � d and every [τ1, τ2] ⊂ (0, 1), one has

inf
j

inf
(t,x)∈[τ1,τ2]×K

detAj(t, x) > 0.

Then we shall verify that the sequence of the corresponding solutions (µj
t)t∈[0,1) has a subse-

quence which is weakly convergent for each t and that its weak limit is the desired solution.
The approximations Aj can be given by A ∗ jdθ(jx) + j−1I, where θ is a smooth proba-
bility density on � d with support in the unit ball U . Then (3.6) is clear and, for each
fixed j, the functions ∂xma

ik
j are uniformly bounded on bounded subsets in (0, 1) × � d and

detAj ≥ j−d. In addition, given [τ1, τ2] ⊂ (0, 1) and k > 0, for every unit vector e and all
(t, x) ∈ [τ1, τ2] × kU , one has

〈Aj(t, x)e, e〉 = j−1 +

∫

U

〈A(t, x− y/j)e, e〉 θ(y) dy ≥ inf
(t,z)∈[τ1 ,τ2]×(k+1)U

〈A(t, z)e, e〉

≥ inf
(t,z)∈[τ1,τ2]×(k+1)U

(
detA(t, z)

)1/d

> 0. (3.7)

Let us denote by Lj the parabolic operator obtained from L by replacing A with Aj. Let us
set Vt(x) = 〈x, x〉. Then, since supj,t,x ‖Aj(t, x)‖ ≤ S + 1, we obtain for every fixed t that

lim
|x|→∞

LjVt = −∞. Let us fix a probability measure ν on � d . Letting Ψ0(x) = 〈x, x〉, one

has LΨ0 ≤ 2dS + 2M . Therefore, by Corollary 2.4, we can replace Ψ0 with a nonnegative
compact function Ψ ∈ C2( � d) such that LΨ ≤ 2dS + 2M and Ψ ∈ L1(ν). In addition, Ψ
constructed in that corollary has the form Ψ = θ(Ψ0) with 0 ≤ θ′ ≤ 1 and θ′′ ≤ 0. Hence

LjΨ(t, x) = 2θ′(|x|2)traceAj(t, x) + 4θ′′(|x|2)〈Aj(t, x)x, x〉

+ 2θ′(|x|2)〈b(t, x), x〉 ≤ 2dS + 2M.

According to the above theorem, for each j, there exists a family of probability measures
(µj

t)t∈[0,1) on � d satisfying (1.3) and (1.5) for the operator Lj. In addition, µj
t = fj(t, x)dx

for t > 0. It follows by Lemma 2.2 that, for every t ∈ [0, 1), the sequence of measures
µj

t is uniformly tight. Let ϕ ∈ C∞
0 ( � d) be fixed. Since the functions |aik

j |, |∂xi
∂xk

ϕ|, and
|〈∇ϕ(x), b(t, x)〉| are uniformly bounded, we conclude that the functions

vj(t) :=

∫
�

d

[
aik

j ∂xi
∂xk

ϕ+ bi∂xi
ϕ
]
dµj

t
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are uniformly bounded in t ∈ [0, 1) and j. Therefore, the functions t 7→
∫

�
d ϕdµ

j
t , whose

generalized derivatives are the functions vj, are uniformly Lipschitzian. Hence, given a
sequence of functions ϕl ∈ C∞

0 ( � d), we can choose a subsequence jn such that all the
sequences

∫
�

d ϕl dµ
jn
t , l ∈ � , will be convergent uniformly on [0, 1). Together with the

uniform tightness of {µj
t} for each fixed t, this yields a subsequence such that, for every

t ∈ [0, 1), the measures µjn
t converge weakly to some probability measures µt. Clearly, for

every ϕ ∈ C∞
0 ( � d), the function

∫
�

d ϕdµt is Lipschitzian. Hence (1.5) is satisfied.
Let us show that for almost every t the measure µt is absolutely continuous and that

(1.3) is satisfied. To this end, it suffices to show that, given a closed ball B in � d and a
closed interval I ⊂ (0, 1), the functions fj(t, x) have uniformly bounded norms in Lr(I×B),
where r = (d + 1)′ = 1 + 1/d. Indeed, then, by Fatou’s theorem, for a.e. fixed t, one has
lim inf ‖fjn(t, · )‖Lr(B) < ∞, whence µt = f(t, x)dx with f(t, · ) ∈ Lr(B) for such t. In
addition, the sequence fjn contains a subsequence which converges weakly in Lr(B), hence
it converges to f (by the weak convergence of measures), which easily yields (1.3).

Now, the last step is to show indeed the uniform boundedness of fj in Lr(I × B). Let us
take a ball B′ with the same center as B and the radius by 1 bigger than that of B. Let us
also take a closed interval I ′ ⊂ (0, 1) strictly containing I. Set Ω = I ×B, Ω′ = I ′ ×B′. We
observe that for every smooth function ϕ with support in the interior of Ω′, one has

∫ 1

0

∫
�

d

[
∂tϕ+ aik

j ∂xi
∂xk

ϕ
]
dµj dt ≤ C sup |∇xϕ|,

where C = supΩ′ |b(t, x)|. It is easily seen from the proof of Theorem 3.1 in [1] (see also [1,
Corollary 3.2]) and estimate (3.7) that there is a constant κ = κ(C, d,Ω,Ω′, inf

Ω′

detA) such

that ‖fj‖Lr(Ω) ≤ κ.
Finally, note that in the case when the coefficients are continuous in x for a.e. t the

reasoning is similar and even simpler, since there is no need to have local Lp-estimates.

A more general result is valid if A and b are continuous in x.

Corollary 3.4. Suppose that the functions x 7→ aij(t, x) and x 7→ bi(t, x) are continuous

for each t ∈ [0, 1) and are bounded on bounded sets in [0, 1) × � d . In addition, suppose

that, for every fixed ball U ⊂ � d , the functions x 7→ aij(t, x), t ∈ [0, 1), are equicontinuous

on U . Assume further that for each t ∈ [0, 1), there exist nonnegative compact functions

Vt ∈ C2( � d) such that

lim
|x|→∞

[
aij(t, x)∂xi

∂xj
Vt(x) + bi(t, x)∂xi

Vt(x)
]

= −∞.

Finally, assume that there exists a nonnegative compact function Ψ ∈ C2( � d) and a constant

C ≥ 0 such that

LΨ ≤ C.

Then, for every probability measure ν, there exists a family µ = (µt)t∈[0,1) of probability

measures on � d satisfying (1.3) and (1.5) such that t 7→

∫
�

d

ζ dµt is continuous on [0, 1) for

every ζ ∈ C∞
0 ( � d).

Moreover, if detA is separated from zero on compact subsets in (0, 1) × � d , then the

continuity of b in x is not needed.

Proof. The reasoning is similar to the previous corollary. First of all, according to Remark
2.5 one can choose a nonnegative compact function Ψ ∈ C2( � d) such that LΨ ≤ C and
Ψ ∈ L1(ν). Next, by using that the functions x 7→ aij(t, x), t ∈ (0, 1), are equicontinuous on
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every fixed ball U ⊂ � d , i.e., have a common (for all t ∈ (0, 1)) modulus of continuity, one
can find such approximations Aj = (aij

n ) of A that the functions aij
n (t, x) are smooth in x,

inf(t,x)∈(0,1]×U detAj > 0 for every ball U in � d , lim
|x|→∞

[
aik

j ∂xi
∂xk

Vt(x)+b
i(t, x)∂xi

Vt(x)
]

= −∞

for each t ∈ (0, 1), and
[
aik

j ∂xi
∂xk

Ψ(x) + bi(t, x)∂xi
Ψ(x)

]
≤ C + 1 for all j. Then the rest of

the proof is the same as in the previous corollary.

Remark 3.5. (i) All the above results remain valid, of course, for any time interval [0, T )
in place of [0, 1) provided that the corresponding hypotheses are valid for that interval. It is
also worth noting that in place of � d we could consider a general complete Riemannian man-
ifold M . All local statements, of course, are valid automatically, and the techniques based
on Lyapunov functions are justified in a similar manner (see [2] and [4], where analogous
ideas are applied to elliptic equations). In particular, construction of suitable Lyapunov on
manifolds is discussed in [4].

(ii) The problem of uniqueness of our solutions is open. We recall that even in the time-
independent case with A = I and smooth b, there might be no uniqueness if there is no
Lyapunov function (see [3]). Another interesting open problem concerns the behaviour of
the densities pt(x) of the measures µt as t → 0. For example, if the initial value µ0 = ν
has a continuous density and b is locally bounded, then one can show that pt(x) is jointly
continuous up to t = 0. We do not know whether this is true for general b.

In a forthcoming paper we shall obtain some infinite dimensional extensions of the above
results. Let us give a sample result. Let X be a separable Hilbert space with inner product
〈x, y〉. Let {en} be an orthonormal basis in X. Set xi = 〈x, ei〉. Let FC∞

0 ((0, 1) ×X, {en})
denote the space of all functions of the form u(t, x) = u0(t, x1, . . . , xn) with u0 ∈ C∞

0 ((0, 1)×
� n). The class of all functions u(x) = u0(x1, . . . , xn) with u0 ∈ C∞

0 ( � n) is denoted by
FC∞

0 (X, {en}). Suppose that we have a mapping b : [0, 1] × X → X and a mapping A on
[0, 1] × X with values in the space of nonnegative symmetric trace class operators on X
such that 〈b, ei〉 and 〈Aei, ej〉 are Borel measurable. We shall say that a family of Borel
probability measures µt, t ∈ [0, 1), solves the problem

L∗µ = 0, µ0 = ν, (3.8)

where ν is a given Borel probability measure on X if, for every u ∈ FC∞
0 ((0, 1) × X, {en})

and every v ∈ FC∞
0 (X, {en}), one has

∫ 1

0

∫

X

[
∂tu(t, x) +

∑

i,j

〈A(x)ei, ej〉∂ei
∂ej
u(t, x)

+ 〈b(t, x),∇xu(t, x)〉
]
µt(dx) dt = 0, (3.9)

lim
t→0

∫

X

v(x)µt(dx) =

∫

X

v(x) ν(dx), (3.10)

where we assume also the existence of all integrals. A typical existence result which can be
proved by our methods is the following.

Theorem 3.6. Assume that, for some constants C0, C1,n, C2,n, mn, one has for all t and n

lim
|x|→∞

〈b(t, x), x〉 = −∞, 〈b(t, x), x〉 ≤ C0,

|〈b(t, x), en〉| ≤ C1,n + C2,n|x|
mn , traceA(t, x) ≤ C0.
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Assume also that, for all n, k, every ball U ⊂ X and every fixed t, the functions x 7→ 〈b(x), en〉
and x 7→ 〈A(t, x)en, ek〉 are continuous on U with the weak topology. Then, for every Borel

probability measure ν possessing all moments on X, there exists a family µ = (µt)t∈[0,1) of

Borel probability measures µt, t ∈ [0, 1), on X such that µ solves (3.8).

The proof among other things will appear in a forthcoming paper.
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