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Abstract

Infinitely extended two-dimensional reaction–diffusion lattices composed of bistable
cells are considered. A class of particular stable stationary solutions, called pattern
solutions, is introduced and examples are given. Pattern solutions persist at high
diffusion coefficients whereas all other stable stationary solutions, with the exception
of the constant solutions, disappear one after the other when the diffusion constant
is increased. Furthermore, the new concept of avalanche wave is introduced, where
upon a sufficiently large perturbation, a pattern solution is transformed progressively
into a constant solution or into another stable stationary solution that exists at a
given diffusion constant. These waves exist even for (odd-) symmetrical nonlineari-
ties of the individual cells, whereas it is well known that in this case other waves, as
e.g. kinks, do not propagate. The existence of certain classes of avalanche waves is
discussed theoretically and the theoretical results are confirmed numerically.
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1 Introduction

Reaction–diffusion equations constitute good models for many systems in physics [8,
23, 25, 28, 30, 37], chemistry[38, 60], biology[3, 4, 6, 13, 21, 27, 32, 34, 35, 39, 56,
63, 64] and engineering [5, 15, 16, 17, 18, 19, 44-47, 52-55, 57, 60, 61]. Recently,
spatially discrete reaction–diffusion equations have received much attention in the
research community of nonlinear dynamics [1, 2, 7, 9, 11, 12, 14, 20, 22, 26, 29, 31,
33, 36, 40-43, 50, 58, 59, 62, 65, 66]. They reproduce the dynamical phenomena of the
corresponding partial differential equations. In addition, a number of new phenomena
have been discovered that are not present in PDE’s [1, 7, 9, 10, 12, 13, 15, 26, 33, 40,
43, 49].

Diffusively coupled bistable cells constitute some of the simplest reaction–diffusion
systems. Nevertheless, their dynamics has many unexpected phenomena. In the
previous paper, we have characterized stable stationary solutions of 1-d chains of
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diffusively coupled bistable cells with cubic and cubic-like nonlinearities. We have
shown the presence of spatial chaos for any values of the diffusion constant, and we
have shown the existence of a certain number of stationary stable solutions that have
no counterparts in the corresponding PDE, in particular, pattern solutions. It is
well-known that in the case of bistable cells with non-symmetric cubic nonlinearities
there exist propagating kinks. Their propagation velocity depends on asymmetry of
the cubic function. In the symmetric case considered in [9, 28, 42], however, kinks do
not propagate, but constitute themselves stable stationary solutions.

In this paper, we extend the analysis of [49] to two-dimensional lattices with cubic
and cubic-like nonlinearities. We prove existence of pattern solutions for this case, too.
Furthermore, we show how initial conditions given by different stationary solutions
evolve as propagating wave–fronts. Note that this happens in the case of a symmetric
nonlinearity where, as usual, there are no propagating waves. We call this new type
of waves traveling avalanche waves.

2 Reaction–diffusion systems

Nonlinear two dimensional spatially discrete reaction–diffusion systems with bistable
nonlinearity are described by the following infinite system of ordinary differential
equations on the lattice Z2:

u̇n,m = d(un+1,m + un−1,m + un,m+1 + un,m−1 − 4un,m)− f(un,m),

(m,n) ∈ Z2.
(1)

Here d is a real parameter (the coupling or diffusion constant) that multiplies the
discrete Laplacian, f is a bistable nonlinearity given by the cubic function

f(u) = u(u2 − 1) (2)

or the cubic-like piecewise-linear function

f(u) = u− signu =

u− 1, u > 0,
u+ 1, u < 0,

0, u = 0.
(3)

Eq. (1) has exact stationary stable solutions, un,m ≡ 1 and un,m ≡ −1. We will
call them trivial stable solutions.

A nontrivial uniformly bounded stationary solution of Eq. (1), un,m, satisfies the
condition |un,m| < 1.
This is an analogue of Lemma 3.1 [49].

A bounded stationary solution of Eq. (1), un,m, with cubic-like nonlinearity (3) is l2-
stable if and only if un,m 6= 0 for all n,m ∈ Z2. This is an analogue of Lemma 3.2 [49].

Let un,m be a stable stationary solution of Eq. (1). The signature function ûn,m =
signun,m is called the skeleton of the solution un,m. A stable stationary solution
un,m is uniquely defined by its skeleton ûn,m = signun,m, and this is an analogue of
Theorem 3.1 [49].

The proofs of the three results above are similar to the corresponding ones in [49]
and, hence, are omitted.
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3 Pattern solutions

A stationary solution of Eq. (1), un,m is called a pattern solution if, for an arbitrary
value of the coupling constant d > 0, the signature function ûn,m = signun,m is a
skeleton of a stable solution of Eq. (1) [49].

Examples of periodic pattern solutions of Eq. (1) with nonlinearity (3) are the
following.

a) A strip pattern. This solution un,m does not depend on m and has period in n
equal to 2p,

un,m = (−1)n(1 + 4d)−1, for p = 1,
un,m = (−1)[n/2](1 + 2d)−1, for p = 2,

where [n/2] denotes the integer part of the number n/2.

Fig. 1 shows a strip pattern for p = 16 and d = 30.

b) A checkerboard pattern. This solution has period in n and m equal to 2p,

un,m = (−1)n+m(1 + 8d)−1, for p = 1,
un,m = (−1)[n/2]+[m/2](1 + 4d)−1, for p = 2.

Fig. 2 shows a checkerboard pattern for p = 16 and d = 30.

4 Definition of avalanche waves

Among nonstationary solutions of Eq. (1), an important role is played by stabilizing
solutions, that is, solutions that tend to a stationary solution of Eq. (1) as t → ∞.
The stabilization process itself can generate propagating waves. We distinguish a new
class of stabilizing solutions of Eq. (1), and call them avalanche waves. Such solutions,
in two complementing regions of the plane (m,n) ∈ Z2, are close to two different
stationary solutions. In one region, which contracts as t increases, the solution is close
to a stationary pattern solution. In the other region, which expands as t increases,
the solution approaches another stationary solution. The borderline that nominally
separates these regions could form straight lines which make parallel movements with
constant velocity. In this case, we will call it a plane avalanche wave.

If the borderline forms circles with radii increasing in time, we will call it a circular
avalanche wave. One can also consider avalanche waves with other propagation fronts
of avalanches, i. e., other shapes of regions where the pattern solution transforms into
another stationary solution. Note that in the conclusion of [9] the authors briefly
mention the possibility of existence of avalanche waves.

An exact definition of avalanche waves is given by the following.

Definition 1. Suppose we have two stationary solutions of Eq. (1), ust
n,m and upatt.

n,m

which is a pattern solution. We will say that a solution upl.av.w.
n,m (t) of Eq. (1) is a

plane avalanche wave of a given pattern solution into a stationary solution ust
n,m and

is traveling with velocity c in the direction ν = (cosϕ, sinϕ) in the plane Z2 if for any
ε > 0 there exists a number R(ε) such that

|upl.av.w.
n.m (t)− upatt.

n,m | < ε if n cosϕ+m sinϕ ≥ ct+R(ε),

|upl.av.w.
n.m (t)− ust

n,m| < ε if n cosϕ+m sinϕ ≤ ct−R(ε).
(4)
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We say that a solution ucirc.av.w.
n,m (t) of Eq. (1) is a circular avalanche of a given

pattern solution upatt.
n,m into a stationary solution ust

n,m and is traveling with velocity c
if for any ε < 0 there exists a number R(ε) such that

|ucirc.av.w.
n,m (t)− upatt.

n,m | < ε if
√
n2 +m2 ≥ ct+R(ε),

|ucirc.av.w.
n,m (t)− ust

n,m| < ε if
√
n2 +m2 ≤ ct−R(ε).

(5)

In the case where ust
n,m is a trivial stable stationary solution, ust

n,m ≡ 1 or ust
n,m ≡ −1,

we will simply call it an avalanche wave for a given pattern solution.

Fig. 3a - 3b show an avalanche wave in the case where a checkerboard pattern
with d = 10 transforms into a broad soliton.

Fig. 4a - 4b show a circular avalanche wave when a checkerboard pattern trans-
forms into the trivial solution un,m ≡ 1.

5 Plane avalanche waves for one-dimensional pattern solu-
tions

Consider avalanche waves propagating in a certain direction ν = (cosϕ, sinϕ) at
velocity c > 0 and such that, if ξ = n cosϕ+m sinϕ→∞, the solution un,m is close
to the pattern solution of type 1), and if ξ → −∞, the solutions approaches the stable
solutions un,m → −1. Thus, we will be looking for a solution of Eq. (1) that has the
form

un,m =


a
(n cosϕ+m sinϕ√

d
− ct

)
, if n is even,

b
(n cosϕ+m sinϕ√

d
− ct

)
, if n is odd.

(6)

Boundary conditions for the functions a(x) and b(x) have the form

a(x)→ (1 + 4d)−1, b(x)→ −(1 + 4d)−1, if x→∞;

a(x)→ −1, b(x)→ −1, if x→ −∞.
(7)

By substituting (6) into (1), we get

−ca′(x) = d
[
b
(
x+

cosϕ√
d

)
+ b
(
x− cosϕ√

d

)
+ a
(
x+

sinϕ√
d

)
+a
(
x− sinϕ√

d

)
− 4a(x)

]
−a(x) + sign a(x),

−cb′(x) = d
[
a
(
x+

cosϕ√
d

)
+ a
(
x− cosϕ√

d

)
+ b
(
x+

sinϕ√
d

)
+b
(
x− sinϕ√

d

)
− 4b(x)

]
−b(x) + sign b(x).

(8)

Boundary conditions (7) can be supplemented with the conditions

a(x) =

> 0, if x > 0,
< 0, if x < 0,
0, if x = 0,

b(x) < 0, (9)
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where, without loss of generality, we set a(0) = 0.
Instead of the functions a(x) and b(x), let us consider new functions w(x) and v(x)

defined by
w(x) = a(x) + b(x), v(x) = a(x)− b(x). (10)

Using (9) Eq. (8) can be written as

−cw′(x) = d
[
w
(
x+

cosϕ√
d

)
+ w

(
x− cosϕ√

d

)
+ w

(
x+

sinϕ√
d

)
+w
(
x− sinϕ√

d

)
− 4w(x)

]
−w(x)− 2θ(−x),

cv′(x) = d
[
v
(
x+

cosϕ√
d

)
+ v
(
x− cosϕ√

d

)
− v
(
x+

sinϕ√
d

)
−v
(
x− sinϕ√

d

)
+ 4v(x)

]
+v(x)− 2θ(x),

(11)

where θ(x) is the Heaviside function.
The boundary conditions for w and v will become

w(x)→ 0 for x→∞, w(x)→ −2 for x→ −∞;

v(x)→ 2(1 + 4d)−1 for x→∞, v(x)→ 0 for x→ −∞;

w(0) = −v(0) = b(0).

(12)

Solutions of (11) satisfying conditions (12) can be explicitly obtained by using the
Fourier transform

w(x) = −2θ(−x) +
i

π

∫
e−iλx

( 1

L(λ)
− 1
)dλ
λ
, (13)

v(x) =
2

1 + 4d
θ(x) +

1

iπ

∫
e−iλx

( 1

M(λ)
− 1

1 + 4d

)dλ
λ
, (14)

where

L(λ) = 1 + iλc+ 4d
(

sin2 λ cosϕ

2
√
d

+ sin2 λ sinϕ

2
√
d

)
, (15)

M(λ) = 1 + 4d+ iλc+ 2d
(

cos
λ cosϕ√

d
− cos

λ sinϕ√
d

)
. (16)

For large d, the integrals in (13), (14) can be calculated by making the approximations

L(λ) = 1 + iλc+ λ2, M(λ) = 1 + 4d+ iλc− λ2 cos 2ϕ. (17)

These solutions correspond to solutions of differential equations obtained from the
differential difference equations (10) if the differences are replaced with derivatives
up to the second order inclusive,

−cw′ = w′′ − w − 2θ(−x) (18)

cv′ = (1 + 4d)v + cos 2ϕv′′ − 2θ(x). (19)

Now a solution of problem (18), (12) can be found in an explicit form,

w(x) =

{
w(0)e−

x
p , x > 0,

−2 + (2 + w(0))epx, x < 0,
(20)
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where

p =
2

c+
√
c2 + 4

, w(0) = −
(

1 +
c

2p

)−1

. (21)

To solve Eq. (19), consider the following three cases:

a) cos 2ϕ = 0, i.e., ϕ =
π

4
;

b) cos 2ϕ <
c2

4(1 + 4d)
, i.e., the direction of propagation of the avalanche wave is

close to the direction of the y-axis;

c) cos 2ϕ >
c2

4(1 + 4d)
, i.e., the direction of propagation of the avalanche wave is

close to the direction of the x-axis.

In case a), when ϕ =
π

4
, Eq. (19) with conditions (12) has the solution

v(x) =


2

1 + 4d
, x > 0

2

1 + 4d
e

1+4d
c

x, x < 0.
(22)

Since v(0) = 2(1 + 4d)−1, w(0) = −(1 + c
2p

)−1, and w(0) = −v(0), the boundary

condition (12) gives a value for the velocity of the avalanche wave,

c = 2
√
d− 1

2
√
d
. (23)

Using (20) and (10) we have

a(x) =


1

1 + 4d
(1− e−

x
p ), x > 0,

−(1− epx) +
1

1 + 4d
(e

1+4d
c

x − epx), x < 0,
(24)

b(x) =


− 1

1 + 4d
(1 + e−

x
p ), x > 0,

−(1− epx)− 1

1 + 4d
(e

1+4d
c

x + epx), x < 0,
(25)

In case b), we denote by q+ and q−, respectively, the positive and negative roots of
the quadratic equation

cos 2ϕq2 − cq + 1 + 4d = 0. (26)

Then using (12) we can write the solution of Eq. (19) in the form

v(x) =


2

1 + 4d
+
(
v(0)− 2

1 + 4d

)
eq−x, x > 0,

v(0)eq+x, x < 0,
(27)

where

b(0) = −v(0) =
2q−

(1 + 4d)(q+ − q−)
, (28)

and, if ϕ > π
4
,

q+ =
1 + 4d

q
, q− =

q

cos 2ϕ
, q =

1

2
(c+

√
c2 − 4(1 + 4d) cos 2ϕ). (29)
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Formulas (21), (28), (12) give the equation w(0) = −v(0) which is used for finding
the velocity of the avalanche waves in the case b),[

1 +
c

2p

]−1

=
2|q−|

(1 + 4d)(q+ − q−)
. (30)

This equation defines a value of the velocity c of the avalanche waves as a function of
d and ϕ. Eq. (30) can be reduced to the following system of equations, which allows
to analyze the dependence c = c(d, ϕ),

c = 4A[8A− 4(1 + 4d) cos 2ϕ]−1/2,

A = B + [B2 − 2αd(1 + 4d) cos 2ϕ]1/2,

B = d(α + cos 2ϕ)− 1
4
(α− cos 2ϕ),

α = [c+
√
c2 − 4(1 + 4d) cos 2ϕ] · [c+

√
c2 + 4]−1,

(31)

where A = cq
2

and α = pq.
Let d << 1 and ϕ > π

4
. Then we can put α = 1 in (31) and obtain an approximate

value for the velocity,
c = 4d(1− cot4 ϕ)1/2. (32)

By comparing formulas (23) and (32) one can see that, if ϕ = π
4
, avalanche waves

exist only if d > 1
4

and, if ϕ = π
2
, they also exist for d < 1

4
.

If d >> 1, velocity c can be approximately represented as c = k(ϕ) · d1/2, where the
variable k(ϕ) ranges over the interval 2 ≤ k(ϕ) < 3 if ϕ belongs to the interval [π

4
, π

2
].

In case c), the analysis is carried out similarly.
In this case, the real parts of the roots p1 and p2 of the characteristic equation (26)

are positive and, hence, for x > 0,

v(x) =
2

1 + 4d
, x > 0. (33)

This gives a value for velocity c of avalanche waves which does not depend on ϕ ≤ π
4
;

it is given by (23).
Solution v(x), for x < 0, has the form

v(x) =
2

1 + 4d

[ p2

p2 − p1

ep1x − p1

p2 − p1

ep2x
]
, x < 0, (34)

where p1 and p2 are roots of the characteristic equation (26).
In particular, if ϕ = 0, we have

v(x) =
2

1 + 4d

{
1, x > 0,

e(c/2)x
[
cos βx− c

2
sinβx
β

]
, x < 0,

where β =
√

1 + 4d− c2/4 and the value of c is the same as in case a), i.e., given by
formula (23).

Figures 5 and 6 show avalanche waves that move toward the x and y axes in the
case of the simplest strip pattern with p = 2 and d = 3. Figure 7 shows avalanche
waves that move in diagonal direction with the same pattern.
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6 Plane avalanche waves for simple two-dimensional pattern
solutions

Let us consider avalanche waves that propagate in the direction ν = (cosϕ, sinϕ) such
that, if ξ = n cosϕ + m sinϕ → ∞, the solution is close to a checkerboard pattern
solution of type b). Thus we will be looking for a solution of Eq. (1) such that

un,m =


a
(n cosϕ+m sinϕ√

d
− ct

)
, n+m is even,

b
(n cosϕ+m sinϕ√

d
− ct

)
, n+m is odd.

(35)

Boundary conditions for the functions a(x) and b(x) are

a(x)→ (1 + 8d)−1 for x→ +∞, a(x)→ −1 for x→ −∞;

b(x)→ −(1 + 8d)−1 for x→ +∞, b(x)→ −1 for x→ −∞;

a(0) = 0, a(x) > 0 for x > 0, a(x) < 0 for x < 0;

b(x) < 0.

(36)

Substituting (35) into (1) we get

−ca′(x) = dL b(x) + 4d(b(x)− a(x))− a(x) + signx,

−cb′(n) = dL a(x) + 4d(a(x)− b(x))− b(x)− 1,
(37)

where L a(x) = a
(
x+

cosϕ√
d

)
+a
(
x− cosϕ√

d

)
+a
(
x+

sinϕ√
d

)
+a
(
x− sinϕ√

d

)
−4a(x).

Replacing the functions a and b with w and v using (10), equations (37) can be
written as

−cw′(x) = dLw(x)− w(x)− 2θ(−x),

cv′(x) = dL v(x) + (1 + 8d)v(x)− 2θ(x).
(38)

Solution w(x) of this problem has form (20). Solution v(x), for c2 < 4(1 + 8d), has
the form

v(x) =


2

1 + 8d
, x > 0,

2

1 + 8d
e
c
2
x
[
cos βx− c

2

sin βx

β

]
, x < 0,

(39)

where β =
√

1 + 8d− c2

4
.

Going back to a and b from w and v we get

a(x) =


1

1 + 8d
(1− e−

x
p ), x > 0,

−(1− epx) +
1

1 + 8d

{
e
c
2
x
[
cos βx− c

2

sin βx

β

]
−epx

}
, x < 0,

(40)

b(x) =


− 1

1 + 8d
(1 + e−

x
p ), x > 0,

−(1− epx)− 1

1 + 8d

{
e
c
2
x
[
cos βx− c

2

sin βx

β

]
+ epx

}
, x < 0.

(41)
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By using the equation w(0) = −v(0), we find the value for the velocity of the avalanche
waves,

c = 2
√

2d− 1

2
√

2d
. (42)

Fig. 8 shows the graph of an avalanche wave moving toward the y-axis in the case
of a checkerboard pattern for p = 2, d = 2.

Note that, if d→∞, then approximately,

a(x) = b(x) = −θ(−x)
[
1− epx

]
,

and the avalanche waves have the following form, the same for the patterns of types
a) and b),

un,m = −θ(−x)(1− epx),

where x =
n cosϕ+m sinϕ√

d
− ct. However, the values of the velocity c differ in these

two cases.

7 Avalanche waves with circular front

Consider now an avalanche wave with circular front in the case where the checkerboard
pattern solution of type b) becomes the solution un,m ≡ −1.

We will suppose that

un,m =


a
(√n2 +m2

√
d

− ct
)
, n+m is even,

b
(√n2 +m2

√
d

− ct
)
, n+m is odd.

(43)

The functions a(x) and b(x) satisfy boundary condition (36).
Substituting (43) into (1) for n2 + m2 � 1 we get the following approximate

differential equations:

−ca′ = b′′ + 4d(b− a)− a+ signx,

−cb′ = a′′ + 4d(a− b)− b− 1.
(44)

They coincide with the ones that have already been studied. Hence, an explicit
expression for their solutions are given by formulas (40), (41), (32).

An avalanche wave with circular front for d = is shown in Fig. 4 and, for larger
values of d = 40, in Fig. 9 (p = 2).

8 Numerical experiments

Below we give results of numerical experiments carried out to study the propagation
of avalanche waves in two dimensional lattices in the cases where the checkerboard
pattern transforms into a cross (Fig. 10) or a sector (Fig. 11).

Numerical calculations show that, for reaction-diffusion system (1) with cubic non-
linearity (2), the qualitative behavior of propagation of avalanche waves, discussed
above for piecewise linear nonlinearity (3), is preserved. However, for the cubic non-
linearity (2), one observes a number of special features that we will briefly discuss.
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The simplest strip pattern has the form un,m = (−1)n
√

1− 4d and exists only for

d < 1
4
. The simplest checkerboard pattern has the form un,m = (−1)n+m

√
1− 8d and

exists only for d < 1
8
. For larger values of the coupling constant d, spatially periodic

solutions have the following form:

un,m = (−1)nφ(t, d) for the strip pattern and

un,m = (−1)n+mφ(t, 2d) for the checkerboard solution,

where

φ(t, d) = φ(0)e−(4d−1)t
[
1 + φ2(0)

1− e−2(4d−1)t

4d− 1

]−1/2

.

This shows that, for large d, the patterns contract to the trivial solution un,m ≡ 0 as
time increases. Thus, as avalanche waves propagate, the pattern layer decreases at
the same time. Figures 12a, 12b and 12c show dynamics of periodic patterns, and
figures 13a, 13b and 13c are graphs of the avalanche waves obtained from numerical
experiments in the case of the cubic nonlinearity.

9 Conclusions

1. It was shown that, together with well-studied traveling waves in a spatially dis-
crete bistable reaction-diffusion system that has a nonsymmetric nonlinearity, for∫
f(u) du 6= 0, there can also exist waves of a new type even in the case where the

nonlinearity f(u) is given by an odd function of u. The authors called these waves
avalanche waves, since their propagation mechanism is similar to that of falling domi-
noes or mountain rocks. For avalanche waves to propagate, the medium must have
elements whose states are close to being unstable. For bistable reaction-diffusion sys-
tems, such a medium is formed by a pattern solution for large values of the coupling
constant.
2. For the case of a piecewise linear nonlinearity, we make an analytical analysis of
the form and velocities of the avalanche waves.
3. Numerical calculations for propagation of various traveling waves were carried out.
It was shown that the qualitative features of avalanche waves are also preserved for
a cubic nonlinearity.
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