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1 Introduction

The porous medium equation

∂X

∂t
= ∆(Xm), m ∈ N, (1.1)

on a bounded open set D ⊂ Rd has been studied extensively. We refer to [1]
for both the mathematical treatment and the physical background and also
to [2, Section 4.3] for the general theory of equations of such type.

In this paper we are interested in a stochastic version of (1.1). Through-
out this paper we assume

(H1) m is odd, m ≥ 3.

Furthermore, we consider Dirichlet boundary conditions for the Laplacian
∆. So, the stochastic partial differential equation we would like to solve for
suitable initial conditions is the following:

dX(t) = (αX(t) + ∆(Xm(t)))dt+
√
C dW (t), t ≥ 0, (1.2)

where α ≥ 0. As in [3], where similar equations were studied (but with x→
xm replaced by some β : R → R of linear growth, satisfying, in particular,
β′ ≥ c > 0), it turns out that the appropriate state space is H−1(D), i.e. the
dual of the Sobolev space H1

0 := H1
0 (D). Below we shall use the standard
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L2(D) dualization 〈·, ·〉 between H1
0 (D) and H = H−1(D) induced by the

embeddings
H1

0 (D) ⊂ L2(D)′ = L2(D) ⊂ H−1(D) = H

without further notice. Then for x ∈ H

|x|2H =

∫
D

((−∆)−1x)(ξ) x(ξ)dξ

and for the dual H ′ of H we have H ′ = H1
0 .

(Wt)t≥0 is a cylindrical Brownian motion in H and C is a positive definite
bounded operator on H of trace class. To be more concrete below we assume:

(H2)
There exists λk, k ∈ [0,+∞), k ∈ N, such that for the eigenbasis
{ek| k ∈ N} of ∆ (with Dirichlet boundary conditions) we have

Cek =
√
λk ek for all k ∈ N.

(H3)

For αk := supξ∈D |ek(ξ)|2, k ∈ N, we have

K :=
∞∑

k=1

αkλk < +∞.

Our aim is to construct a strong Markov weak solution for (1.2), i.e. a
solution in the sense of the corresponding martingale problem (see [11] for
the finite dimensional case), at least for a large set H of starting points in H
which is left invariant by the process, that is with probability one Xt ∈ H for
all t ≥ 0. We follow the strategy first presented in [8] (and already carried out
in the more dissipative cases in [5]). That is, first we construct a solution to
the corresponding Kolmogorov equations and then a strong Markov process
with continuous sample paths having transition probabilities given by that
solution to the Kolmogorov equations.

Applying Itô’s formula (on a heuristic level) to (1.2) one finds what the
corresponding Kolmogorov operator, let us call it N0, should be, namely

N0ϕ(x) =
1

2

∞∑
k=1

λkD
2ϕ(ek, ek) +Dϕ(x)(∆(αx+ xm)), x ∈ H, (1.3)

where Dϕ, D2ϕ denote the first and second Fréchet derivatives of ϕ : H → R.
So, we take ϕ ∈ C2

b (H).
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In order to make sense of (1.3) one needs that ∆(xm) ∈ H at least for
“relevant” x ∈ H. Here one clearly sees the difficulties since xm is, of course,
not defined for any Schwartz distribution in H = H−1, not to mention that
it will not be in H1

0 (D). So, a way out of this is to think about “relevant”
x ∈ H. Our approach to this is first to look for an invariant measure for the
solution to equation (1.2) which can now be defined “infinitesimally”(cf. [4])
without having a solution to (1.2) as the solution to the equation

N∗
0µ = 0 (1.4)

with the property that µ is supported by those x ∈ H for which xm makes
sense and ∆(xm) ∈ H. (1.4) is a short form for

N0ϕ ∈ L1(H,µ) and

∫
H

N0ϕdµ = 0 for all ϕ ∈ C2
b (H). (1.5)

Any invariant measure for any solution of (1.2) in the classical sense will
satisfy (1.4). Then we can analyze N0, with domain C2

b (H) in L2(H,µ), i.e.
solve the Kolmogorov equation

dv

dt
= N0v (1.6)

for the closure N0 of N0 on L2(H,µ). This means, we have to prove that N0

generates a C0–semigroup Tt = etN0 on L2(H,µ). Subsequently, we have to
show that (Tt)t≥0 is given by a semigroup of probability kernels (pt)t≥0 (i.e.
ptf is a µ–version of Ttf ∈ L2(H,µ) for all t ≥ 0, f : H → R, bounded,
measurable) and such that there exists a strong Markov process with con-
tinuous sample paths in H whose transition function is (pt)t≥0. By definition
this Markov process then will solve the martingale problem corresponding to
(1.2).

The organization of this paper is as follows. In §2 we construct a solution
µ to (1.4) and prove the necessary support properties of µ, more precisely,
that for all M ∈ N, M ≥ 2

µ
(
{x ∈ L2(D)| xM ∈ H1

0}
)

= 1,

so that N0 in (1.3) is µ–a.e. well defined for all ϕ ∈ C2
b (H). In §3 we prove

that N0, which is automatically closable in L2(H,µ), is essentially maximal
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dissipative in L2(H,µ), i.e. its closure N : n = N0 generates a C0–semigroup
in L2(H,µ). In both §2 and §3 we rely on results on [3] in essential way, which
we apply to suitable approximations, i.e. the function x 7→ xm is replaced by

βε(x) :=
xm

1 + εxm−1
+ (α+ ε)x2, ε ∈ (0, 1]

to which the results in [3] apply.
In §4 we construct the semigroup (pt)t≥0 of probability kernels and the

corresponding Markov process. The technique to this is to prove that the
capacity determined by N (defined in §2.1 below) is tight. So, since C2

b (H)
is a core of N which is an algebra, a general result from [10] implies the
existence of (pt)t≥0 and the Markov process.

2 Existence of an infinitesimal invariant mea-

sure

Throghout this section (H1)–(H3) are still in force. So, we first consider the
following approximations for the Kolmogorov operator N0. For ε ∈ (0, 1] we
define for ϕ ∈ C2

b (H), x ∈ L2(D) such that βε(x) ∈ H1
0

Nεϕ(x) :=
1

2

∞∑
k=1

λkD
2ϕ(x)(ek, ek) +Dϕ(x)(∆βε(x)), (2.1)

where

βε(r) :=
rm

1 + εrm−1
+ (α+ ε)r, r ∈ R. (2.2)

We note that βε is Lipschitz continuous and recall the following result from
[3] which is crucial for our further analysis, see [3, Theorems 3.1, 3.9, Remark
3.1]

Theorem 2.1 Let ε ∈ (0, 1]. Then there exists a probability measure µε on
H such that

µε(H
1
0 ) = 1, (2.3)∫

H

|x|2H1
0
µε(dx) < +∞, (2.4)
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∫
H

|βε|2H1
0
dµε =

∫
H

|∆βε|2H−1 dµε < +∞ (2.5)

and ∫
H

Nεϕdµε = 0 for all ϕ ∈ C2
b (H). (2.6)

Remark 2.2 (i). In [3] only

µε

({
x ∈ L2(D)| βε(x) ∈ H1

0

})
= 1

was proved. But since βε(0) = 0, βε(R) = R, and

β′ε(r) = rm−1 m+ εrm−1

(1 + εrm−1)2
+ α+ ε ≥ α+ ε for all r ∈ R, (2.7)

it follows that the inverse β−1
ε of βε is Lipschitz with β−1

ε (0) = 0, so βε(x) ∈
H1

0 is equivalent to x ∈ H1
0 and (2.4) follows from (2.5), since

|∇x| = |∇β−1
ε (βε(x))| ≤ (α+ ε)−1|∇βε(x)|.

We thank V. Barbu for pointing this out to us.
(ii) By Theorem 2.1 we have thatNεϕ(x) is well defined for µε–a.e. x ∈ H.

For N ∈ N we define

PNx =
N∑

k=1

〈x, ek〉kek, x ∈ H.

Note that, since {ek| k ∈ N} is the eigenbasis of the Laplacian we have that
the respective restriction PN is also an orthogonal projection on L2(D) and
H1

0 and on both spaces (PN)N∈N also converges strongly to the identity.
The following result was proved for α = 0 in [6]. The proof for α ∈

[0,+∞) is almost the same. To make this paper self–contained we include
the proof in this general case.

Proposition 2.3 {µε, ε ∈ (0, 1]} is tight on H. For any weak limit point µ∫
H

|x|2L2(D)µ(dx) ≤
∫

D

(α+ 1) dξ +
1

2
Tr C.

In particular, µ(L2(D)) = 1.
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Proof. For n ∈ N let χn ∈ C∞(R), χn(x) = x on [−n, n], χn(x) = (n+1)sign
x, for x ∈ R\[−(n+ 2), n+ 2], 0 ≤ χ′n ≤ 1 and supn∈N|χ′′n| < +∞. Define for
n,N ∈ N

ϕN,n(x) :=
1

2
χn(|PNx|2H).

Then ϕN,n ∈ C2
b (H) and for x ∈ H

NεϕN,n(x) =
1

2

N∑
k=1

λk

[
2χ′′n(|PNx|2H)〈PNx, ek〉2H + χ′n(|PNx|2H)

]
+χ′n(|PNx|2H)〈PNx,∆βε(x)〉H .

Hence integrating with respect to µε, by (2.6) we find∫
H

χ′n(|PNx|2H)〈PNx, βε(x)〉L2(D)µε(dx)

=
1

2

N∑
k=1

λk

∫
H

[
2χ′′n(|PNx|2H)〈PNx, ek〉2H + χ′n(|PNx|2H)

]
µε(dx)

≤ 1

2

N∑
k=1

λk + sup
k∈N

λk

∫
H

|χ′′n(|PNx|2H)| |PNx|2Hµε(dx).

For all n ∈ N the integrand in the left hand side is bounded by

1{|PNx|2H≤n+2} |PNx|H |βε(x)|H1
0
,

and similar bounds for the integrand in the right hand side hold. Therefore
(2.5) and Lebesgue’s dominated convergence theorem allow us to take N →
∞ and obtain ∫

H

χ′n(|x|2H)〈x, βε(x)〉L2(D)µε(dx)

≤ 1

2

∞∑
k=1

λk + sup
k∈N

λk

∫
H

|χ′′n(|x|2H)| |x|2H µε(dx).

≤ 1

2

∞∑
k=1

λk + sup
k∈N

λk

∫
{|x|2H≥n}

|x|2H µε(dx).
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Hence taking n → ∞ by (2.4) and using the definition (2.2) of βε we arrive
at ∫

H

∫
D

(
xm+1(ξ)

1 + εxm−1(ξ)
+ (α+ ε)x2(ξ)

)
dξµε(dx) ≤

1

2
Tr C.

Since m is odd and ε ∈ (0, 1], this implies∫
H

|x|2L2(D)µε(dx) ≤
∫

H

∫
D

(
α+ 1 +

xm+1(ξ)

1 + xm−1(ξ)

)
dξµε(dx) ≤

∫
D

(α+1) dξ+
1

2
Tr C.

(2.8)
Since L2(D) ⊂ H is compact, this implies that {µε| ε ∈ (0, 1]} is tight on H.
Since the map x → |x|2L2(D) is lower semicontinuous and nonnegative in H
all assertions follows. �

Later we need better support properties of µ. Therefore, our next aim is
to prove the following:

Theorem 2.4 Let (H1) − (H3) hold and assume that either α = 0,m = 3
or α > 0,m ≥ 3 odd. Then

(i) For all M ∈ N, M ≥ 2, there exists a constant CM = CM(D,K) > 0
such that

sup
ε∈(0,1]

∫
H

∫
D

x2(M−1)(ξ)|∇x(ξ)|2dξµε(dx) ≤ CM .

If α > 0 this also holds for M = 1.

(ii) For all M ∈ N, M ≥ 2, and any limit point µ as in Proposition 2.3∫
H

∫
D

|∇(xM)(ξ)|2dξµ(dx) ≤ CM .

In particular, setting

H1
0,M := {x ∈ L2(D)| xM ∈ H1

0}

we have
µ(H1

0,M) = 1 for all M ≥ 2.

If α > 0 this also holds for M = 1.
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In order to prove Theorem 2.4 we need some preparation, i.e. more precise
information about the µε, ε ∈ (0, 1]. This can be deduced from (2.6), i.e.
from the fact that µε is an infinitesimally invariant measure for Nε. So, we
fix ε ∈ (0, 1] and for the rest of this section we assume that (H1) − (H3)
hold.

We need to apply (2.6) with ϕ replaced by ϕM : L2M(D) → [0,+∞), M ∈
N, given by

ϕM(x) =

∫
D

x2M(ξ) dξ, x ∈ L2M(D).

Clearly, such functions are not in C2
b (H) so we have to construct proper

approximations. So, define for δ ∈ (0, 1]

fM,δ(r) :=
r2M

1 + δr2
, r ∈ R. (2.9)

Then for r ∈ R

f ′M,δ(r) = (1 + δr2)−2[2Mr2M−1 + 2δ(M − 1)r2M+1] (2.10)

and

f ′′M,δ(r) = 2(1 + δr2)−3[M(2M − 1)r2M−2 + δ(4M2 − 6M − 1)r2M ]

+δ2(M − 1)(2M − 3)r2M+2].
(2.11)

We have chosen this approximation since below (cf. Lemma 2.7) it will be
crucial that f ′′M,δ is nonnegative if M ≥ 2. More precisely we have

0 ≤ fM,δ(r) ≤ 1
δ
|r|2M−2

0 ≤ f ′M,δ(r) ≤ 2M
δ
|r|2M−3

0 ≤ f ′′M,δ(r) ≤ 16M2 |r|2M−4 inf{r2, 1/δ}.

(2.12)

Remark 2.5 The following will be used below: if x ∈ H1
0 is such that for

M ∈ N ∫
H

x2(M−1)(ξ)|∇x(ξ)|2dξ <∞, (2.13)
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then xM ∈ H1
0 and xM−1∇x = 1

M
∇xM , or using the notation introduced

in Theorem 2.4–(ii) equivalently x ∈ H1
0,M . The proof is standard by ap-

proximation. So, we omit it. We also note that by Poincaré’s inequality,
H1

0,M ⊂ L2M(D). More precisely, there exists C(D) ∈ (0,∞) such that

C(D)

∫
D

x2M(ξ)dξ ≤
∫

D

|∇xM(ξ)|2dξ = M2

∫
D

x2(M−1)(ξ)|∇xM(ξ)|2dξ,

(2.14)
for all x as above.

The following lemma is a consequence of (2.6) and crucial for our analysis
of {µε, ε ∈ (0, 1]} and their limit points. For α = 0,m = 3 its proof can be
found in [6]. We include the general case here for the reader’s convenience.

Lemma 2.6 Let M ∈ N, δ ∈ (0, 1]. Assume that∫
H

∫
D

x2(M−1)(ξ)|∇x(ξ)|2dξµε(dx) <∞ if M ≥ 3. (2.15)

Then
1

2

∞∑
k=1

λk

∫
H

∫
D

f ′′M,δ(x(ξ))e
2
k(ξ)dξµε(dx)

=

∫
H

∫
D

f ′′M,δ(x(ξ))β
′(x(ξ))|∇x(ξ)|2dξµε(dx).

(2.16)

Proof. We first note that (2.15) holds for M = 2 by (2.3). For κ ∈ (0, 1] we
define

fM,δ,κ(r) := fM,δ(r)e
− 1

2
κr2

, r ∈ R if M ≥ 2

and f1,δ,κ = f1,δ. Then (2.11) implies that fM,δ,κ ∈ C2
b (R). Define

ϕM,δ,κ(x) :=

∫
D

fM,δ,κ(x(ξ))dξ, x ∈ L2(D).

Then it is easy to check that ϕM,δ,κ is Gateaux differentiable on L2(D) and
that for all y, z ∈ L2(D)

ϕ′M,δ,κ(x)(y) =

∫
D

f ′M,δ,κ(x(ξ))y(ξ)dξ, (2.17)

ϕ′′M,δ,κ(x)(y, z) =

∫
D

f ′′M,δ,κ(x(ξ))y(ξ)z(ξ)dξ. (2.18)
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Hence
ϕM,δ,κ ◦ PN ∈ C2

b (H)

and for all x ∈ H1
0 (hence βε(y) ∈ H1

0 ),

Nε(ϕM,δ,κ ◦ PN)(x) =
1

2

N∑
k=1

λk

∫
D

f ′′M,δ,κ(PNx(ξ))e
2
k(ξ)dξ

+

∫
D

f ′M,δ,κ(PNx(ξ))PN(∆βε(x))(ξ)dξ.

Since PN∆ = ∆PN , integrating by parts we obtain

Nε(ϕM,δ,κ ◦ PN)(x) =
1

2

N∑
k=1

λk

∫
D

f ′′M,δ,κ(PNx(ξ))e
2
k(ξ)dξ

−
∫

D

f ′′M,δ,κ(PNx(ξ))〈∇(PNx)(ξ),∇(PNβε(x))(ξ)〉Rddξ.

Since (PN)N∈N converges strongly to the identity in H1
0 , we conclude by (H3)

that

lim
N→∞

Nε(ϕM,δ,κ ◦ PN)(x) =
1

2

∞∑
k=1

λk

∫
D

f ′′M,δ,κ(x(ξ))e
2
k(ξ)dξ

−
∫

D

f ′′M,δ,κ(x(ξ))β
′
ε(x)(ξ)|∇x(ξ)|2dξ.

Since βε is Lipschitz, by (2.3)–(2.5) and (H3) this convergence also holds in
L1(H,µε). Hence (2.6) implies that

1

2

∞∑
k=1

λk

∫
H

∫
D

f ′′M,δ,κ(x(ξ))e
2
k(ξ)dξµε(dx)

=

∫
H

∫
D

f ′′M,δ,κ(x(ξ))β
′
ε(x)(ξ)|∇x(ξ)|2dξµε(dx).

(2.19)

So, for M = 1 the assertion is proved. If M ≥ 2, an elementary calculation
shows that by (2.12) there exists a constant C(M, δ) > 0 (only depending on
M and δ) such that

|f ′′M,δ,κ(x)| ≤ C(M, δ)r2(M−2), r ∈ R. (2.20)
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Hence by (H3), Remark 2.5 and assumption (2.15) we can apply Lebesgue’s
dominated convergence theorem to (2.19) and letting κ→∞ we obtain the
assertion. �

Lemma 2.7 Let M ∈ N and assume that (2.15) holds if M ≥ 3.

(i) We have

K

2

∫
H

∫
D

x2(M−1)(ξ) dξµε(dx)

≥
∫

H

∫
D

x2(M−1)(ξ)

(
xm−1(ξ)

1 + xm−1(ξ)
+ α+ ε

)
|∇x(ξ)|2dξµε(dx)

(2.21)

(ii) If α = 0 and m = 3 then for M ≥ 3

K

2

∫
H

∫
D

(
x2(M−1)(ξ) + x2(M−2)(ξ)

)
dξµε(dx)

≥
∫

H

∫
D

x2(M−1)(ξ) |∇x(ξ)|2dξµε(dx)

=
1

M2

∫
H

∫
D

|∇xM(ξ)|2dξµε(dx),

(2.22)

and ∫
H

∫
D

|∇x(ξ)|2dξµε(dx) ≤
K

2ε
.

(iii) If α > 0, then

K

2

∫
H

∫
D

x2(M−1)(ξ)dξµε(dx) ≥ α

∫
H

∫
D

x2(M−1)(ξ) |∇x(ξ)|2dξµε(dx).

(2.23)

Proof. (i) By (H3) the left hand side of (2.16) is dominated by

K

2

∫
H

∫
D

f ′′M,δ(x(ξ))dξµε(dx).
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If M ≥ 2, by assumption (2.15) and Remark 2.5 we know that∫
H

∫
D

x2(M−1)(ξ)dξµε(dx) <∞

which trivially also holds for M = 1. So, by (2.11), (2.12) and Lebesgue’s
dominated convergence theorem we obtain that for M ≥ 2

K

2

∫
H

∫
D

2M(2M − 1)x2(M−1)(ξ)dξµε(dx)

≥ lim inf
δ→0

∫
H

∫
D

f ′′M,δ(x(ξ))β
′
ε(x(ξ))|∇x(ξ)|2dξµε(dx).

Since f ′′M,δ ≥ 0 for M ≥ 2 and

β′ε(r) ≥
rm−1

1 + rm−1
+ ε ≥ 0 for all r ∈ R,

we can apply Fatou’s lemma to prove the assertion. If M = 1 we conclude
in the same way by (2.3) and Lebesgue’s dominated convergence theorem
which applies since β′ε is bounded and f ′′1,δ ≤ 6 for all δ ∈ (0, 1].

(ii) See [6, Lemma 2.7-(ii) and (iii)].
(iii) Since m− 1 is even, the assertion follows by (ii). �

By an induction argument we shall now prove that the integrals in (2.22)
are all finite and at the same time prove the bounds claimed in Theorem 2.4.

Proof of Theorem 2.4. For the case α = 0,m = 3 we refer to [6]. We
only give the proof for α > 0,m ≥ 3. If M = 1 then the assertion holds by
Lemma 2.7–(iii). Furthermore, by Remark 2.5∫

H

∫
D

x2(M−1)(ξ)|∇(x(ξ))|2dξµε(dx) =
1

M2

∫
H

∫
D

|∇(xM(ξ))|2dξµε(dx)

≥ C(D)2

M2

∫
H

∫
D

x2M(ξ)dξµε(dx).

(2.24)
Now assertion (i) follows from Lemma 2.7–(iii) by induction.
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To prove (ii) we start with the following
Claim: For all M ∈ N

ΘM(x) = 1H1
0,M

(x)

∫
D

|∇xM(ξ)|2dξ +∞ · 1H\H1
0,M (x), x ∈ H (2.25)

is a lower semi–continuous function on H.

Since µ is a weak limit point of {µε| ε ∈ (0, 1]} and ΘM ≥ 0, the claim
immediately implies the assertion.

To prove the claim let α > 0 and xn ∈ {ΘM ≤ α}, n ∈ N such that
xn → x in H as n→∞. By Poincaré’s inequality {xn| n ∈ N} is a bounded
set in L2M(D). So xn → x in H as n→∞ also weakly in L2(D), in particular
x ∈ L2(D). Since {xM

n | n ∈ N} is bounded in H1
0 , there exists a subsequence

(xM
nk

)k∈N and y ∈ H1
0 such that xM

nk
→ y in H as k →∞ weakly in H1

0 and∫
D

|∇y(ξ)|2dξ ≤ α.

Since the embedding H1
0 ⊂ L2(D) is compact, xM

nk
→ y in H as k → ∞

in L2(D). Selecting another subsequence if necessary, this convergence is
dξ–a.e., hence

xnk
→ y

1
M dξ–a.e.

Since (selecting another subsequence if necessary) we also know that the
Cesaro mean of (xnk

)k∈N has x as an accumulation point in the topology of
dξ–a.e. convergence, hence xM − y, so x ∈ {ΘM ≤ α}. �

As a consequence from the previous proof we obtain:

Corollary 2.8 Let M ∈ N. Then ΘM has compact level sets in H.

Proof. We already know from the previous proof that ΘM is lower semi-
continuous. The relative compactness of their level sets is, however, clear by
Poincaré’s inequality since L2M(D) ⊂ H is compact. �

Since for M ∈ N and x ∈ H1
0,M

|∆xM |H =

∫
D

|∇xM(ξ)|2dξ, (2.26)
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so ∆xM ∈ H, we can define the Kolmogorov operator in (1.3) rigorously for
x ∈ H1

0 ∩H1
0,m. So, for ϕ ∈ C2

b (H), α ∈ [0,∞)

N0ϕ(x) :=
1

2

∞∑
k=1

λkD
2ϕ(x)(ek, ek) +Dϕ(x) · (∆(αx+ x3)), (2.27)

where we assume m = 3 if α = 0. We note that by Theorem 2.4–(ii) and
(2.26), N0ϕ ∈ L2(H,µ) for any weak limit point µ of {µε| ε ∈ (0, 1]} on H.
Now we can prove our main result, namely that any such µ is an infinitesi-
mally invariant measure for N0 in the sense of [4], i.e. satisfies (1.4).

Theorem 2.9 Assume that (H1)–(H3) hold and that either α = 0,m = 3
or α > 0,m ≥ 3,m odd. Let µ as in Proposition 2.3. Then∫

H

N0ϕdµ = 0 for all ϕ ∈ C2
b (H).

Proof. For α = 0,m = 3 the assertion was proved in [6]. So, we only
prove the case α > 0,m ≥ 3,m odd. Let ϕ ∈ C2

b (H). For N ∈ N define
ϕN := ϕ ◦ PN . Then for x ∈ H1

0,M

N0ϕN(x) =
1

2

∞∑
k=1

λkD
2ϕ(PNx)(ek, PNek) +DϕN(x)(∆(αx+ xm))

=
1

2

N∑
k=1

λkD
2ϕ(PNx)(ek, ek) +Dϕ(PNx)(PN(∆(αx+ xm))).

If we can prove that ∫
H

N0ϕNdµ = 0 for all N ∈ N, (2.28)
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the same is true for ϕ by Lebesgue’s dominated convergence theorem. So,
fix N ∈ N. Then by (2.6)∫

H

N0ϕNdµ = lim
ε→0

∫
H

1

2

N∑
k=1

λkD
2ϕN(x)(ek, ek)µε(dx)

+

∫
H

DϕN(x)(∆(αx+ xm))µ(dx)

= − lim
ε→0

∫
H

DϕN(x)(∆βε(x))µε(dx)

+

∫
H

Dϕ(PNx)(PN(∆(αx+ xm)))µ(dx)

= lim
ε→0

N∑
i=1

∫
H

[
Dϕ(PNx)(ei)〈ei,∆(αx+ xm)〉Hµ(dx)

−Dϕ(PNx)(ei)〈ei,∆βε(x)〉Hµε(dx)

]
.

(2.29)
For i ∈ {1, ..., N} fixed we have∣∣∣ ∫

H

Dϕ(PNx)(ei)〈ei,∆(αx+ xm)〉Hµ(dx)

−
∫

H

Dϕ(PNx)(ei)〈ei,∆βε(x)〉Hµε(dx)
∣∣∣

≤
∣∣∣∣∫

H

Dϕ(PNx)(ei)〈ei,∆(αx+ xm)〉H(µ− µε)(dx)

∣∣∣∣
+

∣∣∣∣∫
H

Dϕ(PNx)(ei)〈ei,∆(αx+ xm − βε(x))〉Hµε(dx)

∣∣∣∣

(2.30)

The right hand side’s second summand is bounded by

|ei|L2(D) sup
x∈H

|Dϕ(x)|H1
0

∫
H

∫
D

|αx(ξ) + xm(ξ)− βε(x(ξ)))|2 dξ µε(dx). (2.31)
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We have

|αr + rm − βε(r)| =
∣∣∣∣ εr2m−1

1 + εr2m−1

∣∣∣∣ ≤ |r|2m−1 + |r|, r ∈ R.

So, the term in (2.31) is dominated by

ε |ei|L2(D) sup
x∈H

|Dϕ(x)|H1
0

∫
H

(||x|2m−1
L2(D) + |x|L2(D)) µε(dx),

which by Theorem 2.4–(i) converges to 0 as ε→ 0.
Now we estimate the first summand in the right hand side of (2.30). So,

we define
f(x) := Dϕ(PNx)(ei)〈ei,∆(αx+ xm)〉H .

Then since 〈ei,∆(αx+ xm)〉H = 〈ei, αx+ xm〉L2(D), it follows by the proof of
the lower semicontinuity of Θm that f is continuous on the level sets of Θm

(with Θm defined as in (2.25)). Furthermore, since

|f(x)| ≤ sup
x∈H

|Dϕ(x)|H1
0
|αx+ xm|L2(D),

it follows that

lim
R→∞

sup
Θm≥R

|f(x)|
1 + Θm(x)

= 0.

Furthermore, by Corollary 2.8 the function 1 + Θm has compact level sets.
Hence by [9, Lemma 2.2], there exists fn ∈ Cb(H), n ∈ N, such that

lim
n→∞

sup
x∈H

|f(x)− fn(x)|
1 + Θm(x)

= 0. (2.32)

But ∣∣∣∣∫
H

Dϕ(PNx)(ei)〈ei,∆(αx+ xm)〉H(µ− µε)(dx)

∣∣∣∣
≤

∫
H

|f(x)− fn(x)|(µ+ µε)(dx) +

∣∣∣∣∫
H

fn(x)(µ− µε)(dx)

∣∣∣∣ .
For fixed n the second summand tends to 0 as ε → 0 and the first one is
dominated by

sup
x∈H

|f(x)− fn(x)|
1 + Θm(x)

sup
ε>0

∫
H

(1 + Θm)d(µ+ µε),

which in turn by Theorem 2.4 and (2.32) tends to zero as n → ∞. So, also
the first summand in (2.29) tends to 0 as ε → 0. Hence the right hand side
of (2.29) is zero and (2.28) follows which completes the proof. �
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3 Essential dissipativity of N0

In this section we assume that α > 0 and m ≥ 3 is odd. We still assume
(H1)–(H3) to hold. Let µ be a limit weak point of {µε| ε ∈ (0, 1]} (cf.
Proposition 2.3).

We already know that N0ϕ ∈ L2(H,µ) for all ϕ ∈ C2
b (H). We would like

to consider (N0, C
2
b (H)) as an operator on L2(H,µ). For this we need to

check that N0 respects µ–classes.

Lemma 3.1 Let ϕ ∈ C2
b (H) such that ϕ = 0 µ–a.e.. Then N0ϕ = 0 µ–a.e..

Before we prove this lemma, we emphasize that we do not know whether
µ(U) > 0 for any non–empty open set U ⊂ H, so two functions in C2

b (H)
may be not identically equal if they are equal µε–a.e. So, Lemma 3.1 is really
essential. Its proof is due to Z. Sobol. Below, as usual, we denote the image
ϕ′(x) in H under the Riesz isomorphism by Dϕ(x). Then we have for all
ϕ, ψ ∈ C2

b (H), x ∈ H1
0 ∩H1

0,m

N0(ϕψ)(x) = ϕ(x) N0ψ(x) + ψ(x) N0ϕ(x) + 〈
√
C ′Dϕ(x),

√
C ′Dψ(x)〉H ,

(3.1)
where C ′ is the dual operator of C on H1

0 .
Proof of Lemma 3.1. Since µ(H1

0 ∩H1
0,m) = 1, by (3.1) applied with ψ = ϕ

it follows that
|
√
C ′Dϕ|2H = 0 µ–a.e..

Hence for all ψ ∈ C2
1(H) again by (3.1) and Theorem 2.9∫

H

ψ N0ϕ dµ = 0,

since ϕ = 0 µ–a.e.. But C2
b (H) is dense in L2(H,µ), so N0ϕ = 0 µ–a.e. �

So, we can consider (N0, C̃2
b (H)) as an operator on L2(H,µ) where C̃2

b (H))
denotes the µ–classes determined by C2

b (H). For notational convenience we
shall also write C2

b (H) for the set of these classes if there is no confusion
possible. It is well known and easy to see that (3.1) implies that (N0, C

2
b (H))

is dissipative, so in particular closable, on L2(H,µ). Let (N2, D(N2)) denotes
its closure.

Theorem 3.2 Assume that (H1)–(H3) hold and that α > 0,m ≥ 3,m odd.
Let µ be a limit weak point of {µε| ε ∈ (0, 1]}. Then (N0, C

2
b (H)) is essen-

tially m–dissipative (i.e. (N2, D(N2)) is m–dissipative) on L2(H,µ). Hence
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(N2, D(N2)) generates a C0–semigroup (etN2 , t ≥ 0) of linear contractions
on L2(H,µ).

Proof. Let λ > 0. We have to show that

(λ−N0)C
2
b (H) is dense in L2(H,µ).

Let ε ∈ (0, 1], f ∈ C2
b (H). Then by [3, Proof of Theorem 4.1] there exists a

unique ϕε ∈ C2
b (H) such that

λϕε(x)−Nεϕε(x) = f(x) for all x ∈ H1
0 (3.2)

and

‖ϕε‖C1
b (H) ≤

1

λ
‖f‖C1

b (H). (3.3)

Noting that by (3.2) for all x ∈ H1
0 ∩H1

0,m

λϕε(x)−N0ϕε(x) = f(x) +Dϕε(∆(βε(x)− αx− xm))

= f(x)− εDϕε∆

(
x2m−1

1 + εxm−1
− x

)
.

(3.4)

Here we emphasize that this equality only holds µ–a.e. if α > 0, because
only in this case we know that in addition to µ(H1

0,m) = 1, we also have that
µ(H1

0 ) = 1. So, the following only makes sense if α > 0.

Claim.
lim
ε→0

(λϕε −N0ϕε) = f in L2(H,µ). (3.5)

This will imply the assertion, by the Lumer–Phillips theorem since C2
b (H) is

dense in L2(H,µ). To prove (3.5) in view of (3.3) and (3.4) it is enough to
show that ∫

H

∣∣∣∣∆ (
x2m−1

1 + εxm−1
− x

)∣∣∣∣2
H

µ(dx) <∞. (3.6)

To prove (3.6) note that∣∣∣∣∆ (
x2m−1

1 + εxm−1
− x

)∣∣∣∣2
H

=

∫
D

∣∣∣∣∇(
x2m−1(ξ)

1 + εxm−1(ξ)
− x(ξ)

)∣∣∣∣2 dξ
=

∫
D

(
(2m− 1)x2m−2(ξ)−mεx3m−3(ξ)

(1 + εxm−1(ξ))2
− 1

)2

|∇x(ξ)|2dξ.
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Since for r ∈ R
(2m− 1)r2m−2 −mεr3m−3

(1 + εrm−1)2
≤ (2m− 1)r2m−2

1 + εrm−1
≤ (2m− 1)r2m−2,

we obtain that∣∣∣∣∆ (
x2m−1

1 + εxm−1
− x

)∣∣∣∣2
H

≤ 2(2m− 1)2

∫
D

x4m−4(ξ)|∇x(ξ)|2dξ

+2

∫
D

|∇x(ξ)|2dξ.

Hence (3.6) follows by Theorem 2.4–(iii) ( which as stressed above now also
holds for M = 1). �
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