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1 Introduction

The porous medium equation

X
%-t = A(X™), meN, (1.1)

on a bounded open set D C R? has been studied extensively. We refer to [1]
for both the mathematical treatment and the physical background and also
to [2, Section 4.3] for the general theory of equations of such type.

In this paper we are interested in a stochastic version of (1.1). Through-
out this paper we assume

(H1) m is odd, m > 3.

Furthermore, we consider Dirichlet boundary conditions for the Laplacian
A. So, the stochastic partial differential equation we would like to solve for
suitable initial conditions is the following:

dX(t) = (aX(t) + AX™(0))dt +VC dW(t), t>0,  (1.2)

where o > 0. As in [3], where similar equations were studied (but with =z —
x™ replaced by some 3 : R — R of linear growth, satisfying, in particular,
B’ > c > 0), it turns out that the appropriate state space is H (D), i.e. the
dual of the Sobolev space H} := H}(D). Below we shall use the standard



L*(D) dualization (-,-) between H}(D) and H = H~'(D) induced by the
embeddings
HY(D)  L3(D) = L*(D) c H"\(D) = H

without further notice. Then for x € H
ol = [ (=810 ate)de

and for the dual H' of H we have H' = H.
(Wi)e>0 is a cylindrical Brownian motion in H and C'is a positive definite
bounded operator on H of trace class. To be more concrete below we assume:

There exists \g, k € [0,400), k € N, such that for the eigenbasis
(H2)  {ex| k € N} of A (with Dirichlet boundary conditions) we have
Ce = /i ey, for all k € N.

For ay, == supgcp ler(§)?, k € N, we have

K = Zak)\k < 4-00.

k=1

(H3)

Our aim is to construct a strong Markov weak solution for (1.2), i.e. a
solution in the sense of the corresponding martingale problem (see [11] for
the finite dimensional case), at least for a large set H of starting points in H
which is left invariant by the process, that is with probability one X, € H for
all t > 0. We follow the strategy first presented in [8] (and already carried out
in the more dissipative cases in [5]). That is, first we construct a solution to
the corresponding Kolmogorov equations and then a strong Markov process
with continuous sample paths having transition probabilities given by that
solution to the Kolmogorov equations.

Applying It6’s formula (on a heuristic level) to (1.2) one finds what the
corresponding Kolmogorov operator, let us call it Ny, should be, namely

Noop(x) = % S MD%o(er, ex) + Dop(a) (Ao + ™)), we H,  (13)
k=1

where Dy, D?p denote the first and second Fréchet derivatives of ¢ : H — R.
So, we take ¢ € CZ(H).



In order to make sense of (1.3) one needs that A(a2™) € H at least for
“relevant” x € H. Here one clearly sees the difficulties since ™ is, of course,
not defined for any Schwartz distribution in # = H~!, not to mention that
it will not be in H}(D). So, a way out of this is to think about “relevant”
x € H. Our approach to this is first to look for an invariant measure for the
solution to equation (1.2) which can now be defined “infinitesimally” (cf. [4])
without having a solution to (1.2) as the solution to the equation

Nip=0 (1.4)

with the property that p is supported by those x € H for which ™ makes
sense and A(z™) € H. (1.4) is a short form for

Nop € L'(H, pt) and / Nowdp = 0 for all ¢ € CZ(H). (1.5)
H

Any invariant measure for any solution of (1.2) in the classical sense will
satisfy (1.4). Then we can analyze Ny, with domain C?(H) in L*(H, ), i.e.
solve the Kolmogorov equation

% = Nov (1.6)
for the closure Ny of Ny on L?(H, p1). This means, we have to prove that Ny
generates a Cy—semigroup Ty = e on L?(H, u). Subsequently, we have to
show that (7});>o is given by a semigroup of probability kernels (p;)¢>o (i.e.
pf is a p—version of Tyf € L*(H,u) for all t > 0, f: H — R, bounded,
measurable) and such that there exists a strong Markov process with con-
tinuous sample paths in H whose transition function is (p;);>0. By definition

this Markov process then will solve the martingale problem corresponding to
(1.2).

The organization of this paper is as follows. In §2 we construct a solution
i to (1.4) and prove the necessary support properties of p, more precisely,
that for all M e N, M > 2

u({z € D) 2V € HY) =1,

so that Ny in (1.3) is p—a.e. well defined for all ¢ € CZ(H). In §3 we prove
that Ny, which is automatically closable in L?*(H, 1), is essentially maximal
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dissipative in L?(H, ), i.e. its closure N : n = N, generates a Cy-semigroup
in L2(H, ut). In both §2 and §3 we rely on results on [3] in essential way, which
we apply to suitable approximations, i.e. the function x — x™ is replaced by

m

Bo(z) = — 4 (a+e)a?, € (0,1]

T 14 eam!
to which the results in [3] apply.

In §4 we construct the semigroup (p;):>o of probability kernels and the
corresponding Markov process. The technique to this is to prove that the
capacity determined by N (defined in §2.1 below) is tight. So, since CZ(H)
is a core of N which is an algebra, a general result from [10] implies the
existence of (p;):>o and the Markov process.

2 Existence of an infinitesimal invariant mea-
sure

Throghout this section (H1)-(H3) are still in force. So, we first consider the
following approximations for the Kolmogorov operator Ny. For ¢ € (0, 1] we
define for p € C%(H), x € L*(D) such that (.(z) € H}

Nep(z) == % > MDo(x)(ex, ex) + Dop()(AB:(x)), (2.1)
k=1
where .
@@y:TI%Ejgua+@n reR. (2.2)

We note that (. is Lipschitz continuous and recall the following result from

[3] which is crucial for our further analysis, see [3, Theorems 3.1, 3.9, Remark
3.1]

Theorem 2.1 Let ¢ € (0,1]. Then there exists a probability measure p. on
H such that

ME(H&) = 17 (23)

/H |[E|§{é e (dz) < 400, (2.4)



[ty e = [ 180 de < +oc 25)

and
/ N.pdp. =0 for all p € CZ(H). (2.6)
H

Remark 2.2 (i). In [3] only

e ({r € (D)) fula) € HYY) =1
was proved. But since 5.(0) = 0, G.(R) = R, and

1

Bl(r) =rmt mrer ;s Tat+te>a+e forallr eR, (2.7)

(1+erm )

it follows that the inverse 3! of 3. is Lipschitz with 3-1(0) = 0, so (3.(x) €
H} is equivalent to x € H} and (2.4) follows from (2.5), since

V| = VB (Be(2))] < (a+e)7H V().

We thank V. Barbu for pointing this out to us.
(ii) By Theorem 2.1 we have that N.p(x) is well defined for p.—a.e. z € H.

For N € N we define

N

Pyx = Z<.T, ek)kelm r € H.
k=1

Note that, since {ex| k € N} is the eigenbasis of the Laplacian we have that
the respective restriction Py is also an orthogonal projection on L*(D) and
H} and on both spaces (Py)nen also converges strongly to the identity.

The following result was proved for @ = 0 in [6]. The proof for o €
[0,400) is almost the same. To make this paper self-contained we include
the proof in this general case.

Proposition 2.3 {u., € € (0,1]} is tight on H. For any weak limit point

1
/ |[72pyp(d) < / (a+1)dé+=TrC.
H D 2

In particular, u(L*(D)) = 1.



Proof. For n € Nlet y,, € C*(R), Xn( ) =xon[—n,n], x,(x) = (n+1)sign
x, for z € R\[-(n+2),n+2], 0 < x), <1 and supn€N|X | < +00. Define for
n,N € N

1
ornl) = & xal(Prafh).
Then ¢y, € CZ(H) and for z € H

Nepwn(®) = = Zxk 24| Pel3y) (P, €6y + Xal | Pual)]

X ([ Pvali) (Pya, AB(x)) .
Hence integrating with respect to p., by (2.6) we find

/H V(| P B (Pav, Bu(2)) z2(oye (@)

N
1
=5 2o [ [2XGPval) (P, enlly + x| Prali)] ped)
k=1
1
<L S | iPalipl Pyafie(do)
keN

k=

For all n € N the integrand in the left hand side is bounded by

Ly Pyal2, <nt2} |Pne|n |ﬁe(x)|Hg7

and similar bounds for the integrand in the right hand side hold. Therefore
(2.5) and Lebesgue’s dominated convergence theorem allow us to take N —
oo and obtain

/H V(22 (&, Bul2)) 2y e (dz)

1

<3 stum | elali) ol nteo)
1

<! zmsum [l an),
2 keN (]2, >n}
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Hence taking n — oo by (2.4) and using the definition (2.2) of 5. we arrive

(0 o) < e

Since m is odd and € € (0, 1], this implies

/H |x|2L2(D)M5(dx) < /H/D (a +1+ Hl:n:—ni(fzg)) dépe(dr) < /D(a—i—l)@d;k% Tr C.

Since L?(D) C H is compact, this implies that {u.| ¢ € (0,1]} is tight on H.
Since the map » — \a:|%2( p) is lower semicontinuous and nonnegative in H
all assertions follows. [J

Later we need better support properties of y. Therefore, our next aim is
to prove the following:

Theorem 2.4 Let (H1) — (H3) hold and assume that either o = 0,m = 3
ora>0,m >3 odd. Then

(i) For all M € N, M > 2, there ezists a constant Cpy = Cp (D, K) > 0
such that

sup / / 2000 (6)| Var(€) [2dép. () < Cu.

€€(0,1]
If o > 0 this also holds for M = 1.

(i1) For all M € N, M > 2, and any limit point i as in Proposition 2.3

[ 196 ©) Pdgntds) <

Hg = {x € L*(D)| 2™ € H}}

In particular, setting

we have
p(Hy ) =1 for all M > 2.

If a > 0 this also holds for M = 1.



In order to prove Theorem 2.4 we need some preparation, i.e. more precise
information about the u., ¢ € (0,1]. This can be deduced from (2.6), i.e.
from the fact that p. is an infinitesimally invariant measure for N.. So, we
fix e € (0,1] and for the rest of this section we assume that (H1) — (H3)
hold.

We need to apply (2.6) with ¢ replaced by ¢y : L2 (D) — [0, +00), M €
N, given by

ori(x) = /D 2M(E) de, x e V(D).

Clearly, such functions are not in CZ(H) so we have to construct proper
approximations. So, define for § € (0, 1]

r2M
fMﬁ(T’) = m, r e R (29)
Then for r € R
firs(r) = (14 6r) 2 2Mr*M =1 4+ 26(M — 1)r?M ] (2.10)

and

1s(r) = 2(1 4 6r2) TS [M(2M — 1)r2M=2 4 §(4M? — 6M — 1)r2]

+62(M —1)(2M — 3)r2M+2),
(2.11)
We have chosen this approximation since below (cf. Lemma 2.7) it will be
crucial that f}; s is nonnegative if M > 2. More precisely we have

0< flyslr) < 2 [r2M= (212)
0 < frs(r) < 16M? [r*M~*inf{r? 1/6}.

Remark 2.5 The following will be used below: if z € H} is such that for
M eN

/H 20D(6) [ T(6) P < o, (2.13)



then 2 € H} and 2M~'Vz = & VaM, or using the notation introduced
in Theorem 2.4-(ii) equivalently z € Hj,,. The proof is standard by ap-
proximation. So, we omit it. We also note that by Poincaré’s inequality,
Hj € L*M (D). More precisely, there exists C'((D) € (0, 00) such that

(D) /D M (6)de < /D VM (€)Pde = M /D 20 ()| (¢) 2

(2.14)
for all z as above.

The following lemma is a consequence of (2.6) and crucial for our analysis
of {pte, € € (0,1]} and their limit points. For e = 0, m = 3 its proof can be
found in [6]. We include the general case here for the reader’s convenience.

Lemma 2.6 Let M € N, § € (0,1]. Assume that

/H /D P21 (6) |V () 2dep(de) < o0 M >3 (2.15)

%gA / / 2 (6)dépe(dr)

/ / Pl a(2()8 (2(€) V() Pdep.(da).

Proof. We first note that (2.15) holds for M = 2 by (2.3). For x € (0, 1] we
define

Then

(2.16)

frsn(r) o= fM,a(?“)efé P preR M >2
and f15, = fi5. Then (2.11) implies that fi s, € CZ(R). Define

ornan(z) = /D Faton(@(©)de, € LA(D).

Then it is easy to check that pars, is Gateaux differentiable on L?*(D) and
that for all y,z € L*(D)

SOM(SI{ / fMéfi f)df, (217>

s nl2) / 15 (2 ()y()=(E)de. (2.18)



Hence
Prsno Py € CE(H)
and for all z € Hy (hence (.(y) € H}),

Ne(pmswo Py)(x) = 5 Z)\k/ Sirsx(Pnz(€))ez(€)dE

[ Tus o Prol€) Pu(A5 @) €)d.

Since PyA = APy, integrating by parts we obtain

Ne(pmsrno Py)(x) = 5 Z/\k/ Sirsn(Pnz(€))eq(€)dE

/ Pl (Pre(©))(V(Pyc) (€), V(P () (€))ade.

Since (Py)nen converges strongly to the identity in H}, we conclude by (H3)
that

. 1 N
]&EHOONE(QOM,&ROPN)(ZE) = 5 ZAk/

~ [ Fus a0 OITr(E) Pt

Since . is Lipschitz, by (2.3)—(2.5) and (H3) this convergence also holds in
L'(H, p.). Hence (2.6) implies that

! ZAk | [ Fiusata@)et(€asntan)

(2.19)
/ / (2)(€) V(€ P e (d).

So, for M =1 the assertion is proved. If M > 2, an elementary calculation
shows that by (2.12) there exists a constant C'(M, §) > 0 (only depending on
M and §) such that

| firsn(@)] < C(M,0)r*™M=2 1 r eR. (2.20)
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Hence by (H3), Remark 2.5 and assumption (2.15) we can apply Lebesgue’s
dominated convergence theorem to (2.19) and letting K — oo we obtain the
assertion. [J

Lemma 2.7 Let M € N and assume that (2.15) holds if M > 3.

(i) We have

u /H /D 2*MD(€) de i (da)

> [ [ e (P8 ke a0 Pagutan

T+ am1(¢)
(2.21)
(i1) If « =0 and m = 3 then for M >3
7 [ [ @+ 2 0e) depas)
> /H /D 22D (¢) [Va(€) e (da) (2:22)

=5 | [ IveVe) Pagp(an)
7 o),

/H/D V(&) dépe(dz) <

and
K
2¢’

(iii) If a > 0, then

K L2(M-1) ) > a L2M=1) ()2 .
2 /H/D (§)d pe(dz) > /H/D (&) |Vz(¢)] dgﬂz(zdz;,)

Proof. (i) By (H3) the left hand side of (2.16) is dominated by

g/H/sz’éf,a(x(f))dfua(dx).

11



If M > 2, by assumption (2.15) and Remark 2.5 we know that

/ / 204D (€)1 (dr) <

which trivially also holds for M = 1. So, by (2.11), (2.12) and Lebesgue’s
dominated convergence theorem we obtain that for M > 2

g /H /D 2M (2M — 1)2*M=D(&)dé pe (dax)

> hmmf/ / o (2(6)) |V () 2de o (d).

Since fy; 5 > 0 for M > 2 and

rm—l

ﬂé(’l") > W +e>0 for allr € R,
we can apply Fatou’s lemma to prove the assertion. If M = 1 we conclude
in the same way by (2.3) and Lebesgue’s dominated convergence theorem
which applies since 3, is bounded and f{'; < 6 for all § € (0, 1].
(ii) See [6, Lemma 2.7-(ii) and (iii)].

(iii) Since m — 1 is even, the assertion follows by (ii). [J

By an induction argument we shall now prove that the integrals in (2.22)
are all finite and at the same time prove the bounds claimed in Theorem 2.4.

Proof of Theorem 2.4. For the case @« = 0,m = 3 we refer to [6]. We
only give the proof for « > 0,m > 3. If M = 1 then the assertion holds by
Lemma 2.7—(iii). Furthermore, by Remark 2.5

[ [ 2ot = 15 [ [ veoram
= M2 // df,ua d$)

(2.24)

Now assertion (i) follows from Lemma 2.7-(iii) by induction.
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To prove (ii) we start with the following
Claim: For all M € N

@M($) = 1H1

0,M

@) [ IV P + 50 Ly o 0 €H (225
is a lower semi—continuous function on H.

Since p is a weak limit point of {u.| ¢ € (0,1]} and O, > 0, the claim
immediately implies the assertion.

To prove the claim let « > 0 and z, € {O) < a}, n € N such that
x, — x in H as n — oo. By Poincaré’s inequality {x,| n € N} is a bounded
set in L™ (D). So x,, — x in H as n — oo also weakly in L?(D), in particular
x € L*(D). Since {z}'| n € N} is bounded in Hj, there exists a subsequence
(zah)ken and y € Hy such that x) — y in H as k — oo weakly in Hj and

/ Vy(€)2de < o
D

Since the embedding Hy C L?(D) is compact, z)/ — y in H as k — oo
in L?(D). Selecting another subsequence if necessary, this convergence is
dé—a.e., hence

1
— yM  dé-a.e.

Ty,

Since (selecting another subsequence if necessary) we also know that the
Cesaro mean of (z,, )reny has x as an accumulation point in the topology of
dé—a.e. convergence, hence 2™ — gy, so v € {0y < a}. O

As a consequence from the previous proof we obtain:

Corollary 2.8 Let M € N. Then O, has compact level sets in H.

Proof. We already know from the previous proof that ©,, is lower semi-
continuous. The relative compactness of their level sets is, however, clear by
Poincaré’s inequality since L** (D) C H is compact. [J

Since for M € N and z € H ),

A = /D IV (€) P, (2.26)
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so AzM € H, we can define the Kolmogorov operator in (1.3) rigorously for
x € HyNHg,,. So, for p € C}(H),a € [0, 00)

NOSO

l\DIH

Z )(ex, er) + Do(z) - (Aaz + 2%)), (2.27)

where we assume m = 3 if @« = 0. We note that by Theorem 2.4-(ii) and
(2.26), Now € L*(H,u) for any weak limit point u of {u.| e € (0,1]} on H.
Now we can prove our main result, namely that any such p is an infinitesi-
mally invariant measure for Iy in the sense of [4], i.e. satisfies (1.4).

Theorem 2.9 Assume that (H1)—(H3) hold and that either o = 0,m = 3
ora>0,m > 3,m odd. Let u as in Proposition 2.3. Then

/Nogod,u:O for all ¢ € CZ(H).
H

Proof. For « = 0,m = 3 the assertion was proved in [6]. So, we only
prove the case o > 0,m > 3,m odd. Let ¢ € C¢(H). For N € N define
¢n =@ o Py. Then for z € Hj,

NocpN<l’) = Z)\kD PNZE ek,PNek)—i—DgoN( )(A(Oél’—i‘l’m))

= Z MeD?*0(Pn)(er, ex) + Dp(Pyz)(Py(A(ax 4+ 2™))).

If we can prove that

/ Nopndpp =0 for all N € N| (2.28)
H
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the same is true for ¢ by Lebesgue’s dominated convergence theorem. So,
fix N € N. Then by (2.6)

e—0

/H Nogndy = lim /H - éAkD%N(x)(ek,ek)ue(dx)
N /H Doy () (Alaz + ™)) u(de)
= iy | Don(a)(Ad(a) pe(d)

+ /H D(Pxa)(Py(A(az + &™)))u(de)

Do(Pnz)(e;)(es, Alax + ™)) gu(dx)

N
= lir%g /

E—
i=1 7 H

—Dp(Py)(ei) (e, A&(Jf))zms(dx)] :

(2.29)
For i € {1,..., N} fixed we have
|| DetPxa)(entes, Aoz + ™) n(da)
- [ DotPya)(es)ten AR (o)
(2.30)

<

/H Dip(Py)(e){es, Aaz + 2™ (i — i) (de)

+

/H Dip(Pya)(es) (e, Aoz + 2™ — Bo(x))) e (d)

The right hand side’s second summand is bounded by
iz sup Dptally [ [ aa(€)+am(€) = (el de pelda). (231
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We have
T2m71
14 gr2m-1

So, the term in (2.31) is dominated by
= ey sup 1 Dole)y [ () + loloao) (o),
H

which by Theorem 2.4-(i) converges to 0 as € — 0.
Now we estimate the first summand in the right hand side of (2.30). So,
we define

lar +r™ — B.(r)] = <[P taqr], reR.

f(z) == Dp(Pnx)(e;){e;, Alax + ™)) g.
Then since (e;, A(ax +2™)) g = (€;, ax + ™) 12(p), it follows by the proof of
the lower semicontinuity of ©,, that f is continuous on the level sets of ©,,
(with ©,,, defined as in (2.25)). Furthermore, since

|f(z)] < sup |Do(x)| gy lax + 2™ L2(p)
xe

it follows that

o)
li = 0.
s e,m

Furthermore, by Corollary 2.8 the function 1 + ©,, has compact level sets.

Hence by [9, Lemma 2.2], there exists f,, € Cp(H),n € N, such that
. /(@) — fu(2)]

lim sup —————— =0. 2.32

e el 14 0,() (2.32)

But

/H Dip(Pyer) (e){es Aoz +2™)) (1 — i) (d)

/!f  Fal@)] (1t pe)(da) +

For fixed n the second summand tends to O as € — 0 and the first one is
dominated by

) (1 — pe)(de)| -

|f(z) = fu(z)]
ey 2, Ol

which in turn by Theorem 2.4 and (2.32) tends to zero as n — oo. So, also
the first summand in (2.29) tends to 0 as ¢ — 0. Hence the right hand side
of (2.29) is zero and (2.28) follows which completes the proof. [
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3 Essential dissipativity of NV

In this section we assume that v > 0 and m > 3 is odd. We still assume
(H1)-(H3) to hold. Let u be a limit weak point of {u.| ¢ € (0,1]} (cf.
Proposition 2.3).

We already know that Nop € L?(H, p) for all p € CZ(H). We would like
to consider (No, CZ(H)) as an operator on L*(H,p). For this we need to
check that Ny respects pu—classes.

Lemma 3.1 Let p € C}(H) such that ¢ =0 p—a.e.. Then Nop =0 p-a.e..

Before we prove this lemma, we emphasize that we do not know whether
w(U) > 0 for any non—empty open set U C H, so two functions in CZ(H)
may be not identically equal if they are equal pu.—a.e. So, Lemma 3.1 is really
essential. Its proof is due to Z. Sobol. Below, as usual, we denote the image
¢'(z) in H under the Riesz isomorphism by Dg(z). Then we have for all
¢, € C}(H), v € HyN Hy,,

No(9) () = @) Now(x) + ¢(x) Nog(x) + (VC'Dp(), VO DY (),
(3.1)
where C” is the dual operator of C' on Hj.
Proof of Lemma 3.1. Since u(HyN Hg,,) = 1, by (3.1) applied with ¢ = ¢
it follows that
VC' D% =0 pae..

Hence for all 1 € C?(H) again by (3.1) and Theorem 2.9

/q/)NOSDdlu:Oa
H

since p = 0 p—a.e.. But CZ(H) is dense in L*(H, p), so Nop = 0 p—a.e. O

So, we can consider (N, CZ(H)) as an operator on L?(H, ) where CZ(H))
denotes the p—classes determined by CZ(H). For notational convenience we
shall also write CZ(H) for the set of these classes if there is no confusion
possible. It is well known and easy to see that (3.1) implies that (Ny, CZ(H))
is dissipative, so in particular closable, on L*(H, ut). Let (N, D(N3)) denotes
its closure.

Theorem 3.2 Assume that (H1)-(H3) hold and that o > 0,m > 3, m odd.
Let p be a limit weak point of {u.| € € (0,1]}. Then (No, C}(H)) is essen-
tially m—dissipative (i.e. (Na, D(Ny)) is m—dissipative) on L*(H,u). Hence
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tNo

(Ny, D(N3)) generates a Co—semigroup (e*2, t > 0) of linear contractions

on L*(H, p).
Proof. Let A > 0. We have to show that
(A — No)CZ(H) is dense in L*(H, p).

Let € € (0,1], f € CZ(H). Then by [3, Proof of Theorem 4.1] there exists a
unique . € CZ(H) such that

oo (1) — Nowo(x) = f(x) forallx € H] (3.2)
and 1
lp=llcp oy < X [ fllep - (3.3)
Noting that by (3.2) for all = € Hy N Hg,,
Mp=() = Nowe () = f(2) + Dpe(A(G:(2) — ax — ™))
(3.4)
1+ exm-t

= f(z) —eDp.A <£ - a:) :

Here we emphasize that this equality only holds p—a.e. if a > 0, because
only in this case we know that in addition to u(Hg,,) = 1, we also have that
wu(Hy) = 1. So, the following only makes sense if a > 0.

Claim.
lim(Ape — Now:) = f in L*(H, ). (3.5)

This will imply the assertion, by the Lumer—Phillips theorem since CZ(H) is
dense in L*(H, u). To prove (3.5) in view of (3.3) and (3.4) it is enough to

show that
L e 3.6
Al ——— — : :
[|a (s )| wtan) < (36)
To prove (3.6) note that
p2m—1 2 22m=1(¢) 2
A - - p— —_— J— d
‘ (1 + exm-t x) " /D v (1 + eam=1(¢) m(§)> ;

:/<@m—nﬁm%®—mmm3@

(14 exm=1(€))? - 1) [Va(§)[ dE.
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Since for r € R

(2m — 1)r*m=2 — mer3m—3 < (2m — 1)r?m=2

< (2m — 1)r*m 2
(14 erm=1)2 - 14 ermd < @m—1r ’

we obtain that

2

x2m—1
Al
‘ (Hexm—l x)

< 22m—1)? /D )|V (€) e

H

+2 /D IV (6)[2de.

Hence (3.6) follows by Theorem 2.4—(iii) ( which as stressed above now also
holds for M =1). O
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