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Introduction

The purpose of this paper is to give a complete proof of the existence of a mild
solution of a stochastic differential equation with respect to a compensated
Poisson random measure by a fixpoint argument in the spirit of [DaPrZa 96].
This will be done within the following framework.
Let (H, 〈 , 〉) be an infinite dimensional, separable Hilbert space, (U,B, ν)
a σ-finite measure space and (Ω,F , P ) a complete probability space with
filtration Ft, t ≥ 0 such that F0 contains all P -nullset of F . Consider the
following stochastic differential equation in H on the intervall [0, T ], T > 0:{

dX(t) = [AX(t) + F (X(t))] dt + B(X(t), y) q(dt, dy)

X(0) = ξ
(1)

where

• A : D(A) ⊂ H → H is the infinitesimal generator of a C0-semigroup
S(t), t ≥ 0, of linear, bounded operators on H,

• F : H → H is B(H)/B(H)-measurable,

• B : H × U → H is B(H)⊗ B/B(H)-measurable,

• q(dt, dy) := Π(dt, dy)−λ(dt)⊗ν(dy), is a compensated Poisson random
measure on ((0,∞) × U,B((0,∞)) ⊗ B) where Π is a Poisson random
measure on ((0,∞)×U,B((0,∞))⊗B) with intensity measure λ(ds)⊗
ν(dy),

• ξ is an H-valued, F0-measurable random variable.

A mild solution of equation (1) is an H-valued predictable process such that
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X(t) = S(t)ξ +

∫ t

0

S(t− s)F (X(s)) ds

+

∫ t+

0

∫
U

S(t− s)B(X(s), y) q(ds, dy) P -a.s.

for all t ∈ [0, T ].

The organization of this paper is as follows.

In Chapter 1 we present the definition of that type of stochastic integral
with respect to a compensated Poisson random measure which we use in this
paper. For this end, in Section 1 and 2 we first repeat the notions of Poisson
random measures and Poisson point processes where we refer to the book
[IkWa 81].
In Section 3, the construction of the stochastic integral of Hilbert space
valued predictable processes with respect to a compensated Poisson random
measure with intensity measure λ(ds) ⊗ ν(dy) will be done by an isometric
formula in the style of the definition of the stochastic integral with respect to
the Wiener process in [DaPrZa 92] or square integrable martingales in [Me
82]. For real valued processes this can be found in [BeLi 82]. Independently,
this definition was done in [Rue 2003].
Denote by E the space of elementary processes where an H-valued process
Φ(t) : Ω×U → H, t ∈ [0, T ], on (Ω×U,F⊗B, P⊗ν) is said to be elementary
if there exist 0 = t0 < t1 < · · · < tk = T and for m ∈ {0, . . . , k − 1} exist
Bm

1 , . . . , Bm
I(m) ∈ Γp, I(m) ∈ N, pairwise disjoint, such that

Φ =
k−1∑
m=0

I(m)∑
i=1

xm
i 1F m

i
1]tm,tm+1]×Bm

i

where xm
i ∈ H and Fm

i ∈ Ftm , 1 ≤ i ≤ I(m), 0 ≤ m ≤ k − 1.
Define

Int(Φ)(t, ω)

:=

∫ t+

0

∫
U

Φ(s, y) q(ds, dy)(ω) :=

∫ T

0

∫
U

1]0,t](s)Φ(s, y) q(ds, dy)(ω)

:=
k−1∑
m=0

I(m)∑
i=1

xm
i 1F m

i
(ω)(q(ω)(tm+1 ∧ t, Bm

i )− q(ω)(tm ∧ t, Bm
i )),

t ∈ [0, T ] and ω ∈ Ω.
Then, if Φ ∈ E , Int(Φ) ∈M2

T (H) which denotes the space of all square inte-
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grable H-valued martingales and we obtain the following isometric formula

‖Int(Φ)‖2
M2

T
:= supt∈[0,T ]E[‖

∫ t+

0

∫
U

Φ(s, y) q(ds, dy)‖2]

= E[

∫ T

0

∫
U

‖Φ(s, y)‖2 ν(dy) ds] =: ‖Φ‖T ,

i.e. Int: (E , ‖ ‖T ) → (M2
T (H), ‖ ‖M2

T
) is an isometric transformation and can

therefore be extended to the space Ē‖ ‖T . Ē‖ ‖T can be characterized by

N 2
q (T, U, H) = L2([0, T ]× Ω× U, PT (U), P ⊗ λ⊗ ν; H).

The main emphazis is on the Chapter 2 where we prove the existence of the
mild solution

X(ξ) ∈ H2(T,H) := {Y (t), t ∈ [0, T ] | Y is an H-predictable process s.t.

‖Y ‖H2 := sup
t∈[0,T ]

E[‖Y (t)‖2] < ∞}

of problem (1) and the continuity of the mapping X : L2(Ω,F0, P, H) →
H2(T,H).
A mild solution of the stochastic differential equation (1) is defined implicitly
by X(ξ) = F(ξ, X(ξ)), where F : L2(Ω,F0, P, H)×H2(T, H) → H2(T,H) is
given by

F(ξ, Y )(t) = S(t)ξ +

∫ t

0

S(t− s)F (Y (s)) ds

+

∫ t+

0

∫
U

S(t− s)B(Y (s), y) q(ds, dy), t ∈ [0, T ].

To obtain the existence of the solution, first, we have to show that F(ξ, Y ) is
well defined for all ξ ∈ L2(Ω,F0, P, H) and Y ∈ H2(T,H) and is an element
of H2(T,H). In particular, this includes the proof of the existence of a
predictable version of the stochastic integral denoted by∫ t−

0

∫
U

S(t− s)B(Y (s), y) q(ds, dy), t ∈ [0, T ].

Secondly, to apply a fixpoint argument, we have to prove that F is a con-
traction in the second variable.

In a future paper the differential dependence of the mild solution on the
initial data will be examined and it will be proved that

X : L2(Ω,F0, P, H) → H2(T, H)

is Gâteaux differentiable.
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Chapter 1

The Stochastic Integral with
Respect to Poisson Point
Processes

Let (Ω,F , P ) be a complete probability space and (U,B) a measurable space.

1.1 Poisson random measures

Let M be the space of non-negative (possibly infinte) integral-valued mea-
sures on (U,B) and

BM := σ(M → Z+ ∪ {+∞}, µ 7→ µ(B) |B ∈ B)

Definition 1.1 (Poisson random measure). A random variable
Π : (Ω,F) → (M,BM) is called Poisson random measure on (U,B) if the
following conditions hold:

(i) For all B ∈ B: Π(B) : Ω → Z+ ∪ {+∞} is Poisson distributed with
parameter E(Π(B)), i.e.:

P (Π(B) = n) = exp
(
− E(Π(B))

)
(E(Π(B)))n/n!, n ∈ N ∪ {0}

If E(Π(B)) = +∞ then Π(B) = +∞ P -a.s.

(ii) If B1, . . . , Bm ∈ B are pairwise disjoint then Π(B1), . . . , Π(Bm) are
independent.
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Remark 1.2. If Π is a Poisson random measure then the mapping
Ω → Z+ ∪{+∞}, ω 7→ Π(ω)(B), B ∈ B, is F -measurable since the mapping
Ω → M, ω 7→ Π(ω) is F/BM-measurable by Definition 1.1 and since the
mapping M → Z+ ∪{+∞}, µ 7→ µ(B) is BM-measurable by the definition of
BM.

Lemma 1.3. Let m ∈ N and µ and ν be two probability measures on [0,∞[m.
If for all α = (α1, . . . , αm) ∈ Rm

+∫
[0,∞[m

e−〈α,x〉 µ(dx) =

∫
[0,∞[m

e−
∑m

j=1 αjxj µ(d(x1, . . . , xm))

=

∫
[0,∞[m

e−
∑m

j=1 αjxj ν(d(x1, . . . , xm)) =

∫
[0,∞[m

e−〈α,x〉 ν(dx).

then µ = ν.

Proof. Denote by H the space of all B(Rm
+ )-measurable functions

f : Rm
+ → R such that

∫
Rm

+
f dµ =

∫
Rm

+
f dν. Then H is a monotone vec-

tor space. Moreover define

A := {Rm
+ → R, x 7→ exp(−

m∑
j=1

αjxj) |αj ∈ Q+, 1 ≤ j ≤ m}.

Then A is a class of bounded, measurable functions, which is closed under
multiplication and which is a subset of H by assumption. By the monoton
class theorem it follows that σ(A)b ⊂ H.
Moreover, A ⊂ {f : Rm

+ → R | f is B(Rm
+ )-measurable} is countable and

separates the points of Rm
+ . Thus, we obtain that σ(A) = B(Rm

+ ) and
B(Rm

+ )b ⊂ H. In particular, we get for A ∈ B(Rm
+ ) that µ(A) = ν(A).

Lemma 1.4. Let X be a Poissonian random variable on (Ω,F , P ) with pa-
rameter c > 0, i.e. X : Ω → Z+ ∪ {+∞} such that for all n ∈ N ∪ {0}:
P (X = n) = cn exp(−c)

n!
. Then

E(eαX) =

∫ ∞

0

eαx P ◦X−1(dx) =
∞∑

n=0

enαe−c cn

n!
= exp(c (eα − 1)) ∀α ∈ R

Theorem 1.5. Given a σ-finite measure ν on (U,B) there exists a Poisson
random measure Π on (U,B) with E(Π(B)) = ν(B) for all B ∈ B. ν is
then called the mean measure or intensity measure of the Poisson random
measure Π.
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Proof. [IkWa 81,Theorem 8.1, p.42]

Step 1. ν(U) < ∞
Let N be a Poissonian random variable with parameter c := ν(U).
Moreover let ξ1, ξ2, . . . be independent U -valued random variables with dis-
tribution 1

c
ν, also independent of N .

Define Π :=
∑N

k=1 δξk
.

Claim 1. Let B ∈ B.Then Π(B) is Poisson distributed with parameter ν(B).

Let s ≤ 0, then

E(esΠ(B))

= E
[
exp(s

N∑
k=1

δξk
(B))

]
, if N = 0 then

N∑
k=1

δξk
(B) = 0

= E
[ ∞∑

n=0

exp(s
n∑

k=1

1B(ξk))1{N=n}
]

=
∞∑

n=0

E
[ n∏

k=1

exp(s1B(ξk))1{N=n}
]

=
∞∑

n=0

E
[ n∏

k=1

exp(s1B(ξk))
]
P (N = n)

=
∞∑

n=0

(
E

[
exp(s1B(ξ1))

])n
e−c cn

n!

= exp
(
c (E[ exp(s1B(ξ1))]− 1)

)
= exp

(
c P (ξ1 ∈ B)es + c P (ξ1 ∈ Bc)− c)

)
= exp

(
c

ν(B)

c
es + c (1− ν(B)

c
)− c

)
= exp

(
ν(B)(es − 1)

)
By Lemma 1.4 and Lemma 1.3 the assertion follows.

Claim 2. Let B1, . . . , Bm ∈ B pairwise disjoint. Then Π(B1), . . . , Π(Bm) are
independent.

Let s1, . . . , sm ∈ R−, then:∫
[0,∞[m

exp(
m∑

j=1

sjxj) P ◦ (Π(B1), . . . , Π(Bm))−1d(x1, . . . , xm)
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= E
[
exp(

m∑
j=1

sjΠ(Bj))
]

= E
[ ∞∑

n=0

exp(
m∑

j=1

sj

n∑
k=1

1Bj
(ξk))1{N=n}

]
=

∞∑
n=0

E
[ n∏

k=1

exp(
m∑

j=1

sj1Bj
(ξk))

]
e−c cn

n!

=
∞∑

n=0

(
E

[
exp(

m∑
j=1

sj1Bj
(ξ1))

])n
e−c cn

n!

= exp
(
c
(
E

[
exp(

m∑
j=1

sj1Bj
(ξ1))

]
− 1

))
= exp

(
c
(
E

[
1{ξ1∈

⋃m
j=1 Bj}exp(

m∑
j=1

sj1Bj
(ξ1))

+ 1{ξ1∈(
⋃m

j=1 Bj)c}exp(
m∑

j=1

sj1Bj
(ξ1))

]
− 1

))
= exp

(
c
(
E

[ m∑
j=1

1{ξ1∈Bj}e
sj + 1{ξ1∈(

⋃m
j=1 Bj)c}

]
− 1

))
= exp

(
c
( m∑

j=1

P (ξ1 ∈ Bj)e
sj + P (ξ1 ∈ (

m⋃
j=1

Bj)
c)− 1

))
= exp

(
c
( m∑

j=1

ν(Bj)

c
esj + (1−

m∑
j=1

ν(Bj)

c
)− 1

))
= exp

( m∑
j=1

ν(Bj)(e
sj − 1)

)
=

m∏
j=1

exp(ν(Bj)(e
sj − 1)

)
=

m∏
j=1

∫ ∞

0

exp(sjxj) P ◦ Π(Bj)
−1(dxj)

=

∫
[0,∞[m

exp(
m∑

j=1

sjxj) P ◦ Π(B1)
−1 ⊗ · · · ⊗ P ◦ Π(Bm)−1d(x1, . . . , xm)

Hence, by Proposition 1.3, we can conclude that

P ◦ (Π(B1), . . . , Π(Bm))−1 = P ◦ Π(B1)
−1 ⊗ · · · ⊗ P ◦ Π(Bm)−1

which implies the required independence.
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Step 2. ν is σ-finite
There exist Ui ∈ B, i ∈ N, pairwise disjoint such that ν(Ui) < ∞ for all i ∈ N
and U =

⋃∞
i=1 Ui. Set νi := ν(· ∩ Ui), i ∈ N.

For i ∈ N let Ni be a Poissonian random variable with parameter
ci := ν(Ui) and ξi

1, ξ
i
2, . . . independent Ui-valued random variables with dis-

tribution 1
ci

νi, also independent of Ni. Moreover the families of random

variables {Ni, ξ
i
1, ξ

i
2, . . . }i∈N are independent.

Let Πi be the Poisson random measure on Ui associated with Ni and ξi
1, ξ

i
2, . . .

with intensity measure νi as defined in Step 1.
Define Π :=

∑∞
i=1 Πi :=

∑∞
i=1

∑Ni

k=1 δξi
k
. Then one has for B ∈ B that

Π(B) =
∞∑
i=1

Ni∑
k=1

δξi
k
(B) =

∞∑
i=1

Ni∑
k=1

1B(ξi
k) =

∞∑
i=1

Ni∑
k=1

1B∩Ui
(ξi

k)

=
∞∑
i=1

Πi(B ∩ Ui)

Claim 1. Let B ∈ B with E[Π(B)] < ∞ then

ν(B) =
∞∑
i=1

ν(B ∩ Ui) =
∞∑
i=1

E[Πi(B ∩ Ui)] , by Step1, Claim1

= E[Π(B)] < ∞.

Then Π(B) is Poisson distributed with parameter ν(B).

Let s ≤ 0, then:

E[esΠ(B)] = lim
m→∞

E
[
exp(s

m∑
i=1

Πi(B ∩ Ui))
]

= lim
m→∞

m∏
i=1

E
[
exp(s Πi(B ∩ Ui))

]
,

since the families of random variables {Ni, ξ
i
1, ξ

i
2, . . . }i∈N are inde-

pendent,

= lim
m→∞

m∏
i=1

exp(ν(B ∩ Ui)(e
s − 1)) , by Step 1

= exp(ν(B)(es − 1))

By Lemma 1.4 and Lemma 1.3 the assertion follows.

Claim 2. Let B ∈ B with ν(B) = E[Π(B)] = +∞. Then Π(B) = +∞
P -a.s..

P (Π(B) = +∞) = P (
⋂

m∈N

⋃
i≥m

{Πi(B ∩ Ui) > 0})
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Since

P (
⋂
i≥m

{Πi(B ∩ Ui) > 0}c) = P (
⋂
i≥m

{Πi(B ∩ Ui) = 0})

= lim
n→∞

P (
m+n⋂
i=m

{Πi(B ∩ Ui) = 0}) = lim
n→∞

m+n∏
i=m

e−ν(B∩Ui)

= lim
n→∞

exp(−
m+n∑
i=m

ν(B ∩ Ui)) = 0

it follows that P (
⋃

i≥m{Πi(B ∩ Ui) > 0}) = 1 for all m ∈ N and therefore
P (Π(B) = +∞) = 1.

Claim 3. Let B1, . . . , Bm ∈ B pairwise disjoint. Then Π(B1), . . . , Π(Bm) are
independent.

If E[Π(Bj)] < ∞ for all j ∈ {1, . . . ,m} then one gets for all s1, . . . , sm ∈ R−
that

E
[
exp(

m∑
j=1

sjΠ(Bj))
]

= E
[
exp(

∞∑
i=1

m∑
j=1

sjΠi(Bj ∩ Ui))
]

= lim
n→∞

E
[
exp(

n∑
i=1

m∑
j=1

sjΠi(Bj ∩ Ui))
]

= lim
n→∞

n∏
i=1

m∏
j=1

E
[
exp( sjΠi(Bj ∩ Ui))

]
= lim

n→∞

n∏
i=1

m∏
j=1

exp
(
ν(Bj ∩ Ui)(e

sj − 1)
)

=
m∏

j=1

exp
(
ν(Bj)(e

sj − 1)
)

If there exists i ∈ {1, . . . ,m} with E[Π(Bi)] = ∞, then, by Step 2, Claim 2,
Π(Bi) = ∞ P -a.s. Let {i1, . . . , in} ⊂ {1, . . . ,m}, then the independence of
Π(Bi1), . . . , Π(Bin) follows from the case E[Π(Bj)] < ∞ for all j ∈ {1, . . . ,m}
and the above statement.
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1.2 Point processes and Poisson point pro-

cesses

Definition 1.6 (Point function on U). A point function p on U is a
mapping p : Dp ⊂ (0,∞) → U where the domain Dp is a countable subset of
(0,∞).
p defines a measure Np(dt, dy) on ((0,∞)×U,B((0,∞))⊗B) in the following
way:
Define p̄ : (0,∞) → (0,∞) × U , t 7→ (t, p(t)) and denote by c the counting
measure on (Dp,P(Dp)), i.e. c(A) := |A| for all A ∈ P(Dp).
For B̄ ∈ B((0,∞))⊗ B define

Np(B̄) := c(p̄−1(B̄)).

Then, in particular, we have for all A ∈ B((0,∞)) and B ∈ B

Np(A×B) := #{t ∈ Dp|t ∈ A, p(t) ∈ B}.

Notation: Np(t, B) := Np(]0, t]×B), t ≥ 0, B ∈ B

Let PU be the space of all point functions on U and

BPU
:= σ(PU → Z+ ∪ {+∞}, p 7→ Np(]0, t]×B) | t > 0, B ∈ B)

Definition 1.7 (Point process). (i) A point process on U is a random
variable p : (Ω,F) → (PU ,BPU

).

(ii) A point process p is called stationary if for every t > 0 p and θtp
have the same probability law, where θtp is defined by Dθtp := {s ∈
(0,∞) | s + t ∈ Dp} and (θtp)(s) := p(s + t).

(iii) A point process is called Poisson point process if there exists a Poisson
random measure Π on (0,∞)×U such that there exists N ∈ F , P (N) =
0, such that for all ω ∈ N c and for all B̄ ∈ B((0,∞))⊗ B: Np(w)(B̄) =
Π(ω)(B̄).

(iv) A point process p is called σ-finite if there exist Ui ∈ B, i ∈ N, Ui ↑ U ,
i →∞, and E[Np(t, Ui)] < ∞ for all t > 0 and i ∈ N.

The statement of the following proposition about stationary Poisson point
processes can be found in [IkWa 81, I.9 Point processes and Poisson point
processes, p.43]
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Proposition 1.8. Let p be a σ-finite Poisson point process. Then p is sta-
tionary if and only if there exists a σ-finite measure ν on (U,B) such that

E[Np(dt, dy)] = λ(dt)⊗ ν(dy)

where λ denotes the Lebesgue-measure on (0,∞). ν is called characteristic
measure of p.

Theorem 1.9. Given a σ-finite measure ν on (U,B) there exists a stationary
Poisson point process on U with characteristic measure ν.

Proof. Let Π be a Poisson random measure on ((0,∞) × U,B((0,∞)) ⊗
B) with intensity measure λ ⊗ ν where λ denotes the Lebesgue-measure
on((0,∞),B((0,∞))). Remember the construction of Π in the proof of The-
orem 1.5:
There exist Ui, i ∈ N, pairwise disjoint sucht that U =

⋃
i∈N

Ui and

ci := ν(Ui) < ∞. For i ∈ N let

• Ni be a Poissonian random variable with parameter ci,

• ξi
k = (tik, x

i
k), k ∈ N, i.i.d. ]i − 1, i] × Ui-valued random variables with

distribution λ⊗ ( 1
ci

ν(· ∩ Ui), also independent of Ni.

Moreover the families of random variables {Ni, ξ
i
1, ξ

i
2, . . . }, i ∈ N, are inde-

pendent.
Then

Π :=
∞∑
i=1

Πi :=
∞∑
i=1

Ni∑
k=1

δ(tik,xi
k)

is a Poisson random measure on ((0,∞) × U,B((0,∞)) ⊗ B) with intensity
measure λ⊗ ν and for B̄ ∈ B((0,∞))⊗ B holds

Π(B̄) =
∞∑
i=1

Πi(B̄ ∩ (]i− 1, i]× Ui))(1.1)

.
Then there exists a P -nullset N ∈ F such that for all ω ∈ N c:
Π(ω)({t} × U) = 1 or 0 for all t > 0, since

P (
⋃
t>0

{Π({t} × U) > 1}) = P (
∞⋃
i=1

⋃
t∈]i−1,i]

{Π({t} × U) > 1})
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≤
∞∑
i=1

P (
⋃

t∈]i−1,i]

{Π({t} × Ui) > 1})

≤
∞∑
i=1

P (
⋃

n6=m

⋃
t∈]i−1,i]

{δξi
n
({t} × Ui) = 1} ∩ {δξi

m
({t} × Ui) = 1})

≤
∞∑
i=1

∑
n6=m

P (
⋃

t∈]i−1,i]

{tin = tim = t})

=
∞∑
i=1

∑
n6=m

λ⊗ λ({(t, t) | t ∈]i− 1, i]})

= 0

If ω ∈ N c and t ∈]i− 1, i], then

Π(ω({t} × U)) = 1

⇐⇒
Ni(ω)∑
k=1

δ(tik(ω),xi
k(ω))({t} × Ui) = Πi(ω)({t} × Ui)

= Π(ω)({t} × U) , by equation (1.1),

= 1

⇐⇒∃! k ∈ {1, . . . , Ni(ω)} such that t = tik(ω)

In this case we set

p(ω)(t) := xi
k(ω) and Dp(ω) := {t ∈ (0,∞) |Π(ω)({t} × U) 6= 0}

If ω ∈ N then define p0 ∈ PU by Dp := {t0} ⊂ (0,∞) and p0(t0) = x0 ∈ U
and set p(ω) = p0.

Claim 1. Np(ω) = Π(ω) for all ω ∈ N c.
Let ω ∈ N c, A ∈ B((0,∞)) and B ∈ B then:

Π(ω)(A×B)

=
∞∑
i=1

Ni(ω)∑
k=1

δ(tik,xi
k)(ω)(A∩]i− 1, i]×B ∩ Ui)

=
∞∑
i=1

#{s ∈]i− 1, i] | s ∈ A,∃k ∈ {1, . . . , Ni(ω)} such that s = tik(ω)

and xi
k(ω) ∈ B ∩ Ui}

=
∞∑
i=1

#{s ∈]i− 1, i] | s ∈ A,∃! k ∈ {1, . . . , Ni(ω)} such that s = tik(ω)

and xi
k(ω) ∈ B ∩ Ui},
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since Π(ω)({s} × U) ∈ {0, 1} for all s ∈ [0,∞[,

= #{s ∈ Dp(ω) | s ∈ A, p(ω)(s) ∈ B},
by the definition of p,

= Np(ω)(A×B)

Claim 2. For all B̄ ∈ B((0,∞)) ⊗ B the mapping Np(B̄) is F -measurable
and E[Np(dt, dx)] = λ(dt)⊗ ν(dx).
Since Np(B̄) = Π(B̄) P -a.s. the measurability is obvious by Remark 1.2 and
the completness of (Ω, ,P ).Now E[Np(B̄)] is well defined and we obtain that
E[Np(B̄)] = E[Π(B̄)] = λ⊗ ν(B̄), since Π is a Poisson random measure with
intensity measure λ(dt)⊗ ν(dx).

Claim 3. p : Ω → PU is F/BPU
-measurable.

BPU
= σ(PU → Z+ ∪ {+∞}, p 7→ Np(]0, t]×B) | t > 0, B ∈ B)

= σ({p ∈ PU |N(t, B) = m} | t > 0, B ∈ B, m ∈ Z+)

and for t > 0, B ∈ B, m ∈ Z+ one gets by Claim 2 that

{p ∈ {N·(t, B) = m}} = {Np(t, B) = m} ∈ F .

By Claim 1 - 3 it follows that p is a Poisson point process with charac-
teristic measure ν. By Proposition 1.8 p is stationary.

1.3 Stochastic integrals with respect to Pois-

son point processes

Let Ft, t ≥ 0, be a filtration on (Ω,F , P ) such that F0 contains all P -nullsets
of F .

Definition 1.10. A point process p is called (Ft)-adapted if for every t > 0
and B ∈ B Np(t, B) is Ft-measurable.

For an arbitrary point process p define the following set
Γp := {B ∈ B |E[Np(t, B)] < ∞ for all t > 0}.

Definition 1.11. An (Ft)-adapted point process p on U is said to be of class
(QL) (quasi-left-continuous) with respect to Ft, t ≥ 0, if it is σ-finite and
there exists for all B ∈ B a process N̂p(t, B), t ≥ 0, such that
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(i) for B ∈ Γp t 7→ N̂p(t, B) is a continuous (Ft)-adapted increasing pro-
cess,

(ii) for all t ≥ 0 and P -a.e. ω ∈ Ω: N̂p(ω)(t, ·) is a σ-finite measure on
(U,B),

(iii) for B ∈ Γp q(t, B) := Np(t, B)− N̂p(t, B), t ≥ 0, is an (Ft)-martingale

N̂p is called the compensator of the point process p and q the compensated
Poisson random measure of p.

Definition 1.12. A point process p is called an (Ft)-Poisson point process if
it is an (Ft)-adapted, σ-finite Poisson point process such that
{Np(]t, t + h]×B) |h > 0, B ∈ B} is independent of Ft for all t ≥ 0.

Remark 1.13. Let p be a σ-finite Poisson point process on U . Then there
exists a filtration Ft, t ≥ 0, on (Ω,F , P ) such that F0 contains all P -nullsets
of F and p is an (Ft)-Poisson point process.

Proof. Define N := {N ∈ F |P (N) = 0} and for t ≥ 0

Ft := σ(Np(t, B) |B ∈ B) ∪N .

Then p is an (Ft)-adapted, σ-finite Poisson point process.
Moreover σ(Np(t, B) |B ∈ B) ∪ N = σ(Π(]0, t] × B) |B ∈ B) ∪ N is inde-
pendent of σ(Π(]t, t+h]×B) |h > 0, B ∈ B) ∪ N by Definition 1.1 (ii) since
]0, t]×B and ]t, t + h]× B̃ are disjoint for all h > 0 and B, B̃ ∈ B. Since

σ(Π(]t, t + h]×B) |h > 0, B ∈ B) ∪N
= σ(Np(]t, t + h]×B) |h > 0, B ∈ B) ∪N

the assertion follows.

For the rest of this section fix a σ-finite measure ν on (U,B) and a stationary
(Ft)-Poisson point process p on U with characteristic measure ν.

Proposition 1.14. p is of class (QL) with compensator N̂p(t, B) = tν(B),
t ≥ 0, B ∈ B.

Proof. Set for t ≥ 0 and B ∈ B: N̂p(t, B) := tν(B).
Then condition (i) and (ii) of Definition 1.11 are fulfilled. Moreover, for
B ∈ Γp q(t, B) := Np(t, B)− N̂p(t, B), t ≥ 0, is (Ft)-adapted. It remains to



16

check that for B ∈ Γp q(t, B), t ≥ 0, has the martingale property.
For this end let 0 ≤ s < t < ∞ and Fs ∈ Fs, then

E[q(t, B)1Fs ] = E[(Np(t, B)− N̂p(t, B))1Fs ]

= E[Np(t, B)1Fs ]− tν(B)P (Fs)

= E[(Np(t, B)−Np(s, B))1Fs ] + E[Np(s, B)1Fs ]− tν(B)P (Fs)

= E[Np(t, B)−Np(s, B)]P (Fs) + E[Np(s, B)1Fs ]− (t− s)ν(B)P (Fs)

− sν(B)P (Fs)

= E[(Np(s, B)1Fs ]− sν(B)P (Fs)

= E[(Np(s, B)− N̂p(s, B))1Fs ]

= E[q(s, B)1Fs ]

Remark 1.15. If t ∈ [0,∞[ and

B ∈ Γp = {B ∈ B |E[Np(t, B)] < ∞ for all t > 0} = {B ∈ B | ν(B) < ∞}

then q(t, B) ∈ R P -a.s. since q(t, B) = Np(t, B)− tν(B) where Np(t, B) < ∞
P -a.s. as E[Np(t, B)] < ∞.
If 0 ≤ s ≤ t < ∞ and B ∈ Γp then

q(t, B)− q(s, B) = Np(t, B)−Np(s, B)− (t− s)ν(B)

= Np(]s, t]×B)− (t− s)ν(B) P -a.s.

Notation: In the following we will use the following notation:
q(]s, t]×B) := Np(]s, t]×B)− (t− s)ν(B), 0 ≤ s ≤ t < ∞, B ∈ B.

Proposition 1.16. For A ∈ Γp (q(t, A), t ≥ 0) is an element of M2 and we
have for A1, A2 ∈ Γp that

〈q(·, A1), q(·, A2)〉(t) = N̂p(t, A1 ∩ A2), t ≥ 0.

In particular, this means that for all A ∈ Γp the following holds:

M(t) := q(t, A)2− N̂p(t, A), t ≥ 0, is an (Ft)t≥0-martingale and in this case:
E[M(t)] = E[M(0)] = 0 for all t ≥ 0.

Proof. [Ikeda, Watanabe, Theorem 3.1, p.60; Lemma 3.1, p.60]

Step 1. Definition of the stochastic integral for elementary pro-
cesses
Let (H, 〈 , 〉) be a separable Hilbert space and fix T > 0.
The class E of all elementary processes is determined by the following defi-
nition
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Definition 1.17. An H-valued process Φ(t) : Ω × U → H, t ∈ [0, T ], on
(Ω × U,F ⊗ B, P ⊗ ν) is said to be elementary if there exist 0 = t0 < t1 <
· · · < tk = T , k ∈ N, and for m ∈ {0, . . . , k − 1} exist Bm

1 , . . . , Bm
I(m) ∈ Γp,

pairwise disjoint, I(m) ∈ N, such that

Φ =
k−1∑
m=0

I(m)∑
i=1

xm
i 1F m

i
1]tm,tm+1]×Bm

i

where xm
i ∈ H and Fm

i ∈ Ftm , 1 ≤ i ≤ I(m), 0 ≤ m ≤ k − 1.

For Φ =
∑k−1

m=0

∑I(m)
i=1 xm

i 1F m
i

1]tm,tm+1]×Bm
i
∈ E define the stochastic inte-

gral process by

Int(Φ)(t, ω)

:=

∫ t+

0

∫
U

Φ(s, y) q(ds, dy)(ω) :=

∫ T

0

∫
U

1]0,t](s)Φ(s, y) q(ds, dy)(ω)

:=
k−1∑
m=0

I(m)∑
i=1

xm
i 1F m

i
(ω)(q(ω)(tm+1 ∧ t, Bm

i )− q(ω)(tm ∧ t, Bm
i )),

t ∈ [0, T ] and ω ∈ Ω.

Proposition 1.18.
If Φ ∈ E then

( ∫ t+

0

∫
U

Φ(s, y) q(ds, dy), t ∈ [0, T ]
)
∈M2

T (H) and

‖Int(Φ)‖2
M2

T
:= supt∈[0,T ]E[‖

∫ t+

0

∫
U

Φ(s, y) q(ds, dy)‖2]

= E[

∫ T

0

∫
U

‖Φ(s, y)‖2 ν(dy) ds] =: ‖Φ‖T

Proof.

Claim 1. Int(Φ) is (Ft)-adapted.

Let t ∈ [0, T ] then:

Int(Φ)(t)

=
∑

m∈{0,...,k−1}
tm≤t

I(m)∑
i=1

xm
i 1F m

i
( Np(tm+1 ∧ t, Bm

i )−Np(tm, Bm
i )− (tm+1 ∧ t− tm)

ν(Bm
i ))

which is Ft-measurable since p is (Ft)-adapted.
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Claim 2. For all t ∈ [0, T ]:

E
[
‖Int(Φ)(t)‖2

]
= E

[ ∫ t

0

∫
U

‖Φ(s, y)‖2 ν(dy)ds
]

< ∞ :

E
[
‖Int(Φ)(t)‖2

]
= E

[
‖

k−1∑
m=0

I(m)∑
i=1

xm
i 1F m

i
q(]tm ∧ t, tm+1 ∧ t]×Bm

i )‖2
]

= E
[ k−1∑

m=0
tm≤t

I(m)∑
i=1

‖xm
i 1F m

i
q(]tm ∧ t, tm+1 ∧ t]×Bm

i )‖2

+ 2
∑

0≤m<n≤k−1
tn≤t

∑
(i,j)∈{1,...,I(m)}
×{1,...,I(n)}

〈xm
i ∆m

i , xn
j ∆n

j 〉
]

where ∆l
h := q(]tl ∧ t, tl+1 ∧ t]× AB

h ), 0 ≤ l ≤ k − 1, 1 ≤ h ≤ I(l).

1.: For m ∈ {0, . . . , k − 1}, tm ≤ t, i ∈ {1, . . . , I(m)} holds:

E
[
‖xm

i 1F m
i

q(]tm ∧ t, tm+1 ∧ t]×Bm
i )‖2

]
≤ E

[
‖xm

i ∆m
i ‖2

]
< ∞ :

For this purpose let 0 ≤ s ≤ t ≤ T and B ∈ Γp, then:

E
[
q(]s, t]×B)2

]
= E

[
(q(t, B)− q(s, B))2

]
= E

[
q(t, B)2︸ ︷︷ ︸

(a)

−2 q(t, B)q(s, B)︸ ︷︷ ︸
(b)

+q(s, B)2
]

(a) By Proposition 1.16 and Proposition 1.14 it follows that

E[q(t, B)2] = E[N̂p(t, B)] = tν(B) < ∞.

(b) Since |q(]s, t]×B)| and |q(s, B)| are independent we get that

E
[
|q(t, B)q(s, B)|

]
≤ E

[
|q(]s, t]×B)q(s, B)|

]
+ E

[
q(s, B)2

]
= E

[
|q(]s, t]×B)|

]
E

[
|q(s, B)|

]
+ E

[
q(s, B)2

]
< ∞.

From (a) and (b) it follows that E
[
q(]s, t]×B)2

]
< ∞. Moreover we obtain

that
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E
[
q(]s, t]×B)2

]
(1.2)

= E
[
q(t, B)2

]
− 2E

[
q(t, B)q(s, B)

]
+ E

[
q(s, B)2

]
= E

[
q(t, B)2

]
− 2E

[
q(]s, t]×B)q(s, B)

]
− E

[
q(s, B)2

]
= tν(B)− 2E

[
q(]s, t]×B)

]
E

[
q(s, B)

]
− sν(B)

= (t− s)ν(B), as E
[
q(s, B)

]
= E[Np(]0, s]×B]− sν(B) = 0

2.: For m,n ∈ {0, . . . , k − 1}, m < n, tn ≤ t, i ∈ {1, . . . , I(m)},
j ∈ {1, . . . , I(n)} holds:

E
[
|〈xm

i 1F m
i

∆m
i , xn

j 1F n
j
∆n

j 〉|
]
≤ E

[
|〈xm

i ∆m
i , xn

j 〉||∆n
j |

]
< ∞ :

Since m < n and tm < tn ≤ t we get that

]tm ∧ t, tm+1 ∧ t]∩]tn ∧ t, tn+1 ∧ t] =]tm, tm+1]∩]tn, tn+1 ∧ t] = ∅

therefore |∆n
j | and 〈xm

i , xn
j 〉|∆m

i | are independent and we obtain that

E
[
|〈xm

i ∆m
i , xn

j 〉||∆n
j |

]
= E

[
|〈xm

i ∆m
i , xn

j 〉|
]
E

[
|∆n

j |
]

< ∞.

3.: For m,n ∈ {0, . . . , k − 1}, m < n, tn ≤ t, i ∈ {1, . . . , I(m)},
j ∈ {1, . . . , I(n)} holds:

E
[
〈xm

i 1F m
i

∆m
i , xn

j 1F n
j
∆n

j 〉
]

= E
[
〈xm

i 1F m
i

∆m
i , xn

j 1F n
j
〉∆n

j

]
= E

[
〈xm

i 1F m
i

∆m
i , xn

j 1F n
j
〉
]
E[∆n

j ]

= 0 , since E[∆n
j ] = 0.

By 1.-3. one gets for all t ∈ [0, T ] that

E
[
‖Int(Φ)(t)‖2

]
= E

[
‖

k−1∑
m=0

I(m)∑
i=1

xm
i 1F m

i
q(]tm ∧ t, tm+1 ∧ t]×Bm

i )‖2
]

= E
[ k−1∑

m=0
tm≤t

I(m)∑
i=1

‖xm
i 1F m

i
q(]tm ∧ t, tm+1 ∧ t]×Bm

i )‖2

+ 2
∑

0≤m<n≤k−1
tn≤t

∑
(i,j)∈{1,...,I(m)}
×{1,...,I(n)}

〈xm
i ∆m

i , xn
j ∆n

j 〉
]

=
k−1∑
m=0
tm≤t

I(m)∑
i=1

E
[
‖xm

i 1F m
i

q(]tm ∧ t, tm+1 ∧ t]×Bm
i )‖2

]
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=
k−1∑
m=0
tm≤t

I(m)∑
i=1

‖xm
i ‖2P (Fm

i )E
[
q(]tm ∧ t, tm+1 ∧ t]×Bm

i )2
]
,

since Fm
i ∈ Ftm and q(]tm, tm+1 ∧ t]×Bm

i ) is independent of Ftm ,

=
k−1∑
m=0
tm≤t

I(m)∑
i=1

‖xm
i ‖2P (Fm

i )(tm+1 ∧ t− tm ∧ t)ν(Bm
i ),

by equation (1.2),

= E
[ ∫ t

0

∫
U

‖
k−1∑
m=0

I(m)∑
i=1

xm
i 1F m

i
1]tm,tm+1]×Bm

i
‖2 ν(dy)ds

]
= E

[ ∫ t

0

∫
U

‖Φ(s, y)‖2 ν(dy)ds
]

Claim 3. Int(Φ)(t), t ∈ [0, T ], is an (Ft)-martingale.
Let 0 ≤ s < t ≤ T and Fs ∈ Fs then:

∫
Fs

∫ t+

0

∫
U

Φ(r, y) q(dr, dy)dP

=

∫
Fs

k−1∑
m=0

I(m)∑
i=1

xm
i 1F m

i
(q(tm+1 ∧ t, Bm

i )− q(tm ∧ t, Bm
i )) dP

=
k−1∑
m=0
tm≤s

I(m)∑
i=1

∫
Fs

xm
i 1F m

i
(q(tm+1 ∧ t, Bm

i )− q(tm ∧ s, Bm
i )) dP

+
k−1∑
m=0

s<tm≤t

I(m)∑
i=1

∫
Fs

xm
i 1F m

i
(q(tm+1 ∧ t, Bm

i )− q(tm, Bm
i )) dP

+
k−1∑
m=0

s<t<tm

I(m)∑
i=1

∫
Fs

xm
i 1F m

i
(q(t, Bm

i )− q(t, Bm
i ))︸ ︷︷ ︸

=0

dP

=
k−1∑
m=0
tm≤s

I(m)∑
i=1

∫
Fs

xm
i 1F m

i

(
E

[
q(tm+1 ∧ t, Bm

i )|Fs

]
− q(tm ∧ s, Bm

i )) dP

+
k−1∑
m=0

s<tm≤t

I(m)∑
i=1

∫
Fs

xm
i 1F m

i

(
E

[
q(tm+1 ∧ t, Bm

i )|Ftm

]
− q(tm, Bm

i )
)︸ ︷︷ ︸

=0, since q(·,Bm
i ) is an (Ft)-martingale

dP
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+
k−1∑
m=0

s<t<tm

I(m)∑
i=1

∫
Fs

xm
i 1F m

i
(q(s, Bm

i )− q(s, Bm
i ))︸ ︷︷ ︸

=0

dP

=
k−1∑
m=0
tm≤s

I(m)∑
i=1

∫
Fs

xm
i 1F m

i
(q(tm+1 ∧ s, Bm

i )− q(tm ∧ s, Bm
i )) dP,

since q(tm+1 ∧ ·, Bm
i ) is an (Ft)-martingale

+
k−1∑
m=0

s<tm≤t

I(m)∑
i=1

∫
Fs

xm
i 1F m

i
(q(tm+1 ∧ s, Bm

i )− q(tm ∧ s, Bm
i ))︸ ︷︷ ︸

=0

dP

+
k−1∑
m=0

s<t<tm

I(m)∑
i=1

∫
Fs

xm
i 1F m

i
(q(tm+1 ∧ s, Bm

i )− q(tm ∧ s, Bm
i )) dP

=

∫
Fs

∫ s+

0

∫
U

Φ(r, y) q(dr, dy)dP

In this way one has found the semi norm ‖ ‖T on E such that
Int : (E , ‖ ‖T ) → (M2

T (H), ‖ ‖M2
T
) is an isometric transformation. To get

a norm on E one has to consider equivalence classes of elementary processes
with respect to ‖ ‖T . For simplicity, the space of equivalence classes will be
denoted by E , too.
Since E is dense in the absract completion Ē of E w.r.t. ‖ ‖T it is clear that
there is a unique isometric extension of Int to Ē .

Step 2. Characterization of Ē
Define the predictable σ-field on [0, T ]× Ω× U by

PT (U)

:= σ(g : [0, T ]× Ω× U → H | g is (Ft × B︸ ︷︷ ︸
F̃t

)− adapted and left-continuous)

= σ({]s, t]× F̃s | 0 ≤ s ≤ t ≤ T, F̃s ∈ F̃s} ∪ {{0} × F̃0 | F̃0 ∈ F̃0})
= σ( {]s, t]× Fs ×B | 0 ≤ s ≤ t ≤ T, Fs ∈ Fs, B ∈ B}

∪ {{0} × F0 ×B |F0 ∈ F0 × B})

At this point, for the sake of completness, also define the predictable σ-field
on [0, T ]× Ω by

PT := σ(g : [0, T ]× Ω → R, | g is (Ft)-adapted and left-continuous)
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= σ({]s, t]× Fs | 0 ≤ s ≤ t ≤ T, Fs ∈ Fs} ∪ {{0} × F0 |F0 ∈ F0}︸ ︷︷ ︸
:=A

)

Let H̃ be an arbitrary Hilbert space. If Y : [0, T ] × Ω → H̃ is PT /B(H̃)-
measurable it is called (H̃-)predictable.

Remark 1.19. (i) If B ∈ B([0, T ]) then B × Ω× U ∈ PT (U).

(ii) If A ∈ PT and B ∈ B then A×B ∈ PT (U).

Proof. (i)

B × Ω× U ∈ B([0, T ])⊗ {Ω, ∅} ⊗ {U, ∅}
= σ({]s, t]× Ω× U | 0 ≤ s ≤ t ≤ T} ∪ {[0, T ]× Ω× U})
⊂ PT (U)

(ii)

A×B ∈ PT ⊗ {B, ∅} = σ({A×B |A ∈ A} ∪ {[0, T ]× Ω×B})
⊂ PT (U)

Furthermore, for the next proposition we need the following lemma:

Lemma 1.20. Let E be a metric space with metric d and let f : Ω → E be
strongly measurable, i.e. it is Borel measurable and f(Ω) ⊂ E is separable.
Then there exists a sequence fn, n ∈ N, of simple E-valued functions (i.e. fn

is F/B(E)-measurable and takes only a finite number of values) such that for
arbitrary ω ∈ Ω the sequence d(fn(ω), f(ω)), n ∈ N, is monotonely decreasing
to zero.

Proof. [DaPrZa 92, Lemma 1.1, p.16]

Proposition 1.21. If Φ is an PT (U)/B(H)-measurable process and

E[

∫ T

0

∫
U

‖Φ(s, y)‖2 ν(dy)ds] < ∞

then there exists a sequence of elementary processes Φn, n ∈ N, such that
‖Φ− Φn‖T → 0 as n →∞.
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Proof. There exist Un ∈ B, n ∈ N, with ν(Un) < ∞ such that Un ↑ U as
n →∞. Then 1UnΦ : [0, T ]×Ω×Un → H is PT (U)∩([0, T ]×Ω×Un)/B(H)-
measurable.
Moreover

PT (U) ∩ ([0, T ]× Ω× Un)(1.3)

= σ( {]s, t]× Fs ×B | 0 ≤ s ≤ t ≤ T, Fs ∈ Fs, B ∈ B ∩ Un}
∪ {{0} × F0 ×B |F0 ∈ F0, B ∈ B ∩ Un})

=:PT (Un) :

Therefore one gets that 1UnΦ : [0, T ] × Ω × Un → H is PT (Un)/B(H)-
measurable. Then there exists a sequence Φn

k , k ∈ N, of simple random
variables of the following form

Φn
k =

Mk∑
m=1

xk
m1Ak

m
, xk

m ∈ H, Ak
m ∈ PT (Un), 1 ≤ m ≤ Mk, k ∈ N,

such that ‖1UnΦ− Φn
k‖ ↓ 0 as k →∞ by Lemma 1.20. Since

‖1UnΦ− Φn
k‖ ≤ ‖1UnΦ‖+ ‖Φn

1‖ ≤ ‖1UnΦ‖+

M1∑
m=1

‖x1
m‖1A1

m

∈ L2([0, T ]× Ω× Un,PT (Un), λ⊗ P ⊗ ν)

one gets by Lebesgue’s dominated convergence theorem that

‖1Un(Φ− Φn
k)‖2

T = E[

∫ T

0

∫
U

‖1Un(Φ− Φn
k)‖2 dν dλ]

= E[

∫ T

0

∫
Un

‖1UnΦ− Φn
k‖2 dν dλ] → 0 as k →∞

Choose for n ∈ N k(n) ∈ N such that ‖1Un(Φ− Φn
k(n))‖T <

1

n
, then

‖Φ− 1UnΦn
k(n)‖T ≤ ‖Φ− 1UnΦ‖T + ‖1Un(Φ− Φn

k(n))‖T

where the first summand converges to 0 by Lebesgue’s dominated convergence

theorem and the second summand is smaller than
1

n
.

Thus the assertion of the Proposition is reduced to the case Φ = x1A where
x ∈ H and A ∈ PT (Un) for some n ∈ N. Then there is a sequence of
elemntary processes Φk, k ∈ N, such that ‖Φ− Φk‖T → 0 as k →∞:
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To get this result it is sufficient to prove that for any ε > 0 there is a finite
sum Λ =

⋃N
i=1 Ai of predictable rectangles

Ai ∈ An :={]s, t]× Fs ×B | 0 ≤ s ≤ t ≤ T, Fs ∈ Fs, B ∈ B ∩ Un}
∪ {{0} × F0 ×B |F0 ∈ F0, B ∈ B ∩ Un}, 1 ≤ i ≤ N,

such that P ⊗λ⊗ ν(A4Λ) ≤ ε, since then one obtains that
∑N

i=1 x1Ai
is an

elementary process, as x1Ai
, 1 ≤ i ≤ N , are elementary processes and E is a

linear space, and

‖x1A −
N∑

i=1

x1Ai
‖T =

(
E[

∫ T

0

∫
U

‖x(1A −
N∑

k=1

1Ai
)‖2 dν dλ]

) 1
2

≤ ‖x‖P ⊗ λ⊗ ν(A4Λ) ≤ ‖x‖ε

Hence define K := {
⋃

i∈I Ai | |I| < ∞, Ai ∈ An, i ∈ I} then K is stable under
finite intersections. Now let G be the family of all A ∈ PT (Un) which can
be approximated by elements of K in the above sense. Then G is a Dynkin
system and therefore PT (Un) = σ(K) = D(K) ⊂ G as K ⊂ G.

Define

N 2
q (T, U,H) := {Φ : [0, T ]× Ω× U → H |Φ is PT (U)/B(H)-measurable

and ‖Φ‖T :=
(
E[

∫ T

0

∫
U

‖Φ(s, y)‖2 ν(dy) ds]
) 1

2 < ∞}

Then E ⊂ N 2
q (T, U,H) and

N 2
q (T, U, H) = L2([0, T ]× Ω× U, PT (U), P ⊗ λ⊗ ν, H)

is complete since (H, ‖ ‖) is complete. Therefore Ē ⊂ N 2
q (T, U,H) and by

the previous proposition it follows that Ē ⊃ N 2
q (T, U,H). So finally one gets

that Ē = N 2
q (T, U, H)

1.4 Properties of the stochastic integral

Proposition 1.22. Assume that Φ ∈ N 2
q (T, U, H) and u ∈ [0, T ]. Then

1]0,u]Φ ∈ N 2
q (T, U,H) and for all t ∈ [0, T ]∫ t+

0

∫
U

1]0,u]Φ(s, y) q(ds, dy) =

∫ (t∧u)+

0

∫
U

Φ(s, y) q(ds, dy) P -a.s..
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Proof.

Step 1. Let Φ be an elementary process, i.e.

Φ =
k−1∑
m=0

I(m)∑
i=1

xm
i 1F m

i
1]tm,tm+1]×Am

i
∈ E

Then

1]u,T ]Φ =
k−1∑
m=0

I(m)∑
i=1

xm
i 1F m

i
1]tm∨u,tm+1∨u]×Am

i

is an elementary process since Fm
i ∈ Ftm∨u. Concerning the integral of 1]0,u]Φ

one obtains that∫ t+

0

∫
U

1]0,u](s)Φ(s) q(ds, dy)

=

∫ t+

0

∫
U

Φ q(ds, dy)−
∫ t+

0

∫
U

1]u,T ](s)Φ q(ds, dy)

=
k−1∑
m=0

I(m)∑
i=1

xm
i 1F m

i
( q(tm+1 ∧ t, Am

i )− q(tm ∧ t, Am
i )− q((tm+1 ∨ u) ∧ t, Am

i )

+ q((tm ∨ u) ∧ t, Am
i ))

=
k−1∑
m=0

I(m)∑
i=1

xm
i 1F m

i
(q(tm+1 ∧ u ∧ t, Am

i )− q(tm ∧ u ∧ t, Am
i ))

=

∫ (t∧u)+

0

∫
U

Φ(s) q(ds, dy)

Step 2. Let now Φ ∈ N 2
q (T, U,H). Then there exists a sequence of elemen-

tary processes Φn, n ∈ N, such that ‖Φn − Φ‖T → 0 as n → ∞. Then it
is clear that ‖1]0,u]Φn − 1]0,u]Φ‖T → 0 as n → ∞. By the defintion of the
stochastic integral it follows that for all t ∈ [0, T ]

E
[
‖
∫ (t∧u)+

0

∫
U

Φn(s, y) q(ds, dy)−
∫ (t∧u)+

0

∫
U

Φ(s, y) q(ds, dy)‖2
]

+ E
[
‖
∫ t+

0

∫
U

1]0,u](s)Φn(s, y) q(ds, dy)−
∫ t+

0

∫
U

1]0,u](s)Φ(s, y) q(ds, dy)‖2
]

→ 0 as n →∞

which implies that for all t ∈ [0, T ] there exists a subsequence nk(t), k ∈ N,
such that∫ (t∧u)+

0

∫
U

Φnk(t)(s, y) q(ds, dy) −→
k→∞

∫ (t∧u)+

0

∫
U

Φ(s, y) q(ds, dy) P − a.s
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0

∫
U

1]0,u](s)Φnk(t)(s, y) q(ds, dy) −→
k→∞

∫ t+

0

∫
U

1]0,u](s)Φ(s, y) q(ds, dy) P − a.s..

Then by Step 1 the assertion follows.



Chapter 2

Existence of the Mild Solution

As in the previous chapter let (H, 〈 , 〉) be a separable Hilbert space, (U,B, ν)
a σ-finite measure space and (Ω,F , P ) a complete probability space with fil-
tration Ft, t ≥ 0, such that F0 contains all P -nullsets of F .
We fix a stationary (Ft)-Poisson point process on U with characteristic mea-
sure ν. Moreover let T > 0 and consider the following type of stochastic
differential equations in H{

dX(t) = [AX(t) + F (X(t))] dt + B(X(t), y) q(dt, dy)

X(0) = ξ
(2.1)

where

• A : D(A) ⊂ H → H is the infinitesimal generator of a C0-semigroup
S(t), t ≥ 0, of linear, bounded operators on H,

• F : H → H is B(H)/B(H)-measurable,

• B : H × U → H is B(H)⊗ B/B(H)-measurable,

• q(t, B), t ≥ 0, B ∈ Γp, is the compensated Poisson random measure of
p,

• ξ is an H-valued, F0-measurable random variable.

Remark 2.1. If we call MT := supt∈[0,T ] ‖S(t)‖L(H) then MT < ∞.

Proof. For example by [Pa 83, Theorem 2.2, p.4] there exist constants ω ≥ 0
and M ≥ 1 such that

‖S(t)‖L(H) ≤ Meωt for all t ≥ 0

27
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Definition 2.2 (Mild solution). An H-valued predictable process X(t),
t ∈ [0, T ], is called a mild solution of equation (2.1) if

X(t) = S(t)ξ +

∫ t

0

S(t− s)F (X(s)) ds

+

∫ t+

0

∫
U

S(t− s)B(X(s), y) q(ds, dy) P -a.s.

for all t ∈ [0, T ]. In particular the appearing integrals have to be well defined.

To get the existence of a mild solution on [0, T ] we make the following as-
sumptions
Hypothesis H.0

• F : H → H is Lipschitz-continuous, i.e. that there exists a constant
C > 0 such that

‖F (x)− F (y)‖ ≤ C‖x− y‖ for all x, y ∈ H,

• there exists a square integrable mapping K : [0, T ] → [0,∞[ such that∫
U

‖S(t)(B(x, y)−B(z, y))‖2 ν(dy) ≤ K2(t)‖x− y‖2∫
U

‖S(t)B(x, y)‖2 ν(dy) ≤ K(t)(1 + ‖x‖)

Now we introduce the space where we want to find the mild solution of the
above problem. We define

H2(T, H) := {Y (t), t ∈ [0, T ] | Y is an H-predictable process such that

sup
t∈[0,T ]

E[‖Y (t)‖2] < ∞}

and for Y ∈ H2(T, H)

‖Y ‖H2 := sup
t∈[0,T ]

(
E[‖Y (t)‖2]

) 1
2

Then (H2(T,H), ‖ ‖H2) is a Banach space.
For technical reasons we also consider the norms ‖ ‖2,λ,T , λ ≥ 0, on H2(T,H)
given by

‖Y ‖2,λ,T := sup
t∈[0,T ]

e−λt
(
E[‖Y (t)‖2]

) 1
2
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Then ‖ ‖H2 = ‖ ‖2,0,T and all norms ‖ ‖2,λ,T , λ ≥ 0, are equivalent.
For simplicity we use the following notations

H2(T,H) := (H2(T, H), ‖ ‖H2)

and

H2,λ(T,H) := (H2(T, H), ‖ ‖2,λ,T ), λ > 0.

Theorem 2.3. Assume that the coefficients A, F and B fullfill the conditions
of Hypothesis H.0 then for every initial condition ξ ∈ L2(Ω,F0, P, H) =: L2

0

there exists a unique mild solution X(ξ)(t), t ∈ [0, T ], of equation (2.1).
In addition we even obtain that the mapping

X : L2
0 → H2(T, H)

is Lipschitz continuous.

For the proof of the theorem we need the following lemmas.

Lemma 2.4. If Y : [0, T ]×Ω×U → H is PT (U)/B(H)-measurable then the
mapping

[0, T ]× Ω× U → H, (s, ω, y) 7→ 1]0,t](s)S(t− s)Y (s, ω, y)

is PT (U)/B(H)-measurable for all t ∈ [0, T ].

Proof. Let t ∈ [0, T ].

Step 1. Consider the case that Y is a simple process given by

Y =
n∑

k=1

xk1Ak

where xk ∈ H, 1 ≤ k ≤ n, and Ak ∈ PT (U), 1 ≤ k ≤ n, is a disjoint covering
of [0, T ]× Ω× U . Then we obtain that

Ỹ : [0, T ]× Ω× U → H

(s, ω, y) 7→ 1]0,t](s)S(t− s)Y (s, ω, y)

= 1]0,t](s)
n∑

k=1

S(t− s)xk1Ak
(s, ω, y)
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is PT (U)/B(H)-measurable since for B ∈ B(H) we get that

Ỹ −1(B) =
n⋃

k=1

(
{s ∈ [0, T ] | 1]0,t](s)S(t− s)xk ∈ B} × Ω× U

)
∩ Ak

where {s ∈ [0, T ] | 1]0,t](s)S(t−s)xk ∈ B} ∈ B([0, T ]) by the strong continuity
of the semigroup S(t), t ∈ [0, T ]. By Lemma 1.19 (i) we can conclude that
Ỹ −1(B) ∈ PT (U).

Step 2. Let Y be an arbitrary PT (U)/B(H)-measurable process.
Then there exists a sequence Yn, n ∈ N, of simple PT (U)/B(H)-measurable
random variables such that Yn → Y pointwisely a n →∞. Since S(t) ∈ L(H)
for all t ∈ [0, T ] the assertion follows.

Lemma 2.5. Let Φ be a process on (Ω,F , P, (Ft)t∈[0,T ]) with values in a Ba-
nach space E. If Φ is adapted to Ft, t ∈ [0, T ], and stochastically continuous
then there exists a predictable version of Φ.
In particular, if Φ(t) ∈ L2(Ω,Ft, P, E) and Φ : [0, T ] → L2(Ω,F , P, E) is
continuous then there exists a predictable version of Φ.

Proof. [DaPrZa 92, Proposition 3.6 (ii), p.76]

Proof of Theorem 2.3. Let t ∈ [0, T ], ξ ∈ L2
0 and Y ∈ H2(T, H) and define

F(ξ, Y )(t) := S(t)ξ +

∫ t

0

S(t− s)F (X(s)) ds

+

∫ t+

0

S(t− s)B(X(s), y) q(ds, dy)

Then a mild solution of problem (2.1) with initial condition ξ ∈ L2
0 is by

Definition 2.2 an H-predictable process such that F(ξ, X(ξ))(t) = X(ξ)(t)
P -a.s. for all t ∈ [0, T ]. Thus we have to search for an implicit function
X : L2

0 → H2(T,H) such that F(ξ, X(ξ)) = X(ξ) in H2(T, H).
For this reason we prove that F as a mapping from L2

0×H2(T,H) toH2(T,H)
is well defined and we show that there exists λ ≥ 0 such that

F : L2
0 ×H2,λ(T,H) → H2,λ(T,H)

is a contraction in the second variable, i.e. that there exists LT,λ < 1 such
that for all ξ ∈ L2

0 and Y, Ỹ ∈ H2,λ(T, H)

‖F(ξ, Y )−F(ξ, Ỹ )‖2,λ,T ≤ LT,λ‖Y − Ỹ ‖2,λ,T .
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Then the existence and uniqueness of the mild solution X(ξ) ∈ H2,λ(T, H)
of (2.1) with initial condition ξ ∈ L2

0 follows by Banach’s fixpoint theorem.
Since the norms ‖ ‖2,λ,T , λ ≥ 0, are equivalent we consider X(ξ) as an element
of H2(T, H) and get the existence of the imlicit function X : L2

0 → H2(T,H)
such that F(ξ, X(ξ)) = X(ξ).

Step 1. The mapping F : L2
0 ×H2(T,H) → H2(T,H) is well defined.

Let ξ ∈ L2
0 and Y ∈ H2(T, H) then, by [FrKn 2002], (S(t)ξ)t∈[0,T ] ∈ H2(T, H),

1]0,t](·)S(t− ·)F (Y (·)) is P -a.s. Bochner integrable on [0, T ] and the process

( ∫ t

0

S(t− s)F (Y (s)) ds
)

t∈[0,T ]

is an element of H2(T,H).
Therefore it remains to prove that:
(1]0,t](·)S(t − s)B(Y (s), ·))s∈[0,T ] ∈ N 2

q (T, U,H) for all t ∈ [0, T ] and that
there is a version of( ∫ t

0

∫
U

S(t− s)B(X(s), y) q(ds, dy)
)

t∈[0,T ]

which is an element of H2(T, H).

Claim 1. If Y ∈ H2(T, H) then:
Φ := (1]0,t](s)S(t− s)B(Y (s), ·))s∈[0,T ] ∈ N 2

q (T, U,H) for all ∈ [0, T ].

Let t ∈ [0, T ]. First, we prove that the mapping

[0, T ]× Ω× U → H, (s, ω, y) 7→ 1]0,t](s)S(t− s)B(Y (s, ω), y)

is PT (U)/B(H)-measurable. By Lemma 2.4 we have to check if the mapping
(s, ω, y) 7→ B(Y (s, ω), y) is PT (U)/B(H)-measurable.
The mapping F : [0, T ] × Ω × U → H × U , (s, ω, y) 7→ (Y (s, ω), y) is
PT (U)/B(H)⊗ B-measurable since for A ∈ B(H) and B ∈ B we have that

F−1(A×B) = Y −1(A)︸ ︷︷ ︸
∈PT

×B ∈ PT (U) by Lemma 1.19 (ii).

Moreover B is B(H)⊗ B/B(H)-measurable by assumption.
With respect to the norm ‖ ‖T of Φ we obtain

‖Φ‖2
T = E

[ ∫ t

0

∫
U

‖1]0,t](s)S(t− s)B(Y (s), y)‖2 ν(dy) ds
]
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≤ E
[ ∫ t

0

K(t− s)(1 + ‖Y (s)‖) ds
]

≤ (1 + ‖Y ‖H2)

∫ T

0

K(s) ds

< ∞

Claim 2. If Y ∈ H2(T, H) then there is a predictable version of

(Z(t))t∈[0,T ] :=
( ∫ t+

0

∫
U

S(t− s)B(Y (s), y) q(ds, dy)
)

t∈[0,T ]

which is an element of H2(T,H).

Since (1]0,t](s)S(t− s)B(Y (s), ·))s∈[0,T ] ∈ N 2
q (T, U, H) for all t ∈ [0, T ] we get

by the isometric formula that

sup
t∈[0,T ]

E
[
‖
∫ t+

0

∫
U

S(t− s)B(Y (s), y) q(ds, dy)‖2
]

= sup
t∈[0,T ]

E
[ ∫ t

0

∫
U

‖S(t− s)B(Y (s), y)‖2 ν(dy) ds
]

≤
(
1 + ‖Y ‖H2

) ∫ T

0

K(s) ds

<∞

To prove the existence of the predictable version we will use Lemma 2.5. For
this purpose we will show that the process Z is adapted to Ft, t ∈ [0, T ], and
continuous as a mapping from [0, T ] to L2(Ω,F , P, H).
Let α > 1 and define for t ∈ [0, T ]

Zα(t) :=

∫ ( t
α

)+

0

∫
U

S(t− s)B(Y (s), y) q(ds, dy)

=

∫ ( t
α

)+

0

∫
U

S(t− αs)S((α− 1)s)B(Y (s), y) q(ds, dy)

where we used semigroup property.
Set Φα(s, y) := S((α− 1)s)B(Y (s), y) then one can show analogously to the
proof of the PT (U)/B(H)-measurability of the mapping
(s, ω, y) 7→ 1]0,t](s)S(t− s)B(Y (s, ω), y) that Φα is PT (U)/B(H)-measurable.
Moreover

E
[ ∫ t

0

∫
U

‖S((α− 1)s)B(Y (s), y)‖2 ν(dy) ds
]
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≤ (1 + ‖Y ‖H2)

∫ T

0

K((α− 1)s) ds

= (1 + ‖Y ‖H2)
1

α− 1

∫ T

0

K(s) ds

<∞

Therefore we obtain that Φα ∈ N 2
q (T, U,H).

Now we show that the mapping Zα : [0, T ] → L2(Ω,F , P, H) is continuous
for all α > 1. For this reason let 0 ≤ u ≤ t ≤ T .

(
E

[
‖

∫ ( t
α

)+

0

∫
U

S(t− αs)Φα(s, y) q(ds, dy)−
∫ ( u

α
)+

0

∫
U

S(u− αs)Φα(s, y)

q(ds, dy)‖2
]) 1

2 ,

=
(
E

[
‖

∫ T+

0

∫
U

1]0, t
α

](s)S(t− αs)Φα(s, y)− 1]0, u
α

](s)S(u− αs)Φα(s, y)

q(ds, dy)‖2
]) 1

2

by Proposition 1.22,

=
(
E

[
‖

∫ T+

0

∫
U

1]0, u
α

](s)(S(t− αs)− S(u− αs))Φα(s, y)

+ 1] u
α

, t
α

](s)S(t− αs)Φα(s, y) q(ds, dy)‖2
]) 1

2

≤
(
E

[
‖

∫ T+

0

∫
U

1]0, u
α

](s)(S(t− αs)− S(u− αs))Φα(s, y) q(ds, dy)‖2
]) 1

2

+
(
E

[
‖

∫ T+

0

∫
U

1] u
α

, t
α

](s)S(t− αs)Φα(s, y) q(ds, dy)‖2
]) 1

2

=
(
E

[ ∫ u
α

0

∫
U

‖(S(t− αs)− S(u− αs))Φα(s, y)‖2 ν(dy) ds
]) 1

2

+
(
E

[ ∫ T

0

∫
U

1] u
α

, t
α

](s)‖S(t− αs)Φα(s, y)‖2 ν(dy) ds
]) 1

2 ,

by the isometric formula.

(1.) The first summand converges to 0 as u ↑ t or t ↓ u by Lebesgue’s
dominated convergence theorem since the integrand converges pointwisely to
0 as u ↑ t or t ↓ u by the strong continuity of the semigroup and can be
estimated independently of u and t by 4M2

T‖Φα‖2(s, y), (s, y) ∈ [0, T ] × U ,
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where E
[ ∫ T

0

∫
U
‖Φα(s, y)‖2 ν(dy) ds

]
< ∞.

(2.) The second summand can be estimated by(
E

[ ∫ T

0

∫
U

1] u
α

, t
α

](s)M
2
T‖Φα(s, y)‖2 ν(dy) ds

]) 1
2

→ 0

and therefore converges to 0 by Lebesgue’s dominated convergence theorem
as u ↑ t or t ↓ u.
To obtain the continuity of Z : [0, T ] → L2(Ω,F , P ) we prove the uniform
convergence of Zαn , n ∈ N, to Z in L2(Ω,F , P, H) for an arbitrary sequence
αn, n ∈ N, with αn ↓ 1 as n →∞:

E
[
‖

∫ ( t
αn

)+

0

∫
U

S(t− αns)Φ
αn(s, y) q(ds, dy)−

∫ t+

0

∫
U

S(t− s)B(Y (s), y)

q(ds, dy)‖2
]

=E
[
‖

∫ T+

0

∫
U

1]0, t
αn

](s)S(t− s)B(Y (s), y)− 1]0,t](s)S(t− s)B(Y (s), y)

q(ds, dy)‖2
]

=E
[
‖

∫ T+

0

∫
U

1] t
αn

,t](s)S(t− s)B(Y (s), y) q(ds, dy)‖2
]

=E
[ ∫ t

t
αn

∫
U

‖S(t− s)B(Y (s), y)‖2 ν(dy) ds
]

≤E
[ ∫ t

t
αn

K(t− s)(1 + ‖Y (s)‖) ds
]

≤
(
1 + ‖Y ‖H2

)(
t− t

αn

) 1
2
( ∫ T

0

K2(s) ds
) 1

2

≤
(
1 + ‖Y ‖H2

)(αn − 1

αn

T
) 1

2
( ∫ T

0

K2(s) ds
) 1

2

where
αn − 1

αn

T → 0 as n →∞.

Moreover we know for all t ∈ [0, T ] that( ∫ u+

0

∫
U

1]0,u](s)S(t− s)B(Y (s), y) q(ds, dy)
)

u∈[0,t]
∈M2

t (H)

since (1]0,u](s)S(t− s)B(Y (s), ·))s∈[0,t] ∈ N 2
q (t, U, H). That means in partic-

ular that the process

Z(t) =

∫ t+

0

∫
U

1]0,t](s)S(t− s)B(Y (s), y) q(ds, dy), t ∈ [0, T ] is (Ft)-adapted.
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Together with the continuity of Z in L2(Ω,F , P < H), by Lemma 2.5, this
implies the existence of a predictable version of Z(t), t ∈ [0, T ], denoted by

( ∫ t−

0

∫
U

S(t− s)B(Y (s), y) q(ds, dy)
)

t∈[0,T ]
.

Therefore we have finally proved that

F : L2
0 ×H2(T,H) → H2(T, H)

Claim 3. There exists λ ≥ 0 such that for all ξ ∈ L2
0

F(ξ, ·) : H2,λ(T, H) → H2,λ(T, H)

is a contraction where the contraction constant LT,λ < 1 does not depend on
ξ.

Let Y, Ỹ ∈ H2(T,H), ξ ∈ L2
0. Then we get for λ ≥ 0 that

sup
t∈[0,T ]

e−λt‖
(
F(ξ, Y )−F(ξ, Ỹ

)
(t)‖L2

≤ sup
t∈[0,T ]

e−λt‖
∫ t

0

S(t− s)[F (Y (s))− F (Ỹ (s))] ds‖L2

+ sup
t∈[0,T ]

e−λt‖
∫ t+

0

∫
U

S(t− s)[B(Y (s), y)−B(Ỹ (s), y)] q(ds, dy)‖L2

The first summand can be estimated by

MT CT
1
2

( 1

2λ

) 1
2︸ ︷︷ ︸

→0 as λ→∞

‖Y − Ỹ ‖2,λ,T ,

for the proof see [FrKn 2002, Theorem 3.2., Step 3, p.81].
By the isometric formula we get the following estimation for the second
summand:

E
[
‖

∫ t+

0

∫
U

S(t− s)B(Y (s), y) q(ds, dy)−
∫ t+

0

∫
U

S(t− s)B(Ỹ (s), y) q(ds, dy)‖2
]

= E
[ ∫ t

0

∫
U

‖S(t− s)[B(Y (s), y)−B(Ỹ (s), y)]‖2 ν(dy) ds
]

≤E
[ ∫ t

0

K2(t− s)‖Y (s)− Ỹ (s)‖2 ds
]
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≤
∫ t

0

eλsK2(t− s) ds‖Y − Ỹ ‖2
2,λ,T

= ‖Y − Ỹ ‖2
2,λ,T e−λt

∫ T

0

e−λsK2(s) ds︸ ︷︷ ︸
→0 as λ→∞

Therefore we obtain that

sup
t∈[0,T ]

e−λt‖
∫ t+

0

∫
U

S(t− s)[B(Y (s), y)−B(Ỹ (s), y)] q(ds, dy)‖L2

≤
( ∫ t

0

e−λsK2(s) ds
) 1

2 ‖Y − Ỹ ‖2,λ,T

Thus we have finally proved that there exists λ ≥ 0 such that there exists
LT,λ < 1 with

‖F(ξ, Y )−F(ξ, Ỹ )‖2,λ,T ≤ LT,λ‖Y − Ỹ ‖2,λ,T

for all ξ ∈ L2
0 , Y, Ỹ ∈ H2,λ(T, H). Hence the existence of a unique implicit

function

X : L2
0 → H2(T, H)

ξ 7→ X(ξ) = F(ξ, X(ξ))

is verified.

Claim 4. The mapping X : L2
0 → H2(T, H) is Lipschitz continuous.

By Theorem A.1 (ii) and the equivalence of the norms ‖ ‖2,λ,T , λ ≥ 0, we
only have to check that the mappings

F(·, Y ) : L2
0 → H2(T, H)

are Lipschitz continuous for all Y ∈ H2(T, H) where the Lipschitz constant
does not depend on Y .
But this assertion holds as for all ξ, ζ ∈ L2

0 and Y ∈ H2(T, H)

‖F(ξ, Y )−F(ζ, Y )‖H2 = ‖S(·)(ξ − ζ)‖H2 ≤ MT‖ξ − ζ‖L2 .



Appendix A

Continuity of Implicit
Functions

We fix two Banach spaces (E, ‖ ‖) and (Λ, ‖ ‖Λ).
Consider a mapping G : Λ×E → E such that there exists an α ∈ [0, 1[ such
that

‖G(λ, x)−G(λ, y)‖ ≤ α‖x− y‖ for all λ ∈ Λ and all

x, y ∈ E

Then we get by Banach’s fixpoint theorem that there exists exactly one
mapping ϕ : Λ → E such that

ϕ(λ) = G(λ, ϕ(λ)) for all λ ∈ Λ.

Theorem A.1 (Continuity of the implicit function). (i) If we assume
in addition that the mapping λ 7→ G(λ, x) is continuous from Λ to E
for all x ∈ E we get that ϕ : Λ → E is continuous.

(ii) If the mappings λ 7→ G(λ, x) are not only continuous from Λ to E for
all x ∈ E but there even exists a L ≥ 0 such that
‖G(λ, x)−G(λ̃, x)‖E ≤ L‖λ− λ̃‖Λ for all x ∈ E
then the mapping ϕ : Λ → E is Lipschitz continuous.

Proof. [FrKn 2002, Theorem D.1, p.164]
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