Stochastic integrals and stochastic differential equations with respect to compensated Poisson random measures in infinite dimensional Hilbert spaces

Claudia Knoche

Fakultät für Mathematik
Universität Bielefeld
27.6.2003

Contents

Introduction 1
1 The Stochastic Integral with Respect to Poisson Point Pro- cesses 5
1.1 Poisson random measures 5
1.2 Point processes and Poisson point processes 11
1.3 Stochastic integrals with respect to Poisson point processes 14
1.4 Properties of the stochastic integral 24
2 Existence of the Mild Solution 27
A Continuity of Implicit Functions 37
Bibliography 39

Introduction

The purpose of this paper is to give a complete proof of the existence of a mild solution of a stochastic differential equation with respect to a compensated Poisson random measure by a fixpoint argument in the spirit of [DaPrZa 96]. This will be done within the following framework.
Let $(H,\langle\rangle$,$) be an infinite dimensional, separable Hilbert space, (U, \mathcal{B}, \nu)$ a σ-finite measure space and (Ω, \mathcal{F}, P) a complete probability space with filtration $\mathcal{F}_{t}, t \geq 0$ such that \mathcal{F}_{0} contains all P-nullset of \mathcal{F}. Consider the following stochastic differential equation in H on the intervall $[0, T], T>0$:

$$
\begin{cases}d X(t) & =[A X(t)+F(X(t))] d t+B(X(t), y) q(d t, d y) \tag{1}\\ X(0) & =\xi\end{cases}
$$

where

- $A: D(A) \subset H \rightarrow H$ is the infinitesimal generator of a C_{0}-semigroup $S(t), t \geq 0$, of linear, bounded operators on H,
- $F: H \rightarrow H$ is $\mathcal{B}(H) / \mathcal{B}(H)$-measurable,
- $B: H \times U \rightarrow H$ is $\mathcal{B}(H) \otimes \mathcal{B} / \mathcal{B}(H)$-measurable,
- $q(d t, d y):=\Pi(d t, d y)-\lambda(d t) \otimes \nu(d y)$, is a compensated Poisson random measure on $((0, \infty) \times U, \mathcal{B}((0, \infty)) \otimes \mathcal{B})$ where Π is a Poisson random measure on $((0, \infty) \times U, \mathcal{B}((0, \infty)) \otimes \mathcal{B})$ with intensity measure $\lambda(d s) \otimes$ $\nu(d y)$,
- ξ is an H-valued, \mathcal{F}_{0}-measurable random variable.

A mild solution of equation (1) is an H-valued predictable process such that

$$
\begin{aligned}
X(t)=S(t) \xi & +\int_{0}^{t} S(t-s) F(X(s)) d s \\
& +\int_{0}^{t+} \int_{U} S(t-s) B(X(s), y) q(d s, d y) \quad P \text {-a.s. }
\end{aligned}
$$

for all $t \in[0, T]$.
The organization of this paper is as follows.
In Chapter 1 we present the definition of that type of stochastic integral with respect to a compensated Poisson random measure which we use in this paper. For this end, in Section 1 and 2 we first repeat the notions of Poisson random measures and Poisson point processes where we refer to the book [IkWa 81].
In Section 3, the construction of the stochastic integral of Hilbert space valued predictable processes with respect to a compensated Poisson random measure with intensity measure $\lambda(d s) \otimes \nu(d y)$ will be done by an isometric formula in the style of the definition of the stochastic integral with respect to the Wiener process in [DaPrZa 92] or square integrable martingales in [Me 82]. For real valued processes this can be found in [BeLi 82]. Independently, this definition was done in [Rue 2003].
Denote by \mathcal{E} the space of elementary processes where an H-valued process $\Phi(t): \Omega \times U \rightarrow H, t \in[0, T]$, on $(\Omega \times U, \mathcal{F} \otimes \mathcal{B}, P \otimes \nu)$ is said to be elementary if there exist $0=t_{0}<t_{1}<\cdots<t_{k}=T$ and for $m \in\{0, \ldots, k-1\}$ exist $B_{1}^{m}, \ldots, B_{I(m)}^{m} \in \Gamma_{p}, I(m) \in \mathbb{N}$, pairwise disjoint, such that

$$
\Phi=\sum_{m=0}^{k-1} \sum_{i=1}^{I(m)} x_{i}^{m} 1_{F_{i}^{m}} 1_{\left[t_{m}, t_{m+1}\right] \times B_{i}^{m}}
$$

where $x_{i}^{m} \in H$ and $F_{i}^{m} \in \mathcal{F}_{t_{m}}, 1 \leq i \leq I(m), 0 \leq m \leq k-1$.
Define

$$
\begin{aligned}
& \operatorname{Int}(\Phi)(t, \omega) \\
&:= \int_{0}^{t+} \int_{U} \Phi(s, y) q(d s, d y)(\omega):=\int_{0}^{T} \int_{U} 1_{j 0, t]}(s) \Phi(s, y) q(d s, d y)(\omega) \\
&:=\sum_{m=0}^{k-1} \sum_{i=1}^{I(m)} x_{i}^{m} 1_{F_{i}^{m}}(\omega)\left(q(\omega)\left(t_{m+1} \wedge t, B_{i}^{m}\right)-q(\omega)\left(t_{m} \wedge t, B_{i}^{m}\right)\right),
\end{aligned}
$$

$t \in[0, T]$ and $\omega \in \Omega$.
Then, if $\Phi \in \mathcal{E}, \operatorname{Int}(\Phi) \in \mathcal{M}_{T}^{2}(H)$ which denotes the space of all square inte-
grable H-valued martingales and we obtain the following isometric formula

$$
\begin{aligned}
& \|\operatorname{Int}(\Phi)\|_{\mathcal{M}_{T}^{2}}^{2}:=\sup _{t \in[0, T]} E\left[\left\|\int_{0}^{t+} \int_{U} \Phi(s, y) q(d s, d y)\right\|^{2}\right] \\
= & E\left[\int_{0}^{T} \int_{U}\|\Phi(s, y)\|^{2} \nu(d y) d s\right]=:\|\Phi\|_{T},
\end{aligned}
$$

i.e. Int: $\left(\mathcal{E},\| \|_{T}\right) \rightarrow\left(\mathcal{M}_{T}^{2}(H),\| \|_{\mathcal{M}_{T}^{2}}\right)$ is an isometric transformation and can therefore be extended to the space $\overline{\mathcal{E}}^{\| \|_{T}} . \overline{\mathcal{E}}^{\| \|_{T}}$ can be characterized by

$$
\mathcal{N}_{q}^{2}(T, U, H)=L^{2}\left([0, T] \times \Omega \times U, P_{T}(U), P \otimes \lambda \otimes \nu ; H\right)
$$

The main emphazis is on the Chapter 2 where we prove the existence of the mild solution

$$
\begin{aligned}
X(\xi) \in \mathcal{H}^{2}(T, H):=\{Y(t), t \in[0, T] \mid & Y \text { is an } H \text {-predictable process s.t. } \\
& \left.\|Y\|_{\mathcal{H}^{2}}:=\sup _{t \in[0, T]} E\left[\|Y(t)\|^{2}\right]<\infty\right\}
\end{aligned}
$$

of problem (1) and the continuity of the mapping $X: L^{2}\left(\Omega, \mathcal{F}_{0}, P, H\right) \rightarrow$ $\mathcal{H}^{2}(T, H)$.
A mild solution of the stochastic differential equation (1) is defined implicitly by $X(\xi)=\mathcal{F}(\xi, X(\xi))$, where $\mathcal{F}: L^{2}\left(\Omega, \mathcal{F}_{0}, P, H\right) \times \mathcal{H}^{2}(T, H) \rightarrow \mathcal{H}^{2}(T, H)$ is given by

$$
\begin{aligned}
\mathcal{F}(\xi, Y)(t)=S(t) \xi & +\int_{0}^{t} S(t-s) F(Y(s)) d s \\
& +\int_{0}^{t+} \int_{U} S(t-s) B(Y(s), y) q(d s, d y), \quad t \in[0, T]
\end{aligned}
$$

To obtain the existence of the solution, first, we have to show that $\mathcal{F}(\xi, Y)$ is well defined for all $\xi \in L^{2}\left(\Omega, \mathcal{F}_{0}, P, H\right)$ and $Y \in \mathcal{H}^{2}(T, H)$ and is an element of $\mathcal{H}^{2}(T, H)$. In particular, this includes the proof of the existence of a predictable version of the stochastic integral denoted by

$$
\int_{0}^{t-} \int_{U} S(t-s) B(Y(s), y) q(d s, d y), \quad t \in[0, T]
$$

Secondly, to apply a fixpoint argument, we have to prove that \mathcal{F} is a contraction in the second variable.

In a future paper the differential dependence of the mild solution on the initial data will be examined and it will be proved that

$$
X: L^{2}\left(\Omega, \mathcal{F}_{0}, P, H\right) \rightarrow \mathcal{H}^{2}(T, H)
$$

is Gâteaux differentiable.

Chapter 1

The Stochastic Integral with Respect to Poisson Point Processes

Let (Ω, \mathcal{F}, P) be a complete probability space and (U, \mathcal{B}) a measurable space.

1.1 Poisson random measures

Let \mathbb{M} be the space of non-negative (possibly infinte) integral-valued measures on (U, \mathcal{B}) and

$$
\mathcal{B}_{\mathbb{M}}:=\sigma\left(\mathbb{M} \rightarrow \mathbb{Z}_{+} \cup\{+\infty\}, \mu \mapsto \mu(B) \mid B \in \mathcal{B}\right)
$$

Definition 1.1 (Poisson random measure). A random variable $\Pi:(\Omega, \mathcal{F}) \rightarrow\left(\mathbb{M}, \mathcal{B}_{\mathbb{M}}\right)$ is called Poisson random measure on (U, \mathcal{B}) if the following conditions hold:
(i) For all $B \in \mathcal{B}: \Pi(B): \Omega \rightarrow \mathbb{Z}_{+} \cup\{+\infty\}$ is Poisson distributed with parameter $E(\Pi(B))$, i.e.:

$$
P(\Pi(B)=n)=\exp (-E(\Pi(B)))(E(\Pi(B)))^{n} / n!, n \in \mathbb{N} \cup\{0\}
$$

If $E(\Pi(B))=+\infty$ then $\Pi(B)=+\infty P$-a.s.
(ii) If $B_{1}, \ldots, B_{m} \in \mathcal{B}$ are pairwise disjoint then $\Pi\left(B_{1}\right), \ldots, \Pi\left(B_{m}\right)$ are independent.

Remark 1.2. If Π is a Poisson random measure then the mapping $\Omega \rightarrow \mathbb{Z}_{+} \cup\{+\infty\}, \omega \mapsto \Pi(\omega)(B), B \in \mathcal{B}$, is \mathcal{F}-measurable since the mapping $\Omega \rightarrow \mathbb{M}, \omega \mapsto \Pi(\omega)$ is $\mathcal{F} / \mathcal{B}_{\mathbb{M}}$-measurable by Definition 1.1 and since the mapping $\mathbb{M} \rightarrow \mathbb{Z}_{+} \cup\{+\infty\}, \mu \mapsto \mu(B)$ is $\mathcal{B}_{\mathbb{M}}$-measurable by the definition of $\mathcal{B}_{\mathbb{M}}$.

Lemma 1.3. Let $m \in \mathbb{N}$ and μ and ν be two probability measures on $\left[0, \infty\left[{ }^{m}\right.\right.$. If for all $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{R}_{+}^{m}$

$$
\begin{aligned}
& \int_{\left[0, \infty\left[^{m}\right.\right.} e^{-\langle\alpha, x\rangle} \mu(d x)=\int_{[0, \infty[m} e^{-\sum_{j=1}^{m} \alpha_{j} x_{j}} \mu\left(d\left(x_{1}, \ldots, x_{m}\right)\right) \\
= & \int_{\left[0, \infty\left[^{m}\right.\right.} e^{-\sum_{j=1}^{m} \alpha_{j} x_{j}} \nu\left(d\left(x_{1}, \ldots, x_{m}\right)\right)=\int_{\left[0, \infty\left[^{m}\right.\right.} e^{-\langle\alpha, x\rangle} \nu(d x) .
\end{aligned}
$$

then $\mu=\nu$.
Proof. Denote by \mathcal{H} the space of all $\mathcal{B}\left(\mathbb{R}_{+}^{m}\right)$-measurable functions $f: \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}$ such that $\int_{\mathbb{R}_{+}^{m}} f d \mu=\int_{\mathbb{R}_{+}^{m}} f d \nu$. Then \mathcal{H} is a monotone vector space. Moreover define

$$
\mathcal{A}:=\left\{\mathbb{R}_{+}^{m} \rightarrow \mathbb{R}, x \mapsto \exp \left(-\sum_{j=1}^{m} \alpha_{j} x_{j}\right) \mid \alpha_{j} \in \mathbb{Q}_{+}, 1 \leq j \leq m\right\}
$$

Then \mathcal{A} is a class of bounded, measurable functions, which is closed under multiplication and which is a subset of \mathcal{H} by assumption. By the monoton class theorem it follows that $\sigma(\mathcal{A})_{b} \subset \mathcal{H}$.
Moreover, $\mathcal{A} \subset\left\{f: \mathbb{R}_{+}^{m} \rightarrow \mathbb{R} \mid f\right.$ is $\mathcal{B}\left(\mathbb{R}_{+}^{m}\right)$-measurable $\}$ is countable and separates the points of \mathbb{R}_{+}^{m}. Thus, we obtain that $\sigma(\mathcal{A})=\mathcal{B}\left(\mathbb{R}_{+}^{m}\right)$ and $\mathcal{B}\left(\mathbb{R}_{+}^{m}\right)_{b} \subset \mathcal{H}$. In particular, we get for $A \in \mathcal{B}\left(\mathbb{R}_{+}^{m}\right)$ that $\mu(A)=\nu(A)$.

Lemma 1.4. Let X be a Poissonian random variable on (Ω, \mathcal{F}, P) with parameter $c>0$, i.e. $X: \Omega \rightarrow \mathbb{Z}_{+} \cup\{+\infty\}$ such that for all $n \in \mathbb{N} \cup\{0\}$: $P(X=n)=c^{n} \frac{\exp (-c)}{n!}$. Then

$$
E\left(e^{\alpha X}\right)=\int_{0}^{\infty} e^{\alpha x} P \circ X^{-1}(d x)=\sum_{n=0}^{\infty} e^{n \alpha} e^{-c} \frac{c^{n}}{n!}=\exp \left(c\left(e^{\alpha}-1\right)\right) \forall \alpha \in \mathbb{R}
$$

Theorem 1.5. Given a σ-finite measure ν on (U, \mathcal{B}) there exists a Poisson random measure Π on (U, \mathcal{B}) with $E(\Pi(B))=\nu(B)$ for all $B \in \mathcal{B}$. ν is then called the mean measure or intensity measure of the Poisson random measure Π.

Proof. [IkWa 81,Theorem 8.1, p.42]
Step 1. $\nu(U)<\infty$
Let N be a Poissonian random variable with parameter $c:=\nu(U)$.
Moreover let ξ_{1}, ξ_{2}, \ldots be independent U-valued random variables with distribution $\frac{1}{c} \nu$, also independent of N.
Define $\Pi:=\sum_{k=1}^{N} \delta_{\xi_{k}}$.
Claim 1. Let $B \in \mathcal{B}$. Then $\Pi(B)$ is Poisson distributed with parameter $\nu(B)$.
Let $s \leq 0$, then

$$
\begin{aligned}
& E\left(e^{s \Pi(B)}\right) \\
= & E\left[\exp \left(s \sum_{k=1}^{N} \delta_{\xi_{k}}(B)\right)\right], \text { if } N=0 \text { then } \sum_{k=1}^{N} \delta_{\xi_{k}}(B)=0 \\
= & E\left[\sum_{n=0}^{\infty} \exp \left(s \sum_{k=1}^{n} 1_{B}\left(\xi_{k}\right)\right) 1_{\{N=n\}}\right] \\
= & \sum_{n=0}^{\infty} E\left[\prod_{k=1}^{n} \exp \left(s 1_{B}\left(\xi_{k}\right)\right) 1_{\{N=n\}}\right] \\
= & \sum_{n=0}^{\infty} E\left[\prod_{k=1}^{n} \exp \left(s 1_{B}\left(\xi_{k}\right)\right)\right] P(N=n) \\
= & \sum_{n=0}^{\infty}\left(E\left[\exp \left(s 1_{B}\left(\xi_{1}\right)\right)\right]\right)^{n} e^{-c} \frac{c^{n}}{n!} \\
= & \exp \left(c\left(E\left[\exp \left(s 1_{B}\left(\xi_{1}\right)\right)\right]-1\right)\right) \\
= & \left.\exp \left(c P\left(\xi_{1} \in B\right) e^{s}+c P\left(\xi_{1} \in B^{c}\right)-c\right)\right) \\
= & \exp \left(c \frac{\nu(B)}{c} e^{s}+c\left(1-\frac{\nu(B)}{c}\right)-c\right) \\
= & \exp \left(\nu(B)\left(e^{s}-1\right)\right)
\end{aligned}
$$

By Lemma 1.4 and Lemma 1.3 the assertion follows.
Claim 2. Let $B_{1}, \ldots, B_{m} \in \mathcal{B}$ pairwise disjoint. Then $\Pi\left(B_{1}\right), \ldots, \Pi\left(B_{m}\right)$ are independent.

Let $s_{1}, \ldots, s_{m} \in \mathbb{R}_{-}$, then:

$$
\int_{[0, \infty[m} \exp \left(\sum_{j=1}^{m} s_{j} x_{j}\right) P \circ\left(\Pi\left(B_{1}\right), \ldots, \Pi\left(B_{m}\right)\right)^{-1} d\left(x_{1}, \ldots, x_{m}\right)
$$

$$
\begin{aligned}
& =E\left[\exp \left(\sum_{j=1}^{m} s_{j} \Pi\left(B_{j}\right)\right)\right] \\
& =E\left[\sum_{n=0}^{\infty} \exp \left(\sum_{j=1}^{m} s_{j} \sum_{k=1}^{n} 1_{B_{j}}\left(\xi_{k}\right)\right) 1_{\{N=n\}}\right] \\
& =\sum_{n=0}^{\infty} E\left[\prod_{k=1}^{n} \exp \left(\sum_{j=1}^{m} s_{j} 1_{B_{j}}\left(\xi_{k}\right)\right)\right] e^{-c} \frac{c^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(E\left[\exp \left(\sum_{j=1}^{m} s_{j} 1_{B_{j}}\left(\xi_{1}\right)\right)\right]\right)^{n} e^{-c} \frac{c^{n}}{n!} \\
& =\exp \left(c\left(E\left[\exp \left(\sum_{j=1}^{m} s_{j} 1_{B_{j}}\left(\xi_{1}\right)\right)\right]-1\right)\right) \\
& =\exp \left(c \left(E \left[1_{\left\{\xi_{1} \in \cup_{j=1}^{m} B_{j}\right\}} \exp \left(\sum_{j=1}^{m} s_{j} 1_{B_{j}}\left(\xi_{1}\right)\right)\right.\right.\right. \\
& \left.\left.\left.\quad+1_{\left\{\xi_{1} \in\left(\cup_{j=1}^{m} B_{j}\right)^{c}\right\}} \exp \left(\sum_{j=1}^{m} s_{j} 1_{B_{j}}\left(\xi_{1}\right)\right)\right]-1\right)\right) \\
& =\exp \left(c\left(E\left[\sum_{j=1}^{m} 1_{\left\{\xi_{1} \in B_{j}\right\}} e^{s_{j}}+1_{\left\{\xi_{1} \in\left(\cup_{j=1}^{m} B_{j}\right)^{c}\right\}}\right]-1\right)\right) \\
& =\exp \left(c\left(\sum_{j=1}^{m} P\left(\xi_{1} \in B_{j}\right) e^{s_{j}}+P\left(\xi_{1} \in\left(\bigcup_{j=1}^{m} B_{j}\right)^{c}\right)-1\right)\right) \\
& =\exp \left(c\left(\sum_{j=1}^{m} \frac{\nu\left(B_{j}\right)}{c} e^{s_{j}}+\left(1-\sum_{j=1}^{m} \frac{\nu\left(B_{j}\right)}{c}\right)-1\right)\right) \\
& =\exp \left(\sum_{j=1}^{m} \nu\left(B_{j}\right)\left(e^{s_{j}}-1\right)\right)=\prod_{j=1}^{m} \exp \left(\nu\left(B_{j}\right)\left(e^{s_{j}}-1\right)\right) \\
& =\prod_{j=1}^{m} \int_{0}^{\infty} \exp \left(s_{j} x_{j}\right) P \circ \Pi\left(B_{j}\right)^{-1}\left(d x_{j}\right) \\
& =\int_{[0, \infty[m}^{m} \exp \left(\sum_{j=1}^{m} s_{j} x_{j}\right) P \circ \Pi\left(B_{1}\right)^{-1} \otimes \cdots \otimes P \circ \Pi\left(B_{m}\right)^{-1} d\left(x_{1}, \ldots, x_{m}\right)
\end{aligned}
$$

Hence, by Proposition 1.3, we can conclude that

$$
P \circ\left(\Pi\left(B_{1}\right), \ldots, \Pi\left(B_{m}\right)\right)^{-1}=P \circ \Pi\left(B_{1}\right)^{-1} \otimes \cdots \otimes P \circ \Pi\left(B_{m}\right)^{-1}
$$

which implies the required independence.

Step 2. ν is σ-finite
There exist $U_{i} \in \mathcal{B}, i \in \mathbb{N}$, pairwise disjoint such that $\nu\left(U_{i}\right)<\infty$ for all $i \in \mathbb{N}$ and $U=\bigcup_{i=1}^{\infty} U_{i}$. Set $\nu_{i}:=\nu\left(\cdot \cap U_{i}\right), i \in \mathbb{N}$.
For $i \in \mathbb{N}$ let N_{i} be a Poissonian random variable with parameter $c_{i}:=\nu\left(U_{i}\right)$ and $\xi_{1}^{i}, \xi_{2}^{i}, \ldots$ independent U_{i}-valued random variables with distribution $\frac{1}{c_{i}} \nu_{i}$, also independent of N_{i}. Moreover the families of random variables $\left\{N_{i}, \xi_{1}^{i}, \xi_{2}^{i}, \ldots\right\}_{i \in \mathbb{N}}$ are independent.
Let Π_{i} be the Poisson random measure on U_{i} associated with N_{i} and $\xi_{1}^{i}, \xi_{2}^{i}, \ldots$ with intensity measure ν_{i} as defined in Step 1.
Define $\Pi:=\sum_{i=1}^{\infty} \Pi_{i}:=\sum_{i=1}^{\infty} \sum_{k=1}^{N_{i}} \delta_{\xi_{k}^{i}}$. Then one has for $B \in \mathcal{B}$ that

$$
\begin{aligned}
\Pi(B) & =\sum_{i=1}^{\infty} \sum_{k=1}^{N_{i}} \delta_{\xi_{k}^{i}}(B)=\sum_{i=1}^{\infty} \sum_{k=1}^{N_{i}} 1_{B}\left(\xi_{k}^{i}\right)=\sum_{i=1}^{\infty} \sum_{k=1}^{N_{i}} 1_{B \cap U_{i}}\left(\xi_{k}^{i}\right) \\
& =\sum_{i=1}^{\infty} \Pi_{i}\left(B \cap U_{i}\right)
\end{aligned}
$$

Claim 1. Let $B \in \mathcal{B}$ with $E[\Pi(B)]<\infty$ then

$$
\begin{aligned}
\nu(B) & =\sum_{i=1}^{\infty} \nu\left(B \cap U_{i}\right)=\sum_{i=1}^{\infty} E\left[\Pi_{i}\left(B \cap U_{i}\right)\right], \text { by Step1, Claim1 } \\
& =E[\Pi(B)]<\infty .
\end{aligned}
$$

Then $\Pi(B)$ is Poisson distributed with parameter $\nu(B)$.
Let $s \leq 0$, then:
$E\left[e^{s \Pi(B)}\right]=\lim _{m \rightarrow \infty} E\left[\exp \left(s \sum_{i=1}^{m} \Pi_{i}\left(B \cap U_{i}\right)\right)\right]=\lim _{m \rightarrow \infty} \prod_{i=1}^{m} E\left[\exp \left(s \Pi_{i}\left(B \cap U_{i}\right)\right)\right]$,
since the families of random variables $\left\{N_{i}, \xi_{1}^{i}, \xi_{2}^{i}, \ldots\right\}_{i \in \mathbb{N}}$ are independent,

$$
\begin{aligned}
& =\lim _{m \rightarrow \infty} \prod_{i=1}^{m} \exp \left(\nu\left(B \cap U_{i}\right)\left(e^{s}-1\right)\right) \quad, \text { by Step } 1 \\
& =\exp \left(\nu(B)\left(e^{s}-1\right)\right)
\end{aligned}
$$

By Lemma 1.4 and Lemma 1.3 the assertion follows.
Claim 2. Let $B \in \mathcal{B}$ with $\nu(B)=E[\Pi(B)]=+\infty$. Then $\Pi(B)=+\infty$ P-a.s..

$$
P(\Pi(B)=+\infty)=P\left(\bigcap_{m \in \mathbb{N} i \geq m} \bigcup_{i}\left\{\Pi_{i}\left(B \cap U_{i}\right)>0\right\}\right)
$$

Since

$$
\begin{aligned}
& P\left(\bigcap_{i \geq m}\left\{\Pi_{i}\left(B \cap U_{i}\right)>0\right\}^{c}\right)=P\left(\bigcap_{i \geq m}\left\{\Pi_{i}\left(B \cap U_{i}\right)=0\right\}\right) \\
= & \lim _{n \rightarrow \infty} P\left(\bigcap_{i=m}^{m+n}\left\{\Pi_{i}\left(B \cap U_{i}\right)=0\right\}\right)=\lim _{n \rightarrow \infty} \prod_{i=m}^{m+n} e^{-\nu\left(B \cap U_{i}\right)} \\
= & \lim _{n \rightarrow \infty} \exp \left(-\sum_{i=m}^{m+n} \nu\left(B \cap U_{i}\right)\right)=0
\end{aligned}
$$

it follows that $P\left(\bigcup_{i \geq m}\left\{\Pi_{i}\left(B \cap U_{i}\right)>0\right\}\right)=1$ for all $m \in \mathbb{N}$ and therefore $P(\Pi(B)=+\infty)=1$.

Claim 3. Let $B_{1}, \ldots, B_{m} \in \mathcal{B}$ pairwise disjoint. Then $\Pi\left(B_{1}\right), \ldots, \Pi\left(B_{m}\right)$ are independent.

If $E\left[\Pi\left(B_{j}\right)\right]<\infty$ for all $j \in\{1, \ldots, m\}$ then one gets for all $s_{1}, \ldots, s_{m} \in \mathbb{R}_{-}$ that

$$
\begin{aligned}
E\left[\exp \left(\sum_{j=1}^{m} s_{j} \Pi\left(B_{j}\right)\right)\right] & =E\left[\exp \left(\sum_{i=1}^{\infty} \sum_{j=1}^{m} s_{j} \Pi_{i}\left(B_{j} \cap U_{i}\right)\right)\right] \\
& =\lim _{n \rightarrow \infty} E\left[\exp \left(\sum_{i=1}^{n} \sum_{j=1}^{m} s_{j} \Pi_{i}\left(B_{j} \cap U_{i}\right)\right)\right] \\
& =\lim _{n \rightarrow \infty} \prod_{i=1}^{n} \prod_{j=1}^{m} E\left[\exp \left(s_{j} \Pi_{i}\left(B_{j} \cap U_{i}\right)\right)\right] \\
& =\lim _{n \rightarrow \infty} \prod_{i=1}^{n} \prod_{j=1}^{m} \exp \left(\nu\left(B_{j} \cap U_{i}\right)\left(e^{s_{j}}-1\right)\right) \\
& =\prod_{j=1}^{m} \exp \left(\nu\left(B_{j}\right)\left(e^{s_{j}}-1\right)\right)
\end{aligned}
$$

If there exists $i \in\{1, \ldots, m\}$ with $E\left[\Pi\left(B_{i}\right)\right]=\infty$, then, by Step 2, Claim 2, $\Pi\left(B_{i}\right)=\infty P$-a.s. Let $\left\{i_{1}, \ldots, i_{n}\right\} \subset\{1, \ldots, m\}$, then the independence of $\Pi\left(B_{i_{1}}\right), \ldots, \Pi\left(B_{i_{n}}\right)$ follows from the case $E\left[\Pi\left(B_{j}\right)\right]<\infty$ for all $j \in\{1, \ldots, m\}$ and the above statement.

1.2 Point processes and Poisson point processes

Definition 1.6 (Point function on \mathbf{U}). A point function p on U is a mapping $p: D_{p} \subset(0, \infty) \rightarrow U$ where the domain D_{p} is a countable subset of $(0, \infty)$.
p defines a measure $N_{p}(d t, d y)$ on $((0, \infty) \times U, \mathcal{B}((0, \infty)) \otimes \mathcal{B})$ in the following way:
Define $\bar{p}:(0, \infty) \rightarrow(0, \infty) \times U, t \mapsto(t, p(t))$ and denote by c the counting measure on $\left(D_{p}, \mathcal{P}\left(D_{p}\right)\right)$, i.e. $c(A):=|A|$ for all $A \in \mathcal{P}\left(D_{p}\right)$.
For $\bar{B} \in \mathcal{B}((0, \infty)) \otimes \mathcal{B}$ define

$$
N_{p}(\bar{B}):=c\left(\bar{p}^{-1}(\bar{B})\right) .
$$

Then, in particular, we have for all $A \in \mathcal{B}((0, \infty))$ and $B \in \mathcal{B}$

$$
N_{p}(A \times B):=\#\left\{t \in D_{p} \mid t \in A, p(t) \in B\right\} .
$$

Notation: $\left.\left.N_{p}(t, B):=N_{p}(] 0, t\right] \times B\right), t \geq 0, B \in \mathcal{B}$
Let \mathcal{P}_{U} be the space of all point functions on U and

$$
\left.\left.\mathcal{B}_{\mathcal{P}_{U}}:=\sigma\left(\mathcal{P}_{U} \rightarrow \mathbb{Z}_{+} \cup\{+\infty\}, p \mapsto N_{p}(] 0, t\right] \times B\right) \mid t>0, B \in \mathcal{B}\right)
$$

Definition 1.7 (Point process). (i) A point process on U is a random variable $p:(\Omega, \mathcal{F}) \rightarrow\left(\mathcal{P}_{U}, \mathcal{B}_{\mathcal{P}_{U}}\right)$.
(ii) A point process p is called stationary if for every $t>0 p$ and $\theta_{t} p$ have the same probability law, where $\theta_{t} p$ is defined by $D_{\theta_{t} p}:=\{s \in$ $\left.(0, \infty) \mid s+t \in D_{p}\right\}$ and $\left(\theta_{t} p\right)(s):=p(s+t)$.
(iii) A point process is called Poisson point process if there exists a Poisson random measure Π on $(0, \infty) \times U$ such that there exists $N \in \mathcal{F}, P(N)=$ 0 , such that for all $\omega \in N^{c}$ and for all $\bar{B} \in \mathcal{B}((0, \infty)) \otimes \mathcal{B}: N_{p(w)}(\bar{B})=$ $\Pi(\omega)(\bar{B})$.
(iv) A point process p is called σ-finite if there exist $U_{i} \in \mathcal{B}, i \in \mathbb{N}, U_{i} \uparrow U$, $i \rightarrow \infty$, and $E\left[N_{p}\left(t, U_{i}\right)\right]<\infty$ for all $t>0$ and $i \in \mathbb{N}$.

The statement of the following proposition about stationary Poisson point processes can be found in [IkWa 81, I. 9 Point processes and Poisson point processes, p.43]

Proposition 1.8. Let p be a σ-finite Poisson point process. Then p is stationary if and only if there exists a σ-finite measure ν on (U, \mathcal{B}) such that

$$
E\left[N_{p}(d t, d y)\right]=\lambda(d t) \otimes \nu(d y)
$$

where λ denotes the Lebesgue-measure on $(0, \infty) . \nu$ is called characteristic measure of p.

Theorem 1.9. Given a σ-finite measure ν on (U, \mathcal{B}) there exists a stationary Poisson point process on U with characteristic measure ν.

Proof. Let Π be a Poisson random measure on $((0, \infty) \times U, \mathcal{B}((0, \infty)) \otimes$ $\mathcal{B})$ with intensity measure $\lambda \otimes \nu$ where λ denotes the Lebesgue-measure on $((0, \infty), \mathcal{B}((0, \infty)))$. Remember the construction of Π in the proof of Theorem 1.5:
There exist $U_{i}, i \in \mathbb{N}$, pairwise disjoint sucht that $U=\bigcup_{i \in \mathbb{N}} U_{i}$ and $c_{i}:=\nu\left(U_{i}\right)<\infty$. For $i \in \mathbb{N}$ let

- N_{i} be a Poissonian random variable with parameter c_{i},
- $\xi_{k}^{i}=\left(t_{k}^{i}, x_{k}^{i}\right), k \in \mathbb{N}$, i.i.d. $\left.] i-1, i\right] \times U_{i}$-valued random variables with distribution $\lambda \otimes\left(\frac{1}{c_{i}} \nu\left(\cdot \cap U_{i}\right)\right.$, also independent of N_{i}.

Moreover the families of random variables $\left\{N_{i}, \xi_{1}^{i}, \xi_{2}^{i}, \ldots\right\}, i \in \mathbb{N}$, are independent.
Then

$$
\Pi:=\sum_{i=1}^{\infty} \Pi_{i}:=\sum_{i=1}^{\infty} \sum_{k=1}^{N_{i}} \delta_{\left(t_{k}^{i}, x_{k}^{i}\right)}
$$

is a Poisson random measure on $((0, \infty) \times U, \mathcal{B}((0, \infty)) \otimes \mathcal{B})$ with intensity measure $\lambda \otimes \nu$ and for $\bar{B} \in \mathcal{B}((0, \infty)) \otimes \mathcal{B}$ holds

$$
\begin{equation*}
\left.\left.\Pi(\bar{B})=\sum_{i=1}^{\infty} \Pi_{i}(\bar{B} \cap(] i-1, i] \times U_{i}\right)\right) \tag{1.1}
\end{equation*}
$$

Then there exists a P-nullset $N \in \mathcal{F}$ such that for all $\omega \in N^{c}$: $\Pi(\omega)(\{t\} \times U)=1$ or 0 for all $t>0$, since

$$
P\left(\bigcup_{t>0}\{\Pi(\{t\} \times U)>1\}\right)=P\left(\bigcup_{i=1}^{\infty} \bigcup_{t \in j i-1, i]}\{\Pi(\{t\} \times U)>1\}\right)
$$

$$
\begin{aligned}
& \leq \sum_{i=1}^{\infty} P\left(\bigcup_{t \in] i-1, i]}\left\{\Pi\left(\{t\} \times U_{i}\right)>1\right\}\right) \\
& \leq \sum_{i=1}^{\infty} P\left(\bigcup_{n \neq m} \bigcup_{t \in] i-1, i]}\left\{\delta_{\xi_{n}^{i}}\left(\{t\} \times U_{i}\right)=1\right\} \cap\left\{\delta_{\xi_{m}^{i}}\left(\{t\} \times U_{i}\right)=1\right\}\right) \\
& \leq \sum_{i=1}^{\infty} \sum_{n \neq m} P\left(\bigcup_{t \in] i-1, i]}\left\{t_{n}^{i}=t_{m}^{i}=t\right\}\right) \\
& \left.\left.=\sum_{i=1}^{\infty} \sum_{n \neq m} \lambda \otimes \lambda(\{(t, t) \mid t \in] i-1, i]\right\}\right) \\
& =0
\end{aligned}
$$

If $\omega \in N^{c}$ and $\left.\left.t \in\right] i-1, i\right]$, then

$$
\begin{aligned}
& \Pi(\omega(\{t\} \times U))=1 \\
\Longleftrightarrow & \sum_{k=1}^{N_{i}(\omega)} \delta_{\left(t_{k}^{i}(\omega), x_{k}^{i}(\omega)\right)}\left(\{t\} \times U_{i}\right)=\Pi_{i}(\omega)\left(\{t\} \times U_{i}\right) \\
& =\Pi(\omega)(\{t\} \times U), \text { by equation }(1.1), \\
& =1
\end{aligned}
$$

$\Longleftrightarrow \exists!k \in\left\{1, \ldots, N_{i}(\omega)\right\}$ such that $t=t_{k}^{i}(\omega)$
In this case we set

$$
p(\omega)(t):=x_{k}^{i}(\omega) \text { and } D_{p(\omega)}:=\{t \in(0, \infty) \mid \Pi(\omega)(\{t\} \times U) \neq 0\}
$$

If $\omega \in N$ then define $p_{0} \in \mathcal{P}_{U}$ by $D_{p}:=\left\{t_{0}\right\} \subset(0, \infty)$ and $p_{0}\left(t_{0}\right)=x_{0} \in U$ and set $p(\omega)=p_{0}$.
Claim 1. $N_{p(\omega)}=\Pi(\omega)$ for all $\omega \in N^{c}$.
Let $\omega \in N^{c}, A \in \mathcal{B}((0, \infty))$ and $B \in \mathcal{B}$ then:

$$
\left.\begin{array}{rl}
& \Pi(\omega)(A \times B) \\
= & \left.\left.\sum_{i=1}^{\infty} \sum_{k=1}^{N_{i}(\omega)} \delta_{\left(t_{k}^{i}, x_{k}^{i}\right)(\omega)}(A \cap] i-1, i\right] \times B \cap U_{i}\right) \\
= & \left.\sum_{i=1}^{\infty} \#\{s \in] i-1, i\right] \mid s \in A, \exists k \in\left\{1, \ldots, N_{i}(\omega)\right\} \text { such that } s=t_{k}^{i}(\omega) \\
\left.\quad \text { and } x_{k}^{i}(\omega) \in B \cap U_{i}\right\}
\end{array}\right] \begin{aligned}
&\left.\sum_{i=1}^{\infty} \#\{s \in] i-1, i\right] \mid s \in A, \exists!k \in\left\{1, \ldots, N_{i}(\omega)\right\} \text { such that } s=t_{k}^{i}(\omega) \\
&\left.\quad \text { and } x_{k}^{i}(\omega) \in B \cap U_{i}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \text { since } \Pi(\omega)(\{s\} \times U) \in\{0,1\} \text { for all } s \in[0, \infty[, \\
= & \#\left\{s \in D_{p(\omega)} \mid s \in A, p(\omega)(s) \in B\right\}, \\
& \text { by the definition of } p, \\
= & N_{p(\omega)}(A \times B)
\end{aligned}
$$

Claim 2. For all $\bar{B} \in \mathcal{B}((0, \infty)) \otimes \mathcal{B}$ the mapping $N_{p}(\bar{B})$ is \mathcal{F}-measurable and $E\left[N_{p}(d t, d x)\right]=\lambda(d t) \otimes \nu(d x)$.
Since $N_{p}(\bar{B})=\Pi(\bar{B}) P$-a.s. the measurability is obvious by Remark 1.2 and the completness of $(\Omega,, P)$.Now $E\left[N_{p}(\bar{B})\right]$ is well defined and we obtain that $E\left[N_{p}(\bar{B})\right]=E[\Pi(\bar{B})]=\lambda \otimes \nu(\bar{B})$, since Π is a Poisson random measure with intensity measure $\lambda(d t) \otimes \nu(d x)$.
Claim 3. $p: \Omega \rightarrow \mathcal{P}_{U}$ is $\mathcal{F} / \mathcal{B}_{\mathcal{P}_{U}}$-measurable.

$$
\begin{aligned}
\mathcal{B}_{\mathcal{P}_{U}} & \left.\left.=\sigma\left(\mathcal{P}_{U} \rightarrow \mathbb{Z}_{+} \cup\{+\infty\}, p \mapsto N_{p}(] 0, t\right] \times B\right) \mid t>0, B \in \mathcal{B}\right) \\
& =\sigma\left(\left\{p \in \mathcal{P}_{U} \mid N(t, B)=m\right\} \mid t>0, B \in \mathcal{B}, m \in \mathbb{Z}_{+}\right)
\end{aligned}
$$

and for $t>0, B \in \mathcal{B}, m \in \mathbb{Z}_{+}$one gets by Claim 2 that

$$
\{p \in\{N .(t, B)=m\}\}=\left\{N_{p}(t, B)=m\right\} \in \mathcal{F} .
$$

By Claim 1-3 it follows that p is a Poisson point process with characteristic measure ν. By Proposition $1.8 p$ is stationary.

1.3 Stochastic integrals with respect to Poisson point processes

Let $\mathcal{F}_{t}, t \geq 0$, be a filtration on (Ω, \mathcal{F}, P) such that \mathcal{F}_{0} contains all P-nullsets of \mathcal{F}.

Definition 1.10. A point process p is called $\left(\mathcal{F}_{t}\right)$-adapted if for every $t>0$ and $B \in \mathcal{B} N_{p}(t, B)$ is \mathcal{F}_{t}-measurable.

For an arbitrary point process p define the following set
$\Gamma_{p}:=\left\{B \in \mathcal{B} \mid E\left[N_{p}(t, B)\right]<\infty\right.$ for all $\left.t>0\right\}$.
Definition 1.11. An $\left(\mathcal{F}_{t}\right)$-adapted point process p on U is said to be of class $(Q L)$ (quasi-left-continuous) with respect to $\mathcal{F}_{t}, t \geq 0$, if it is σ-finite and there exists for all $B \in \mathcal{B}$ a process $\hat{N}_{p}(t, B), t \geq 0$, such that
(i) for $B \in \Gamma_{p} t \mapsto \hat{N}_{p}(t, B)$ is a continuous $\left(\mathcal{F}_{t}\right)$-adapted increasing process,
(ii) for all $t \geq 0$ and P-a.e. $\omega \in \Omega$: $\hat{N}_{p}(\omega)(t, \cdot)$ is a σ-finite measure on (U, \mathcal{B}),
(iii) for $B \in \Gamma_{p} q(t, B):=N_{p}(t, B)-\hat{N}_{p}(t, B), t \geq 0$, is an $\left(\mathcal{F}_{t}\right)$-martingale
\hat{N}_{p} is called the compensator of the point process p and q the compensated Poisson random measure of p.

Definition 1.12. A point process p is called an $\left(\mathcal{F}_{t}\right)$-Poisson point process if it is an $\left(\mathcal{F}_{t}\right)$-adapted, σ-finite Poisson point process such that $\left.\left.\left\{N_{p}(] t, t+h\right] \times B\right) \mid h>0, B \in \mathcal{B}\right\}$ is independent of \mathcal{F}_{t} for all $t \geq 0$.

Remark 1.13. Let p be a σ-finite Poisson point process on U. Then there exists a filtration $\mathcal{F}_{t}, t \geq 0$, on (Ω, \mathcal{F}, P) such that \mathcal{F}_{0} contains all P-nullsets of \mathcal{F} and p is an $\left(\mathcal{F}_{t}\right)$-Poisson point process.

Proof. Define $\mathcal{N}:=\{N \in \mathcal{F} \mid P(N)=0\}$ and for $t \geq 0$

$$
\mathcal{F}_{t}:=\sigma\left(N_{p}(t, B) \mid B \in \mathcal{B}\right) \cup \mathcal{N} .
$$

Then p is an $\left(\mathcal{F}_{t}\right)$-adapted, σ-finite Poisson point process.
Moreover $\left.\left.\sigma\left(N_{p}(t, B) \mid B \in \mathcal{B}\right) \cup \mathcal{N}=\sigma(\Pi(] 0, t] \times B\right) \mid B \in \mathcal{B}\right) \cup \mathcal{N}$ is independent of $\sigma(\Pi(] t, t+h] \times B) \mid h>0, B \in \mathcal{B}) \cup \mathcal{N}$ by Definition 1.1 (ii) since $] 0, t] \times B$ and $] t, t+h] \times \tilde{B}$ are disjoint for all $h>0$ and $B, \tilde{B} \in \mathcal{B}$. Since

$$
\begin{aligned}
& \sigma(\Pi(] t, t+h] \times B) \mid h>0, B \in \mathcal{B}) \cup \mathcal{N} \\
= & \left.\left.\sigma\left(N_{p}(] t, t+h\right] \times B\right) \mid h>0, B \in \mathcal{B}\right) \cup \mathcal{N}
\end{aligned}
$$

the assertion follows.

For the rest of this section fix a σ-finite measure ν on (U, \mathcal{B}) and a stationary $\left(\mathcal{F}_{t}\right)$-Poisson point process p on U with characteristic measure ν.

Proposition 1.14. p is of class ($Q L$) with compensator $\hat{N}_{p}(t, B)=t \nu(B)$, $t \geq 0, B \in \mathcal{B}$.

Proof. Set for $t \geq 0$ and $B \in \mathcal{B}: \hat{N}_{p}(t, B):=t \nu(B)$.
Then condition (i) and (ii) of Definition 1.11 are fulfilled. Moreover, for $B \in \Gamma_{p} q(t, B):=N_{p}(t, B)-\hat{N}_{p}(t, B), t \geq 0$, is $\left(\mathcal{F}_{t}\right)$-adapted. It remains to
check that for $B \in \Gamma_{p} q(t, B), t \geq 0$, has the martingale property.
For this end let $0 \leq s<t<\infty$ and $F_{s} \in \mathcal{F}_{s}$, then

$$
\begin{aligned}
& E\left[q(t, B) 1_{F_{s}}\right]=E\left[\left(N_{p}(t, B)-\hat{N}_{p}(t, B)\right) 1_{F_{s}}\right] \\
= & E\left[N_{p}(t, B) 1_{F_{s}}\right]-t \nu(B) P\left(F_{s}\right) \\
= & E\left[\left(N_{p}(t, B)-N_{p}(s, B)\right) 1_{F_{s}}\right]+E\left[N_{p}(s, B) 1_{F_{s}}\right]-t \nu(B) P\left(F_{s}\right) \\
= & E\left[N_{p}(t, B)-N_{p}(s, B)\right] P\left(F_{s}\right)+E\left[N_{p}(s, B) 1_{F_{s}}\right]-(t-s) \nu(B) P\left(F_{s}\right) \\
& -s \nu(B) P\left(F_{s}\right) \\
= & E\left[\left(N_{p}(s, B) 1_{F_{s}}\right]-s \nu(B) P\left(F_{s}\right)\right. \\
= & E\left[\left(N_{p}(s, B)-\hat{N}_{p}(s, B)\right) 1_{F_{s}}\right] \\
= & E\left[q(s, B) 1_{F_{s}}\right]
\end{aligned}
$$

Remark 1.15. If $t \in[0, \infty[$ and

$$
B \in \Gamma_{p}=\left\{B \in \mathcal{B} \mid E\left[N_{p}(t, B)\right]<\infty \text { for all } t>0\right\}=\{B \in \mathcal{B} \mid \nu(B)<\infty\}
$$

then $q(t, B) \in \mathbb{R} P$-a.s. since $q(t, B)=N_{p}(t, B)-t \nu(B)$ where $N_{p}(t, B)<\infty$ P-a.s. as $E\left[N_{p}(t, B)\right]<\infty$.
If $0 \leq s \leq t<\infty$ and $B \in \Gamma_{p}$ then

$$
\begin{aligned}
q(t, B)-q(s, B) & =N_{p}(t, B)-N_{p}(s, B)-(t-s) \nu(B) \\
& \left.\left.=N_{p}(] s, t\right] \times B\right)-(t-s) \nu(B) \quad P \text {-a.s. }
\end{aligned}
$$

Notation: In the following we will use the following notation:
$\left.\left.q(] s, t] \times B):=N_{p}(] s, t\right] \times B\right)-(t-s) \nu(B), 0 \leq s \leq t<\infty, B \in \mathcal{B}$.
Proposition 1.16. For $A \in \Gamma_{p}(q(t, A), t \geq 0)$ is an element of \mathcal{M}^{2} and we have for $A_{1}, A_{2} \in \Gamma_{p}$ that

$$
\left\langle q\left(\cdot, A_{1}\right), q\left(\cdot, A_{2}\right)\right\rangle(t)=\hat{N}_{p}\left(t, A_{1} \cap A_{2}\right), t \geq 0 .
$$

In particular, this means that for all $A \in \Gamma_{p}$ the following holds:
$M(t):=q(t, A)^{2}-\hat{N}_{p}(t, A), t \geq 0$, is an $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-martingale and in this case: $E[M(t)]=E[M(0)]=0$ for all $t \geq 0$.

Proof. [Ikeda, Watanabe, Theorem 3.1, p.60; Lemma 3.1, p.60]
Step 1. Definition of the stochastic integral for elementary processes
Let $(H,\langle\rangle$,$) be a separable Hilbert space and fix T>0$.
The class \mathcal{E} of all elementary processes is determined by the following definition

Definition 1.17. An H-valued process $\Phi(t): \Omega \times U \rightarrow H, t \in[0, T]$, on $(\Omega \times U, \mathcal{F} \otimes \mathcal{B}, P \otimes \nu)$ is said to be elementary if there exist $0=t_{0}<t_{1}<$ $\cdots<t_{k}=T, k \in \mathbb{N}$, and for $m \in\{0, \ldots, k-1\}$ exist $B_{1}^{m}, \ldots, B_{I(m)}^{m} \in \Gamma_{p}$, pairwise disjoint, $I(m) \in \mathbb{N}$, such that

$$
\Phi=\sum_{m=0}^{k-1} \sum_{i=1}^{I(m)} x_{i}^{m} 1_{F_{i}^{m}} 1_{] t_{m}, t_{m+1}\right] \times B_{i}^{m}}
$$

where $x_{i}^{m} \in H$ and $F_{i}^{m} \in \mathcal{F}_{t_{m}}, 1 \leq i \leq I(m), 0 \leq m \leq k-1$.
For $\Phi=\sum_{m=0}^{k-1} \sum_{i=1}^{I(m)} x_{i}^{m} 1_{F_{i}^{m}} 1_{\left.\mid t m, t_{m+1}\right] \times B_{i}^{m}} \in \mathcal{E}$ define the stochastic integral process by

$$
\begin{aligned}
& \operatorname{Int}(\Phi)(t, \omega) \\
&:= \int_{0}^{t+} \int_{U} \Phi(s, y) q(d s, d y)(\omega):=\int_{0}^{T} \int_{U} 1_{j 0, t]}(s) \Phi(s, y) q(d s, d y)(\omega) \\
&:=\sum_{m=0}^{k-1} \sum_{i=1}^{I(m)} x_{i}^{m} 1_{F_{i}^{m}}(\omega)\left(q(\omega)\left(t_{m+1} \wedge t, B_{i}^{m}\right)-q(\omega)\left(t_{m} \wedge t, B_{i}^{m}\right)\right),
\end{aligned}
$$

$t \in[0, T]$ and $\omega \in \Omega$.

Proposition 1.18.

If $\Phi \in \mathcal{E}$ then $\left(\int_{0}^{t+} \int_{U} \Phi(s, y) q(d s, d y), t \in[0, T]\right) \in \mathcal{M}_{T}^{2}(H)$ and

$$
\begin{aligned}
& \|\operatorname{Int}(\Phi)\|_{\mathcal{M}_{T}^{2}}^{2}:=\sup _{t \in[0, T]} E\left[\left\|\int_{0}^{t+} \int_{U} \Phi(s, y) q(d s, d y)\right\|^{2}\right] \\
= & E\left[\int_{0}^{T} \int_{U}\|\Phi(s, y)\|^{2} \nu(d y) d s\right]=:\|\Phi\|_{T}
\end{aligned}
$$

Proof.
Claim 1. $\operatorname{Int}(\Phi)$ is $\left(\mathcal{F}_{t}\right)$-adapted.
Let $t \in[0, T]$ then:

$$
\begin{aligned}
\operatorname{Int}(\Phi)(t) \\
=\sum_{\substack{m \in\{0, \ldots, k-1\} \\
t_{m} \leq t}} \sum_{i=1}^{I(m)} x_{i}^{m} 1_{F_{i}^{m}}\left(N_{p}\left(t_{m+1} \wedge t, B_{i}^{m}\right)-N_{p}\left(t_{m}, B_{i}^{m}\right)-\left(t_{m+1}^{m}\right)\right)
\end{aligned}
$$

which is \mathcal{F}_{t}-measurable since p is $\left(\mathcal{F}_{t}\right)$-adapted.

Claim 2. For all $t \in[0, T]$:

$$
\begin{aligned}
& E\left[\|\operatorname{Int}(\Phi)(t)\|^{2}\right]=E\left[\int_{0}^{t} \int_{U}\|\Phi(s, y)\|^{2} \nu(d y) d s\right]<\infty: \\
& E\left[\|\operatorname{Int}(\Phi)(t)\|^{2}\right] \\
& \left.=E\left[\| \sum_{m=0}^{k-1} \sum_{i=1}^{I(m)} x_{i}^{m} 1_{F_{i}^{m}} q\left(1 t_{m} \wedge t, t_{m+1} \wedge t\right] \times B_{i}^{m}\right) \|^{2}\right] \\
& \left.=E\left[\sum_{\substack{m=0 \\
t_{m} \leq t}} \sum_{i=1}^{I(m)} \| x_{i}^{m} 1_{F_{i}^{m}} q(] t_{m} \wedge t, t_{m+1} \wedge t\right] \times B_{i}^{m}\right) \|^{2} \\
& \left.\quad+2 \sum_{0 \leq m<n \leq k-1} \sum_{t_{n} \leq t} \sum_{\substack{(i, j) \in\{1, \ldots, I(m)\} \\
\times\{1, \ldots, I(n)\}}}\left\langle x_{i}^{m} \Delta_{i}^{m}, x_{j}^{n} \Delta_{j}^{n}\right\rangle\right]
\end{aligned}
$$

where $\left.\left.\Delta_{h}^{l}:=q(] t_{l} \wedge t, t_{l+1} \wedge t\right] \times A_{h}^{B}\right), 0 \leq l \leq k-1,1 \leq h \leq I(l)$.
1.: For $m \in\{0, \ldots, k-1\}, t_{m} \leq t, i \in\{1, \ldots, I(m)\}$ holds:

$$
\left.\left.E\left[\| x_{i}^{m} 1_{F_{i}^{m}} q(] t_{m} \wedge t, t_{m+1} \wedge t\right] \times B_{i}^{m}\right) \|^{2}\right] \leq E\left[\left\|x_{i}^{m} \Delta_{i}^{m}\right\|^{2}\right]<\infty:
$$

For this purpose let $0 \leq s \leq t \leq T$ and $B \in \Gamma_{p}$, then:

$$
\begin{aligned}
\left.E[q(] s, t] \times B)^{2}\right] & =E\left[(q(t, B)-q(s, B))^{2}\right] \\
& =E[\underbrace{q(t, B)^{2}}_{(a)}-2 \underbrace{q(t, B) q(s, B)}_{(b)}+q(s, B)^{2}]
\end{aligned}
$$

(a) By Proposition 1.16 and Proposition 1.14 it follows that

$$
E\left[q(t, B)^{2}\right]=E\left[\hat{N}_{p}(t, B)\right]=t \nu(B)<\infty
$$

(b) Since $\mid q(] s, t] \times B) \mid$ and $|q(s, B)|$ are independent we get that

$$
\begin{aligned}
E[|q(t, B) q(s, B)|] & \leq E[\mid q(] s, t] \times B) q(s, B) \mid]+E\left[q(s, B)^{2}\right] \\
& =E[\mid q(] s, t] \times B) \mid] E[|q(s, B)|]+E\left[q(s, B)^{2}\right] \\
& <\infty
\end{aligned}
$$

From (a) and (b) it follows that $\left.E[q(] s, t] \times B)^{2}\right]<\infty$. Moreover we obtain that

$$
\begin{align*}
& \left.E[q(] s, t] \times B)^{2}\right] \tag{1.2}\\
= & E\left[q(t, B)^{2}\right]-2 E[q(t, B) q(s, B)]+E\left[q(s, B)^{2}\right] \\
= & \left.\left.E\left[q(t, B)^{2}\right]-2 E[q(] s, t] \times B\right) q(s, B)\right]-E\left[q(s, B)^{2}\right] \\
= & t \nu(B)-2 E[q(] s, t] \times B)] E[q(s, B)]-s \nu(B) \\
= & \left.(t-s) \nu(B), \quad \text { as } E[q(s, B)]=E\left[N_{p}(] 0, s\right] \times B\right]-s \nu(B)=0
\end{align*}
$$

2.: For $m, n \in\{0, \ldots, k-1\}, m<n, t_{n} \leq t, i \in\{1, \ldots, I(m)\}$, $j \in\{1, \ldots, I(n)\}$ holds:

$$
E\left[\left|\left\langle x_{i}^{m} 1_{F_{i}^{m}} \Delta_{i}^{m}, x_{j}^{n} 1_{F_{j}^{n}} \Delta_{j}^{n}\right\rangle\right|\right] \leq E\left[\left|\left\langle x_{i}^{m} \Delta_{i}^{m}, x_{j}^{n}\right\rangle \| \Delta_{j}^{n}\right|\right]<\infty:
$$

Since $m<n$ and $t_{m}<t_{n} \leq t$ we get that

$$
] t_{m} \wedge t, t_{m+1} \wedge t\right] \cap\right] t_{n} \wedge t, t_{n+1} \wedge t\right]=\right] t_{m}, t_{m+1}\right] \cap\right] t_{n}, t_{n+1} \wedge t\right]=\emptyset
$$

therefore $\left|\Delta_{j}^{n}\right|$ and $\left\langle x_{i}^{m}, x_{j}^{n}\right\rangle\left|\Delta_{i}^{m}\right|$ are independent and we obtain that

$$
E\left[\left|\left\langle x_{i}^{m} \Delta_{i}^{m}, x_{j}^{n}\right\rangle\right|\left|\Delta_{j}^{n}\right|\right]=E\left[\left|\left\langle x_{i}^{m} \Delta_{i}^{m}, x_{j}^{n}\right\rangle\right|\right] E\left[\left|\Delta_{j}^{n}\right|\right]<\infty .
$$

3.: For $m, n \in\{0, \ldots, k-1\}, m<n, t_{n} \leq t, i \in\{1, \ldots, I(m)\}$, $j \in\{1, \ldots, I(n)\}$ holds:

$$
\begin{aligned}
& E\left[\left\langle x_{i}^{m} 1_{F_{i}^{m}} \Delta_{i}^{m}, x_{j}^{n} 1_{F_{j}^{n}} \Delta_{j}^{n}\right\rangle\right] \\
= & E\left[\left\langle x_{i}^{m} 1_{F_{i}^{m}} \Delta_{i}^{m}, x_{j}^{n} 1_{F_{j}^{n}}\right\rangle \Delta_{j}^{n}\right] \\
= & E\left[\left\langle x_{i}^{m} 1_{F_{i}^{m}} \Delta_{i}^{m}, x_{j}^{n} 1_{F_{j}^{n}}\right\rangle\right] E\left[\Delta_{j}^{n}\right] \\
= & 0, \text { since } E\left[\Delta_{j}^{n}\right]=0 .
\end{aligned}
$$

By 1.-3. one gets for all $t \in[0, T]$ that

$$
\begin{aligned}
& E\left[\|\operatorname{Int}(\Phi)(t)\|^{2}\right] \\
= & \left.E\left[\| \sum_{m=0}^{k-1} \sum_{i=1}^{I(m)} x_{i}^{m} 1_{F_{i}^{m}} q\left(1 t_{m} \wedge t, t_{m+1} \wedge t\right] \times B_{i}^{m}\right) \|^{2}\right] \\
= & \left.E\left[\sum_{\substack{m=0 \\
t_{m} \leq t}}^{k-1} \sum_{i=1}^{I(m)} \| x_{i}^{m} 1_{F_{i}^{m}} q(] t_{m} \wedge t, t_{m+1} \wedge t\right] \times B_{i}^{m}\right) \|^{2} \\
& \left.+2 \sum_{\substack{0 \leq m<n \leq k-1 \\
t_{n} \leq t}} \sum_{\substack{(i, j) \in\{1, \ldots, I(m)\} \\
\times\{1, \ldots, I(n)\}}}\left\langle x_{i}^{m} \Delta_{i}^{m}, x_{j}^{n} \Delta_{j}^{n}\right\rangle\right] \\
= & \left.\left.\sum_{\substack{m=0 \\
t_{m} \leq t}}^{k-1} \sum_{i=1}^{I(m)} E\left[\| x_{i}^{m} 1_{F_{i}^{m}} q(] t_{m} \wedge t, t_{m+1} \wedge t\right] \times B_{i}^{m}\right) \|^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \left.\left.\sum_{\substack{m=0 \\
t_{m} \leq t}}^{k-1} \sum_{i=1}^{I(m)}\left\|x_{i}^{m}\right\|^{2} P\left(F_{i}^{m}\right) E\left[q(] t_{m} \wedge t, t_{m+1} \wedge t\right] \times B_{i}^{m}\right)^{2}\right], \\
& \text { since } \left.\left.F_{i}^{m} \in \mathcal{F}_{t_{m}} \text { and } q(] t_{m}, t_{m+1} \wedge t\right] \times B_{i}^{m}\right) \text { is independent of } \mathcal{F}_{t_{m}}, \\
= & \sum_{\substack{m=0 \\
t_{m} \leq t}}^{k-1} \sum_{i=1}^{I(m)}\left\|x_{i}^{m}\right\|^{2} P\left(F_{i}^{m}\right)\left(t_{m+1} \wedge t-t_{m} \wedge t\right) \nu\left(B_{i}^{m}\right),
\end{aligned}
$$

by equation (1.2),

$$
\begin{aligned}
& =E\left[\int_{0}^{t} \int_{U}\left\|\sum_{m=0}^{k-1} \sum_{i=1}^{I(m)} x_{i}^{m} 1_{F_{i}^{m}} 1_{\left.1 t_{m}, t_{m+1}\right] \times B_{i}^{m}}\right\|^{2} \nu(d y) d s\right] \\
& =E\left[\int_{0}^{t} \int_{U}\|\Phi(s, y)\|^{2} \nu(d y) d s\right]
\end{aligned}
$$

Claim 3. $\operatorname{Int}(\Phi)(t), t \in[0, T]$, is an $\left(\mathcal{F}_{t}\right)$-martingale.
Let $0 \leq s<t \leq T$ and $F_{s} \in \mathcal{F}_{s}$ then:

$$
\begin{aligned}
& \int_{F_{s}} \int_{0}^{t+} \int_{U} \Phi(r, y) q(d r, d y) d P \\
& =\int_{F_{s}} \sum_{m=0}^{k-1} \sum_{i=1}^{I(m)} x_{i}^{m} 1_{F_{i}^{m}}\left(q\left(t_{m+1} \wedge t, B_{i}^{m}\right)-q\left(t_{m} \wedge t, B_{i}^{m}\right)\right) d P \\
& =\sum_{\substack{m=0 \\
t_{m} \leq s}}^{k-1} \sum_{i=1}^{I(m)} \int_{F_{s}} x_{i}^{m} 1_{F_{i}^{m}}\left(q\left(t_{m+1} \wedge t, B_{i}^{m}\right)-q\left(t_{m} \wedge s, B_{i}^{m}\right)\right) d P \\
& +\sum_{\substack{m=0 \\
s<t_{m} \leq t}}^{k-1} \sum_{i=1}^{I(m)} \int_{F_{s}} x_{i}^{m} 1_{F_{i}^{m}}\left(q\left(t_{m+1} \wedge t, B_{i}^{m}\right)-q\left(t_{m}, B_{i}^{m}\right)\right) d P \\
& +\sum_{\substack{m=0 \\
s<t<t_{m}}}^{k-1} \sum_{i=1}^{I(m)} \int_{F_{s}} x_{i}^{m} 1_{F_{i}^{m}} \underbrace{\left(q\left(t, B_{i}^{m}\right)-q\left(t, B_{i}^{m}\right)\right)}_{=0} d P \\
& =\sum_{\substack{m=0 \\
t_{m} \leq s}}^{k-1} \sum_{i=1}^{I(m)} \int_{F_{s}} x_{i}^{m} 1_{F_{i}^{m}}\left(E\left[q\left(t_{m+1} \wedge t, B_{i}^{m}\right) \mid \mathcal{F}_{s}\right]-q\left(t_{m} \wedge s, B_{i}^{m}\right)\right) d P \\
& +\sum_{\substack{m=0 \\
s<t_{m} \leq t}}^{k-1} \sum_{i=1}^{I(m)} \int_{F_{s}} x_{i}^{m} 1_{F_{i}^{m}} \underbrace{\left(E\left[q\left(t_{m+1} \wedge t, B_{i}^{m}\right) \mid \mathcal{F}_{t_{m}}\right]-q\left(t_{m}, B_{i}^{m}\right)\right)}_{=0, \text { since } q\left(\cdot, B_{i}^{m}\right) \text { is an }\left(\mathcal{F}_{t}\right) \text {-martingale }} d P
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\substack{m=0 \\
s<t<t_{m}}}^{k-1} \sum_{i=1}^{I(m)} \int_{F_{s}} x_{i}^{m} 1_{F_{i}^{m}} \underbrace{\left(q\left(s, B_{i}^{m}\right)-q\left(s, B_{i}^{m}\right)\right)}_{=0} d P \\
& =\sum_{\substack{m=0 \\
t_{m} \leq s}}^{k-1} \sum_{i=1}^{I(m)} \int_{F_{s}} x_{i}^{m} 1_{F_{i}^{m}}\left(q\left(t_{m+1} \wedge s, B_{i}^{m}\right)-q\left(t_{m} \wedge s, B_{i}^{m}\right)\right) d P \\
& \text { since } q\left(t_{m+1} \wedge \cdot, B_{i}^{m}\right) \text { is an }\left(\mathcal{F}_{t}\right) \text {-martingale } \\
& +\sum_{\substack{m=0 \\
s<t_{m} \leq t}}^{k-1} \sum_{i=1}^{I(m)} \int_{F_{s}} x_{i}^{m} 1_{F_{i}^{m}} \underbrace{\left(q\left(t_{m+1} \wedge s, B_{i}^{m}\right)-q\left(t_{m} \wedge s, B_{i}^{m}\right)\right)}_{=0} d P \\
& +\sum_{\substack{m=0 \\
s<t<t_{m}}} \sum_{i=1}^{I(m)} \int_{F_{s}} x_{i}^{m} 1_{F_{i}^{m}}\left(q\left(t_{m+1} \wedge s, B_{i}^{m}\right)-q\left(t_{m} \wedge s, B_{i}^{m}\right)\right) d P \\
& =\int_{F_{s}} \int_{0}^{s+} \int_{U} \Phi(r, y) q(d r, d y) d P
\end{aligned}
$$

In this way one has found the semi norm $\left\|\|_{T}\right.$ on \mathcal{E} such that Int : $\left(\mathcal{E},\| \|_{T}\right) \rightarrow\left(\mathcal{M}_{T}^{2}(H),\| \|_{\mathcal{M}_{T}^{2}}\right)$ is an isometric transformation. To get a norm on \mathcal{E} one has to consider equivalence classes of elementary processes with respect to $\left\|\|_{T}\right.$. For simplicity, the space of equivalence classes will be denoted by \mathcal{E}, too.
Since \mathcal{E} is dense in the absract completion $\overline{\mathcal{E}}$ of \mathcal{E} w.r.t. $\left\|\|_{T}\right.$ it is clear that there is a unique isometric extension of Int to $\overline{\mathcal{E}}$.

Step 2. Characterization of $\overline{\mathcal{E}}$

Define the predictable σ-field on $[0, T] \times \Omega \times U$ by

$$
\begin{aligned}
& \mathcal{P}_{T}(U) \\
:= & \sigma(g:[0, T] \times \Omega \times U \rightarrow H \mid g \text { is }(\underbrace{\mathcal{F}_{t} \times \mathcal{B}}_{\tilde{\mathcal{F}}_{t}})-\text { adapted and left-continuous) } \\
= & \left.\sigma\left(] s, t] \times \tilde{F}_{s} \mid 0 \leq s \leq t \leq T, \tilde{F}_{s} \in \tilde{\mathcal{F}}_{s}\right\} \cup\left\{\{0\} \times \tilde{F}_{0} \mid \tilde{F}_{0} \in \tilde{\mathcal{F}}_{0}\right\}\right) \\
= & \sigma\left(] s, t] \times F_{s} \times B \mid 0 \leq s \leq t \leq T, F_{s} \in \mathcal{F}_{s}, B \in \mathcal{B}\right\} \\
& \left.\cup\left\{\{0\} \times F_{0} \times B \mid F_{0} \in \mathcal{F}_{0} \times \mathcal{B}\right\}\right)
\end{aligned}
$$

At this point, for the sake of completness, also define the predictable σ-field on $[0, T] \times \Omega$ by

$$
\mathcal{P}_{T}:=\sigma\left(g:[0, T] \times \Omega \rightarrow \mathbb{R}, \mid g \text { is }\left(\mathcal{F}_{t}\right)\right. \text {-adapted and left-continuous) }
$$

$$
=\sigma(\underbrace{\left.\{] s, t] \times F_{s} \mid 0 \leq s \leq t \leq T, F_{s} \in \mathcal{F}_{s}\right\} \cup\left\{\{0\} \times F_{0} \mid F_{0} \in \mathcal{F}_{0}\right\}}_{:=\mathcal{A}})
$$

Let \tilde{H} be an arbitrary Hilbert space. If $Y:[0, T] \times \Omega \rightarrow \tilde{H}$ is $\mathcal{P}_{T} / \mathcal{B}(\tilde{H})$ measurable it is called $(\tilde{H}$-) predictable.

Remark 1.19. (i) If $B \in \mathcal{B}([0, T])$ then $B \times \Omega \times U \in \mathcal{P}_{T}(U)$.
(ii) If $A \in \mathcal{P}_{T}$ and $B \in \mathcal{B}$ then $A \times B \in \mathcal{P}_{T}(U)$.

Proof. (i)

$$
\begin{aligned}
B \times \Omega \times U & \in \mathcal{B}([0, T]) \otimes\{\Omega, \emptyset\} \otimes\{U, \emptyset\} \\
& =\sigma(\{] s, t] \times \Omega \times U \mid 0 \leq s \leq t \leq T\} \cup\{[0, T] \times \Omega \times U\}) \\
& \subset \mathcal{P}_{T}(U)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A \times B & \in \mathcal{P}_{T} \otimes\{B, \emptyset\}=\sigma(\{A \times B \mid A \in \mathcal{A}\} \cup\{[0, T] \times \Omega \times B\}) \\
& \subset \mathcal{P}_{T}(U)
\end{aligned}
$$

Furthermore, for the next proposition we need the following lemma:
Lemma 1.20. Let E be a metric space with metric d and let $f: \Omega \rightarrow E$ be strongly measurable, i.e. it is Borel measurable and $f(\Omega) \subset E$ is separable. Then there exists a sequence $f_{n}, n \in \mathbb{N}$, of simple E-valued functions (i.e. f_{n} is $\mathcal{F} / \mathcal{B}(E)$-measurable and takes only a finite number of values) such that for arbitrary $\omega \in \Omega$ the sequence $d\left(f_{n}(\omega), f(\omega)\right), n \in \mathbb{N}$, is monotonely decreasing to zero.

Proof. [DaPrZa 92, Lemma 1.1, p.16]
Proposition 1.21. If Φ is an $\mathcal{P}_{T}(U) / \mathcal{B}(H)$-measurable process and

$$
E\left[\int_{0}^{T} \int_{U}\|\Phi(s, y)\|^{2} \nu(d y) d s\right]<\infty
$$

then there exists a sequence of elementary processes $\Phi_{n}, n \in \mathbb{N}$, such that $\left\|\Phi-\Phi_{n}\right\|_{T} \rightarrow 0$ as $n \rightarrow \infty$.

Proof. There exist $U_{n} \in \mathcal{B}, n \in \mathbb{N}$, with $\nu\left(U_{n}\right)<\infty$ such that $U_{n} \uparrow U$ as $n \rightarrow \infty$. Then $1_{U_{n}} \Phi:[0, T] \times \Omega \times U_{n} \rightarrow H$ is $\mathcal{P}_{T}(U) \cap\left([0, T] \times \Omega \times U_{n}\right) / \mathcal{B}(H)-$ measurable.
Moreover

$$
\begin{align*}
& \mathcal{P}_{T}(U) \cap\left([0, T] \times \Omega \times U_{n}\right) \tag{1.3}\\
= & \sigma\left(] s, t] \times F_{s} \times B \mid 0 \leq s \leq t \leq T, F_{s} \in \mathcal{F}_{s}, B \in \mathcal{B} \cap U_{n}\right\} \\
& \left.\cup\left\{\{0\} \times F_{0} \times B \mid F_{0} \in \mathcal{F}_{0}, B \in \mathcal{B} \cap U_{n}\right\}\right) \\
= & \mathcal{P}_{T}\left(U_{n}\right):
\end{align*}
$$

Therefore one gets that $1_{U_{n}} \Phi:[0, T] \times \Omega \times U_{n} \rightarrow H$ is $\mathcal{P}_{T}\left(U_{n}\right) / \mathcal{B}(H)$ measurable. Then there exists a sequence $\Phi_{k}^{n}, k \in \mathbb{N}$, of simple random variables of the following form

$$
\Phi_{k}^{n}=\sum_{m=1}^{M_{k}} x_{m}^{k} 1_{A_{m}^{k}}, x_{m}^{k} \in H, A_{m}^{k} \in \mathcal{P}_{T}\left(U_{n}\right), 1 \leq m \leq M_{k}, k \in \mathbb{N},
$$

such that $\left\|1_{U_{n}} \Phi-\Phi_{k}^{n}\right\| \downarrow 0$ as $k \rightarrow \infty$ by Lemma 1.20. Since

$$
\begin{array}{r}
\left\|1_{U_{n}} \Phi-\Phi_{k}^{n}\right\| \leq\left\|1_{U_{n}} \Phi\right\|+\left\|\Phi_{1}^{n}\right\| \leq\left\|1_{U_{n}} \Phi\right\|+\sum_{m=1}^{M_{1}}\left\|x_{m}^{1}\right\| 1_{A_{m}^{1}} \\
\in L^{2}\left([0, T] \times \Omega \times U_{n}, \mathcal{P}_{T}\left(U_{n}\right), \lambda \otimes P \otimes \nu\right)
\end{array}
$$

one gets by Lebesgue's dominated convergence theorem that

$$
\begin{aligned}
\left\|1_{U_{n}}\left(\Phi-\Phi_{k}^{n}\right)\right\|_{T}^{2} & =E\left[\int_{0}^{T} \int_{U}\left\|1_{U_{n}}\left(\Phi-\Phi_{k}^{n}\right)\right\|^{2} d \nu d \lambda\right] \\
& =E\left[\int_{0}^{T} \int_{U_{n}}\left\|1_{U_{n}} \Phi-\Phi_{k}^{n}\right\|^{2} d \nu d \lambda\right] \rightarrow 0 \text { as } k \rightarrow \infty
\end{aligned}
$$

Choose for $n \in \mathbb{N} k(n) \in \mathbb{N}$ such that $\left\|1_{U_{n}}\left(\Phi-\Phi_{k(n)}^{n}\right)\right\|_{T}<\frac{1}{n}$, then

$$
\left\|\Phi-1_{U_{n}} \Phi_{k(n)}^{n}\right\|_{T} \leq\left\|\Phi-1_{U_{n}} \Phi\right\|_{T}+\left\|1_{U_{n}}\left(\Phi-\Phi_{k(n)}^{n}\right)\right\|_{T}
$$

where the first summand converges to 0 by Lebesgue's dominated convergence theorem and the second summand is smaller than $\frac{1}{n}$.
Thus the assertion of the Proposition is reduced to the case $\Phi=x 1_{A}$ where $x \in H$ and $A \in \mathcal{P}_{T}\left(U_{n}\right)$ for some $n \in \mathbb{N}$. Then there is a sequence of elemntary processes $\Phi_{k}, k \in \mathbb{N}$, such that $\left\|\Phi-\Phi_{k}\right\|_{T} \rightarrow 0$ as $k \rightarrow \infty$:

To get this result it is sufficient to prove that for any $\varepsilon>0$ there is a finite $\operatorname{sum} \Lambda=\bigcup_{i=1}^{N} A_{i}$ of predictable rectangles

$$
\begin{aligned}
A_{i} \in \mathcal{A}_{n}:= & \left.] s, t] \times F_{s} \times B \mid 0 \leq s \leq t \leq T, F_{s} \in \mathcal{F}_{s}, B \in \mathcal{B} \cap U_{n}\right\} \\
& \cup\left\{\{0\} \times F_{0} \times B \mid F_{0} \in \mathcal{F}_{0}, B \in \mathcal{B} \cap U_{n}\right\}, 1 \leq i \leq N
\end{aligned}
$$

such that $P \otimes \lambda \otimes \nu(A \triangle \Lambda) \leq \varepsilon$, since then one obtains that $\sum_{i=1}^{N} x 1_{A_{i}}$ is an elementary process, as $x 1_{A_{i}}, 1 \leq i \leq N$, are elementary processes and \mathcal{E} is a linear space, and

$$
\begin{aligned}
\left\|x 1_{A}-\sum_{i=1}^{N} x 1_{A_{i}}\right\|_{T} & =\left(E\left[\int_{0}^{T} \int_{U}\left\|x\left(1_{A}-\sum_{k=1}^{N} 1_{A_{i}}\right)\right\|^{2} d \nu d \lambda\right]\right)^{\frac{1}{2}} \\
& \leq\|x\| P \otimes \lambda \otimes \nu(A \triangle \Lambda) \leq\|x\| \varepsilon
\end{aligned}
$$

Hence define $\mathcal{K}:=\left\{\bigcup_{i \in I} A_{i}| | I \mid<\infty, A_{i} \in \mathcal{A}_{n}, i \in I\right\}$ then \mathcal{K} is stable under finite intersections. Now let \mathcal{G} be the family of all $A \in \mathcal{P}_{T}\left(U_{n}\right)$ which can be approximated by elements of \mathcal{K} in the above sense. Then \mathcal{G} is a Dynkin system and therefore $\mathcal{P}_{T}\left(U_{n}\right)=\sigma(\mathcal{K})=\mathcal{D}(\mathcal{K}) \subset \mathcal{G}$ as $\mathcal{K} \subset \mathcal{G}$.

Define

$$
\begin{aligned}
\mathcal{N}_{q}^{2}(T, U, H):= & \left\{\Phi:[0, T] \times \Omega \times U \rightarrow H \mid \Phi \text { is } \mathcal{P}_{T}(U) / \mathcal{B}(H)\right. \text {-measurable } \\
& \text { and } \left.\|\Phi\|_{T}:=\left(E\left[\int_{0}^{T} \int_{U}\|\Phi(s, y)\|^{2} \nu(d y) d s\right]\right)^{\frac{1}{2}}<\infty\right\}
\end{aligned}
$$

Then $\mathcal{E} \subset \mathcal{N}_{q}^{2}(T, U, H)$ and

$$
\mathcal{N}_{q}^{2}(T, U, H)=L^{2}\left([0, T] \times \Omega \times U, P_{T}(U), P \otimes \lambda \otimes \nu, H\right)
$$

is complete since $(H,\| \|)$ is complete. Therefore $\overline{\mathcal{E}} \subset \mathcal{N}_{q}^{2}(T, U, H)$ and by the previous proposition it follows that $\overline{\mathcal{E}} \supset \mathcal{N}_{q}^{2}(T, U, H)$. So finally one gets that $\overline{\mathcal{E}}=\mathcal{N}_{q}^{2}(T, U, H)$

1.4 Properties of the stochastic integral

Proposition 1.22. Assume that $\Phi \in \mathcal{N}_{q}^{2}(T, U, H)$ and $u \in[0, T]$. Then $1_{] 0, u]} \Phi \in \mathcal{N}_{q}^{2}(T, U, H)$ and for all $t \in[0, T]$

$$
\int_{0}^{t+} \int_{U} 1_{00, u]} \Phi(s, y) q(d s, d y)=\int_{0}^{(t \wedge u)+} \int_{U} \Phi(s, y) q(d s, d y) \quad P-a . s . .
$$

Proof.
Step 1. Let Φ be an elementary process, i.e.

$$
\Phi=\sum_{m=0}^{k-1} \sum_{i=1}^{I(m)} x_{i}^{m} 1_{F_{i}^{m}} 1_{] t_{m}, t_{m+1}\right] \times A_{i}^{m}} \in \mathcal{E}
$$

Then

$$
1_{] u, T]} \Phi=\sum_{m=0}^{k-1} \sum_{i=1}^{I(m)} x_{i}^{m} 1_{F_{i}^{m}} 1_{\left.\mid t_{m} \vee u, t_{m+1} \vee v\right] \times A_{i}^{m}}
$$

is an elementary process since $F_{i}^{m} \in \mathcal{F}_{t_{m} \vee u}$. Concerning the integral of $1_{] 0, u]} \Phi$ one obtains that

$$
\begin{aligned}
& \int_{0}^{t+} \int_{U} 1_{[0, u]}(s) \Phi(s) q(d s, d y) \\
= & \int_{0}^{t+} \int_{U} \Phi q(d s, d y)-\int_{0}^{t+} \int_{U} 1_{j u, T]}(s) \Phi q(d s, d y) \\
= & \sum_{m=0}^{k-1} \sum_{i=1}^{I(m)} x_{i}^{m} 1_{F_{i}^{m}}\left(\begin{array}{l}
q\left(t_{m+1} \wedge t, A_{i}^{m}\right)-q\left(t_{m} \wedge t, A_{i}^{m}\right)-q\left(\left(t_{m+1} \vee u\right) \wedge t, A_{i}^{m}\right) \\
\left.\quad+q\left(\left(t_{m} \vee u\right) \wedge t, A_{i}^{m}\right)\right)
\end{array}\right. \\
= & \sum_{m=0}^{k-1} \sum_{i=1}^{I(m)} x_{i}^{m} 1_{F_{i}^{m}}\left(q\left(t_{m+1} \wedge u \wedge t, A_{i}^{m}\right)-q\left(t_{m} \wedge u \wedge t, A_{i}^{m}\right)\right) \\
= & \int_{0}^{(t \wedge u)+} \int_{U} \Phi(s) q(d s, d y)
\end{aligned}
$$

Step 2. Let now $\Phi \in \mathcal{N}_{q}^{2}(T, U, H)$. Then there exists a sequence of elementary processes $\Phi_{n}, n \in \mathbb{N}$, such that $\left\|\Phi_{n}-\Phi\right\|_{T} \rightarrow 0$ as $n \rightarrow \infty$. Then it is clear that $\left\|1_{j 0, u]} \Phi_{n}-1_{[0, u]} \Phi\right\|_{T} \rightarrow 0$ as $n \rightarrow \infty$. By the defintion of the stochastic integral it follows that for all $t \in[0, T]$

$$
\begin{aligned}
& E\left[\left\|\int_{0}^{(t \wedge u)+} \int_{U} \Phi_{n}(s, y) q(d s, d y)-\int_{0}^{(t \wedge u)+} \int_{U} \Phi(s, y) q(d s, d y)\right\|^{2}\right] \\
& +E\left[\left\|\int_{0}^{t+} \int_{U} 1_{] 0, u]}(s) \Phi_{n}(s, y) q(d s, d y)-\int_{0}^{t+} \int_{U} 1_{] 0, u]}(s) \Phi(s, y) q(d s, d y)\right\|^{2}\right] \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

which implies that for all $t \in[0, T]$ there exists a subsequence $n_{k}(t), k \in \mathbb{N}$, such that

$$
\int_{0}^{(t \wedge u)+} \int_{U} \Phi_{n_{k}(t)}(s, y) q(d s, d y) \underset{k \rightarrow \infty}{\longrightarrow} \int_{0}^{(t \wedge u)+} \int_{U} \Phi(s, y) q(d s, d y) P-\mathrm{a} . \mathrm{s}
$$

$$
\int_{0}^{t+} \int_{U} 1_{10, u]}(s) \Phi_{n_{k}(t)}(s, y) q(d s, d y) \underset{k \rightarrow \infty}{\longrightarrow} \int_{0}^{t+} \int_{U} 1_{10, u]}(s) \Phi(s, y) q(d s, d y) P-\text { a.s.. }
$$

Then by Step 1 the assertion follows.

Chapter 2

Existence of the Mild Solution

As in the previous chapter let $(H,\langle\rangle$,$) be a separable Hilbert space, (U, \mathcal{B}, \nu)$ a σ-finite measure space and (Ω, \mathcal{F}, P) a complete probability space with filtration $\mathcal{F}_{t}, t \geq 0$, such that \mathcal{F}_{0} contains all P-nullsets of \mathcal{F}.
We fix a stationary $\left(\mathcal{F}_{t}\right)$-Poisson point process on U with characteristic measure ν. Moreover let $T>0$ and consider the following type of stochastic differential equations in H

$$
\begin{cases}d X(t) & =[A X(t)+F(X(t))] d t+B(X(t), y) q(d t, d y) \tag{2.1}\\ X(0) & =\xi\end{cases}
$$

where

- $A: D(A) \subset H \rightarrow H$ is the infinitesimal generator of a C_{0}-semigroup $S(t), t \geq 0$, of linear, bounded operators on H,
- $F: H \rightarrow H$ is $\mathcal{B}(H) / \mathcal{B}(H)$-measurable,
- $B: H \times U \rightarrow H$ is $\mathcal{B}(H) \otimes \mathcal{B} / \mathcal{B}(H)$-measurable,
- $q(t, B), t \geq 0, B \in \Gamma_{p}$, is the compensated Poisson random measure of p,
- ξ is an H-valued, \mathcal{F}_{0}-measurable random variable.

Remark 2.1. If we call $M_{T}:=\sup _{t \in[0, T]}\|S(t)\|_{L(H)}$ then $M_{T}<\infty$.
Proof. For example by [Pa 83, Theorem 2.2, p.4] there exist constants $\omega \geq 0$ and $M \geq 1$ such that

$$
\|S(t)\|_{L(H)} \leq M e^{\omega t} \quad \text { for all } t \geq 0
$$

Definition 2.2 (Mild solution). An H-valued predictable process $X(t)$, $t \in[0, T]$, is called a mild solution of equation (2.1) if

$$
\begin{aligned}
X(t)=S(t) \xi & +\int_{0}^{t} S(t-s) F(X(s)) d s \\
& +\int_{0}^{t+} \int_{U} S(t-s) B(X(s), y) q(d s, d y) \quad P-\text { a.s. }
\end{aligned}
$$

for all $t \in[0, T]$. In particular the appearing integrals have to be well defined.
To get the existence of a mild solution on $[0, T]$ we make the following assumptions

Hypothesis H. 0

- $F: H \rightarrow H$ is Lipschitz-continuous, i.e. that there exists a constant $C>0$ such that

$$
\|F(x)-F(y)\| \leq C\|x-y\| \quad \text { for all } x, y \in H
$$

- there exists a square integrable mapping $K:[0, T] \rightarrow[0, \infty[$ such that

$$
\begin{gathered}
\int_{U}\|S(t)(B(x, y)-B(z, y))\|^{2} \nu(d y) \leq K^{2}(t)\|x-y\|^{2} \\
\int_{U}\|S(t) B(x, y)\|^{2} \nu(d y) \leq K(t)(1+\|x\|)
\end{gathered}
$$

Now we introduce the space where we want to find the mild solution of the above problem. We define
$\mathcal{H}^{2}(T, H):=\{Y(t), t \in[0, T] \mid Y$ is an H-predictable process such that

$$
\left.\sup _{t \in[0, T]} E\left[\|Y(t)\|^{2}\right]<\infty\right\}
$$

and for $Y \in \mathcal{H}^{2}(T, H)$

$$
\|Y\|_{\mathcal{H}^{2}}:=\sup _{t \in[0, T]}\left(E\left[\|Y(t)\|^{2}\right]\right)^{\frac{1}{2}}
$$

Then $\left(\mathcal{H}^{2}(T, H),\| \|_{\mathcal{H}^{2}}\right)$ is a Banach space.
For technical reasons we also consider the norms $\left\|\|_{2, \lambda, T}, \lambda \geq 0\right.$, on $\mathcal{H}^{2}(T, H)$ given by

$$
\|Y\|_{2, \lambda, T}:=\sup _{t \in[0, T]} e^{-\lambda t}\left(E\left[\|Y(t)\|^{2}\right]\right)^{\frac{1}{2}}
$$

Then $\left\|\left\|_{\mathcal{H}^{2}}=\right\|\right\|_{2,0, T}$ and all norms $\left\|\|_{2, \lambda, T}, \lambda \geq 0\right.$, are equivalent.
For simplicity we use the following notations

$$
\mathcal{H}^{2}(T, H):=\left(\mathcal{H}^{2}(T, H),\| \|_{\mathcal{H}^{2}}\right)
$$

and

$$
\mathcal{H}^{2, \lambda}(T, H):=\left(\mathcal{H}^{2}(T, H),\| \|_{2, \lambda, T}\right), \lambda>0 .
$$

Theorem 2.3. Assume that the coefficients A, F and B fullfill the conditions of Hypothesis $H .0$ then for every initial condition $\xi \in L^{2}\left(\Omega, \mathcal{F}_{0}, P, H\right)=: L_{0}^{2}$ there exists a unique mild solution $X(\xi)(t), t \in[0, T]$, of equation (2.1). In addition we even obtain that the mapping

$$
X: L_{0}^{2} \rightarrow \mathcal{H}^{2}(T, H)
$$

is Lipschitz continuous.

For the proof of the theorem we need the following lemmas.
Lemma 2.4. If $Y:[0, T] \times \Omega \times U \rightarrow H$ is $\mathcal{P}_{T}(U) / \mathcal{B}(H)$-measurable then the mapping

$$
[0, T] \times \Omega \times U \rightarrow H,(s, \omega, y) \mapsto 1_{j 0, t]}(s) S(t-s) Y(s, \omega, y)
$$

is $\mathcal{P}_{T}(U) / \mathcal{B}(H)$-measurable for all $t \in[0, T]$.
Proof. Let $t \in[0, T]$.

Step 1. Consider the case that Y is a simple process given by

$$
Y=\sum_{k=1}^{n} x_{k} 1_{A_{k}}
$$

where $x_{k} \in H, 1 \leq k \leq n$, and $A_{k} \in \mathcal{P}_{T}(U), 1 \leq k \leq n$, is a disjoint covering of $[0, T] \times \Omega \times U$. Then we obtain that

$$
\begin{aligned}
\tilde{Y}:[0, T] \times \Omega \times U & \rightarrow H \\
(s, \omega, y) \mapsto & 1_{j 0, t]}(s) S(t-s) Y(s, \omega, y) \\
& =1_{j 0, t]}(s) \sum_{k=1}^{n} S(t-s) x_{k} 1_{A_{k}}(s, \omega, y)
\end{aligned}
$$

is $\mathcal{P}_{T}(U) / \mathcal{B}(H)$-measurable since for $B \in \mathcal{B}(H)$ we get that

$$
\tilde{Y}^{-1}(B)=\bigcup_{k=1}^{n}\left(\left\{s \in[0, T] \mid 1_{] 0, t]}(s) S(t-s) x_{k} \in B\right\} \times \Omega \times U\right) \cap A_{k}
$$

where $\left\{s \in[0, T] \mid 1_{] 0, t]}(s) S(t-s) x_{k} \in B\right\} \in \mathcal{B}([0, T])$ by the strong continuity of the semigroup $S(t), t \in[0, T]$. By Lemma 1.19 (i) we can conclude that $\tilde{Y}^{-1}(B) \in \mathcal{P}_{T}(U)$.
Step 2. Let Y be an arbitrary $\mathcal{P}_{T}(U) / \mathcal{B}(H)$-measurable process.
Then there exists a sequence $Y_{n}, n \in \mathbb{N}$, of simple $\mathcal{P}_{T}(U) / \mathcal{B}(H)$-measurable random variables such that $Y_{n} \rightarrow Y$ pointwisely a $n \rightarrow \infty$. Since $S(t) \in L(H)$ for all $t \in[0, T]$ the assertion follows.

Lemma 2.5. Let Φ be a process on $\left(\Omega, \mathcal{F}, P,\left(\mathcal{F}_{t}\right)_{t \in[0, T]}\right)$ with values in a $B a$ nach space E. If Φ is adapted to $\mathcal{F}_{t}, t \in[0, T]$, and stochastically continuous then there exists a predictable version of Φ.
In particular, if $\Phi(t) \in L^{2}\left(\Omega, \mathcal{F}_{t}, P, E\right)$ and $\Phi:[0, T] \rightarrow L^{2}(\Omega, \mathcal{F}, P, E)$ is continuous then there exists a predictable version of Φ.

Proof. [DaPrZa 92, Proposition 3.6 (ii), p.76]
Proof of Theorem 2.3. Let $t \in[0, T], \xi \in L_{0}^{2}$ and $Y \in \mathcal{H}^{2}(T, H)$ and define

$$
\begin{aligned}
\mathcal{F}(\xi, Y)(t):=S(t) \xi & +\int_{0}^{t} S(t-s) F(X(s)) d s \\
& +\int_{0}^{t+} S(t-s) B(X(s), y) q(d s, d y)
\end{aligned}
$$

Then a mild solution of problem (2.1) with initial condition $\xi \in L_{0}^{2}$ is by Definition 2.2 an H-predictable process such that $\mathcal{F}(\xi, X(\xi))(t)=X(\xi)(t)$ P-a.s. for all $t \in[0, T]$. Thus we have to search for an implicit function $X: L_{0}^{2} \rightarrow \mathcal{H}^{2}(T, H)$ such that $\mathcal{F}(\xi, X(\xi))=X(\xi)$ in $\mathcal{H}^{2}(T, H)$.
For this reason we prove that \mathcal{F} as a mapping from $L_{0}^{2} \times \mathcal{H}^{2}(T, H)$ to $\mathcal{H}^{2}(T, H)$ is well defined and we show that there exists $\lambda \geq 0$ such that

$$
\mathcal{F}: L_{0}^{2} \times \mathcal{H}^{2, \lambda}(T, H) \rightarrow \mathcal{H}^{2, \lambda}(T, H)
$$

is a contraction in the second variable, i.e. that there exists $L_{T, \lambda}<1$ such that for all $\xi \in L_{0}^{2}$ and $Y, \tilde{Y} \in \mathcal{H}^{2, \lambda}(T, H)$

$$
\|\mathcal{F}(\xi, Y)-\mathcal{F}(\xi, \tilde{Y})\|_{2, \lambda, T} \leq L_{T, \lambda}\|Y-\tilde{Y}\|_{2, \lambda, T}
$$

Then the existence and uniqueness of the mild solution $X(\xi) \in \mathcal{H}^{2, \lambda}(T, H)$ of (2.1) with initial condition $\xi \in L_{0}^{2}$ follows by Banach's fixpoint theorem. Since the norms $\left\|\|_{2, \lambda, T}, \lambda \geq 0\right.$, are equivalent we consider $X(\xi)$ as an element of $\mathcal{H}^{2}(T, H)$ and get the existence of the imlicit function $X: L_{0}^{2} \rightarrow \mathcal{H}^{2}(T, H)$ such that $\mathcal{F}(\xi, X(\xi))=X(\xi)$.
Step 1. The mapping $\mathcal{F}: L_{0}^{2} \times \mathcal{H}^{2}(T, H) \rightarrow \mathcal{H}^{2}(T, H)$ is well defined.
Let $\xi \in L_{0}^{2}$ and $Y \in \mathcal{H}^{2}(T, H)$ then, by [FrKn 2002], $(S(t) \xi)_{t \in[0, T]} \in \mathcal{H}^{2}(T, H)$, $1_{[0, t]}(\cdot) S(t-\cdot) F(Y(\cdot))$ is P-a.s. Bochner integrable on $[0, T]$ and the process

$$
\left(\int_{0}^{t} S(t-s) F(Y(s)) d s\right)_{t \in[0, T]}
$$

is an element of $\mathcal{H}^{2}(T, H)$.
Therefore it remains to prove that:
$\left(1_{[0, t]}(\cdot) S(t-s) B(Y(s), \cdot)\right)_{s \in[0, T]} \in \mathcal{N}_{q}^{2}(T, U, H)$ for all $t \in[0, T]$ and that there is a version of

$$
\left(\int_{0}^{t} \int_{U} S(t-s) B(X(s), y) q(d s, d y)\right)_{t \in[0, T]}
$$

which is an element of $\mathcal{H}^{2}(T, H)$.
Claim 1. If $Y \in \mathcal{H}^{2}(T, H)$ then:
$\Phi:=\left(1_{[0, t]}(s) S(t-s) B(Y(s), \cdot)\right)_{s \in[0, T]} \in \mathcal{N}_{q}^{2}(T, U, H)$ for all $\in[0, T]$.
Let $t \in[0, T]$. First, we prove that the mapping

$$
[0, T] \times \Omega \times U \rightarrow H,(s, \omega, y) \mapsto 1_{[0, t]}(s) S(t-s) B(Y(s, \omega), y)
$$

is $\mathcal{P}_{T}(U) / \mathcal{B}(H)$-measurable. By Lemma 2.4 we have to check if the mapping $(s, \omega, y) \mapsto B(Y(s, \omega), y)$ is $\mathcal{P}_{T}(U) / \mathcal{B}(H)$-measurable.
The mapping $F:[0, T] \times \Omega \times U \rightarrow H \times U,(s, \omega, y) \mapsto(Y(s, \omega), y)$ is $\mathcal{P}_{T}(U) / \mathcal{B}(H) \otimes \mathcal{B}$-measurable since for $A \in \mathcal{B}(H)$ and $B \in \mathcal{B}$ we have that

$$
F^{-1}(A \times B)=\underbrace{Y^{-1}(A)}_{\in \mathcal{P}_{T}} \times B \in \mathcal{P}_{T}(U) \text { by Lemma } 1.19 \text { (ii). }
$$

Moreover B is $\mathcal{B}(H) \otimes \mathcal{B} / \mathcal{B}(H)$-measurable by assumption.
With respect to the norm $\left\|\|_{T}\right.$ of Φ we obtain

$$
\|\Phi\|_{T}^{2}=E\left[\int_{0}^{t} \int_{U}\left\|1_{j 0, t]}(s) S(t-s) B(Y(s), y)\right\|^{2} \nu(d y) d s\right]
$$

$$
\begin{aligned}
& \leq E\left[\int_{0}^{t} K(t-s)(1+\|Y(s)\|) d s\right] \\
& \leq\left(1+\|Y\|_{\mathcal{H}^{2}}\right) \int_{0}^{T} K(s) d s \\
& <\infty
\end{aligned}
$$

Claim 2. If $Y \in \mathcal{H}^{2}(T, H)$ then there is a predictable version of

$$
(Z(t))_{t \in[0, T]}:=\left(\int_{0}^{t+} \int_{U} S(t-s) B(Y(s), y) q(d s, d y)\right)_{t \in[0, T]}
$$

which is an element of $\mathcal{H}^{2}(T, H)$.
Since $\left(1_{10, t]}(s) S(t-s) B(Y(s), \cdot)\right)_{s \in[0, T]} \in \mathcal{N}_{q}^{2}(T, U, H)$ for all $t \in[0, T]$ we get by the isometric formula that

$$
\begin{aligned}
& \sup _{t \in[0, T]} E\left[\left\|\int_{0}^{t+} \int_{U} S(t-s) B(Y(s), y) q(d s, d y)\right\|^{2}\right] \\
= & \sup _{t \in[0, T]} E\left[\int_{0}^{t} \int_{U}\|S(t-s) B(Y(s), y)\|^{2} \nu(d y) d s\right] \\
\leq & \left(1+\|Y\|_{\mathcal{H}^{2}}\right) \int_{0}^{T} K(s) d s \\
< & \infty
\end{aligned}
$$

To prove the existence of the predictable version we will use Lemma 2.5. For this purpose we will show that the process Z is adapted to $\mathcal{F}_{t}, t \in[0, T]$, and continuous as a mapping from $[0, T]$ to $L^{2}(\Omega, \mathcal{F}, P, H)$.
Let $\alpha>1$ and define for $t \in[0, T]$

$$
\begin{aligned}
Z^{\alpha}(t) & :=\int_{0}^{\left(\frac{t}{\alpha}\right)+} \int_{U} S(t-s) B(Y(s), y) q(d s, d y) \\
& =\int_{0}^{\left(\frac{t}{\alpha}\right)+} \int_{U} S(t-\alpha s) S((\alpha-1) s) B(Y(s), y) q(d s, d y)
\end{aligned}
$$

where we used semigroup property.
Set $\Phi^{\alpha}(s, y):=S((\alpha-1) s) B(Y(s), y)$ then one can show analogously to the proof of the $\mathcal{P}_{T}(U) / \mathcal{B}(H)$-measurability of the mapping
$(s, \omega, y) \mapsto 1_{[0, t]}(s) S(t-s) B(Y(s, \omega), y)$ that Φ^{α} is $\mathcal{P}_{T}(U) / \mathcal{B}(H)$-measurable. Moreover

$$
E\left[\int_{0}^{t} \int_{U}\|S((\alpha-1) s) B(Y(s), y)\|^{2} \nu(d y) d s\right]
$$

$$
\begin{aligned}
& \leq\left(1+\|Y\|_{\mathcal{H}^{2}}\right) \int_{0}^{T} K((\alpha-1) s) d s \\
& =\left(1+\|Y\|_{\mathcal{H}^{2}}\right) \frac{1}{\alpha-1} \int_{0}^{T} K(s) d s \\
& <\infty
\end{aligned}
$$

Therefore we obtain that $\Phi^{\alpha} \in \mathcal{N}_{q}^{2}(T, U, H)$.
Now we show that the mapping $Z^{\alpha}:[0, T] \rightarrow L^{2}(\Omega, \mathcal{F}, P, H)$ is continuous for all $\alpha>1$. For this reason let $0 \leq u \leq t \leq T$.

$$
\begin{aligned}
&\left(E \left[\| \int_{0}^{\left(\frac{t}{\alpha}\right)+} \int_{U} S(t-\alpha s) \Phi^{\alpha}(s, y) q(d s, d y)-\int_{0}^{\left(\frac{u}{\alpha}\right)+} \int_{U} S(u-\alpha s) \Phi^{\alpha}(s, y)\right.\right. \\
&=\left(E\left[\left\|\int_{0}^{T+} \int_{U} 1_{] 0, \frac{t}{\alpha}\right]}(s) S(t-\alpha s)\right\|^{2}\right]\right)^{\frac{1}{2}}, \\
&\left.\left.q(d s, d y) \|^{2}\right]\right)^{\frac{1}{2}}
\end{aligned}
$$

by Proposition 1.22,

$$
\begin{aligned}
&=\left(E \left[\| \int_{0}^{T+} \int_{U} 1_{\left.10, \frac{u}{\alpha}\right]}(s)(S(t-\alpha s)-S(u-\alpha s)) \Phi^{\alpha}(s, y)\right.\right. \\
&\left.\left.\quad+1_{] \frac{u}{\alpha}, \frac{t}{\alpha}\right]}(s) S(t-\alpha s) \Phi^{\alpha}(s, y) q(d s, d y) \|^{2}\right]\right)^{\frac{1}{2}} \\
& \leq\left(E\left[\left\|\int_{0}^{T+} \int_{U} 1_{] 0, \frac{u}{\alpha}\right]}(s)(S(t-\alpha s)-S(u-\alpha s)) \Phi^{\alpha}(s, y) q(d s, d y)\right\|^{2}\right]\right)^{\frac{1}{2}} \\
&+\left(E\left[\left\|\int_{0}^{T+} \int_{U} 1_{] \frac{u}{\alpha}, \frac{t}{\alpha}\right]}(s) S(t-\alpha s) \Phi^{\alpha}(s, y) q(d s, d y)\right\|^{2}\right]\right)^{\frac{1}{2}} \\
&=\left(E\left[\int_{0}^{\frac{u}{\alpha}} \int_{U}\left\|(S(t-\alpha s)-S(u-\alpha s)) \Phi^{\alpha}(s, y)\right\|^{2} \nu(d y) d s\right]\right)^{\frac{1}{2}} \\
&+\left(E\left[\int_{0}^{T} \int_{U} 1_{\left.1 \frac{u}{\alpha}, \frac{t}{\alpha}\right]}(s)\left\|S(t-\alpha s) \Phi^{\alpha}(s, y)\right\|^{2} \nu(d y) d s\right]\right)^{\frac{1}{2}}
\end{aligned}
$$

by the isometric formula.
(1.) The first summand converges to 0 as $u \uparrow t$ or $t \downarrow u$ by Lebesgue's dominated convergence theorem since the integrand converges pointwisely to 0 as $u \uparrow t$ or $t \downarrow u$ by the strong continuity of the semigroup and can be estimated independently of u and t by $4 M_{T}^{2}\left\|\Phi^{\alpha}\right\|^{2}(s, y),(s, y) \in[0, T] \times U$,
where $E\left[\int_{0}^{T} \int_{U}\left\|\Phi^{\alpha}(s, y)\right\|^{2} \nu(d y) d s\right]<\infty$.
(2.) The second summand can be estimated by

$$
\begin{aligned}
& \left(E\left[\int_{0}^{T} \int_{U} 1_{] \frac{u}{\alpha}, \frac{t}{\alpha}\right]}(s) M_{T}^{2}\left\|\Phi^{\alpha}(s, y)\right\|^{2} \nu(d y) d s\right]\right)^{\frac{1}{2}} \\
& \rightarrow 0
\end{aligned}
$$

and therefore converges to 0 by Lebesgue's dominated convergence theorem as $u \uparrow t$ or $t \downarrow u$.
To obtain the continuity of $Z:[0, T] \rightarrow L^{2}(\Omega, \mathcal{F}, P)$ we prove the uniform convergence of $Z^{\alpha_{n}}, n \in \mathbb{N}$, to Z in $L^{2}(\Omega, \mathcal{F}, P, H)$ for an arbitrary sequence $\alpha_{n}, n \in \mathbb{N}$, with $\alpha_{n} \downarrow 1$ as $n \rightarrow \infty$:

$$
\begin{aligned}
& E\left[\| \int_{0}^{\left(\frac{t}{\alpha_{n}}\right)+} \int_{U} S\left(t-\alpha_{n} s\right) \Phi^{\alpha_{n}}(s, y) q(d s, d y)-\int_{0}^{t+} \int_{U} S(t-s) B(Y(s), y)\right. \\
&= E\left[\| \int_{0}^{T+} \int_{U} 1_{\left.j 0, \frac{t}{\alpha_{n}}\right]}(s) S(t-s) B\left(Y(s) \|^{2}\right]\right. \\
&\left.q(d s, d y) \|^{2}\right] \\
&= E\left[\| \int_{0, t]}(s) S(t-s) B(Y(s), y)\right. \\
&= E\left[\int_{\frac{t}{\alpha_{n}}}^{t} \int_{U} 1_{\left.\frac{t}{\alpha_{n}}, t\right]}(s) S(t-s) B(Y(s), y) q(d s, d y) \|^{2}\right] \\
& \leq E\left[\int_{\frac{t}{\alpha_{n}}}^{t} K(t-s)(1+\|Y(s)\|) d s\right] \\
& \leq\left(1+\|Y\|_{\mathcal{H}^{2}}\right)\left(t-\frac{t}{\alpha_{n}}\right)^{\frac{1}{2}}\left(\int_{0}^{T} K^{2}(s) d s\right)^{\frac{1}{2}} \\
& \leq\left(1+\|Y\|_{\mathcal{H}^{2}}\right)\left(\frac{\alpha_{n}-1}{\alpha_{n}} T\right)^{\frac{1}{2}}\left(\int_{0}^{T} K^{2}(s) d s\right)^{\frac{1}{2}}
\end{aligned}
$$

where $\frac{\alpha_{n}-1}{\alpha_{n}} T \rightarrow 0$ as $n \rightarrow \infty$.
Moreover we know for all $t \in[0, T]$ that

$$
\left(\int_{0}^{u+} \int_{U} 1_{[0, u]}(s) S(t-s) B(Y(s), y) q(d s, d y)\right)_{u \in[0, t]} \in \mathcal{M}_{t}^{2}(H)
$$

since $\left(1_{[0, u]}(s) S(t-s) B(Y(s), \cdot)\right)_{s \in[0, t]} \in \mathcal{N}_{q}^{2}(t, U, H)$. That means in particular that the process
$Z(t)=\int_{0}^{t+} \int_{U} 1_{j 0, t]}(s) S(t-s) B(Y(s), y) q(d s, d y), t \in[0, T]$ is $\left(\mathcal{F}_{t}\right)$-adapted.

Together with the continuity of Z in $L^{2}(\Omega, \mathcal{F}, P<H)$, by Lemma 2.5 , this implies the existence of a predictable version of $Z(t), t \in[0, T]$, denoted by

$$
\left(\int_{0}^{t-} \int_{U} S(t-s) B(Y(s), y) q(d s, d y)\right)_{t \in[0, T]}
$$

Therefore we have finally proved that

$$
\mathcal{F}: L_{0}^{2} \times \mathcal{H}^{2}(T, H) \rightarrow \mathcal{H}^{2}(T, H)
$$

Claim 3. There exists $\lambda \geq 0$ such that for all $\xi \in L_{0}^{2}$

$$
\mathcal{F}(\xi, \cdot): \mathcal{H}^{2, \lambda}(T, H) \rightarrow \mathcal{H}^{2, \lambda}(T, H)
$$

is a contraction where the contraction constant $L_{T, \lambda}<1$ does not depend on ξ.

Let $Y, \tilde{Y} \in \mathcal{H}^{2}(T, H), \xi \in L_{0}^{2}$. Then we get for $\lambda \geq 0$ that

$$
\begin{aligned}
& \sup _{t \in[0, T]} e^{-\lambda t} \|\left(\mathcal{F}(\xi, Y)-\mathcal{F}(\xi, \tilde{Y})(t) \|_{L^{2}}\right. \\
\leq & \sup _{t \in[0, T]} e^{-\lambda t}\left\|\int_{0}^{t} S(t-s)[F(Y(s))-F(\tilde{Y}(s))] d s\right\|_{L^{2}} \\
& +\sup _{t \in[0, T]} e^{-\lambda t}\left\|\int_{0}^{t+} \int_{U} S(t-s)[B(Y(s), y)-B(\tilde{Y}(s), y)] q(d s, d y)\right\|_{L^{2}}
\end{aligned}
$$

The first summand can be estimated by

$$
\underbrace{M_{T} C T^{\frac{1}{2}}\left(\frac{1}{2 \lambda}\right)^{\frac{1}{2}}}_{\rightarrow 0 \text { as } \lambda \rightarrow \infty}\|Y-\tilde{Y}\|_{2, \lambda, T},
$$

for the proof see [FrKn 2002, Theorem 3.2., Step 3, p.81].
By the isometric formula we get the following estimation for the second summand:

$$
\begin{aligned}
& E\left[\left\|\int_{0}^{t+} \int_{U} S(t-s) B(Y(s), y) q(d s, d y)-\int_{0}^{t+} \int_{U} S(t-s) B(\tilde{Y}(s), y) q(d s, d y)\right\|^{2}\right] \\
= & E\left[\int_{0}^{t} \int_{U}\|S(t-s)[B(Y(s), y)-B(\tilde{Y}(s), y)]\|^{2} \nu(d y) d s\right] \\
\leq & E\left[\int_{0}^{t} K^{2}(t-s)\|Y(s)-\tilde{Y}(s)\|^{2} d s\right]
\end{aligned}
$$

$$
\begin{aligned}
& \leq \int_{0}^{t} e^{\lambda s} K^{2}(t-s) d s\|Y-\tilde{Y}\|_{2, \lambda, T}^{2} \\
& =\|Y-\tilde{Y}\|_{2, \lambda, T}^{2} \underbrace{e^{-\lambda t} \int_{0}^{T} e^{-\lambda s} K^{2}(s) d s}_{\rightarrow 0 \text { as } \lambda \rightarrow \infty}
\end{aligned}
$$

Therefore we obtain that

$$
\begin{aligned}
& \sup _{t \in[0, T]} e^{-\lambda t}\left\|\int_{0}^{t+} \int_{U} S(t-s)[B(Y(s), y)-B(\tilde{Y}(s), y)] q(d s, d y)\right\|_{L^{2}} \\
\leq & \left(\int_{0}^{t} e^{-\lambda s} K^{2}(s) d s\right)^{\frac{1}{2}}\|Y-\tilde{Y}\|_{2, \lambda, T}
\end{aligned}
$$

Thus we have finally proved that there exists $\lambda \geq 0$ such that there exists $L_{T, \lambda}<1$ with

$$
\|\mathcal{F}(\xi, Y)-\mathcal{F}(\xi, \tilde{Y})\|_{2, \lambda, T} \leq L_{T, \lambda}\|Y-\tilde{Y}\|_{2, \lambda, T}
$$

for all $\xi \in L_{0}^{2}, Y, \tilde{Y} \in \mathcal{H}^{2, \lambda}(T, H)$. Hence the existence of a unique implicit function

$$
\begin{aligned}
X: L_{0}^{2} & \rightarrow \mathcal{H}^{2}(T, H) \\
\xi & \mapsto X(\xi)=\mathcal{F}(\xi, X(\xi))
\end{aligned}
$$

is verified.
Claim 4. The mapping $X: L_{0}^{2} \rightarrow \mathcal{H}^{2}(T, H)$ is Lipschitz continuous.
By Theorem A. 1 (ii) and the equivalence of the norms $\left\|\|_{2, \lambda, T}, \lambda \geq 0\right.$, we only have to check that the mappings

$$
\mathcal{F}(\cdot, Y): L_{0}^{2} \rightarrow \mathcal{H}^{2}(T, H)
$$

are Lipschitz continuous for all $Y \in \mathcal{H}^{2}(T, H)$ where the Lipschitz constant does not depend on Y.
But this assertion holds as for all $\xi, \zeta \in L_{0}^{2}$ and $Y \in \mathcal{H}^{2}(T, H)$

$$
\|\mathcal{F}(\xi, Y)-\mathcal{F}(\zeta, Y)\|_{\mathcal{H}^{2}}=\|S(\cdot)(\xi-\zeta)\|_{\mathcal{H}^{2}} \leq M_{T}\|\xi-\zeta\|_{L^{2}} .
$$

Appendix A

Continuity of Implicit Functions

We fix two Banach spaces $(E,\| \|)$ and $\left(\Lambda,\| \|_{\Lambda}\right)$.
Consider a mapping $G: \Lambda \times E \rightarrow E$ such that there exists an $\alpha \in[0,1[$ such that

$$
\begin{array}{ll}
\|G(\lambda, x)-G(\lambda, y)\| \leq \alpha\|x-y\| & \text { for all } \lambda \in \Lambda \text { and all } \\
& x, y \in E
\end{array}
$$

Then we get by Banach's fixpoint theorem that there exists exactly one mapping $\varphi: \Lambda \rightarrow E$ such that

$$
\varphi(\lambda)=G(\lambda, \varphi(\lambda)) \text { for all } \lambda \in \Lambda
$$

Theorem A. 1 (Continuity of the implicit function). (i) If we assume in addition that the mapping $\lambda \mapsto G(\lambda, x)$ is continuous from Λ to E for all $x \in E$ we get that $\varphi: \Lambda \rightarrow E$ is continuous.
(ii) If the mappings $\lambda \mapsto G(\lambda, x)$ are not only continuous from Λ to E for all $x \in E$ but there even exists a $L \geq 0$ such that $\|G(\lambda, x)-G(\tilde{\lambda}, x)\|_{E} \leq L\|\lambda-\tilde{\lambda}\|_{\Lambda}$ for all $x \in E$ then the mapping $\varphi: \Lambda \rightarrow E$ is Lipschitz continuous.

Proof. [FrKn 2002, Theorem D.1, p.164]

Bibliography

[BeLi 82] Bensoussan, A., Lions, J.-L.: Impulse control and quasivariational inequalities. Mathematical Methods of Information Science, 11. Gauthier-Villars, Paris (1982)
[Co 80] Cohn, D.L.: Measure theory. Boston: Birkhäuser 1980
[DaPrZa 92] Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. Cambridge: Cambridge University Press 1992
[DaPrZa 96] Da Prato, G., Zabczyk, J.: Ergodicity for infinite dimensional systems. Cambridge: Cambridge University Press 1996
[FrKn 2002] Frieler, K., Knoche, C.: Solutions of stochastic differential equations in infinite dimensional Hilbert spaces and their dependence on initial data. Diplomathesis, Bielefeld 2002
[IkWa 81] Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. Amsterdam-Oxford-New York: North-Holland Publishing Company 1981
[Me 82] Metivier, M.: Semimartingales. A course on stochastic processes.Berlin-New York: W. de Gruyter 1982
[Rü 2003] Rüdiger, B.: Stochastic integration with respect to compensated Poisson random measures on separable Banach spaces. Sonderforschungsbereich 611, Rheinischen Friedrich-Wilhelm-Universität Bonn, Preprint Nr.62, submitted to PTRF (2003)

