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Introduction

The purpose of this paper is to give a complete proof of the existence of a mild
solution of a stochastic differential equation with respect to a compensated
Poisson random measure by a fixpoint argument in the spirit of [DaPrZa 96].
This will be done within the following framework.
Let (H,(, )) be an infinite dimensional, separable Hilbert space, (U, B,v)
a o-finite measure space and (2, F, P) a complete probability space with
filtration F;, t > 0 such that Fy contains all P-nullset of F. Consider the
following stochastic differential equation in H on the intervall [0, 7], T > 0:
(1) dX(t) =[AX(t)+ F(X(t))]dt + B(X(t),y) q(dt, dy)
X(0) =¢

where

e A: D(A) C H — H is the infinitesimal generator of a Cy-semigroup
S(t), t > 0, of linear, bounded operators on H,

F:H — H is B(H)/B(H)-measurable,

e B: HxU — His B(H)® B/B(H)-measurable,

q(dt, dy) := TI(dt, dy) — A(dt) @v(dy), is a compensated Poisson random
measure on ((0,00) x U, B((0,00)) ® B) where II is a Poisson random
measure on ((0,00) x U, B((0,00)) ® B) with intensity measure A(ds) ®
v(dy),

¢ is an H-valued, Fjy-measurable random variable.

A mild solution of equation (1) is an H-valued predictable process such that



X(t) = S(t)E+ /0 S(t — 5)F(X(s)) ds
* /0 +/US(t —5)B(X(s),y) q(ds,dy) P-as.

for all t € [0, 7.
The organization of this paper is as follows.

In Chapter 1 we present the definition of that type of stochastic integral
with respect to a compensated Poisson random measure which we use in this
paper. For this end, in Section 1 and 2 we first repeat the notions of Poisson
random measures and Poisson point processes where we refer to the book
[IkWa 81].

In Section 3, the construction of the stochastic integral of Hilbert space
valued predictable processes with respect to a compensated Poisson random
measure with intensity measure A(ds) ® v(dy) will be done by an isometric
formula in the style of the definition of the stochastic integral with respect to
the Wiener process in [DaPrZa 92] or square integrable martingales in [Me
82]. For real valued processes this can be found in [Beli 82]. Independently,
this definition was done in [Rue 2003].

Denote by &€ the space of elementary processes where an H-valued process
O(t): AxU — H,t€[0,T],on (AxU, F®B, P®v) is said to be elementary
if there exist 0 = tg < t; < --- <t = T and for m € {0,...,k — 1} exist
BY",.... Bl €Iy, I(m) € N, pairwise disjoint, such that

—1 I(m)
m
xqj 1Fim 1]tm7tm+1] XBZTL
1

k—1
>
m=0

=0 i=

where 2" € H and F/" € F;,, 1 <i<I(m),0<m<k—1.
Define

W)

Int(®
/H/ (5,9) alds, dy)(w / /110tl ) a(ds, dy)(w)

=3 Z 271 () (@(@) (i A, BP) = 0(w) (b At BY)),

t€[0,7] and w € Q.
Then, if € &, Int(®) € M2 (H) which denotes the space of all square inte-



grable H-valued martingales and we obtain the following isometric formula

106(®) |25 = sup,eio 1 ] / / B(s,y) a(ds, dy)|I"]
—E/ /||<I>sy||2 (dy) ds] = | ®]|r.

ie. Int: (&, |l7) — (MZ(H), || |pz.) is an isometric transformation and can
therefore be extended to the space EIlT. ElllT can be characterized by

NZ(T,U H) = L*([0,T] x Qx U, Pp(U), P@ A®@ v; H).

The main emphazis is on the Chapter 2 where we prove the existence of the
mild solution
X(€) € H*(T,H) :={Y(t),t € [0,T]| Y is an H-predictable process s.t.
[V [z == sup E[|[Y/(#)[]°] < oo}
t€[0,T]

of problem (1) and the continuity of the mapping X : L*(Q, Fy, P, H) —
H(T, H).

A mild solution of the stochastic differential equation (1) is defined implicitly
by X (&) = F(&, X (€)), where F : L*(Q, Fy, P, H) x H*(T, H) — H*(T, H) is
given by

Fle)0) = ste+ [ St — $)F(Y(s)) ds

* /0t+/US(t —5)B(Y(s),y) q(ds,dy), te[0,T).

To obtain the existence of the solution, first, we have to show that F(£,Y) is
well defined for all £ € L*(Q, Fy, P,H) and Y € H?(T, H) and is an element
of H*(T,H). In particular, this includes the proof of the existence of a
predictable version of the stochastic integral denoted by

/0_ /Us(t —s)B(Y(s),y) q(ds,dy), t€0,T].

Secondly, to apply a fixpoint argument, we have to prove that F is a con-
traction in the second variable.

In a future paper the differential dependence of the mild solution on the
initial data will be examined and it will be proved that

X : L*Q,Fy, P, H) — H*(T,H)

is Gateaux differentiable.






Chapter 1

The Stochastic Integral with
Respect to Poisson Point
Processes

Let (€2, F, P) be a complete probability space and (U, B) a measurable space.

1.1 Poisson random measures

Let M be the space of non-negative (possibly infinte) integral-valued mea-
sures on (U, B) and
By :=0(M — Z, U{4+o00},u— u(B)|B € B)

Definition 1.1 (Poisson random measure). A random variable
II:(QF) — (M,By) is called Poisson random measure on (U, B) if the
following conditions hold:

(i) For all B € B: TI(B) : Q — Z, U {+o0o} is Poisson distributed with
parameter E(II(B)), i.e.:

PTI(B) = n) = eap( — E(I(B))(E((B)))"/nl, n € NU {0}
If E(II(B)) = +o0 then II(B) = 400 P-a.s.

(ii) If By,...,B, € B are pairwise disjoint then II(B),...,II(B,,) are
independent.



Remark 1.2. If Il is a Poisson random measure then the mapping
Q— Z;U{+o0}, w— I(w)(B), B € B, is F-measurable since the mapping
Q2 — M, w — II(w) is F/By-measurable by Definition 1.1 and since the
mapping Ml — Z, U {400}, pu +— p(B) is By-measurable by the definition of
By

Lemma 1.3. Let m € N and pu and v be two probability measures on [0, oo[™.
If for all & = (ou, ..., o) € RT

/[ [ €_<a7x> M(d$) - / ¢ Zgﬂ:l o ,u(d(xl, s ’xm))
0,00[™

[0,00[™

_ / e~ i1 T v(d(zy,...,zm)) = / el v(dz).
[0,00[™ [0,00[™
then = v.

Proof. Denote by H the space of all B(RT)-measurable functions
[ R? — R such that [p,. fdu = [z fdv. Then H is a monotone vec-
+ +

tor space. Moreover define

A = {RT—)R,IHeXp<—ZajZEj)|OZj €Qy,1<j5<m}.
j=1

Then A is a class of bounded, measurable functions, which is closed under
multiplication and which is a subset of H by assumption. By the monoton
class theorem it follows that o(A), C H.

Moreover, A C {f : R} — R|f is B(R"')-measurable} is countable and
separates the points of R7'. Thus, we obtain that o(A) = B(RY}) and
B(R™), C H. In particular, we get for A € B(R') that pu(A) = v(A). O

Lemma 1.4. Let X be a Poissonian random variable on (Q, F, P) with pa-
rameter ¢ > 0, i.e. X : Q — Z; U {400} such that for alln € NU{0}:
P(X =n)= c”w. Then

B(eX) — / e Po X M(dr) =) e % =exp(c(e” —1))Va e R
0 n=0 )

Theorem 1.5. Given a o-finite measure v on (U, B) there exists a Poisson
random measure 11 on (U, B) with E(II(B)) = v(B) for all B € B. v is
then called the mean measure or intensity measure of the Poisson random
measure 11.



Proof. [TkWa 81,Theorem 8.1, p.42]

Step 1. v(U) < o0

Let N be a Poissonian random variable with parameter ¢ := v(U).
Moreover let &1, &5, ... be independent U-valued random variables with dis-
tribution %1/, also independent of .

Define IT := S0 | 5,
Claim 1. Let B € B.Then II(B) is Poisson distributed with parameter v(B).

Let s <0, then

E<63H(B))

=E[exp(s Y _0¢,(B))] ,if N =0then Y 6 (B) =0
=E[) exp(s > 15(&))Lin=n}]

_ E[H exp(s15(&)) Lin=n}]

8

n

= > B[] exp(s15(€))] PN = n)

0 k=1

n

8

= Z (E[eXp(SlB(fl))Dne_c%
xp(c (E[exp(s1p(£1))] — 1))

xp(c P(& € B)e® + cP(& € BY) — ¢))
xp(cyf e(l- V(f>)_c)
(

exp(v(B)(e® — 1))

I
e

I
e

I
@

By Lemma 1.4 and Lemma 1.3 the assertion follows.

Claim 2. Let By, ..., B, € B pairwise disjoint. Then II(By),...,II(B,,) are
independent.

Let sq1,...,s, € R_, then:

/[0 ’ exp() _ sjw;) Po (I(By), ..., 1(By)) d(x1, ..., xpm)

j=1



I
Il :j 3
D
¥
=X
k)CIJ
g
k}
"U
@)
E
EZ
D
.

= eXp(Z s;x;) Poll(B)) ' @ ® Poll(By) 'd(xy,..., o)

Hence, by Proposition 1.3, we can conclude that
Po(II(By),...,I(By)) ' =Poll(B) '®---®@ Poll(B,,) ™"

which implies the required independence.



Step 2. v is o-finite

There exist U; € B, i € N, pairwise disjoint such that v(U;) < oo for all i € N
and U = J;2, U;. Set v; :==v(-NU;), i € N.

For + € N let N; be a Poissonian random variable with parameter
¢; = v(U;) and &, &, ... independent U;-valued random variables with dis-
tribution C%Viv also independent of N;. Moreover the families of random
variables {N;, &4, &L ... }ien are independent.

Let IT; be the Poisson random measure on U; associated with N; and &}, &5, ...
with intensity measure v; as defined in Step 1.

Define IT := 32 11, := 200, S d¢i. Then one has for B € B that

oo N; oo N; oo N
II(B) = Z_; 2 0g; (B) = ;; (&) = Zl 2 1paw, (&)

o0

v(B) = Z BNU;) Z E[L,(BNU;)|, by Stepl, Claiml
i=1

= E[II(B)] < .
Then TI(B) is Poisson distributed with parameter v(B).

Let s <0, then:

E[e™P)] = lim E[exp(s ZH (BNU))| = lim HE[eXp(SHi(BﬂUm]’
=1 =

since the families of random variables {N;, &1, &5, ... }ien are inde-

pendent,

:nll_rgonexp v(BNU;)(e®—1)) , by Step 1

i=1
= exp(v(B)(e” — 1))
By Lemma 1.4 and Lemma 1.3 the assertion follows.
Claim 2. Let B € B with v(B) = E[II(B)] = 4o0c. Then II(B) = +o0
P-as..

P(I(B) = +o0) = P(( ) | J{IL(BNU;) > 0})

meNi>m
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Since

P(({IL(BNU;) > 0}°) = P([ {IL(BNU;) = 0})

>m >m
m-+n m—+n
= lim P( ﬂ {IL(BNU;) =0}) = lim J] e
m-+n -
= lim exp(— Z v(BNU;)) =0

it follows that P(,s,,
P(I(B) = +00) = 1.

{IL(BNU;) > 0}) =1 for all m € N and therefore

Claim 3. Let By, ..., B,, € B pairwise disjoint. Then II(By),...,II(B,,) are
independent.

If B[II(B;)] < oo for all j € {1,...,m} then one gets for all s1,...,s, € R_
that

Elexp( Y- s T1(B,)] = Elexp( 30 Y s1L(B; N U)]

= ILmEeXp ZZ‘SJHI B;,nU;) }

i=1 j=1

— tim [ T] Elesp(s (8, N0

i=1 j=1

= lim [T [Texo((B, 0 U (e ~ 1))

i=1j=1

= Hexp €% — 1))

If there exists i € {1,...,m} with E[II(B;)] = oo, then, by Step 2, Claim 2,
II(B;) = oo P-a.s. Let {iy,...,i,} C {1,...,m}, then the independence of
II(By,), ..., II(B;,) follows from the case E[II(B;)] < oo forall j € {1,...,m}
and the above statement.
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1.2 Point processes and Poisson point pro-
cesses

Definition 1.6 (Point function on U). A point function p on U is a
mapping p : D, C (0,00) — U where the domain D, is a countable subset of
(0, 00).

p defines a measure N,(dt, dy) on ((0,00) x U, B((0,00)) ® B) in the following
way':

Define p : (0,00) — (0,00) x U, t — (t,p(t)) and denote by ¢ the counting
measure on (D, P(D,)), i.e. ¢(A) := |A] for all A € P(D,).

For B € B((0,00)) ® B define

Ny(B) = clp (B)).
Then, in particular, we have for all A € B((0,00)) and B € B
Ny(A x B) :=#{t € D,|t € A, p(t) € B}.
Notation: N,(t,B) := N,(]0,t] x B),t >0, B B

Let Py be the space of all point functions on U and

Bp, = 0(Py — Zy U {+o0},p— N,(]0,t] x B) |t > 0,B € B)

U

Definition 1.7 (Point process). (i) A point process on U is a random
variable p : (Q, F) — (Py, Bp,)-

(ii) A point process p is called stationary if for every ¢ > 0 p and 6Oyp
have the same probability law, where 6;p is defined by Dy, := {s €
(0,00) |s+t € Dy} and (6:p)(s) := p(s +1).

(iii) A point process is called Poisson point process if there exists a Poisson
random measure IT on (0, 00) x U such that there exists N € F, P(N) =
0, such that for all w € N¢ and for all B € B((0,00)) ® B: Npw)(B) =
[(w)(B).

(iv) A point process p is called o-finite if there exist U; € B, i € N, U; T U,
i — o0, and E[N,(t,U;)] < oo forallt >0 and i € N.

The statement of the following proposition about stationary Poisson point
processes can be found in [IkWa 81, 1.9 Point processes and Poisson point
processes, p.43]



12

Proposition 1.8. Let p be a o-finite Poisson point process. Then p is sta-
tionary if and only if there exists a o-finite measure v on (U, B) such that

E[N,(dt,dy)] = \(dt) ® v(dy)

where \ denotes the Lebesgue-measure on (0,00). v is called characteristic
measure of p.

Theorem 1.9. Given a o-finite measure v on (U, B) there exists a stationary
Poisson point process on U with characteristic measure v.

Proof. Let Il be a Poisson random measure on ((0,00) x U, B((0,00)) ®
B) with intensity measure A ® v where A denotes the Lebesgue-measure
on((0,00),B((0,00))). Remember the construction of II in the proof of The-
orem 1.5:

There exist U;, ¢ € N, pairwise disjoint sucht that U = |[J U; and
ieN
¢; =v(U;) < o0. For i € N let

e N, be a Poissonian random variable with parameter ¢;,

o & = (ti xt), k€N, iid. Ji — 1,4 x U;-valued random variables with
distribution A ® (£v(- N U;), also independent of N;.

Moreover the families of random variables {N;,&i, €5, ...}, i € N, are inde-
pendent.
Then

i

oo oo N,
W=D M=) ) dun
=1

i=1 k=1

is a Poisson random measure on ((0,00) x U, B((0,00)) ® B) with intensity
measure A ® v and for B € B((0,00)) ® B holds

(1.1) (B) =Y (BN (i — 1,4] x Uy))

i=1

Then there exists a P-nullset N € F such that for all w € N¢:
[M(w)({t} x U) =1 or 0 for all t > 0, since

p(Jn{s xo)y>1h=pr(J |J @iy xv)>1}

>0 i=1 teli—1,i]
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S

P({J {I({t} x U:) > 1})

teli—1,]

P U {6t} x Ui) = 1} n{dg, ({1} x U) = 1})

1 n#m te)i—1,i

U {th =t =1}

€li—1,i]

IN

ZZ
i=1 n#m
ZZ {(t,t)|t €)i —1,i]})
=1 n#m
=0
If we N¢and t €]i — 1,1], then

M{w{t} x U)) =

N;(w)
= Z Set ()t (o ({t} X U) = T (w)({t} x U)
IM(w)({t} x U) , by equation (1.1),
=1
<=3k e{l,...,N;(w)} such that t =t (w)

In this case we set
p(w)(t) := xt(w) and Dy = {t € (0,00) | II(w)({t} x U) # 0}

If w € N then define py € Py by D, := {to} C (0,00) and py(tg) = zo € U
and set p(w) = po.

Claim 1. Ny, = l(w) for all w € N°.
Let w € N¢ A € B((0,00)) and B € B then:

TI(w)(A x B)

oo Ni(w)
=D e (Anli— L x BNU;)

i=1 k=1

_Z#{sez—lzﬂseAElke{l Ni(w)} such that s =t} (w)
= andxk()EBﬁU}

_Z#{se@—lesEAEI'k‘G{l Ni(w)} such that s =t} (w)

and z} (w )GBﬂU}



14

since II(w)({s} x U) € {0,1} for all s € [0, 00|,
=#{s € Dpw)|s € A, p(w)(s) € B},

by the definition of p,
= p(w)(A X B)

Claim 2. For all B € B((0,00)) ® B the mapping N,(B) is F-measurable
and E[N,(dt,dx)] = \(dt) ® v(dz).

Since N,(B) =II(B) P-a.s. the measurability is obvious by Remark 1.2 and
the completness of (2, ,P).Now E[N,(B)] is well defined and we obtain that
E[N,(B)] = E[lI(B)] = A@v(B), since Il is a Poisson random measure with
intensity measure \(dt) ® v(dx).

Claim 3. p: Q — Py is F/Bp,-measurable.

Bp, =0(Py — Z; U {+o0},p— N,(]0,t] x B)|t >0,B € B)
=o({pePy|N({t,B)=m}|t>0,BeBmeZ,)

and for t > 0, B € B, m € Z, one gets by Claim 2 that

{p € {N.(t, B) = m}} = {N,(t, B) = m} € F.

By Claim 1 - 3 it follows that p is a Poisson point process with charac-
teristic measure v. By Proposition 1.8 p is stationary. 0

1.3 Stochastic integrals with respect to Pois-
son point processes

Let F;, t > 0, be a filtration on (Q, F, P) such that Fy contains all P-nullsets
of F.

Definition 1.10. A point process p is called (F;)-adapted if for every ¢ > 0
and B € B N,(t, B) is Fi-measurable.

For an arbitrary point process p define the following set
I, :={B € B| E[N,(t,B)] < oo for all t > 0}.

Definition 1.11. An (F;)-adapted point process p on U is said to be of class
(QL) (quasi-left-continuous) with respect to F¢, ¢ > 0, if it is o-finite and
there exists for all B € B a process N,(t, B), t > 0, such that
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(i) for B € T, t — N,(t, B) is a continuous (F;)-adapted increasing pro-
cess,

(i) for all t > 0 and P-ae. w € Q: N,(w)(t,-) is a o-finite measure on
(U, B),

(iti) for B € T, q(t, B) := N,(t, B) — N,(t, B), t > 0, is an (J;)-martingale

Np is called the compensator of the point process p and ¢ the compensated
Poisson random measure of p.

Definition 1.12. A point process p is called an (F;)-Poisson point process if
it is an (F;)-adapted, o-finite Poisson point process such that
{N,(Jt,t +h] x B) | h > 0, B € B} is independent of F; for all ¢ > 0.

Remark 1.13. Let p be a o-finite Poisson point process on U. Then there
exists a filtration F;, t > 0, on (2, F, P) such that Fy contains all P-nullsets
of F and p is an (F;)-Poisson point process.

Proof. Define N := {N € F|P(N) =0} and for t > 0
Fi:=0(Ny(t,B)|B € B)UN.

Then p is an (F;)-adapted, o-finite Poisson point process.

Moreover o(N,(t,B)|B € B) UN = o(II(]0,t] x B) | B € B) U N is inde-
pendent of o(II(Jt,t +h] x B) |h > 0, B € B) U N by Definition 1.1 (ii) since
10,] x B and |t,t 4+ h] x B are disjoint for all h > 0 and B, B € B. Since

o(Il(Jt,t+h] x B)|h >0,B € B)UN
=o(N,(Jt,t +h] x B)|h>0,B € B)UN

the assertion follows. O

For the rest of this section fix a o-finite measure v on (U, B) and a stationary
(F:)-Poisson point process p on U with characteristic measure v.

Proposition 1.14. p is of class (QL) with compensator N,(t, B) = tv(B),
t>0, BeB.

Proof. Set for t > 0 and B € B: N,(t, B) := tv(B).
Then condition (i) and (ii) of Definition 1.11 are fulfilled. Moreover, for

A

B eT, q(t,B) := N,(t,B) — Ny(t,B), t > 0, is (F;)-adapted. It remains to
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check that for B € I', ¢(t, B), t > 0, has the martingale property.
For this end let 0 < s <t < oo and F € Fg, then

Efq(t, B)1r] = E[(Ny(t, B) = Ny(t, B))15]
= E[Ny(t, B)1p,] — tv(B)P(F})
= E[(Ny(t, B) = Np(s, B))1r,] + E[Ny(s, B)1p,] — tv(B) P(Fy)
= E[N,(t, B) = Ny(s, B)|P(Fs) + E[Ny(s, B)Lr,| = (t — s)v(B) P(F)
SV(B)P(FS)

Remark 1.15. If ¢t € [0, oo[ and
Bel,={Be€B|E[N,y(t,B)] <ooforallt >0} ={BeB|v(B)<oo}
then ¢(t, B) € R P-a.s. since ¢(t, B) = N,(t, B) —tv(B) where N,(t, B) < 0o
P-a.s. as E[Ny(t,B)] < oo
If0<s<t<ooand B €I, then
Q(th) - Q(SaB) = Np(taB) - Np(sz) - (t - S)V(B)
= N,(]s,t] x B) = (t — s)v(B) P-as.

Notation: In the following we will use the following notation:
q(]s,t] x B) := Ny(]s,t] x B) — (t = s)v(B), 0 < s <t < oo, B € B.

Proposition 1.16. For A € T, (q(t, A), t > 0) is an element of M? and we
have for Ay, Ay € T, that

<Q('7A1)7Q('7A2)>(t) = Np(taAl N A2)7 t 2 0.

In particular, this means that for all A € T',, the following holds:
M(t) == q(t, A)2 = N,(t, A), t >0, is an (F)=0-martingale and in this case:
E[M(t)] = EIM(0)] =0 for allt > 0.

Proof.  [lkeda, Watanabe, Theorem 3.1, p.60; Lemma 3.1, p.60] O

Step 1. Definition of the stochastic integral for elementary pro-
cesses

Let (H, (,)) be a separable Hilbert space and fix 7" > 0.

The class &€ of all elementary processes is determined by the following defi-
nition
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Definition 1.17. An H-valued process ®(t) : @ x U — H, t € [0,7T], on
(QxUF®B,P®v)is said to be elementary if there exist 0 = t5 < t; <

<ty =T,k €N, and for m € {0,...,k — 1} exist B, ..., Bf €Ty,
pairwise disjoint, I(m) € N, such that

k—1 I(m)
¢ = Z T L Em Lt tmaa]x BT

m=0 i=1

where 2" € H and F" € F,, 1 <i<I(m),0<m<k—1.

For & = Z Z(T) " LEm Y t 1) x B € & define the stochastic inte-

gral process by

Int(®)(t,w)

t+
/ / s,y) a(ds, dy)(w / /110t1 ) a(ds, dy)(w)
k—1 I(m
=2 Z 2L (@) (@(@) (s A, B = 9(w) (b At BY)),
m=0 =1

€[0,7] and w € Q.

Proposition 1.18.
If ® € € then (fo Jo ®(s,y) q(ds,dy),t € [0,T]) € MZ(H) and

t+
||Int(q))H3Vl% = Supte[QT]E[”/0v /U(I)(S7y) q(dsﬂdy)HQ]

=Bl [ 196l viay) @i = ol
Proof.

Claim 1. Int(®) is (F;)-adapted.

Let t € [0,T] then:

Int(®)(t)
I(m)

= > > @l (Ny(tmes A, B") = Ny(tm, BY') = (tmsr At — t)

meld. k1) = (BZ”))

which is F-measurable since p is (F;)-adapted.



18

Claim 2. For all t € [0, T):

Blie@)0] = B[ [ [ 1960 rdnas] < oo

E[|[tnt(®)(t)]?]
k—1 I(m)

=E[I1D> ) 2l lpmg(tm Aty tmar At] x B

m=0 =1
k—1 I(m)

= B[ Y > Nl 1ppq(Jtm At ter At] x B2

m=0 i=1
tm <t

+2 ) > @rArarAT)]

0<m<n<k—1 (i,j)e{l,....I1(m)}
tn <t x{1,....,I(n)}

where Al = q(Jty At ti g At x AB), 0<I<k—1,1<h<I(l).

1.: Forme{0,....k—1},t,, <t,i€{l,...,1(m)} holds:
Ellzf 1 emq(tm At tmia At] x BP|?] < E[[|a"AP|*] < oo
For this purpose let 0 < s <t <7 and B € I'y, then:

E[q(]s,t] X B)ﬂ = E[(q(t, B) — q(s, B))z}
= E[q(t,B)* —24(t, B)q(s, B) +q(s, B)’]
(a) (b)

(a) By Proposition 1.16 and Proposition 1.14 it follows that

~

Elq(t, B)?] = E[N,(t, B)] = tv(B) < oo.

(b) Since |q(]s,t] x B)| and |q(s, B)| are independent we get that

Elq(t, B)q(s, B)|] < E[lq(]s,t] x B)q(s, B)|] + E[q(s, B)?]
= E[lq(Js,t] x B)|]E|la(s, B)|| + E[q(s, B)?]
< 0Q.

From (a) and (b) it follows that E[q(]s,t] x B)?] < oo. Moreover we obtain
that
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(1.2) E[q(]s,t }
= E[q(t, B)?] — 2E[q(t, B)q(s, B)] + E[q(s, B)?]
=E[q(t, B)*] — 2E[q(]s,t] x B)q(s, B)] — E[q(s, B)*]
=tv(B) — 2E[q(]s,t] x B)]E[q(s, B)] — sv(B)

t
(t —s)v(B), as E[q(s,B)] = E[N,(]0,s] x B] — sv(B) =0

2.: For myn € {0,....k — 1}, m < n, t, < t, 1 € {1,....,I(m)},
je{l,...,1(n)} holds:

I
[I(x L AT, 2315 A7) ] < B[ AT, 25)||AT]] <

i Xy i L

Since m < n and t,,, < t, <t we get that
Jtm Aty tmsr ANt Aty tnsr At =]tm, tmga ] Jtn, tnsr At =0

therefore |A7| and (z}", 27)|A"| are independent and we obtain that

Lits Ty
B[z A7, ap)||A7] = E[[(27" AT, 27) | E[|AF]] < oo
3.: For myn € {0,....k =1}, m < n, t, < t, i € {1,...,1(m)},
je{l,...,1(n)} holds:
E[(x" 1 AT 271 AT)]
= E[(a]" 1pm AT, 27 1pn) AT
= E[(a]" 1pm A", 2 1pn) | E[A}]

=0 , since E[A]] = 0.
By 1.-3. one gets for all ¢ € [0, 7] that

E[|[Tnt(®)(t)|1?]
k—1 I(m)
=E[I> > allpmq(Jtm At tmia At] x B)|]
m=0 1=1
k—1 I(m)

=E[ > > |l Lpmq(tm At tm At x B

m=0 i=1
tm <t

*2 3, 3L GrAn A

0<m<n<k—1 (3,5)€{1,....,I1(m)}
tn <t x{1,....,I(n)}
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k—1 I(m)
= D> > Nl IPPEE[q(tm At At] x B,

m=0 =1
tm <t

since FJ" € F;. and q(|t;, time1 A t] X B") is independent of F;,_,
k—1 I(m)
=D D el IPPE") (b At =t ALJV(B]),

m=0 i=1
tm <t

by equation (1.2),
k—1 I(m

t )
W AV DD SESERTRSR TS

m=0 i=1

B[ [ [ 10wt

Claim 3. Int(®)(t), ¢t € [0,T], is an (F;)-martingale.
Let 0 <s<t<T and F, € F, then:

/S /Ot+ /U o(r,y) q(dr, dy)dP

k—1 I(m)
= [ YN alpm(q(tmer AL, B") = qltm At, B")) dP
Fs m=0 i=1
k—1 I(m)

= 33 [ el A8 BE) = glt A 5, BP)) AP
Fs

m=0 i=1
tm<s

k-1 I(m)

= 3 3 [ At lattnis A B = alt, BI) 0P
m=0 i=1

E]

s<tm<t
k—1 I(m)

+ Y [ ae  B — ate. B ap
m=0 =1

s

~
=0

s<t<tm
k—1 I(m)

= X3 [t (Elatnn B = att A5 B dP

m=0 i=1 ¥ s
tTTLSS

k—1 I(m)

+ Z Z/ xrlFing[q(tm+1At, BM)|Fi.] — a(tm, B")) dP
m=0 =1

E] WV

s<tm <t =0, since ¢(-,B[") is an (F;)-martingale



1(m)

k—1
£ XY [ e s B~ ats B
—0 1 JF, -
sgfl;ng =l =0
k-1 I(m)
=) Z/ 2 (@t A 5, BT) = gt A 5, B™)) dP,
m=0 =1 s

tm<s

since q(tmi1 A -, B") is an (F;)-martingale

k-1 I(m)
+ >y /F o L (q(tmia A5, B") = qtm A s, B")) dP
m=0 i=1 s

~~
=0

s<t;§t
k—1
+ 2
m=0
s<t<tm

_ / /OH/(](ID(r,y)q(dr,dy)dP

I(m)
/ xl'anim (q(tm—H N s, Bzm) - Q(tm s, Bzm)) dp
Fs

i=1
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]

In this way one has found the semi norm |||z on & such that
Int : (] l7) — (MZ(H), || [lpz) is an isometric transformation. To get
a norm on & one has to consider equivalence classes of elementary processes
with respect to || ||7. For simplicity, the space of equivalence classes will be

denoted by &, too.

Since £ is dense in the absract completion £ of £ w.r.t. |||z it is clear that

there is a unique isometric extension of Int to £.

Step 2. Characterization of &
Define the predictable o-field on [0,7] x  x U by

Pr(U)

=0(g:[0,T| xQ2x U — H|gis (F: x B) — adapted and left-continuous)

Fi
=o({ls, ] x F|0<s <t <T.F, € F}U{{0} x Fo | Fy € Fo})
=o({]s,t{] x F, x B|0<s<t<T,F,€F,B¢cB}
U{{0} x Fy x B|Fy € Fy x B})

At this point, for the sake of completness, also define the predictable o-field

on [0,7] x Q by

Pr:=0(g:[0,T] x Q2 — R, |g is (F;)-adapted and left-continuous)
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—o({s, ] x F|0<s <t <T.F, € F}U{{0} x Fo| Fy € Fo})
ne

Let H be an arbitrary Hilbert space. If Y : [0,7] x Q — H is Pp/B(H)-

measurable it is called (H-)predictable.
Remark 1.19. (i) If B € B([0,T]) then B x Q x U € Pr(U).

(ii) If Ae Prand B € B then A x B € Pp(U).

Proof. (i)

BxQxUeB(0,T]) ®{Q,0} @ {U, 0}
—o({]s, ] x AxU[0<s<t<T}U{[0,T] x Qx U}
CPT(U)

AXBePro{B,0}=c({Ax B|Ac A U{0,T] x 2 x B}
CPT(U)

Furthermore, for the next proposition we need the following lemma:

Lemma 1.20. Let E be a metric space with metric d and let f : Q — E be
strongly measurable, i.e. it is Borel measurable and f()) C E is separable.
Then there ezists a sequence f,, n € N, of simple E-valued functions (i.e. f,
is F /B(E)-measurable and takes only a finite number of values) such that for
arbitrary w € § the sequence d(f,(w), f(w)), n € N, is monotonely decreasing
to zero.

Proof. [DaPrZa 92, Lemma 1.1, p.16] ]

Proposition 1.21. If ® is an Pr(U)/B(H)-measurable process and

B / / 10 (s, )| (dy)ds] < oo

then there exists a sequence of elementary processes ®,, n € N, such that
| — P,|l7 — 0 as n — oo.
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Proof. There exist U, € B, n € N, with v(U,) < oo such that U, T U as
n — o0o. Then 1y, @ : [0, T]| x QU x U, — His Pr(U)N ([0, T] x Q2 x U,,)/B(H)-
measurable.

Moreover

(1.3) Pr(U)N([0,T] x Q x U,)
=o({]s,t] x Fs,x B|0<s<t<T,F, € F,,Be BNU,}
U{{0} x Fy x B|Fy € Fyp,Be BNU,})
=Pr(U,) :
Therefore one gets that 1y,® : [0,7] x Q x U, — H is Pr(U,)/B(H)-

measurable. Then there exists a sequence ®}, £k € N, of simple random
variables of the following form

My,
Op = by, ak, € H AS, € Pr(Uy,), 1 <m < My, k€N,

m=1

such that |1y, ® — 7|l | 0 as k — oo by Lemma 1.20. Since

My
10, ® = B}l < |10, @[ + 197 < 10, @) + D [l Tay,
m=1

€ L*([0,T) x Q x Uy, Pr(U,),\® P @)

one gets by Lebesgue’s dominated convergence theorem that

T
10, (® — B2 = E[/O /UﬂlUn(CI) )2 dv )]

T
:E[/ |1, ® — ®F||*dvd\] — 0 as k — oo
0 JUn

1
Choose for n € N k(n) € N such that [|1y, (¢ — @},,))[lr < —, then
n

1D = 10, PRyl < NP = 10, Iz + (|10, ( = PRy )7

where the first summand converges to 0 by Lebesgue’s dominated convergence
theorem and the second summand is smaller than —.

n
Thus the assertion of the Proposition is reduced to the case ® = x1,4 where
x € H and A € Pr(U,) for some n € N. Then there is a sequence of
elemntary processes @i, k € N, such that || — Ox|lr — 0 as k — oo:
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To get this result it is sufficient to prove that for any € > 0 there is a finite
sum A = Ufil A; of predictable rectangles

A€ A, ={]s,f] x F, x Bl0<s<t<T,F,€F, BecBnU,)
U{{O}XF0XB|F0€f0,B€BﬂUn},1§i§N,

such that P@ A ®@v(A A A) < ¢, since then one obtains that Y1 | 1,4, is an
elementary process, as v1y4,, 1 <7 < N, are elementary processes and & is a
linear space, and

N T N N
HxlA—leAiHTI (E[/ /HJJ(lA—ZlAi)WdVd)\])Q
i=1 Y k=1
< elPEA®UAAN) < afe

Hence define K := {{J,c; 4i | |I| < 00, A; € Ay, i € I} then K is stable under
finite intersections. Now let G be the family of all A € Pr(U,) which can
be approximated by elements of IC in the above sense. Then G is a Dynkin
system and therefore Pr(U,) = o(K) =D(K) C G as K C G. O

Define
NZ(T,UH) :={®:[0,T] x Q@ x U — H|® is Pp(U)/B(H)-measurable
and [ = (B[ [ 1006, vt ) < o0}
Then £ C NX(T,U, H) and
NZ(T, U H)=L*([0,T] x Qx U, Pp(U),P@A@ v, H)

is complete since (H, || ||) is complete. Therefore & C NZ(T,U, H) and by
the previous proposition it follows that £ D ./\qu(T, U, H). So finally one gets
that £ = NZ(T,U, H)

1.4 Properties of the stochastic integral

Proposition 1.22. Assume that ® € NZ(T,U,H) and u € [0,T]. Then
Lo ® € N2(T,U, H) and for all t € [0, T

t+ (tAu)+
/ /110,74@(8,?1) q(ds,dy)=/ /<I>(s,y) q(ds,dy) P-a.s..
0 U 0 U
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Proof.
Step 1. Let ® be an elementary process, i.e.

k—1 I(m

¢ = Z Z Li 1Fm1]tm tm+1]x A €&

m=0 i=1
Then
k—1 I(m

uT]q) Z Zm 1Fm1thutm+1\/u]><Am

m=0 =1

is an elementary process since F;" € F; ,. Concerning the integral of 1j9 ,)®
one obtains that

t+
/ /110 1 (8)®(s) q(ds, dy)

t+ t+
/ /CIDq (ds, dy) — / /1]uT] )P q(ds, dy)

k—1 I(m
=) Z e L ( gty AL AT = qltm At AT = (s V) AL, AT
m=0 i=1 +q((tn Vu) At AT))

k—
= E i
m=0 =1

t/\u)+
/ / q(ds, dy)

Step 2. Let now ® € J\/(]Q(T, U, H). Then there exists a sequence of elemen-
tary processes ®,, n € N, such that ||®,, — ®||r — 0 as n — oco. Then it
is clear that ||1j0®n — 1jo,y®|l7 — 0 as n — oo. By the defintion of the
stochastic integral it follows that for all ¢ € [0, T]

(tAu)+ (tAu)+
H/ / (5, 9) alds, dy) — / / (5,9) a(ds, dy)|I"]
t+ t+
+Eu/ / 01(8)®0 (5. ) a(ds, dy) — / / 10w ()8 (5, 9) a(ds, dy)|’]

—0asn— o0

m

Lpm(q(tm ANu Nt AT) — q(tm Aunt, AT))

which implies that for all ¢ € [0, T] there exists a subsequence ny(t), k € N,
such that

(tAuw)+ (tAu)+
/ / (I)nk(t)<3> y) q(ds, dy) k:—) / (I)<S> y) (](dS, dy) P —as
0 U - Jo U
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t+ t+
/ / Ljo.u)(8) Py (5, y) a(ds, dy / Lo, (8 )q(ds,dy) P — a.s..

Then by Step 1 the assertion follows.



Chapter 2

Existence of the Mild Solution

As in the previous chapter let (H, (, }) be a separable Hilbert space, (U, B, /)
a o-finite measure space and (2, F, P) a complete probability space with fil-
tration F;, t > 0, such that F; contains all P-nullsets of F.

We fix a stationary (F;)-Poisson point process on U with characteristic mea-
sure v. Moreover let 7' > 0 and consider the following type of stochastic
differential equations in H

21) dX(t) =[AX(t)+ F(X(t))] dt + B(X(t),y) q(dt,dy)
' X(0) =¢

where

e A: D(A) C H — H is the infinitesimal generator of a Cy-semigroup
S(t), t > 0, of linear, bounded operators on H,

e ': H— H is B(H)/B(H)-measurable,
e B:HxU — His B(H)® B/B(H)-measurable,

e ¢(t,B),t >0, B el,, is the compensated Poisson random measure of
b,

e ¢ is an H-valued, Fy-measurable random variable.

Remark 2.1. If we call My := sup,jo 1y [|S(?)||(z) then My < oo.

Proof. For example by [Pa 83, Theorem 2.2, p.4] there exist constants w > 0
and M > 1 such that

1S Ly < Me** for all t > 0

27
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]

Definition 2.2 (Mild solution). An H-valued predictable process X(t),
t € 10,77, is called a mild solution of equation (2.1) if

X(t) = S()e + /0 S(t — 5)F(X(s)) ds
+ /0 : /U S(t — )B(X(s),y) alds,dy) P-as.

for all t € [0,T]. In particular the appearing integrals have to be well defined.

To get the existence of a mild solution on [0,7] we make the following as-
sumptions
Hypothesis H.0

e [': H — H is Lipschitz-continuous, i.e. that there exists a constant
C > 0 such that

[1F(z) = Fly)ll < Clle gyl forallz,y € A,

e there exists a square integrable mapping K : [0,7] — [0, oo[ such that

/UHS(L‘)(B(SE, y) — Blz,y)|I” v(dy) < K*(t)]|l= — ylI*

/UHS(t)B(J:,y)H2 v(dy) < K(6)(1+ =)

Now we introduce the space where we want to find the mild solution of the
above problem. We define
HA(T,H) :={Y(t),t €[0,T]| Y is an H-predictable process such that
sup B[V ()]*] < oo}
t€[0,T]

and for Y € H*(T, H)

1Y [l == sup (E[]Y(1)]*])*
te[0,7

Then (H?*(T, H),|| |l22) is a Banach space.

For technical reasons we also consider the norms || [lan7, A > 0, on H*(T, H)

given by

Y llzaz == sup e (E[[|Y ()]])*
te[0,T]
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Then || |72 = || llz0r and all norms || [|2x7, A > 0, are equivalent.
For simplicity we use the following notations

AT, H) = (HXT, H), | llre)

and

H2NT, H) = (HX(T, H), || [laaz), A > 0.

Theorem 2.3. Assume that the coefficients A, F' and B fullfill the conditions
of Hypothesis H.0 then for every initial condition & € L*(Q, Fo, P, H) =: L
there exists a unique mild solution X (£)(t), t € [0,T], of equation (2.1).

In addition we even obtain that the mapping

X :L?— HYT,H)

1s Lipschitz continuous.

For the proof of the theorem we need the following lemmas.

Lemma 2.4. IfY : [0,T)|xQxU — H is Pr(U)/B(H)-measurable then the
mapping

0,T] x Qx U — H, (s,w,y) — Ljog(s)S(t —s)Y(s,w,y)

is Pr(U)/B(H)-measurable for all t € [0,T].

Proof. Let t € [0,T].

Step 1. Consider the case that Y is a simple process given by

Y = Z[L’klAk
k=1

where x, € H, 1 <k <n,and A, € Pr(U), 1 <k <n, is a disjoint covering
of [0,7] x £ x U. Then we obtain that

Y [0,T|xQxU—H
(S,W, y) = 1]O,t](5)s(t - S)Y<vavy)

n

= Ljo(s) > S(t — s)wxla,(s,w,7)
k=1
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is Pr(U)/B(H)-measurable since for B € B(H) we get that

LnJ ({5 € [0, 77| Ljo.4(s)S(t — s)zx € B} x Q@ x U) N Ay

where {s € [0,T] | 1j0,4(s)S(t—s)x, € B} € B([0,T]) by the strong continuity
of the semigroup S(t), t € [0,7]. By Lemma 1.19 (i) we can conclude that
Y_1<B) € PT(U)

Step 2. Let Y be an arbitrary Pr(U)/B(H )-measurable process.

Then there exists a sequence Y,,, n € N, of simple Pr(U)/B(H )-measurable
random variables such that Y;, — Y pointwisely a n — oo. Since S(t) € L(H)
for all t € [0, T the assertion follows.

]

Lemma 2.5. Let ® be a process on (Q, F, P, (F;)tepo,r)) with values in a Ba-
nach space E. If ® is adapted to Fy, t € [0,T], and stochastically continuous
then there exists a predictable version of ®.

In particular, if ®(t) € L*(Q,F, P,E) and ® : [0,T] — L*(Q,F, P E) is

continuous then there exists a predictable version of ®.
Proof. [DaPrZa 92, Proposition 3.6 (ii), p.76] O

Proof of Theorem 2.3. Let t € [0,T], £ € L and Y € H*(T, H) and define
F(EY)(1) £+/St—s X(s)) ds
b [ (- 9B, atds,
0

Then a mild solution of problem (2.1) with initial condition ¢ € L2 is by
Definition 2.2 an H-predictable process such that F (&, X(£))(t) = X (£)(t)
P-as. for all t € [0,7]. Thus we have to search for an implicit function
X : L3 — H*(T, H) such that F(&, X (€)) = X (&) in H*(T, H).

For this reason we prove that F as a mapping from LZxH?*(T, H) to H*(T, H)
is well defined and we show that there exists A > 0 such that

F L2 x H*NT,H) — H*T, H)

is a contraction in the second variable, i.e. that there exists Ly < 1 such
that for all £ € LZ and Y)Y € H>NT, H)

|F(Y) - «7:(5,57)“2,A,T < Lp,|lY — Y/HQ,)\,T-
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Then the existence and uniqueness of the mild solution X (¢) € H*NT, H)
of (2.1) with initial condition ¢ € Lg follows by Banach’s fixpoint theorem.
Since the norms || [[22 7, A > 0, are equivalent we consider X (§) as an element
of H*(T, H) and get the existence of the imlicit function X : L2 — H*(T, H)
such that F(¢, X (§)) = X(&).

Step 1. The mapping F : L2 x H*(T, H) — H?*(T, H) is well defined.

Let € € L2and Y € H2(T, H) then, by [FrKn 2002, (S(t))eio.r) € H2(T, H),
Log(-)S(t —-)F(Y(:)) is P-a.s. Bochner integrable on [0, 7] and the process

(] St=9)FX(5)ds)y
)

is an element of H*(T, H).
Therefore it remains to prove that:
(Liog(-)S(t = 8)B(Y(5),"))scio,r) € ./\qu(T, U,H) for all t € [0,7] and that

there is a version of

([ ] stt=9BX0).0) atds.dn)

which is an element of H?*(T, H).
Claim 1. If Y € H*(T, H) then:
Q= (Ljoq(s)S(t —s)B(Y(5),"))sco.1] € /\/'qQ(T, U, H) for all € [0, T].
Let t € [0,T]. First, we prove that the mapping
0,T] x Qx U — H, (s,w,y) — Ljog(s)S(t —s)B(Y(s,w),y)

is Pr(U)/B(H )-measurable. By Lemma 2.4 we have to check if the mapping
(s,w,y) — B(Y(s,w),y) is Pr(U)/B(H)-measurable.

The mapping F : [0,T] x Q@ x U — H x U, (s,w,y) — (Y(s,w),y) is
Pr(U)/B(H) ® B-measurable since for A € B(H) and B € B we have that

F ' (Ax B) =Y '(A)xB € Pr(U) by Lemma 1.19 (ii).
P,
€Pr

Moreover B is B(H) ® B/B(H )-measurable by assumption.
With respect to the norm || ||z of ® we obtain

12[17 = E[/O /UHl}O,t}(S)S(t —5)B(Y (s), y)|I* v(dy) ds]
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E[/O K(t—s)(1+ |Y(s)]) ds]
< (14 Y [le) / K (s)ds

< 00

Claim 2. If Y € H*(T, H) then there is a predictable version of

t+
(Z(t))ie [0,7] * / / (t—s)B(Y(s),y) q(ds, dy))te[O,T]

which is an element of H*(T, H).

Since (1j0,4(5)S(t = 8)B(Y (s),))seo,r) € NZ(T,U, H) for all t € [0,T] we get

by the isometric formula that

t+
t:%%]E I / (t —s)B(Y(s),y) q(ds, dy)| ]
:tslél;]E//llSt—S (Y (s), 9)|[2 v(dy) ds]
<(1 4 [V ]e) / K(s)ds

<0

To prove the existence of the predictable version we will use Lemma 2.5. For
this purpose we will show that the process Z is adapted to F;, t € [0, 7], and
continuous as a mapping from [0, 7] to L?(Q, F, P, H).

Let o > 1 and define for ¢ € [0, 7]

(LH+
Z°(t) = / [ 5(0- 90 (). alds.dy

($)+
_ / S(t — as)S((a — 1)s)B(Y(s),y) a(ds, dy)

where we used semigroup property.

Set *(s,y) := S((aw—1)s)B(Y(s),y) then one can show analogously to the
proof of the Pr(U)/B(H)-measurability of the mapping

(s,w,y) = Ljog(s)S(t—s)B(Y(s,w),y) that ®* is Pp(U)/B(H )-measurable.

Moreover
B[ [ 18— 9B (). )| vidy) s
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<1+ Y lhee) / K((a = 1)s)ds
/K

Therefore we obtain that ®* € NZ(T,U, H).
Now we show that the mapping Z° : [0,7] — L*(Q2,F, P, H) is continuous
for all @ > 1. For thisreasonlet 0 <u <t <T.

Bl [ o | (= s .9y atas.dn) ~ | o | stu=as@(s.0)
a(ds,dy)[*])*.
0 [ [ o) - a1 (6,0) ~ a1~ a5)9 (5,0
(ds. dy)]?])*

by Proposition 1.22,

=@+ 1Y)

<0

T+
= (£l /0 /U Lo, (8)(S(t — avs) = S(u — as)) (s, )
+ 1]%751(8)3(15 — 063)(1)&(37 y) (](dS, dy) “2])

< (&[] / [ )5t - as) = 80— )2 s, ) alds. )12
El [ [ s 80— a9, atds. ) 12)!
— (] / 15t = a5) = S(u = as) @ (s, ) widy) )
/ [ 12 20Nt = as)@ (sl widy) as)

N

[SIE

l\)\»—l

by the isometric formula.

(1.) The first summand converges to 0 as w | ¢t or t | u by Lebesgue’s
dominated convergence theorem since the integrand converges pointwisely to
Oasu T tort | u by the strong continuity of the semigroup and can be
estimated independently of u and ¢ by 4M2||®%||*(s,y), (s,y) € [0,T] x U,
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where E[fOT Joll®“(s,y)|? v(dy) ds] < oo.

(2.) The second summand can be estimated by

BL[ [ 019wty as)

and therefore converges to 0 by Lebesgue’s dominated convergence theorem
asutort | u.

To obtain the continuity of Z : [0,T] — L*(Q, F, P) we prove the uniform
convergence of Z% n € N, to Z in L*(Q, F, P, H) for an arbitrary sequence
Qpy n €N Withanllasn—>oo’

||/ / (t — )2 (s, y) a(ds, dy) — /+/ (t = 5)B(Y (5), 1)

q(ds, dy)|’]

|| / / Lo« 1(8)S(t = $)B(Y (s),9) — Log()S(t — ) B(Y (s),9)
a(ds, dy)|I’]

=Bl [ [ 12080 = 9B ). alds. )]
[ [, [ 15t = B0 ()01 viay) s
Bl [, K= )0+ [¥ () s

-
-

<1+ |V [le2) ( t——§ / K*(s)ds)?

/K2 ds%

T — 0asn— oo.

<1+ [|Y]lp2) (

where
(079

Moreover we know for all ¢ € [0, 7] that

([ [ oSt = 1B () 0) alds. ) o, € M)

since (1j0,u)(8)S(t — s)B(Y(5),"))sefo.) € N7 (t, U, H). That means in partic-
ular that the process

— /0t+ /U Lo (s)S(t —s)B(Y (s),y)q(ds,dy), t € [0,T] is (F;)-adapted.
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Together with the continuity of Z in L*(Q, F, P < H), by Lemma 2.5, this
implies the existence of a predictable version of Z(t), t € [0, T], denoted by

-
([ [ 5=5B07(5)9) a5 ) i,
Therefore we have finally proved that
F L xHXT, H) — H*T, H)
Claim 3. There exists A > 0 such that for all £ € L%
F(& ) H*NT,H) — H*T, H)
is a contraction where the contraction constant Ly, < 1 does not depend on
€.
Let Y)Y € HX(T,H), € € L?. Then we get for A > 0 that

sup e | (F(EY) — F(&,Y) (t)lle

te[0,7

< sup 6‘M||/0 S(t = )[F(Y(s)) = F(Y(s))] ds| 2

t€[0,T

+ sup 6Atll/ﬂ /US(t—S)[B(Y(S),y) — B(Y (s),y)] a(ds, dy) |l 2

t€[0,T]
The first summand can be estimated by

1,11 ~
M CT () Y - ¥

—0 as A—oo

for the proof see [FrKn 2002, Theorem 3.2., Step 3, p.81].
By the isometric formula we get the following estimation for the second
summand:

t+ + )
Bl [ [ su=aBe.matsa) = [ [ st 6.0 ads )]
=B [ [ 150= 9B (9).9) = BEG). I ) s

2,\,T>

gE[/O K2t — )|V (s) - V(s)|> ds]



36

t
S/e/\SKQ(t_S)dS||Y_Y||%v>\:T
0

T
Y - VIR / MK (s) ds
0

Vv
—0 as A—oo

Therefore we obtain that

sup | / / S(t — $)[BY(5).9) — BV (s), )] q(ds. dy) | 2

t€[0,T
t L ~
<([ PR ds) 1Y - Vo
0

Thus we have finally proved that there exists A > 0 such that there exists
LT)\ < 1 with

| F(Y) - f(f,?)\fz,A,T < Lp,|lY — }7”2,/\,T

for all £ € L2 Y, Y € H2A(T, H). Hence the existence of a unique implicit
function

X : L3 — HXT, H)
§— X(§) = F(&,X(9))
is verified.

Claim 4. The mapping X : L2 — H?*(T, H) is Lipschitz continuous.

By Theorem A.1 (ii) and the equivalence of the norms || |[2 a7, A > 0, we
only have to check that the mappings

F(,Y): L — H*(T, H)

are Lipschitz continuous for all Y € H?*(T, H) where the Lipschitz constant
does not depend on Y.
But this assertion holds as for all §,¢ € L2 and Y € H*(T, H)

IF(&Y) = F(GY) e = 1SC)E = Ollre < Mrl[§ = (2



Appendix A

Continuity of Implicit
Functions

We fix two Banach spaces (E, || ||) and (A, || ||a)-
Consider a mapping G : A X E — E such that there exists an « € [0, 1] such
that

IGA, z) — G\ )| < allz — vy for all A € A and all
r,y€elE

Then we get by Banach’s fixpoint theorem that there exists exactly one
mapping ¢ : A — F such that

©(N) =G\, p(N)) for all A € A.

Theorem A.1 (Continuity of the implicit function). (i) If we assume
in addition that the mapping X\ — G(\,x) is continuous from A to E
for all x € E we get that p : A — E is continuous.

(11) If the mappings A\ — G(X, x) are not only continuous from A to E for
all x € E but there even exists a L > 0 such that
G\, 2) — GO\ 2)||g < LA = A|a for allz € E
then the mapping p : A — E is Lipschitz continuous.

Proof. [FrKn 2002, Theorem D.1, p.164] ]
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