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Abstract. This paper contains supplementary results to the recent paper [21]
by the two authors. It focuses on the L1–theory of a class of Kolmogorov op-
erators L in infinitely many variables which e.g. are associated to stochastic
generalized Burgers equations. Their L1–theory is developed with respect to
a whole class of reference measures identified in this paper, which contains
in particular infinitesimally invariant measures for L. Essential maximal dis-
sipativity for L with initial domain given by C2–smooth bounded cylinder
functions is proved to hold on L1(ν) for all measures ν in this class. The
obtained respective C0–semigroup on L1(ν) is proved to come from the semi-
group of kernels constructed in [21]. Finally, a measure is constructed in this
class which is of full topological support, i.e. charges every non–empty open
set of the underlying infinite dimensional space, which here is L2(0, 1).
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1. Introduction

Consider the following stochastic partial differential equation on X := L2(0, 1) =
L2((0, 1), dr) (where dr denotes Lebesgue measure)

dxt = (∆xt + F (xt)) dt +
√

A dwt

x0 = x ∈ X.
(1.1)

Here A : X → X is a nonnegative definite symmetric operator of trace class, (wt)t
�

0

a cylindrical Brownian motion on X , ∆ denotes the Dirichlet Laplacian (i.e. with
Dirichlet boundary conditions) on (0, 1), and F : H1

0 → X is a measurable vector
field satisfying certain conditions specified below. Here H1

0 := H1
0 (0, 1) denotes

the Sobolev space of order 1 in L2(0, 1) with Dirichlet boundary conditions. As a
special case SPDE (1.1) contains so–called stochastic generalized Burgers equations
(cf. [21], see also [20], where (0, 1) is replaced by an open set in �2).

A heuristic (i.e. not worrying about existence of solutions) application of Itô’s
formula to (1.1) implies that the corresponding generator or Kolmogorov operator
L on smooth cylinder functions u : X → � , i.e.

u ∈ D := FC2
b :=

{

u = g ◦ PN

∣

∣ N ∈ � , g ∈ C2
b (EN )

}

,

is of the following form:

Lu(x) :=
1

2
Tr

(

AD2u(x)
)

+
(

∆x + F (x), Du(x)
)

=
1

2

∞
∑

i,j=1

Aij∂
2
iju(x) +

∞
∑

k=1

(

∆x + F (x), ηk

)

∂ku(x), x ∈ H1
0 .

(1.2)

Here ηk(r) :=
√

2 sin(πkr), k ∈ � , is the eigenbasis of ∆ in L2(0, 1), equipped with
the usual inner product ( , ), EN := span{ηk|1 � k � N}, PN is the corresponding
orthogonal projection, and Aij := (ηi, Aηj), i, j ∈ � . Finally, Du, D2u denote the
first and second Fréchet derivatives, ∂k := ∂ηk

, ∂2
ij := ∂ηi

∂ηj
with ∂y := directional

derivative in direction y ∈ X and (∆x, ηk) := (x, ∆ηk) for x ∈ X .
1
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Hence the Kolmogorov equations corresponding to SPDE (1.1) are given by

dv

dt
(t, x) = L̄v(t, x), x ∈ X,

v(0, · ) = f,
(1.3)

where the function f : X → � is a given initial condition for this parabolic PDE
with variables in the infinite dimensional space X . We emphasize that (1.3) is
only reasonable for some extension L̄ of L (whose construction is an essential part
of the entire problem) since even for f ∈ D, it will essentially never be true that
v(t, · ) ∈ D.

Because of the lack of techniques to solve PDE’s in infinite dimensions in situa-
tions as described above, the “classical” approach to solve (1.3) was to first solve
(1.1) and then show in what sense the transition probabilities of the solution solve
(1.3) (cf. e.g. [12], [2], [8], [14], [15], [18], [22], [5] and the references therein). Since
about 1998, however, a substantial part of recent work in this area (cf. e.g. [9]
[23], [24], and one of the initiating papers, [19]) is based on the attempt to solve
Kolmogorov equations in infinitely many variables (as (1.3) above) directly and,
reversing strategies, use the solution to construct weak solutions, i.e., solutions in
the sense of a martingale problem as formulated by Stroock and Varadhan (cf. [25]),
for SPDE’s as (1.1) above, even for very singular coefficients (naturally appearing
in many applications).

In [21] a new method was presented to solve (1.3) for all x ∈ X (or an explicitly
described subset thereof). It is based on finite dimensional approximation, obtain-
ing a solution which despite of the lack of (elliptic and) parabolic regularity results
on infinite dimensional spaces will nevertheless have regularity properties. More
precisely, setting Xp := Lp((0, 1), dr), we shall construct a semigroup of Markov
probability kernels pt(x, dy), x ∈ Xp, t > 0, on Xp such that for all u ∈ D we have
t 7→ pt(|Lu|)(x) is locally Lebesgue integrable on [0,∞) and

(1.4) ptu(x) − u(x) =

∫ t

0

ps(Lu)(x) ds ∀ x ∈ Xp.

Here as usual for a measurable function f : Xp → � we set

(1.5) ptf(x) :=

∫

f(y) pt(x, dy), x ∈ Xp, t > 0,

if this integral exists. p has to be large enough compared to the growth of F . As
a second step in [21] a conservative strong Markov process with weakly continuous
paths was constructed, which is unique under a mild growth condition and which
solves the martingale problem given by L as in (1.2), and hence also (1.1) weakly,
for every starting point x ∈ Xp. Also an invariant measure for this process was
constructed in [21].

The present paper can be considered as a supplement to [21], focussing on the
L1(ν)–theory of (1.3) with respect to suitably chosen reference measures ν on X ,
one of which is the mentioned invariant measure. We shall thus concentrate on (1.3)
and refer for treating SPDE (1.1) to [21]. The advantage of an L1(ν)–theory for
(1.3) is that one really gets solutions of (1.3) in its original differential formulation
rather than merely its integral (or mild) formulation (1.4). The disadvantage is that
statements are considerably weakened to merely ν–a.e. statements, i.e. allowing ν–
zero sets as exceptional sets of points in X where the equation does not hold.
Nevertheless, one gets useful information. Such L1(ν) (or even Lp(ν))–theory has
been developed in [23], [24], [19] and more recently in [9], [1], [3], [6], [7], [10],
[11], [16], in partly more special cases than ours or in other situations. But ν was
always chosen to be an infinitesimally invariant measure of L, i.e. ν is a probability
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measure on X solving the equation L∗ν = 0 (cf. Theorem 3.2(i) below). Our
main aim in this paper is to specify a large class � of probability measures ν on
X for which the results in [21] imply that (L, D) is well–defined and closable on

L1(X, ν), and that its closure (L
ν

1 , D(L
ν

1)) generates a C0–semigroup on L1(X, ν)
which then by definition gives a solution for (1.3) in L1(X, ν). Because there is
no Lebesgue measure on X , it is particularly important to find substitutes. One
important feature of such a substitute should be that this measure should have full
topological support, i.e. it should be strictly positive on every non–empty open set,
to have that continuous representatives of L1(X, ν)–classes are unique. This issue
has hardly been addressed in the above mentioned literature. In this paper for
the first time we construct a measure ν0 in the above class � with full topological
support on X .

We emphasize that the methods to establish an L1-theory for Kolmogorov op-
erators of type (1.2) developed in this paper work in general and are not restricted
to the case of underlying domains which are in � as (0, 1) above, but also extend
to d-dimensional domains.

The organization of this paper is as follows. In Section 2 we recall the framework
from [21], keeping the notation introduced there, and describe examples. In Sec-
tion 3 we summarize those results from [21] used subsequently. In Section 4 we de-
fine the said class � of probability measures and show well–definedness, closability
of (L,D) on L1(X, ν) as well as that its closure generates a Markov C0–semigroup
on L1(X, ν) for all ν ∈ � . Section 5 is devoted to the construction of the specific
reference measure ν0 of full topological suppor mentioned above.

This paper in connection with [21] (see also [20]) covers a major part of the
contents of the lecture series given by the first named author during the conference
“Quantum Information and Complexity” held at Meijo University, Nagoya, in Jan-
uary 2003. We refer to the references, quoted in the text below, for other material
touched upon in the lectures.

It is a great pleasure for the first named author to thank Professor Takeyuki
Hida for organizing the above mentioned conference and for creating such a nice
scientifically stimulating atmosphere among the participants. Thanks also go to
all Japanese colleagues and friends who supported him, in particular Professor
K. Saito, and also Meijo University and the staff involved. We hope that also in
the future Professor Hida will find all necessary support for such conferences to be
able to provide both his extraordinary scientific input as well as his warmhearted
hospitality to the participating mathematical community.

2. Framework and main examples

Let us recall the framework and notation from [21].
For a σ-algebra B on an arbitrary set E we denote the space of all bounded

resp. positive real-valued B-measurable functions by Bb, B+ respectively. If E is
equipped with a topology, then B(E) denotes the corresponding Borel σ-algebra.
The spaces X = L2(0, 1) and H1

0 are as in the introduction and they are equipped
with their usual norms | · |2 and | · |1,2; so we define for x : (0, 1) → � , measurable,

|x|p :=
(

∫ 1

0

|x(r)|p dr
)1/p

(∈ [0,∞]), p ∈ [1,∞),

|x|∞ := ess supr∈(0,1)|x(r)|,
and define Xp := Lp((0, 1), dr), p ∈ [2,∞], so X = X2. If x, y ∈ H1

0 , set

|x|1,2 := |x′|2, (x, y)1,2 := (x′, y′),
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where x′ := d
dr x is the weak derivative of x. We shall use this notation from now

on and we also write x′′ := d2

dr2 x = ∆x.

Let H−1 with norm | · |−1,2 be the dual space of H1
0 . We always use the contin-

uous and dense embeddings

(2.1) H1
0 ⊂ X ≡ X ′ ⊂ H−1,

so H1

0

〈x, y〉H−1 = (x, y) if x ∈ H1
0 , y ∈ X . The terms “Borel-measurable” or

“measure on X , H1
0 , H−1 resp.” will below always refer to their respective Borel σ-

algebras, if it is clear on which space we work. We note that since H1
0 ⊂ X ⊂ H−1

continuously, by Kuratowski’s Theorem H1
0 ∈ B(X), X ∈ B(H−1) and B(X) ∩

H1
0 = B(H1

0 ), B(H−1) ∩ X = B(X). Furthermore, the Borel σ–algebras on X and
H1

0 corresponding to the respective weak topologies coincide with B(X), B(H1
0 )

respectively.
For a function V : X → (0,∞] having weakly compact level sets {V ≤ c},

c ∈ �+, we define:

WCV :=
{

f : {V < ∞} → �
∣

∣

∣
f is continuous on each {V � R}, R ∈ � ,(2.2)

in the weak topology inherited from X,

and lim
R→∞

sup
{V
�

R}

V −1|f | = 0
}

,

equipped with the norm ‖f‖V := sup{V <∞} V −1|f |. Obviously, WCV is a Banach
space with this norm. We are going to consider various choices of V , distinguished
by respective subindices, namely we define for κ ∈ (0,∞)

Vκ(x) := eκ|x|2
2, x ∈ X,

Θκ(x) := Vκ(x)(1 + |x′|22), x ∈ H1
0 ,

(2.3)

and for p > 2

Vp,κ(x) := eκ|x|2
2

(

1 + |x|pp
)

, x ∈ X,

Θp,κ(x) := Vp,κ(x)(1 + |x′|22) + Vκ(x)
∣

∣

(

|x| p
2

)′∣
∣

2

2
, x ∈ H1

0 .
(2.4)

Clearly, {Vp,κ < ∞} = Xp and {Θp,κ < ∞} = H1
0 . Each Θp,κ is extended to a

function on X by defining it to be equal to +∞ on X \ H1
0 . Abusing notation, for

p = 2 we also set V2,κ := Vκ and Θ2,κ := Θκ. For abbreviation, for κ ∈ (0,∞),
p ∈ [2,∞) we set

(2.5) WCp,κ := WCVp,κ
, W1Cp,κ := W1CΘp,κ

,

and we also abbreviate the norms correspondingly,

(2.6) ‖ · ‖p,κ := ‖ · ‖Vp,κ
, and ‖ · ‖1,p,κ := ‖ · ‖Θp,κ

.

All these norms are, of course, well defined for any function on X with values
in [−∞,∞]. And therefore we shall apply them below not just for functions in
WCp,κ or W1Cp,κ. For p′ � p and κ′ � κ by restriction WCp,κ is continuously and
densely embedded into WCp′,κ′ and into W1Cp,κ (see Korollary 5.6 in [21]), as well
is the latter into W1Cp′,κ′ . Vκ and Vp,κ will serve as convenient Lyapunov functions
for L and Θκ, Θp,κ naturally appear as parts of functions bounding LVκ, LVp,κ,
respectively (cf. condition (F2) and Example 2.1 below, as well as Lemma 4.6 in
[21]). Note that the level sets of Θp,κ are even strongly compact in X .

For a function V : X → (1,∞], we also define spaces Lipl,p,κ, p � 2, κ > 0,
consisting of functions on X which are locally Lipschitz continuous in the norm
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|(−∆)−l/2 · |2, l ∈ �+. The respective semi-norms are defined as follows:

(2.7) (f)l,p,κ := sup
y1,y2∈Xp

(

Vp,κ(y1)∨Vp,κ(y2)
)−1 |f(y1) − f(y2)|

|(−∆)−l/2(y1 − y2)|2
(∈ [0,∞]).

For l ∈ �+ we define

(2.8) Lipl,p,κ :=
{

f : Xp → �
∣

∣ ‖f‖Lipl,p,κ
< ∞

}

,

where ‖f‖Lipl,p,κ
:= ‖f‖p,κ + (f)l,p,κ. When X is of finite dimension, (f)l,p,κ is

a weighted norm of the generalised gradient of f (cf. Lemma 3.6 in [21]). Also,
(Lipl,p,κ, ‖ · ‖Lipl,p,κ

) is a Banach space (cf. Lemma 5.7 in [21]) and Lipl,p,κ ⊂
Lipl′,p′,κ′ if l′ � l, p′ � p, κ′ � κ. In this paper we shall only deal with the case
l = 0.

Obviously, each f ∈ Lip0,p,κ is uniformly | · |2–Lipschitz continuous on every
| · |p-bounded set and by restriction for p′ ∈ [p,∞), κ′ ∈ [κ,∞)

(2.9) Bb(Xp) ∩ Lip0,p,κ ⊂ W1Cp′,κ′ .

Besides the space D := FC2
b defined in the introduction, other test function

spaces Dp,κ on X will turn out to be convenient. They are for κ ∈ (0,∞) defined
as follows:

(2.10) Dκ :=
{

u = g ◦ PN

∣

∣ N ∈ � , g ∈ C2(�N ),

‖u‖2,κ +
∥

∥|Du|2
∥

∥

2,κ
+

∥

∥Tr(AD2u)
∥

∥

2,κ
< ∞

}

.

Obviously, Dκ ⊂ WC2,κ and Dκ ⊂ Dκ′ if κ′ ∈ [κ,∞). We extend the definition
(1.2) of the Kolmogorov operator L for all u ∈ FC2 := {u = g ◦ PN |N ∈ � , g ∈
C2(�� )}. So, L can be considered with domain Dκ.

Now let us collect our precise hypotheses on the Kolmogorov operator (1.2).
First we recall that in the entire paper ∆ = x′′ is the Dirichlet Laplacian on (0, 1).
Consider the following condition on the map A : X → X :

(A) A is a nonnegative symmetric linear operator from X to X of trace class such
that AN := PNAPN is an invertible operator represented by a diagonal matix
on EN for all N ∈ � .

Here EN , PN are as defined in the introduction. Furthermore, we set

(2.11) a0 := sup
x∈H1

0
\{0}

(x, Ax)

|x′|22
= |A|H1

0
→H−1 ,

where | · |H1

0
→H−1 denotes the usual operator norm on bounded linear operators

from H1
0 into its dual H−1.

Consider the following condition for a map F : H1
0 → X .

(F2) For every k ∈ � the map F (k) := (F, ηk) : H1
0 → � is | · |2-continuous on

| · |1,2-balls and there exists a sequence FN : EN → EN , N ∈ � , of bounded
locally Lipschitz continuous vector fields satisfying the following conditions:

(F2a) There exist κ0 ∈ (0, 1
4a0

] and a set Qreg ⊂ [2,∞) such that 2 ∈ Qreg

and for all κ ∈ (0, κ0), q ∈ Qreg there exist mq,κ > 0 and λq,κ ∈ �
such that for

(2.12) LNu(x) :=
1

2
Tr

(

AND2u
)

(x) +
(

x′′ + FN (x), Du(x)
)

,

u ∈ W
2,1
loc (EN ), x ∈ EN , N ∈ � ,

we have for all N ∈ �
(2.13) LNVq,κ := LN

(

Vq,κ �EN

)

� λq,κVq,κ − mq,κΘq,κ on EN .
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(F2b) For all ε ∈ (0, 1) there exists Cε ∈ (0,∞) such that for all N ∈ � and
dx-a.e. x ∈ EN (where dx denotes Lebesgue measure on EN )

(

DFN (x)y, y
)

� |y′|22 +
(

ε|x′|22 + Cε

)

|y|22 ∀ y ∈ EN .

(F2c) lim
N→∞

∣

∣PNF − FN ◦ PN

∣

∣

2
(x) = 0 ∀ x ∈ H1

0 , and lim
N→∞

∣

∣(ηk, FN ) −
F (k)

∣

∣ = 0 uniformly on H1
0 -balls for all k ∈ � .

(F2d) For κ0 and Qreg as in (F2a), there exist κ ∈ (0, κ0), p ∈ Qreg such that
for some Cp,κ > 0 and some ω : [0,∞) → [0, 1] vanishing at infinity

∣

∣FN ◦ PN

∣

∣

2
(x) � Cp,κΘp,κ(x)ω

(

Θp,κ(x)
)

∀ x ∈ H1
0 , N ∈ � .

We note that the second part of (F2c) was not assumed to hold in [21], except for
the last part of its Appendix.

Although condition (F2) looks abstract and at first sight artificial, it is exactly
what is needed for our analysis and what is satisfied in many situations as the
following example shows.

Example 2.1. Consider the following condititons on the map F : H1
0 → X :

(F1)

(2.14) F (x) =
d

dr

(

Ψ ◦ x
)

(r) + Φ
(

r, x(r)
)

, x ∈ H1
0 (0, 1), r ∈ (0, 1),

where Ψ : � → � , Φ : (0, 1) × � → � satisfy the following conditions:
(Ψ) Ψ ∈ C1,1(� ) (i.e. Ψ is differentiable with locally Lipschitz derivative)

and there exist C ∈ [0,∞) and a bounded, Borel-measurable function
ω : [0,∞) → [0,∞) vanishing at infinity such that

|Ψxx|(x) ≤ C +
√

|x| ω(|x|) for dx-a.e. x ∈ � .

(Φ1) Φ is Borel-measurable in the first and continuous in the second variable
and there exist g ∈ Lq1(0, 1) with q1 ∈ [2,∞] and q2 ∈ [1,∞) such that

|Φ(r, x)| ≤ g(r)(1 + |x|q2) for all r ∈ (0, 1), x ∈ � .

(Φ2) There exist h0, h1 ∈ L1
+(0, 1), |h1|1 < 2, such that for a.e. r ∈ (0, 1)

Φ(r, x) sign x ≤ h0(r) + h1(r)|x| for all x ∈ � .

(Φ3) There exist ρ0 ∈ (0, 1], g0 ∈ L1
+(0, 1), g1 ∈ L

p1

+ (0, 1) for some p1 ∈
[2,∞], and a function ω : [0,∞) → [0,∞) as in (Ψ) such that with

σ : (0, 1) × � → � , σ(r, x) := |x|√
r(1−r)

for a.e. r ∈ (0, 1)

Φ(r, y) − Φ(r, x) ≤
[

g0(r) + g1(r)
∣

∣σ(r, x)
∣

∣

2− 1

p1 ω
(

σ(r, x)
)

]

(y − x)

for all x, y ∈ � , 0 � y − x � ρ0.

Then we have that (F1) implies (F2). More precisely, (F2a) holds with κ0 :=
2−|h1|1

8a0

, Qreg := [2,∞) and (F2d) holds with p ∈ [2,∞) ∩
(

q2 − 3 + 2
q1

,∞
)

and

any κ ∈ (0, κ0). The proof of this fact is extremely involved. All details can be
found in Section 4 in [21]. It is obviously very easy to find plenty of examples for
functions Ψ, Φ as in (F1). For instance, one can take Ψ(x) := αx2, α ∈ [0,∞), and
Φ(r, x) := −βxm, β ∈ [0,∞), m ∈ � , m odd. If α := 1

2 , β := 0, SPDE (1.1) is just
the classical stochastic Burgers equation, and if α := 0, β > 0, it is just a classical
stochastic reaction diffusion equation of Ginsburg–Landau type.
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3. Main background results

In this section we list a number of results from [21], which we shall use below,
but in appropriately shortened form. For the complete formulations and detailed
proofs we refer to [21].

Theorem 3.1. (“Pointwise solutions of the Kolmogorov equations”). Suppose (A)
and (F2) hold. Let κ0, Qreg be as in (F2a), κ ∈ (0, κ0) and p ∈ Qreg be as in
(F2d). Let κ∗ ∈ (κ, κ0), κ1 ∈ (0, κ∗ − κ]. Then there exists a semigroup (pt)t>0 of
probability kernels on Xp, independent of κ∗, having the following properties:

(i) (“Existence”) Let u ∈ Dκ1
. Then t 7→ pt(|Lu|)(x) is locally Lebesgue integrable

on [0,∞) and

(3.1) ptu(x) − u(x) =

∫ t

0

ps(Lu)(x) ds for all x ∈ Xp,

where as usual

(3.2) ptu(x) :=

∫

u(y) pt(x, dy) .

In particular, for all s ∈ [0,∞)

lim
t→0

ps+tu(x) = psu(x) for all x ∈ Xp.

(ii) There exists λκ∗ ∈ (0,∞) such that

(3.3)

∫ ∞

0

e−λκ∗sps(Θp,κ∗)(x) ds < ∞ for all x ∈ Xp.

(iii) (“Uniqueness”) Let (qt)t>0 be a semigroup of probability kernels on Xp satisfy-
ing (i) with (pt)t>0 replaced by (qt)t>0. If in addition, (3.3) holds with (qt)t>0

replacing (pt)t>0 for some κ ∈ (0, κ0) replacing κ∗, then pt(x, dy) = qt(x, dy)
for all t > 0, x ∈ Xp.

Proof. See Proposition 6.7 in [21]. �

Theorem 3.2. (“Invariant measure”). Assume that (A) and (F2) hold. Let p, κ∗

be as in Theorem 3.1.

(i) There exists a probability measure µ on H1
0 which is “L-infinitesmally invari-

ant”, i.e. Lu ∈ L1(H1
0 , µ) and

(3.4)

∫

Lu dµ = 0 for all u ∈ D

(L∗µ = 0 for short). Furthermore,

(3.5)

∫

Θp,κ∗ dµ < ∞.

(ii) µ, extended by zero to all of Xp, is (pt)t>0-invariant, i.e. for all f : X → � ,
bounded, measurable, and all t > 0,

∫

ptf dµ =

∫

f dµ.

(with (pt)t>0 from Theorem 3.1).

Proof. See Appendix in [21]. The method is taken from [4] which we also refer to
as a general reference for infinitesimally invariant measures. �
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Now for (pt)t>0 as above consider the corresponding resolvent of kernels gλ(x, dy)
defined for λ ∈ (0,∞), x ∈ Xp as follows: for f ∈ Bb(Xp)

gλf(x) :=

∫

f(y) gλ(x, dy)

:=

∫ ∞

0

e−λt ptf(x)dt .

(3.6)

We extend the measures gλ(x, dy), x ∈ Xp, λ ∈ (0,∞), by zero to all of X .

Proposition 3.3. Suppose (A), (F2) hold and let p, κ∗, κ1 be as in Theorem 3.1.
Then there exists λ∗ ∈ (0,∞) such that for λ > λ∗

gλ

(

(λ − L)u
)

= u for all u ∈ Dκ1
.

Furthermore, there exists mp,κ∗ ∈ (0,∞) such that

(3.7) gλΘp,κ∗ ≤ 1

mp,κ∗

Vp,κ∗ .

In particular, gλ(x, X \ H1
0 ) = 0 for all x ∈ Xp.

Proof. Theorem 6.4 and Proposition 6.7(i) in [21]. �

Proposition 3.4. Suppose (A), (F2) hold and let p, κ∗, κ1 be as in Theorem 3.1.

Let N ∈ � . For LN as in (2.12) let (R(N)
λ )λ>0 be the corresponding Markovian

pseudo–resolvent on L∞(EN ) (which exists according to Proposition 3.1 in [21].
For f ∈ Bb(X) define

G
(N)
λ f :=

(

R(N)
λ (f �EN

)
)

◦ PN .

Then there exists λ∗ ∈ (0,∞) such that for all f ∈ Lip0,2,κ1
∩Bb(Xp) the following

assertions hold

(i) λgλf = lim
m→∞

λG
(m)
λ f weakly in WCp,κ∗ (hence pointwise on Xp) uniformly

in λ ∈ [λ∗,∞).

(ii) For all λ > λ∗, G
(N)
λ f ∈ ∩ε>0Dκ1+ε and, provided f ∈ D, G

(N)
λ f ∈ ⋂

ε>0
Dε.

(iii) For all λ > λ∗ and all x ∈ H1
0

∣

∣(λ − L)G
(N)
λ f(x) −

(

f ◦ PN

)

(x)
∣

∣

� 1

λ − λ∗

∣

∣PNF − FN ◦ PN

∣

∣

2
(x)V2,κ1

(x) (f)0,2,κ1

and
lim

N→∞
sup

λ≥λ∗

λ
∣

∣(λ − L)G
(N)
λ f − f

∣

∣(x) = 0 .

Proof. See Theorem 6.4 and Corollary 4.2, in particular, (4.5), in [21]. �

Corollary 3.5. Consider the situation of Proposition 3.4 and let f ∈ Lip0,2,κ1
∩

Bb(Xp). Let x ∈ ⋃

n∈�
PNX. Then

lim
λ→∞

λgλf(x) = f(x) .

Proof. We have x = PNx for some N ∈ � . Hence for all m ≥ N , x = Pmx, and

(3.8)
∣

∣λgλf(x) − f(x)
∣

∣

≤
∣

∣λgλf(x) − λG
(m)
λ f(x)

∣

∣ +
∣

∣λR(m)
λ (f �Em

)(Pmx) − f(Pmx)
∣

∣.

By Proposition 3.4(i) the first term in the right hand side of (3.8) converges to zero
as m → ∞ uniformly in λ ∈ [λ∗,∞). But the second term converges to zero as
λ → ∞ by Proposition 3.4(i) in [21] for all m ≥ N . Hence the assertion follows. �
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4. A class of natural reference measures

In all of this section we assume (A) and (F2) to hold. Let p, κ be as in (F2d)
and let κ∗ ∈ (κ,∞). Let � denote the set of all probability measures ν on X such
that

(4.1)

∫

Θp,κ∗ dν < ∞ ,

and ν is “infinitesimally L–excessive”, i.e. for some λν ∈ (0,∞)

(4.2)

∫

Lu dν ≤ λν

∫

u dν for u ∈ D such that u � 0 ν-a.e.

Note that by (4.1) we have that ν(H1
0 ) = 1 for every ν ∈ � and by (F2d) that

Lu ∈ L1(X, µ) for all u ∈ D. Obviously, an L-infinitesimally invariant measure
satisfying (4.1) is in � . We also emphasize that for ν ∈ � there might exist a
non–empty open set U ⊂ X such that ν(U) = 0, so u ∈ D with u = 0 ν–a.e. might
not be identically equal to zero. So, the following proposition is crucial to consider
L as an operator on L1(X, ν).

Proposition 4.1. Assume that (A), (F2) hold with p, κ as in (F2d) and let ν ∈ � .
Then

(4.3) u ∈ D, u = 0 ν–a.e. ⇒ Lu = 0 ν–a.e.

Proof. First we note that for u, v ∈ D
(4.4) L(uv) = uLv + vLu + 2

(

A1/2Du, A1/2Dv
)

.

So, if u = 0 ν–a.e., then by (4.2) and (4.4) with v := u it follows that

0 � 2

∫

∣

∣A1/2Du
∣

∣

2

2
dν =

∫

Lu2 dν � λν

∫

u2 dν = 0 ,

so A1/2Du = 0 ν–a.e. Applying (4.4) again with v ∈ D arbitrary we find, since
u · (±1) · v = 0 ν–a.e., that

∫

(±1) · v Lu dν =

∫

L(uv) dν � λν

∫

uv dν = 0,

so,
∫

v Lu dν = 0 for all v ∈ D.

Since D is closed under multiplication and generates B(X), by a monotone class
argument it follows that Lu = 0 ν–a.e. �

Let ν ∈ � . We define Dν to be the set of all ν–equivalence classes determined
by D. Dν

κ for κ ∈ (0,∞) is defined correspondigly. By Proposition 4.1
(

L,Dν
(κ1)

)

is a well-defined operator on L1(X, ν). Our aim in this section is to prove that
(L,Dν) is essentially maximal dissipative on L1(X, ν).

Lemma 4.2. Assume that (A) and (F2) hold with p, κ as in (F2d). Let κ1 ∈
(0, κ∗ − κ] and ν ∈ � . Then:

(i) Lu ∈ L1(X, ν) for all u ∈ Dκ1
.

(ii) (L − λν ,Dν) is dissipative, hence (L,Dν) is closable on L1(V, ν).

(iii) For the closure (L
ν

1 ,D(L
ν

1)) it follows that Dν
κ1

⊂ D(L
ν

1) and L
ν

1u is given
by formula (1.2). In particular, (4.2) holds for all u ∈ Dκ1

.
Proof.

(i): Since κ∗ > κ, the assertion follows immediately by (4.1).
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(ii): (L, Dν) is a diffusion operator in the sense of Appendix B in [13]. So, the
assertion follows by Appendix B, Lemma 1.8 in [13].

(iii): Let u ∈ Dκ1
and N ∈ � be such that u = u ◦PN . Choose ϕ ∈ C∞(� ) such

that ϕ′ ≤ 0, 0 ≤ ϕ ≤ 1, ϕ = 1 on [0, 1] and ϕ = 0 on (2,∞). For n ∈ � let

ϕn(x) := ϕ
( |PN x|2

2

n2

)

, x ∈ X , un := ϕnu. Then un ∈ D and

Lun = ϕnLu + uLϕn + 2(Du, ANDϕn).

Note that for i, j = 1, . . . , N there are cj , cij ∈ (0,∞) such that

|∂jϕn| ≤
cj

n
1{|PNx|2<2n}, |∂2

ijϕn| ≤
cij

n2
1{|PN x|2<2n}.

Then 0 ≤ ϕn ↑ 1 as n → ∞, |ANDϕn| ≤ max cj

n , and |Lϕn(x)| ≤ c
n

(

|x′|2 +

|PNF |2
)

≤ 2c
n Θp,κ∗(x) for all x ∈ H1

0 and some c ∈ (0,∞) independent of

x and n by (F2c) and (F2d). So un → u and Lun → Lu pointwise on H1
0 ,

up to a constant uniformly bounded by Θp,κ∗ . Hence the assertion follows
by (4.1) and Lebesgue’s dominated convergence theorem.

�

Theorem 4.3. Assume that (A) and (F2) hold with p, κ as in (F2d) and let λ∗ be
as in Proposition 3.3. Let ν ∈ � . Then:

(i) Let λ > λ∗. Then (λ − L)(Dν) is dense in L1(X, ν). In particular, the

closure (L
ν

1 ,D(L
ν

1)) of (L,Dν) generates a C0–(i.e. strongly continuous)

semigroup (etL
ν

1 )t>0 on L1(X, ν) and (L
ν

1 ,D(L
ν

1)) is the only closed exten-
sion of (L,Dν) with this property.

(ii) (etL
ν

1 )t>0 is Markov.
(iii) Let (pt)t>0 be as in Theorem 3.1. Then for all t > 0, f ∈ B+(X)

(4.5)

∫

ptf dν ≤ eλνt

∫

f dν

and ptf is a ν–version of etL
ν

1f for all t > 0, f ∈ Bb(X).

Proof. (i) Let u ∈ D. By Proposition 3.4(ii) we know that G
(N)
λ u ∈ Dκ1

for all N ∈ � . Furthermore, Proposition 3.4(iii), (F2d), and (4.1) imply

that (λ − L)G
(N)
λ f → f as N → ∞ in L1(X, ν) by Lebesgue’s dominated

convergence theorem. Since D is dense in L1(X, ν), the first part of the
assertion follows by Lemma 4.2(ii). The rest is then a consequence of the
classical Lumer–Phillips theorem.

(ii) The assertion follows by (i) and Lemma 1.9 in Appendix B of [13].
(iii) Let t > 0. To prove (4.5), since D is dense in L1(X, ν), we may assume

that f ∈ D, f ≥ 0. Then for large enough λ > 0 and all N ∈ � by

Proposition 3.4(ii) we have G
(N)
λ f ∈ Dκ1

and hence by Proposition 3.3 it
follows that

∫

λgλ+λν

(

(λ + λν − L)G
(N)
λ f

)

dν

= λ

∫

G
(N)
λ f dν

≤
∫

(λ + λν − L)G
(N)
λ f dν,

where the last step follows by the last part of Lemma 4.2(iii). Letting N →
∞ we conclude by Proposition 3.4(iii), (F2d), (3.7), (4.1), and Lebesgue’s
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dominated convergence theorem that
∫

λgλ+λν
f dν ≤

∫

f dν .

Hence by (3.6) and Fubini’s theorem
∫ ∞

0

e−λt

∫

e−λνtptf dν dt ≤
∫ ∞

0

e−λt

∫

f dν dt

for all λ > λ0 with λ0 ∈ (0,∞) sufficiently large. So, for g(t) :=
∫

f dν −
∫

e−λνtpt f dν we have that

h(λ) :=

∫ ∞

0

e−λtg(t) dt ≥ 0 for all λ > λ0 .

Since h is obviously completely monotone, by the Hausdorff–Bernstein–Widder
theorem (see e.g. Theorem 3.1 in the Appendix of [17]) it follows that g ≥ 0 dt-a.e.,
hence g ≥ 0 every where by right–continuity (cf. Theorem 3.1(i) above). Hence
(4.5) is proved. In particular, pt extends to a bounded linear operator on L1(X, ν)
with operator norm less than eλνt for all t > 0, which we denote by Tt. Clearly,
(Tt)t>0 is a semigroup of operators and (by the last part of Theorem 3.1(i)):

lim
t→∞

Ttf = f in L1(X, ν)

if f ∈ D. But then a 2ε-argument proves that (Tt)t>0 is strongly continuous on

L1(X, ν). Let L̃ be the corresponding generator. We have to show that

(4.6) Tt = etL̄ν
1 tor all t > 0.

Let us consider the corresponding resolvents

G
(1)
λ f :=

∫

e−λtTtf dt,

and

G
(2)
λ f :=

∫

e−λtetL̄ν
1f dt =

(

λ − L̄ν
1

)−1
f

for λ > λν , f ∈ L1(X, ν). It is easy to check (again using the uniqueness of the

Laplace transform) that gλf is a ν-version of G
(1)
λ f for all λ > λν , f ∈ L1(X, ν).

Hence for all u ∈ Dν and λ large enough we have by Proposition 3.3

G
(1)
λ

(

(λ − L)u
)

= u = G
(2)
λ

(

(λ − L)u
)

.

So, by continuity and since (λ − L)(Dν) is dense in L1(X, ν) by assertion (i), it

follows that G
(1)
λ = G

(2)
λ for large enough λ. Hence (4.6) follows. �

Remark 4.4. Consider the situation of Theorem 4.3. By definition for t � 0 and
f ∈ D(L̄ν

1) we have

(4.7)
d

dt
etL̄ν

1f = L̄ν
1etL̄ν

1f = etL̄ν
1 L̄ν

1f,

where d
dt is taken in the norm in L1(X, ν). Since ptf is a ν-version of etL̄ν

1f by
Theorem 4.3(iii), we see that (4.7) is an infinitesimal version of (3.1), however, only
in an L1(X, ν)-sense, in particular, valid only outside a ν-zero-set of points in X .
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5. A suitable reference measure

Let (A), (F2) hold with p, κ as in (F2d). In this section we shall construct a
measure ν0 in � such that ν0(U) > 0 for every non-empty open set U ⊂ X .

Let {xn |n ∈ �} ⊂ ⋃

N∈�
PNX be a dense subset of X . Let λ0 ∈ (0,∞) bigger

than the λ∗ in Propositions 3.3 and 3.4. Set

βn := λ0

(

2n + λ0gλ0
Θp,κ∗(xn)

)−1
, n ∈ � ,

and define a measure ν0 on X by

(5.1) ν0(B) := Z−1
∞
∑

n=1

βngλ0
(xn, B), B ∈ B(X),

where Z ∈ (0,∞) is chosen so that ν0 is a probability measure.

Theorem 5.1. Let (A), (F2) hold with p, κ as in (F2d) and let ν0 be defined as
in (5.1). Then ν0 ∈ � with λν0

= λ0 and ν0(U) > 0 for every non-empty open set
U ⊂ X.

Proof. Let u ∈ D, u � 0. Then by Proposition 3.3
∫

(λ0 − L)u dν0 = Z−1
∞
∑

n=1

βngλ0

(

(λ0 − L)u
)

(xn)

= Z−1
∞
∑

n=1

βnu(xn) � 0,

and by construction
∫

Θp,κ∗ dν0 < ∞.

So, both (4.1) and (4.2) are satisfied, hence ν0 ∈ � . To show the last part of the
assertion, let ∅ 6= U ⊂ X , U open such that ν0(U) = 0. We may assume that U is
a ball in X of radius r > 0 and centre y0. Define

f(x) :=
dist(x, U c)

r

with dist(x, U c) := inf{|x − y|2 | y ∈ U c}. Then f is a bounded Lipschitz function,
hence f ∈ Lip0,2,κ1

, 0 � f � 1, and f(y0) = 1. Then

0 = ν0(U) �
∫

f dν0
� 0,

so for all n ∈ � , λ � λ0,

0 = gλ0
f(xn) � gλf(xn) � 0.

Therefore, by Corollary 3.5

0 = lim
λ→∞

λgλf(xn) = f(xn) for all n ∈ � .

Since {κn |n ∈ �} is dense in X , it follows that f = 0 on X , in contradiction to
f(y0) = 1. Hence such a ball U does not exist. �

Acknowledgement

Financial support of the BiBoS-Research Centre and the DFG-Research Group
“Spectral Analysis, Asymptotic Distributions and Stochastic Dynamics” is grate-
fully acknowledged.



L1-THEORY 13

References

[1] S. Albeverio and B. Ferrario, Uniqueness results for the generators of the two-
dimensional Euler and Navier-Stokes flows. The case of Gaussian invariant measures, J.
Funct. Anal. 193 (2002), no. 1, 77–93.

[2] V. Barbu and G. Da Prato, A phase field system perturbed by noise, Nonlinear Anal. 51:6
(2002), 1087–1099.

[3] V. Barbu, G. Da Prato and A. Debusche, The transition semigroup of stochastic Navier-
Stokes equations in 2-D, Preprints di Matematica – n. 11, Scuola Normale Superiore, Pisa,
2002.
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[19] M. Röckner, Lp-analysis of finite and infinite dimensional diffusion operators, Stochastic
PDE’s and Kolmogorov’s equations in infinite dimensions (G. Da Prato, ed.), Lect. Notes
Math. 1715, Springer, Berlin, 1999, pp. 65–116.
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