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Abstract

A mechanism for the occurrence of irreversibility is proposed. It is based on
the allowance for the relativistic factor in a mechanical system consisting of a
finite number of particles interacting with one other particle in accordance with
the law of elastic collision and moving in a vessel with a natural law of reflection
from the vessel walls. The investigated model, a modification of Poincaré model,
is the generalized billiard and describes the motion of three-dimensional gas
particles in a parallelepiped. It is proved that for general conditions the Gibbs
entropy and thermodynamic entropy for this system of particles increase with
time when the relativistic factor is taken into account, whereas in Newtonian
case the Gibbs entropy is a constant.
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1 Introduction

In this paper we give a proof of the law of entropy increase for a three-dimensional
gas consisting of finitely many identical mass point particles P1, . . . , PN moving in a
vessel having the form of a parallelepiped, and the influence of the boundary of the
vessel on the gas is periodic. Proofs were given in [6] in the case of one-dimensional
gas where the vessel is a segment, but the result for three-dimensional was announced
there without detailed proof.

General setting is due to Poincaré who introduced a similar model in paper [5] and
considered the case when the force caused by an external body (a hot body) acts on
the particles. The feature peculiar to our models considered here is that the influence
of the external body is modeled by periodic actions of the walls of the volume. We
assume that the volume has the form of a parallelepiped defined by the inequalities
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a1 ≤ q1 ≤ b1, a2 ≤ q2 ≤ b2, a ≤ q ≤ b, where q1, q2, q is the set of orthogonal
coordinates, particles P1, . . . , PN move in the vessel, and, on colliding with each other,
interact by the law of elastic collision, and we assume that the following boundary
conditions are imposed. After reflection from the parallelepiped boundaries given by
the equations q = a (q = b) at the time t the particle moves in the same way as if it
had reflected at this time from a wall moving in the direction q by a law q = f1(t) (by
law q = f2(t)); after reflection from boundaries given by the equations q = a1 (q = b1)
at the time t the particle moves in the same way as if it had reflected at this time
from a wall moving in the direction q1 by law q1 = g1(t) (by law q1 = g2(t)); after
reflection from boundaries given by the equation q = a2 (q = b2) at the time t the
particle moves in the same way as if it had reflected at this time from a wall moving in
the direction q2 by law q2 = h1(t) (by law q2 = h2(t)). We suppose that the functions
f1(t) and f2(t) are smooth and of period 1 with respect t, the functions g1(t), g2(t),
h1(t), h2(t) are constants and motion of particles is specified by equations of special
theory of relativity.

From physical point of view functions fi(t), gi(t), hi(t) (i = 1, 2) simulate fields of
small amplitudes of oscillations, caused by atoms of the vessel walls.

The system under consideration is a generalized billiards in a parallelepiped which
introduced for general closed region in [7] and was studied in [1], [2] and [6] in rel-
ativistic case. The main results are the following: the Gibbs , entropy (constructed
with respect to the Newtonian invariant measure) and the thermodynamic entropy
(constructed with respect to the phase volume) increases as the time t increases if we
take the relativistic effect into account. If one considers this system in the framework
of Newtonian mechanics then the Gibbs entropy will be a constant [6]. The growth of
entropy is not monotonic (this corresponds to physical presentation), but completely
irreversible. These results resolve the well-known reversibility paradox, according to
which, if the entropy increases then, changing signs of velocities, one obtains that the
entropy should decrease, because the trajectories are preserved and the motion goes
in the opposite direction. In our case such a phenomena is not possible because the
general conditions for the growth of the entropy depends only on the absolute values
of the velocity, and if it is bigger then some constant the entropy will increase. This is
the reason why in the relativistic case the generalized billiard is irreversible and dissi-
pative. Another proof of dissipativity of generalized relativistic billiards is given in [1]
and [2]. I would like to note that as stressed in [4], to resolve reversibility paradox and
to justify the second law of thermodynamics in the framework of Newtonian mechanics
is not possible.

2 Introducing a measure on the phase space for the

distribution function and entropy

Denoting the space coordinates q1, q2, q of the particle Ps by q
(s)
1 , q

(s)
2 , q(s), and the

components of the momentum vector of the particle Ps along the directions q1, q2, q by
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p
(s)
1 , p

(s)
2 , p(s), we introduce a statistical distribution function

ρ(t) =

ρ(q
(1)
1 , q

(1)
2 , q(1), p

(1)
1 , p

(1)
2 , p(1), . . . , q

(N)
1 , q

(N)
2 , q(N), p

(N)
1 , p

(N)
2 , p(N), t) ≥ 0

for particles P1, . . . , PN at time t. Since the measure

dΓ =
d�qd�p

|v(1)
1 v

(1)
2 v(1) . . . v

(N)
1 v

(N)
2 v(N)|

(1)

is invariant with respect to classical dynamics for the gas model under consideration
([5]), where

d�q = dq
(1)
1 dq

(1)
2 dq(1) . . . dq

(N)
1 dq

(N)
2 dq(N),

d�p = dp
(1)
1 dp

(1)
2 dp(1) . . . dp

(N)
1 dp

(N)
2 dp(N),

v
(s)
1 = v

(s)
1 (t), v

(s)
2 = v

(s)
2 (t), v(s) = v(s)(t)

are components of the velocity vector of the particle P2 at time t along the directions
q1, q2, q, we see that the entropy

H(t) = −
∫

K
ρ(t) ln ρ(t) dΓ (2)

plays the role of the Gibbs entropy for the model of the three-dimensional gas. Here
the integration is taken over the phase space K given by the direct product

K = Π × . . . × Π︸ ︷︷ ︸
N

×R3 × . . . ×R3︸ ︷︷ ︸
N

,

where
Π = {q1, q2, q : a1 ≤ q1 ≤ b1, a2 ≤ q2 ≤ b2, a ≤ q ≤ b} ,

and R3 is the three-dimensional space. In addition, we consider the thermodynamic
entropy

H̃(t) = −
∫

K
ρ̃(t) ln ρ̃(t) d�q d�p

for the distribution function

ρ̃(t) =
ρ(t)

|v(1)
1 v

(1)
2 v(1) . . . v

(N)
1 v

(N)
2 v(N)|

with respect to the phase volume. The normalization condition and the definitions of
dΓ and ρ̃(t) yield the relations∫

K
ρ(t) dΓ = 1,

∫
K

ρ̃(t) d�q d�p = 1,
∫

K
ρ(t) d�q d�p < ∞,

as well as the following condition, which characterizes the conservation mass law:

ρ(t)dΓ(t) = ρ(t0)dΓ(t0), t > t0 ,

and using the equality (2) we obtain the relation

H̃(t) = H(t) +
∫

K
ρ̃(t) ln |v(1)

1 v
(1)
2 v(1) . . . v

(N)
1 v

(N)
2 v(N)| d�q d�p . (3)
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3 Relativistic model of a three-dimensional gas and

formulation of main results

We now use the system of units in which the rest-mass of the particle is equal to 1 and
the light velocity is c = 1. Then in the three-dimensional case the energy E(s), the
velocity vector �v(s), and the momentum vector �p(s) of the particle Ps are connected by
the relations

�p(s) =
�v(s)√

1 − |�v(s)|2
, E(s) =

1√
1 − |�v(s)|2

=
√
|�p(s)|2 + 1.

Theorem 1. Suppose that the relativistic model of a three-dimensional gas satisfies
the following conditions:
1) the functions fi(t) (i = 1, 2) have the period 1 with respect to t, and the functions
gi(t), hi(t) (i = 1, 2) do not depend on t and have the form

g1(t) ≡ a1, g2(t) ≡ b1, h1(t) ≡ a2, h2(t) ≡ b2;

2) the height l = b − a is an irrational number;
3) the inequality

δ = δ(f1(t), f2(t)) =

1∫
0

ln
(1 + ḟ1(t))(1 − ḟ2(t − l))

(1 − ḟ1(t))(1 + ḟ2(t − l))
dt > 0 (4)

is valid;
4) at the initial time t0 the statistical distribution fuction ρ(t0) vanishes in the region

|p(s)
1 | > p

(s)
0 , |p(s)

2 | > p
(s)
0 , |p(s)| < p∗,

where s = 1, · · · , N ; p
(s)
i = p

(s)
i (t0), (i = 1, 2), p(s) = p(s)(t0).

If the constant p∗ is sufficiently large for fixed constants p
(s)
0 (s = 1, . . . , N) then

for any time t ≥ t0 the following inequalities hold

H(t) − H(t0) > C∗
1 + C∗

2(t − t0),

H̃(t) − H̃(t0) > C∗
1 + C∗

2(t − t0),

where C∗
2 > 0 and the constants C∗

1 and C∗
2 do not dependent of t and t0.

Remark 1. As follows from [5] and [1] the physical sense of inequality (4) is the walls
of the vessel are hot relative to the gas because the energy transmitted to particles in
a sufficiently large time from upper and lower boundaries of the vessel is positive in
the relativistic case. The inequality (4) holds if

f1(t) = f ∗
1 (t) = ε(Q1 sin(2πKt) + Q2 sin(4πKt)) + c∗,

f2(t) = f ∗
2 (t) ≡ b,
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where dc∗
dt

≡ 0, KQ2 > 0, K is integer, Q1 �= 0, ε > 0, ε is a small parameter, and for
this case the quantity δ(f ∗

1 (t), f ∗
2 (t)) = δ∗ introduced in the theorem 2, has the form

δ∗ = 8π3K3Q2
1Q2ε

3 + O(ε5) ,

and δ∗ > 0 for small ε.

Remark 2. The assertions of Theorem 1 are valid if the functions gi(t) and hi(t)
(i = 1, 2) are not constants, but modules of their derivatives are sufficiently small
relative to the constant δ.

Remark 3. Using arguments of the paper [1] one can change the condition 2) of
Theorem 1 by the requirement according to which the number l is not equal to a
rational number with denominator less than some positive constant.

The proof of Theorem 1 is given in Section 5. It use essentially auxiliary Lemmas
and Theorem 2 which are formulated and proved in Section 4.

4 Auxiliary Lemmas and Theorem

Let N = 1. We assume that after collision at time t with the lower boundary q = a the
particle has the momentum vector �p = (p1, p2, p) and the velocity vector �v = (v1, v2, v),
and the component v of �v satisfies the inequality v > 0 and is directed to the upper
boundary q = b. After the first collision with the upper boundary at time �t the particle
has the momentum vector �̄p = (p̄1, p̄2, p̄) and the velocity vector �̄v = (v̄1, v̄2, v̄), whose
component v̄ is directed to the lower boundary q = a. After the first collision with the
lower boundary at time t′ the particle has the momentum vector �p ′ = (p′1, p

′
2, p

′). We
define the transformations

A : (t, p) → (t′, p′), Ā : (t, p) → (t̄,−p̄) (5)

depending on parameters p1, p2, and the transformations

Â : (t, p) → (t̂, p̂), ¯̄A : (t, p) → (̄t̄, ¯̄p)

by the relations

¯̄t = t + l, ¯̄p = p
1 − ḟ2(̄t̄)

1 + ḟ2(̄t̄)
, (6)

t̂ = t + 2l, p̂ = p
(1 + ḟ1(t̂))(1 − ḟ2(̄t̄))

(1 − ḟ1(t̂))(1 + ḟ2(̄t̄))
. (7)

Lemma 1. The transformations Ā and A are given by the following relations:

t̄ = t +
l
√

1 + |�p|2
p

,

−p̄ = p
1 − ḟ2(t̄)

1 + ḟ2(t̄)
− 2ḟ2(t̄)

1 − ḟ 2
2 (t̄)

√
p2 + ∆ − p), (8)
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t′ = t̄ +
l
√

1 + |�p|2
−p̄

,

p′ = (−p̄)
1 + ḟ1(t

′)

1 − ḟ1(t′)
+

2ḟ1(t
′)

1 − ḟ 2
1 (t′)

(
√

p̄2 + ∆̄ − (−p̄)) (9)

where ∆ = p2
1 + p2

2 + 1, ∆̄ = p̄2
1 + p̄2

2 + 1, and the values of
√

p2 + ∆ and
√

p̄2 + ∆ are
assumed to be positive.

Proof. The equalities for t and t′ follow from the definitions of A and A obviously.
Here we prove the equality for −p in (8). The equality for p′ in (9) is proved

completely analogously. We first assume that the rest-mass of the upper wall is finite
and equal to M . Then we pass to the limit in the relations as M → ∞. By the
momentum and energy of conservation law we obtain:

p + PM = p + PM, (10)

√
|�p|2 + 1 + M

√
P 2 + 1 =

√
|�p|2 + 1 + M

√
P

2
+ 1 , (11)

where P = V√
1−V 2 , P = V√

1−V
2
, V is the velocity of the upper wall at the time t before

the collision with the particle, V is the velocity of the upper wall at time t after the
collision with the particle.

Solving equation (11) we obtain:

MP = M

{(√
1 + |�p|2 −

√
1 + |�p|2

M
+
√

1 + P 2

)2

−1

} 1
2

=

MP +

√
1 + P 2

P
(
√

1 + |�p|2 −
√

1 + |�p|2) + O
(

1

M

)
.

We substitute this equality in (10). Then in the limit as M → ∞ we have√
|�p|2 + 1 −

√
|�p|2 + 1 = ḟ2(t)(p − p), which implies that

p2 − p2 = ḟ2(t)(p − p)(
√
|�p|2 + 1 +

√
|�p|2 + 1),

p + p = ḟ2(t)(
√
|�p|2 + 1 +

√
|�p|2 + 1), (12)

−ḟ 2
2 (t)(p − p) = −ḟ2(t)(

√
|�p|2 + 1 −

√
|�p|2 + 1). (13)

Combining equalities (12) and (13), we obtain

−p(1 − ḟ 2
2 (t)) = p(1 + ḟ 2

2 (t)) − 2ḟ2(t)
√
|�p|2 + 1

= p(1 − ḟ2(t))
2 − 2ḟ2(t)(

√
|�p|2 + 1 − p) ,

from which the equality for −p in (8) follows.
Lemma 1 is proved.
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Remark 2. From definitions of Â and A and from Lemma 1 it follows that for fixed
values of p1 and p2 and for large value of p the transformations A and Â differ by a

quantity O(1
p
) and the transformations A and A differ by a quantity O(1

p
).

We now introduce the new variable η = ln p, and define the transformations D,D,

D̂, D as follows:

D : (t, η) → (t′ mod1, η′), D : (t, η) → (t mod1, η),

D̂ : (t, η) → (t̂ mod1, η̂), D : (t, η) → (t mod1, η),

where η′ = ln p′, η = ln(−p), η̂ = ln p̂, η = ln p.

Lemma 2.We assume that the coordinates p1, p2, of the vector �p = (p1, p2, p)satisfy
by the inequalities |pi| ≤ p0 (i = 1, 2). Then there exists a number ∆0 > 0, depending
only on the functions f1(t), f2(t) and p0, such that if p ≥ e∆0, then the transformations
A and A are defined, and if η ≥ ∆0, then the transformations D and D are defined.

The proof of Lemma 2 follows from the equalities (6), (7), from Lemma 1 and from

definitions of transformations D, D, D̂, D.

Lemma 3. Let

F (t) = ln
(1 + ḟ1(t))(1 − ḟ2(t − l))

(1 − ḟ1(t))(1 + ḟ2(t − l))
(14)

and (t̂k, p̂k) = Âk(t, p), where Âk is the kth power of Â. Suppose that l is irrational
number and

1∫
0

F (t)dt = δ > 0. (15)

If δ̃ is an arbitrary number such that 0 < δ̃ < δ, then there is a natural number
m̃ = m̃(δ̃) such that for all t, p > 0, and integer m ≥ m̃, the following inequalities
hold:

m∑
k=1

F (t̂k) ≥ mδ̃, ln p̂m ≥ ln p + mδ̃. (16)

Proof. We consider the circle mapping B : t → t̂ = t+2l mod1. Since l is irrational,
we see that the transformation B is uniformly ergodic [3], that is the ergodic theorem for
a continuous function holds everywhere, and therefore, by Birknoff’s ergodic theorem
([3]), for any t there exists the limit

I = lim
m→∞

1

m

m∑
k=1

F (Bkt) =
∫ 1

0
F (t)dt,

where Bk is the kth power of B. By (15) we have I = δ > 0, therefore

m∑
k=1

F (Bkt) = mδ + o(m), (17)

where lim
m→∞

o(m)
m

= 0, and the convergence is inform with respect to all t. Now the

conclusion of Lemma 3 follows from the equalities (17), (14) and the definition Â. This
completes the proof of Lemma 3.
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Theorem 2. We assume that the number of particles N = 1, for this case the condi-
tions 1), 2), 3) of Theorem 1 hold and the coordinates p1, p2 of vector �p = (p1, p2, p)

satisfy the inequalities |p1| < p0, |p2| < p0. Let (t
(m)
∗ , p

(m)
∗ ) = Am(t, p) and (t

(m)
∗ , p

(m)
∗ ) =

AAm−1(t, p) (Am is the mth power of A; m = 1, 2, · · ·). Then for any δ̃ > 0 such that

0 < δ̃ < δ there exists a number p̃ = p̃(p0, δ̃) such that if p ≥ p̃, then for all t p
(m)
∗ → ∞,

p
(m)
∗ → ∞ as m → ∞, and the following inequalities hold:

p(m)
∗ > C̃peδ̃m, p(m)

∗ > C̃peδ̃m,

m∏
k=1

∂p
(k)
∗

∂p
(k)
∗

(t(k)
∗ , p(k)

∗ )
∂p

(k)
∗

∂p
(k−1)
∗

(t
(k)
∗ , p(k−1)

∗ )

 > C̃eδ̃m, (18)

∂p
(m)
∗

∂p
(m−1)
∗

(t(m)
∗ , p(m−1)

∗ )

m−1∏
k=1

∂p
(k)
∗

∂p
(k)
∗

(t(k)
∗ , p(k)

∗ )
∂p

(k)
∗

∂p
(k−1)
∗

(t
(k)
∗ , p(k−1)

∗ )

 > C̃eδ̃m, (19)

where p
(0)
∗ = p, C̃ is a positive constant, independent of parameters t, p1, p2, p, m, the

quantities ∂p
(k)
∗

∂p
(k)
∗

(t
(k)
∗ , p

(k)
∗ ), ∂p

(k)
∗

∂p
(k−1)
∗

(t
(k)
∗ , p

(k−1)
∗ ) on the left-hand side of (18), (19) are the

functions of t
(k)
∗ , p

(k)
∗ and t

(k)
∗ , p

(k−1)
∗ respecively, and the product on the left-hand side

of (19) is replaced by 1 when m = 1.

Proof of Theorem 2. Let ∆0 be the number satisfying the condition of Lemma 2. By

Lemmas 2 and 1 and the definitions of A, A, Â, A, D, D, D̂, D it follows that if

|p1| ≤ p0, |p2| ≤ p0, then transformations D, D, D̂, D are well defined in the region
Γ = {t, η : 0 ≤ t ≤ 1, η ≥ ∆0}, and if (t, η) ∈ Γ, then the following estimates hold:

|t′ − t̂| + |t − t| <
C1

p
, |η′ − η̂| + |η − η| <

C1

p
, (20)

∣∣∣∣∣ln
{

∂p′

∂(−p)
(t′,−p)

∂(−p)

∂p
(t, p)

}
− ln

{
∂p̂

∂p
(t̂, p)

∂p

∂p
(t, p)

}∣∣∣∣∣ <
C1

p
, (21)

where (t′, η′) = D(t, η), (t, η) = D(t, η), (t̂, η̂) = D̂(t, η), (t, η) = D(t, η), C1 is a

constant independent of t, η, p1, p2, and the functions ∂p′
∂(−p)

(t′,−p), ∂(−p)
∂p

(t, p), ∂p̂

∂p
(t̂, p),

∂p
∂p

(t, p) are the derivatives of the functions p′ = p′(t′,−p), −p = −p(t, p), p̂ = p̂(t̂, p),

p = p(t, p), which are defined by equalities (6)–(13).

By the definitions of Â, A we have: η̂ = η+F1(t̂), η = η+F2(t), where the functions

F1(t) = ln 1+ḟ1(t)

1−ḟ1(t)
, F2(t) = ln 1−ḟ2(t)

1+ḟ2(t)
satisfy the inequalities

∣∣∣∣∣dF1

dt
(t)

∣∣∣∣∣ < C2,

∣∣∣∣∣dF2

dt
(t)

∣∣∣∣∣ < C2, (22)
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and C2 is a constant independent of t.
By Lemma 3, for every δ̃ such that 0 < δ̃ < δ there exists a natural number

m̃ = m̃(δ̃) such that the inequalities (16) are valid for all t, p > 0 and integer m ≥ m̃.
We introduce the following notations:

(x0, y0) = Âm̃(t, p), (xn, yn) = An(x0, y0), (xn, yn) = AAn−1(x0, y0),

(x̂n, ŷn) = Ân(x0, y0), (xn, yn) = AÂn−1(x0, y0), (t0, η0) = (x0, ln y0),

(tn, ηn) = Dn(t0, η0), (tn, ηn) = DDn−1(t0, η0), (t̂n, η̂n) = D̂n(t0, η0),

(tn, ηn) = DD̂n−1(t0, η0),

where n = 1, 2, · · · and Dn and D̂n are the nth powers of D and D̂, respectively.
By (20), (21) and (22) if |p1| ≤ p0, |p2| ≤ p0, then the following inequalities hold

for n = 1, 2, · · ·:
|tn − t̂n| + |tn − tn| < C1

n∑
s=1

1

ys−1

, (23)

|ηn − η̂n| < C2

n∑
s=1

(|ts − t̂s| + |ts − ts|) + C1

n∑
s=1

1

ys−1
,

∣∣∣∣∣
n∑

k=1

ln

{
∂yk

∂yk

(xk, yk)
∂yk

∂yk−1

(xk, yk−1)

}

−
n∑

k=1

ln

{
∂ŷk

∂yk

(x̂k, yk)
∂yk

∂ŷk−1
(xk, ŷk−1)

}∣∣∣∣∣
< C2

n∑
s=1

(|ts − t̂s| + |ts − ts|) + C1

n∑
s=1

1

ys−1

,

provided that all points (tk, ηk) (k = 0, 1, . . . , n − 1) belong to Γ. Therefore, if we
assume that for n = 1, 2, . . .

|tn − t̂n| + |tn − tn| < d, C1

∣∣∣∣∣
n∑

s=0

1

ys

∣∣∣∣∣ < d (24)

and the constant d can be chosen arbitrarily small and independent of n for large p,
then we obtain:

ηn ≥ η̂n − |ηn − η̂n| > ln p + (n + m̃)(δ̃ − (C2 + 1)d), (25)

n∑
k=1

ln

{
∂yk

∂yk

(xk, yk)
∂yk

∂yk−1
(xk, yk−1)

}

≥
n∑

k=1

ln

{
∂ŷk

∂yk

(x̂k, yk)
∂yk

∂ŷk−1
(xk, ŷk−1)

}
−

−
∣∣∣∣∣

n∑
k=1

ln

{
∂yk

∂yk

(xk, yk)
∂yk

∂yk−1

(xk, yk−1)

}

− ln

{
∂ŷk

∂yk

(x̂k, yk)
∂yk

∂ŷk−1
(xk, ŷk−1)

}∣∣∣∣∣
> (n + m̃)(δ̃ − (C2 + 1)d). (26)
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However, this assumption implies inequality∣∣∣∣∣
n∑

s=0

1

ys

∣∣∣∣∣ <
1

p

n∑
s=1

exp(−(s + m̃)(δ̃ − (C2 + 1)d))

<
exp(−m̃(δ̃ − (C2 + 1)d))

p(1 − exp(−(δ̃ − (C2 + 1)d)))
,

where the right-hand side of the inequality can be made arbitrarily small by choosing
sufficiently large p. Therefore from (23)–(26), definitions of A, A and Lemma 1 it
follows that for every δ̃ such that 0 < δ̃ < δ there exist constants ˜̃p and m̃ such
that the condition p ≥ ˜̃p implies that (tn, ηn) ∈ Γ for all n = 0, 1, · · ·, and following
inequalities hold:

yn > C3pe
(n+m̃)δ̃, yn > C3pe

(n+m̃)δ̃, (27)

n∏
k=1

{
∂yk

∂yk

(xk, yk)
∂yk

∂yk−1

(xk, yk−1)

}
> C3pe

(n+m̃)δ̃, (28)

∂yn

∂yn−1
(xn, yn−1)

n∏
k=1

{
∂yk

∂yk

(xk, yk)
∂yk

∂yk−1
(xk, yk−1)

}
> C3e

(n+m̃)δ̃, (29)

where C3 is a positive constant independent of the parameters t, p, n, p1, p2, and the
product on the left-hand side of (29) is replased by 1 when n = 1. Introducing the
notation

β = max
0≤t≤1

∣∣∣∣∣(1 + ḟ1(t))(1 − ḟ2(t − l))

(1 − ḟ1(t))(1 + ḟ2(t − l))

∣∣∣∣∣ , p̃ = ˜̃pβm̃ and C̃ = C3β
−m̃,

we see that the conclusion of Theorem 2 follows from inequalities (27)-(29). Theorem
2 is proved.

5 Proof of Theorem 1

Assume that at time t the particle Ps has the coordinate vector �q(s) = �q(s)(t) =

(q
(s)
1 , q

(s)
2 , q(s)), the momentum vector �p(s) = �p(s)(t) = (p

(s)
1 , p

(s)
2 , p(s)), the velocity

vector �v(s) = �v(s)(t) = (v
(s)
1 , v

(s)
2 , v(s)) and suppose also that at time t̃ > t it has

the coordinate vector �̃q
(s)

= �̃q
(s)

(t̃) = (q̃
(s)
1 , q̃

(s)
2 , q̃(s)), the momentum vector �̃p

(s)
=

�̃p
(s)

(t̃) = (p̃
(s)
1 , p̃

(s)
2 , p̃(s)), and the velocity vector �̃v

(s)
= �̃v

(s)
(t̃) = (ṽ

(s)
1 , ṽ

(s)
2 , ṽ(s)). We

introduce differentials d�q = dq
(1)
1 dq

(1)
2 dq(1) · · · dq

(N)
1 dq

(N)
2 dq(N), d�p = dp

(1)
1 dp

(1)
2 dp(1) · · ·

dp
(N)
1 dp

(N)
2 dp(N), d�̃q = dq̃

(1)
1 dq̃

(1)
2 dq̃(1) · · · dq̃

(N)
1 dq̃

(N)
2 dq̃(N), d�̃p = dp̃

(1)
1 dp̃

(1)
2 dp̃(1) · · · dp̃

(N)
1

dp̃
(N)
2 dp̃(N), and the quantities ρ = ρ(q

(1)
1 , · · · , p(N), t), ρ̃ = ρ(q̃

(1)
1 , · · · , p̃(N), t̃).

Since the number of particles in the elements of the phase space K of measures

dΓ =
d�qd�p

|v(1)
1 v

(1)
2 v(1) · · · v(N)

1 v
(N)
2 v(N)|
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and

dΓ̃ =
d�̃qd�̃p

|ṽ(1)
1 ṽ

(1)
2 ṽ(1) · · · ṽ(N)

1 ṽ
(N)
2 ṽ(N)|

is the same, we have
ρdΓ = ρ̃dΓ̃. (30)

Putting

τ (s)(�q(s), �p(s), t̃(s)) =
D(q̃

(s)
1 , q̃

(s)
2 , q̃(s), p̃

(s)
1 , p̃

(s)
2 , p̃(s))

D(q
(s)
1 , q

(s)
2 , q(s), p

(s)
1 , p

(s)
2 , p(s))

,

we obtain

d�q d�p
N∏

s=1

τ (s)(�q(s), �p(s), t̃) = d�̃qd�̃p.

Therefore, by (30) we have

ln ρ̃ = ln ρ +
n∑

s=1

(ln |ṽ(s)
1 ṽ

(s)
2 ṽ(s)| − ln |v(s)

1 v
(s)
2 v(s)|) −

−
N∑

s=1

ln |τ (s)(�q(s), �p(s), t̃)|. (31)

We estimate the quantities τ (s)(�q(s), �p(s), t̃), (s = 1, · · · , N). Without loss of general-
ity one can assume that at initial time t the particle Ps is on the boundary q = a of the
vessel and the coordinate v(s) of its velocity vector �v(s) satisfies the inequality v(s) > 0.
The case v(s) < 0 is reduced to the case v(s) > 0, if to interchange the lower and upper
boundaries of the vessel. We denote the kth (after t) time t of the collision of the

particle Ps with the boundary q = a by t
(s)
k , and the momentum vector and velocity

vector of the particle Ps at time t
(s)
k after the collision with the boundary q = a by

�p
(s)
k = (p

(s)
k1 , p

(s)
k2 , p

(s)
k0 ), �v

(s)
k = (v

(s)
k1 , v

(s)
k2 , v

(s)
k0 ), respectively. We also denote the kth (after

t) time t of particle Ps with the boundary q = b by t
(s)
k , and the momentum vector and

velocity vector of the particle Ps at time t
(s)
k after collision with the boundary q = b by

�p
(s)

= (p
(s)
k,1, p

(s)
k,2, p

(s)
k,0), and �v

(s)

k = (v
(s)
k,1, v

(s)
k,2, v

(s)
k0 ), respectively. Two following cases are

possible:

1) t(s)ns
≤ t̃ < t

(s)
ns+1,

2) t
(s)
ns

≤ t̃ < t(s)ns
,

where ns is an natural number. Putting p
(s)
0,0 = p(s)(t), in the case 1) we have:

τ (s)(�q(s)�p(s), t̃) =

D(t
(s)
1 , p(s))

D(q(s), p(s))

ns∏
k=1

 ∂p
(s)
k,0

∂(−p
(s)
k,0)

(t
(s)
k ,−p

(s)
k,0)

∂(−p
(s)
k,0)

∂(p
(s)
k−1,0)

(t
(s)
k , p

(s)
k−1,0)

 ×

D(q̃(s), p̃(s))

D(t
(s)
ns , p̃(s))

=

=
ṽ(s)

v(s)

ns∏
k=1

 ∂p
(s)
k,0

∂(−p
(s)
k,0)

(t
(s)
k ,−p

(s)
k,0)

∂(−p
(s)
k,0)

∂(p
(s)
k−1,0)

(t
(s)
k , p

(s)
k−1,0)

 , (32)
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and in the case 2) we have

τ (s)(�q(s)�p(s), t̃) =
|ṽ(s)|
v(s)

∂(−p
(s)
ns,0)

∂(p
(s)
ns−1,0)

(t
(s)
ns

, p
(s)
ns−1,0) ×

×
ns−1∏
k=1

 ∂p
(s)
k,0

∂(−p
(s)
k,o)

(t
(s)
k ,−p

(s)
k,0)

∂(−p
(s)
k,0)

∂p
(s)
k−1,0

(t
(s)
k , p

(s)
k−1,0)

 . (33)

In the case ns = 1 the product on the right-hand side is replased by 1. Applying the
results of Theorem 2 to the equalities (32), (33), we see, that for every δ̃ such that
0 < δ̃ < δ (the quantity δ is defined in (4)) there exists a constant p̂ = p̂(p0, δ̃) such
that if p(s)(t) ≥ p̂ (s = 1, · · · , N), then

τ (s)(�q(s), �p(s), t̃) > C4e
δ̃ns,

for all t̃ > t and s = 1, · · · , N , where C4 > 0 is positive constant independent of t and
ns. Hence

ln τ (s)(�q(s)�p(s), t̃) > C̃1 + C̃2(t̃ − t), (34)

where C̃2 > 0 and the constants C̃1 and C̃2 do not depend on the parameters t, t̃, �q(s), �p(s),
s. Using equalities (1), (2), (30), (31) we obtain:

H(t̃) = −
∫

K

ρ̃ ln ρ̃ d�̃q d�̃p∏N
s=1 |v(s)

1 (t̃)v
(s)
2 (t̃)v(s)(t̃)|

=

= −
∫

K

ρ d�q d�p∏N
s=1 |v(s)

1 (t)v
(s)
2 (t)v(s)(t)|

×
{

ln ρ +
N∑

s=1

(ln(|ṽ(s)
1 ṽ

(s)
2 ṽ(s)| − ln |v(s)

1 v
(s)
2 v(s)|)

−
N∑

s=1

ln τ (s)(�q(s), �p(s), t̃)

}
, (35)

H(t) = −
∫
K

ρ ln ρ d�q d�p
N∏

s=1
|v(s)

1 (t)v
(s)
2 (t)v(s)(t)|

.

Now, applying estimate (34) to equality (35), and Theorem 2 to equality (3) we obtain
the assertion of Theorem 1.

Theorem 1 is proved.
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