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Abstract

We obtain a characterization of all locally bounded functions p ≥ 0
for which the equation (E) ∆u + p(x)ψ(u) = 0 has a positive solution in
Ω vanishing on the boundary, where Ω ⊂

�N is an arbitrary domain and
ψ > 0 is a nonincreasing continuous function on ]0,∞[. For Ω =

�N with
N ≥ 3, it is shown that (E) has a (unique) positive solution in

�N which
decays to zero at infinity if and only if p is the set {p > 0} has positive
Lebesgue measure and lim|x|→∞

∫�
N p(y)|x− y|2−Ndy = 0. This condition

can be replaced by
∫ ∞
0 rp(r)dr <∞ if p is radial.

1 Introduction

We study the existence of solutions to the semilinear elliptic problem







∆u+ p(x)ψ(u) = 0 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(1)

where Ω ⊂ �N is a domain, p is a nonnegative Borel measurable, locally bounded
function on Ω, and ψ is a nonincreasing continuous positive function on ]0,∞[.
The boundary condition in problem (1), and in the sequel, means that u(x) → 0
as δ(x) := dist(x, ∂Ω) → 0 if Ω is bounded. For unbounded domains we impose
in addition that u(x) → 0 as |x| → ∞.

∗Research supported by the DFG research group: Spektrale Analysis, asymptotische
Verteilungen und stochastische Dynamik.
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In the special case when Ω is the whole space �N with N ≥ 3, and ψ(u) = u−γ

for γ > 0, (1) is the following singular boundary value problem






∆u+ p(x)u−γ = 0 in �N ,
u > 0 in �N ,

u(x) → 0 as |x| → ∞,
(2)

which has been the subject of much study. Details about the importance of this
kind of semilinear equations in scientific applications can be found in [10, 12, 15]
(see also their references). In several papers (see, for instance, [3, 4, 5, 8, 10,
11, 12, 14]), we find various conditions, essentially based on the growth of the
function

φ : r 7→ sup
|x|=r

p(x), (3)

which are sufficient for the existence (or the nonexistence) of solutions to (2).
However, as to my knowledge, no characterizations of functions p for which prob-
lem (2) admits a solution have been given. In this paper, our main goal is to
establish necessary and sufficient conditions for the existence of a solution to the
more general problem (1) (see Section 2 where the main results are stated).

The main tool in our approach is a connection between nonnegative solutions
to the equation

∆u+ p(x)ψ(u) = 0 (4)

and nonnegative harmonic functions. More precisely, by means of an integral
equation, we establish a one-to-one correspondence between nonnegative har-
monic functions and nonnegative solutions to (4) in a Greenian domain Ω. This
allows us to derive a characterization of all p for which problem (1) has a so-
lution. Furthermore, we find a necessary and sufficient condition under which
equation (4) has bounded positive solutions.

For 0 < γ < 1, Kusano and Swanson proved in [11] that problem (2) has a
solution if p is locally Hölder continuous on �N , p(x) > 0 for every x ∈ �N \{0},
infx∈

�
N p(x)/φ(|x|) > 0, and

∫ ∞

0

tN−1+γ(N−2)φ(t) dt <∞. (5)

This result has been extended for every γ > 0 by Delmasso in [3]. Lair and
Shaker established in [13] the existence of a solution to problem (1) with Ω = �N

provided p is continuous, not identically zero on �N , and
∫ ∞

0

rφ(r) dr <∞. (6)
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Moreover, they pointed out that (6) is nearly optimal, in the sense that there
is no radial solution to (1) if p is radial and (6) fails. In this paper, it will be
shown that condition (6) is really optimal. In other words, for a nontrivial radial
function p we shall prove that (1) possesses a solution if and only if (6) holds
true. However, we give an example showing that (6) is, in general, not necessary
for the existence of a solution to problem (2).

The paper is organized as follows: In section 2 we state the main results and we
discuss some special cases. After recalling some basic tools in section 3, we study
in section 4 the semilinear equation (4) in bounded regular domains. Section 5
deals with the proofs of Theorems 1 and 2. We investigate problems (8) and (1)
in section 6, and we prove Theorem 3 and Corollary 2.

2 Main results

2.1. Assumptions. In all the following, Ω is a domain of �N , N ≥ 1, p is a non-
negative Borel measurable function on Ω such that supK p <∞ for every compact
set K ⊂ Ω, and ψ is a nonincreasing continuous positive function on ]0,∞[. Since
equation (4) has no positive solution in a non-Greenian domain except when p is
identically zero, we assume that Ω is Greenian, that is, there exists a nonconstant
positive superharmonic function on Ω, which in turn means (see [6, p.27]) that
the Laplace operator ∆ has a Green function GΩ in Ω (∆GΩ(·, y) = −εy, where
εy denotes the Dirac measure concentrated at y).

We note that, for dimensions N ≥ 3, �N and thereby all open subsets of �N

are Greenian. On the other hand, it is well known that � 1 and � 2 are not
Greenian. However, a bounded open domain of �N for N ≥ 1 is always Greenian.

We define the function GΩp for every x ∈ Ω by GΩp(x) =
∫

Ω
GΩ(x, y)p(y) dy.

The following assumptions will be often used:

(A1) GΩp is not identically ∞ in Ω,

(A2) GΩp is bounded in Ω,

(A3) GΩp is in the class C0(Ω),

where C0(Ω) denotes the set of all continuous real-valued functions u on Ω such
that u = 0 on ∂Ω, which simply means (as was mentioned in the introduction)
that limx→z u(x) = 0 for all z ∈ ∂D if D is bounded, and if D is unbounded we
also require that lim|x|→∞ u(x) = 0.

2.2. Main theorems. The first result of this paper is the following theorem:
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Theorem 1. Assume that (A1) holds. Then nonnegative solutions u to equa-
tion (4) in Ω are in one-to-one correspondence with nonnegative harmonic func-
tions h in Ω. This correspondence is given by the formula

u−

∫

Ω

GΩ(·, y)p(y)ψ(u(y)) dy = h. (7)

More precisely, the following holds:

(a) If u is a nonnegative solution to (4) in Ω, then h given by (7) is a nonneg-
ative harmonic function in Ω.

(b) Conversely, for every nonnegative harmonic function h in Ω, there exists a
unique nonnegative solution u to equation (4) satisfying (7).

Of course, the theorem is obvious if p identically zero in Ω. If p is nontrivial,
then u is the minimal solution to equation (4) satisfying u > h in Ω. Conversely,
for a given positive solution u to equation (4), the function h in (7) is the maximal
harmonic function dominated by u in Ω. We note that a formula similar to (7)
has been used by Dynkin [7] in order to construct a one-to-one correspondence
between a class of nonnegative harmonic functions and a class of nonnegative
solutions to Lu+ f(u) = 0 in Ω, where f is a positive increasing locally Lipschitz
function on �+ with f(0) = 0, and L belongs to a class of differential operators
containing ∆.

Investigating the problem of the existence of bounded positive solutions to the
singular semilinear equation (4), we obtain:

Theorem 2. Equation (4) has a bounded positive solution in Ω if and only if (A2)
is valid.

For a given nonnegative harmonic function h in Ω, we consider the following
boundary value problem







∆u+ p(x)ψ(u) = 0 in Ω,
u > h in Ω,

u− h = 0 in ∂Ω,
(8)

which is a more general version of problem (1). If p is nontrivial in Ω, we prove
that condition (A3) is sufficient for the existence of a solution (which is unique)
to problem (8). If h = 0 in Ω, we show that (A3) is a necessary condition as well.
More precisely, the following result is obtained.

Theorem 3. Problem (1) has a solution if and only if p is nontrivial in Ω and
condition (A3) holds.
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We would like to point out that our results can easily be extended to more
general second order elliptic operators than ∆. Furthermore, the hypothesis that
p is locally bounded is not necessary in our approach. In fact, it is sufficient
to suppose that GDp is continuous for every bounded regular open set D such
that D ⊂ Ω. In particular, if N ≥ 3, it is enough to assume that p ∈ Lq(Ω) for
some q > N/2, or more generally, that the function p1Ω belongs to the so-called
Kato class K loc

N (see, e.g., [1]).

2.3. Entire solutions. A solution to (4) in the whole space �N will be called an
entire solution. For N ≥ 3, the explicit form of the Green function G of �N is
well known. It is defined on �N × �N by G(x, x) = ∞ and

G(x, y) =
κN

|x− y|N−2

(

where κN :=
Γ(N/2)

2(N − 2)πN/2

)

(9)

for every x, y ∈ �N such that x 6= y. So, taking Ω = �N , Theorems 2 and 3
immediately yield the following corollary.

Corollary 1. Let N ≥ 3. The following holds:

(a) Equation (4) has an entire bounded positive solution in �N if and only if

sup
x∈
�

N

∫

�
N

p(y)

|x− y|N−2
dy <∞.

(a) Equation (4) has an entire positive solution in �N which decays to zero at
infinity if and only if p is nontrivial and

lim
|x|→∞

∫

�
N

p(y)

|x− y|N−2
dy = 0.

2.4. A special case. Consider the case when Ω = �N and p is asymptotically
quasi-radial, i.e., there are c > 0 and a nontrivial Borel measurable function ϕ
on �+ such that

c−1ϕ(|x|) ≤ p(x) ≤ c ϕ(|x|) for |x| sufficiently large. (10)

In this setting, if a bounded positive solution to (4) exits then it necessarily
vanishes at infinity. We get the following:

Corollary 2. Let N ≥ 3 and assume that (10) holds. Then the following state-
ments are equivalent:

(a) Equation (4) admits an entire bounded positive solution in �N .

(b) Equation (4) admits an entire positive solution in �N vanishing at ∞.

(c) There exists a ≥ 0 such that
∫ ∞

a

rϕ(r) dr <∞. (11)
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3 Basic notions

For every open set D of �N let B(D) (resp. C(D)) be the set of all numerical Borel
measurable (resp. real-valued continuous) functions on D. C∞

c (D) will denote the
space of infinitely differentiable functions on D with compact support. Finally,
for every set F of numerical functions, we denote by F+ (resp. Fb) the set of all
functions in F which are nonnegative (resp. bounded).

We shall use some classical results dealing with harmonic and superharmonic
functions. The reader is referred to [6] or [2] for definitions and more details about
these functions. Let us recall that a bounded open set D in �N is called regular
if for every real continuous function f on ∂D the classical Dirichlet problem

{

∆h = 0 in D,
h = f on ∂D

has a unique solution HDf . It is easily seen that, for each point x ∈ D, the map
f 7→ HDf(x) defines a positive Radon measure on ∂D, which will be denoted by
µD

x and is called the harmonic measure relative to x and D. The harmonic kernel
on D is denoted by HD and defined by

HDf(x) =

{ ∫

f dµD
x if x ∈ D,

f(x) if x ∈ �N \D

for every f ∈ B(�N ) for which the integral makes sense. If D is connected
and HD|f |(x) < ∞ for some point x ∈ D, then HDf is harmonic in D. A
function s > −∞ is said to be superharmonic on the open set Ω, if it is lower
semicontinuous, HDs is harmonic on D and HDs ≤ s for every regular open set D
such that D ⊂ Ω.

If N ≥ 3, then �N is Greenian and its Green function G is given by (9). For
N = 2 let G be the function on � 2 × � 2 given by G(x, x) = ∞ and

G(x, y) =
1

2π
log

1

|x− y|
if x 6= y.

We shall denote again by GD, for every Greenian set D ⊂ �N , N ≥ 1, the
operator defined by

f 7→ GDf =

∫

D

GD(·, y)f(y) dy

whenever the integral has a sense. We recall (see [6, p.92]) that if D is a domain
and f ∈ B+(D), then GDf is either superharmonic or GDf ≡ ∞ in D.

Proposition 1. Let D ⊂ �N be a Greenian domain, and let f ∈ B+(D) be locally
bounded such that v = GDf 6≡ ∞. Then v ∈ C(D) and ∆v + f = 0 in D in the
distributional sense.
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Proof. For N = 1 this can be shown directly using the explicit form of the Green
function on a Greenian domain of � . Let N ≥ 2, B be an open ball such that
B ⊂ D, and define w = GBf . Then v − w is harmonic (and hence continuous)
on B. Indeed, since

HBGD(·, z)(x) =

{

GD(x, z) −GB(x, z) if z ∈ B,
GD(x, z) if z ∈ D\B

for every x ∈ B (see [6, p.86]), by Fubini’s theorem we get that

HBv(x) =

∫

∂B

v(y) dµB
x (y) =

∫

D

{

∫

∂B

GD(y, z) dµB
x (y)}f(z) dz

=

∫

D

HBGD(·, z)(x)f(z) dz = v(x) − w(x).

Analogously, w differs on B from u := G(f |B) by a harmonic function, where
f |B denotes the restriction of f to B. On the other hand, u is continuous on B
(even in the class C1(�N )) by Theorem 7 in [6, p.8]. Therefore, v is continuous
on every ball B with closure in D and hence v is continuous on D. Finally, the
equality ∆v + f = 0 can be obtained by easy computations. �

Proposition 2. If D ⊂ �N is a bounded regular open set, then the operator
GD maps Bb(D) into C0(D) and it is compact when Bb(D) is endowed with the
uniform norm.

These properties of GD are valid for a wide class of Radon measures on D
(which are called Kato measures) containing, in particular, the restriction to D
of the Lebesgue measure on �N . See for instance Proposition 2.1 in [9].

4 Solutions to (4) in bounded regular sets

In this paper, by a solution to a partial differential equation we shall mean a con-
tinuous solution in the distributional sense. In particular, a solution to equa-
tion (4) in an open set D ⊂ Ω will be a function u ∈ C+(D) such that pψ(u) is
locally integrable on D and, for all ϕ ∈ C∞

c (D),

∫

D

u∆ϕdx+

∫

D

pψ(u)ϕdx = 0.

We define supersolutions and subsolution to equation (4) in the same way replac-
ing “=” respectively by “≤”, “≥” and considering nonnegative function ϕ in the
space C∞

c (D). The following useful lemma follows easily from Proposition 1.
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Lemma 1. Let D ⊂ Ω be a domain and let u ∈ B+(D) such that u, ψ(u) are
locally bounded, and GD(pψ(u)) 6≡ ∞. Then u is a solution to (4) in D if and
only if the function u−GD(pψ(u)) is harmonic in D.

For an arbitrary open subset D ⊂ Ω, which is not necessarily connected, the
equivalence in the previous lemma still holds true provided GD(pψ(u)) is finite
on D, which in turn means that GD(pψ(u)) ∈ C(D) by virtue of Proposition 1.

Lemma 2. Let D ⊂ Ω be a bounded open set and let u, v ∈ C+(D) such that

∆u+ p(x)ψ(u) ≤ ∆v + p(x)ψ(v) in D.

If lim inf
x→z

(u− v)(x) ≥ 0 for every z ∈ ∂D, then u ≥ v in D.

Proof. Suppose that the open set V := {x ∈ D : u(x) < v(x)} is not empty.
Then the function w := u− v is superharmonic on V and, for every z ∈ ∂V ,

lim inf
x∈V,x→z

w(x) ≥ 0.

Consequently w ≥ 0 on V by the classical minimum principle for superharmonic
functions (see, for instance, [6, p.20]). This yields a contradiction and hence
V = ∅. �

By the same arguments, it can be shown that u ≥ v in an unbounded open
subset D if u− v ≥ 0 on ∂D, i.e., if lim infx→z(u− v)(x) ≥ 0 for all z ∈ ∂D and
lim inf |x|→∞(u− v)(x) ≥ 0.

We consider the semilinear Dirichlet problem
{

∆u+ p(x)ψ(u) = 0 in D,
u = f on ∂D

(12)

where D is a bounded regular open subset such that D ⊂ Ω and f ∈ C+(∂D).
In [5], del Pino investigated (12) in the case of ψ(u) = u−γ with γ > 0, f ≡ 0
on ∂D, and where D is smooth. He proved the existence and uniqueness of the
solution provided p is nontrivial and bounded in D. In the following lemma we
extend this result to the more general function ψ and where the boundary datum
is any nonnegative continuous function on ∂D.

Lemma 3. Let D be a bounded regular open set such that D ⊂ Ω and let f ∈
C+(∂D). Then problem (12) has a unique solution u ∈ C+(D). Furthermore, for
every x ∈ D we have

u(x) = HDf(x) +

∫

D

GD(x, y)p(y)ψ(u(y)) dy. (13)

Proof. The uniqueness of the solution to (12) is immediate by the previous lemma.
The existence of this solution and formula (13) will be proved in two steps.
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Step 1. Assume first that f ≥ ε on ∂D for some ε > 0, and consider the
sequences (un), (vn) defined by u0 = HDf and for n ≥ 0

un+1 = HDf + vn, (14)

vn =

∫

D

GD(·, y)p(y)ψ(un(y)) dy.

Since ψ is nonincreasing and un ≥ HDf ≥ ε for all n ≥ 0 we get

0 ≤ p(y)ψ(un(y)) ≤ ψ(ε) sup
D
p <∞

for every y ∈ D. Therefore, by Proposition 2, (vn) possesses a subsequence (vnk
)

which is uniformly convergent on D. Then (unk
) converges uniformly on D to a

function u ∈ Cb(D) which satisfies the integral equation (13) in view of (14) and
the dominated convergence theorem. Hence u is a solution to (4) by Lemma 1.
On the other hand, the fact that D is regular and pψ(u) is bounded on D yields
that GD(pψ(u)) ∈ C0(D) (see Proposition 2). Consequently, for every z ∈ ∂D we
have

lim
x→z

u(x) = lim
x→z

HDf(x) = f(z).

So the theorem is proved for every f ∈ C(∂D) such that f > 0 in ∂D.

Step 2. We now turn to the general case of a nonnegative continuous function
f on ∂D. For every k ≥ 1 let fk = k−1 + f and define uk to be the solution to
problem (12) for f = fk which is already determined in the first step. Applying
Lemma 2, we see that (uk) is a nonincreasing sequence in C+(D). On the other
hand,

uk = HDfk +

∫

D

GD(·, y)p(y)ψ(uk(y)) dy

for every k ≥ 1. Define u := limk→∞ uk (i.e., u = infk≥1 uk). Letting k tend to ∞
in the above formula, it follows that GD(pψ(u)) < ∞ and that u satisfies (13).
Therefore u is a solution to equation (4) by Lemma 1. Furthermore, the inequality
HDf ≤ u yields that

f(z) = lim inf
x→z

HDf(x) ≤ lim inf
x→z

u(x)

for every z ∈ ∂D. On the other hand, since u ≤ uk for all k ≥ 1 we get that

lim sup
x→z

u(x) ≤ lim sup
x→z

uk(x) = f(z) + k−1 → f(z) as k → ∞.

Whence u = f on ∂D and the proof is complete. �

It should be noticed that in the previous proof, it is of vital importance that
the operator v 7→ GD(pv) is compact on the space Bb(D) endowed with the
uniform norm. This is not necessarily true for the Greenian domain Ω.
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5 Proofs of Theorems 1 and 2

The purpose of this section is to prove Theorems 1 and 2. First we need two
further lemmas.

Lemma 4. Let ui ∈ B+(Ω) be real-valued such that GΩ(pψ(ui)) < ∞ on Ω and
let hi := ui − GΩ(pψ(ui)) for i = 1, 2. Suppose that h1 − h2 is a nonnegative
superharmonic function on Ω. Then u1 ≥ u2 on Ω.

Proof. Obviously

h1 − h2 +GΩ(v+) = u1 − u2 +GΩ(v−)

where v := p(ψ(u1) − ψ(u2)), and t± := max(±t, 0). Since u1 − u2 ≥ 0 on the
subset {v− > 0} of {ψ(u1) < ψ(u2)}, we see that the inequality

h1 − h2 +GΩ(v+) ≥ GΩ(v−) (15)

is valid in {v− > 0}. On the other hand h1 − h2 + GΩ(v+) is nonnegative
and superharmonic on Ω. Therefore, the domination principle [6, p.67] implies
that (15) holds true everywhere in Ω. This yields that u1 ≥ u2 on Ω. �

Lemma 5. Let (un) be a nondecreasing sequence of nonnegative solutions to
equation (4) in a domain Ω′ ⊂ Ω. Then u := supn≥1 un is either ∞ or a solution
to (4) in Ω′.

Proof. Without loss of generality we consider only the case when p is nontrivial.
Suppose that u is not identically infinite on Ω′. Then u is superharmonic on Ω′

by Theorem 3.1.4 in [2] and thereby HDu is harmonic in every regular open
set D such that D ⊂ Ω′ (see [6, p.35]). Choose a regular open set D with
closure in Ω′ and let α = infD u1. Then α > 0 and for every n ≥ 1 we have
ψ(u) ≤ ψ(un) ≤ ψ(α) in D. Consequently, in view of (13) we get that

un(x) = HDun(x) +

∫

D

GD(x, y)p(y)ψ(un(y)) dy (16)

≤ HDu(x) + ψ(α)

∫

D

GD(x, y)p(y) dy

for every x ∈ D. This proves that u is locally bounded on D. Passing to the
limit in (16) and using Lemma 1, it follows that u is a solution to (4) in D. Since
this is true for every regular open subset D with closure in Ω′, the function u is
a solution to equation (4) in Ω′. �
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In the remainder of this paper, we fix a sequence (Dn) of bounded regular open
sets such that Dn ⊂ Dn+1 for all n ≥ 1 and

⋃

n≥1Dn = Ω. We note that a such

sequence exists by Corollary 6.6.13 in [2]. If Ω = �N , a simple choice of (Dn) is
the following:

Dn = B(0, n) :=
{

x ∈ �N : |x| < n
}

.

From Proposition 1, we recall that (A1) is equivalent to the condition:

∫

Ω

GΩ(·, y)p(y) dy ∈ C(Ω). (17)

Proof of Theorem 1. The statements will be trivial if p vanishes almost every-
where in Ω. So we assume that the set {p > 0} has positive Lebesgue measure,
which implies that every nonnegative solution to (4) in Ω is (strictly) positive.

(a) Let u be a positive solution to (4) in Ω. By Lemma 3, for every n ≥ 1

u = HDn
u+

∫

Dn

GDn
(·, y)p(y)ψ(u(y)) dy in Dn. (18)

Since u is superharmonic in Ω, the sequence (HDn
u) is nonincreasing and thereby

the limit function h := infn≥1HDn
u is well defined and harmonic in Ω. On the

other hand, it is well known that (GDn
) is nondecreasing and supn≥1GDn

= GΩ

(see, e.g., [6, p.94]). So, letting n tend to ∞ in (18) we obtain formula (7) which
completes the proof of (a). It should be clear that assertion (a) always holds true
even if (A1) does not hold.

(b) In virtue of Lemma 4 there exists at most one solution u to (4) in Ω which
satisfies (7). As in the proof of Lemma 3, in order to show the existence of u we
first consider a harmonic function h in Ω such that infΩ h ≥ ε > 0. Let un denote
the solution to equation (4) in Dn with the boundary condition un = h on ∂Dn.
Again by Lemma 3 we have

un = h+

∫

Dn

GDn
(·, y)p(y)ψ(un(y)) dy in Dn. (19)

In particular, un+1(z) ≥ h(z) = un(z) for every z ∈ ∂Dn and consequently
un+1 ≥ un in Dn for every n ≥ 1 by Lemma 2. Since un ≥ h ≥ ε in Dn it follows
from (19) that

un ≤ h+ ψ(ε)

∫

Dn

GDn
(·, y)p(y) dy ≤ h+ ψ(ε)

∫

Ω

GΩ(·, y)p(y) dy.
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Therefore, u := supn≥1 un is a solution to (4) in Ω by (A1) and Lemma 5. Fur-
thermore, applying the dominated convergence theorem and using (A1) (or equiv-
alently (17)) we obtain that

lim
n→∞

∫

Dn

GDn
(·, y)p(y)ψ(un(y)) dy =

∫

Ω

GΩ(·, y)p(y)ψ(u(y)) dy <∞.

Hence, passing to the limit in (19) we get (7). This finishes the proof of (b) in
the case when infΩ h > 0.

Now, let h be a nonnegative harmonic function in Ω and define hk := h+k−1.
By the first part of the present proof there exists a sequence (uk) of solutions
to (4) in Ω such that

uk = hk +

∫

Ω

GΩ(·, y)p(y)ψ(uk(y)) dy.

Since (uk) is nonincreasing by Lemma 4, a simple application of the monotone
convergence theorem proves that h and the limit function u := limn→∞ un satisfy
equality (7). Therefore, u is a solution to (4) in Ω by virtue of Lemma 1. So the
proof of Theorem 1 is complete. �

Proof of Theorem 2. Let u be a bounded positive solution to (4) in Ω. Then, as
the proof of statement (a) in Theorem 1 shows,

u = h +

∫

Ω

GΩ(·, y)p(y)ψ(u(y)) dy in Ω

where h = infn≥1HDn
u is the greatest harmonic minorant of u. Hence for every

x ∈ Ω we have
∫

Ω

GΩ(x, y)p(y) dy ≤
1

ψ(M)

∫

Ω

GΩ(x, y)p(y)ψ(u(y)) dy ≤
M

ψ(M)

where M = supΩ u. Thus (A2) holds and the proof of the necessity is finished.
Suppose now that p satisfies (A2) and let c > 0 be a real constant. By

assertion (b) in Theorem 1 there exists a positive solution u to (4) satisfying (7)
for h ≡ c. Therefore, using the fact that ψ is nonincreasing it follows that

c ≤ u ≤ c+ ψ(c) sup
x∈Ω

∫

Ω

GΩ(x, y)p(y) dy.

Thus, u is bounded in Ω and the proof is complete. �

12



6 Boundary value problems

Before dealing with the proof of Theorem 3 we first establish an existence and
uniqueness result for the solution to the more general boundary value problem (8).

Theorem 4. Assume that p is nontrivial in Ω and (A3) holds. Then for every
nonnegative harmonic function h in Ω, there exists one and only one solution u
to problem (8). This solution is given by (7).

Proof. Let h be a nonnegative harmonic function in Ω and let u be the positive
solution to (4) in Ω associated to h by formula (7). We claim that u−h ∈ C0(Ω).
Indeed, consider hk = k−1 + h and denote by uk the solution to (4) given by
Theorem 1. Then, it is easy to see that for every x ∈ Ω we have

0 ≤ uk(x) − hk(x) =

∫

Ω

GΩ(x, y)p(y)ψ(uk(y)) dy

≤ ψ(k−1)

∫

Ω

GΩ(x, y)p(y) dy.

Whence, by assumption (A3), uk−hk ∈ C0(Ω) for every k ≥ 1. On the other hand,
we know (see the proof of Theorem 1.b) that the sequence (uk) is nonincreasing
and limn→∞ uk = u. So, for all x ∈ Ω and all k ≥ 1

0 ≤ u(x) − h(x) ≤ uk(x) − hk(x) + k−1.

Hence, if z ∈ ∂Ω then for every k ≥ 1

0 ≤ lim sup
x→z

(u(x) − h(x)) ≤ k−1,

which yields that lim supx→z(u(x) − h(x)) = 0. Analogously, we show that
lim|x|→∞(u(x) − h(x)) = 0 if Ω is unbounded. So u− h ∈ C0(Ω) and the claim is
proved.

Assume that v is a positive solution to (8). Then v and the harmonic function
g := infnHDn

v satisfy formula (7) and we have v ≥ g ≥ h in Ω. Hence

0 ≤ g − h ≤ v − h

which yields that g − h ∈ C0(Ω) and consequently g = h in Ω. Therefore v = u
by Lemma 4. Thus u is the unique solution to problem (8). �

Proof of Theorem 3. If p = 0 in Ω then obviously problem (1) has no solution.
By the previous theorem, if p is nontrivial then condition (A3) is sufficient for (1)
to admit a solution. So, it only remains to show that (A3) holds whenever (1)
is solvable. To do this, let u denote the solution to problem (1) and define
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M := supΩ u. Clearly 0 < M < ∞ because u ∈ C0(Ω). By Propositions 1 and 2
we see that for every n ≥ 1, the function

vn :=

∫

Dn

GDn
(·, y)p(y) dy

is the unique solution to the problem
{

∆vn + p = 0 in Dn,
vn = 0 on ∂Dn.

It then follows that
{

∆(u− ψ(M)vn) = p(ψ(M) − ψ(u)) ≤ 0 in Dn,
u− ψ(M)vn ≥ 0 on ∂Dn

Thereby u ≥ ψ(M)vn inDn by the classical minimum principle for superharmonic
functions. Consequently, we obtain that

∫

Ω

GΩ(x, y)p(y) dy ≤
u(x)

Ψ(M)

for every x ∈ Ω. Since u ∈ C0(Ω) we conclude that (A3) is fulfilled. �

In [12, 13] Lair and Shaker investigated problems (2) and (1) and proved that
for a nontrivial continuous function p in �N , condition (6) is sufficient for equa-
tion (4) to have a positive solution vanishing at infinity. Since Gp ≤ Gφ (φ is
given by (3)), this follows immediately from the if-part of Theorem 3. In the fol-
lowing remark, we give an example showing that (A3) is weaker than (6), which
yields that (6) is not necessary for the existence of a solution to problem (1).
However, by Corollary 2 we observe that conditions (A3) and (6) are equivalent
if p is radial.

Remark 1. There exists a nonnegative continuous function p on �N , N ≥ 3,
such that Gp ∈ C0(�N ) and (6) does not hold.

Proof. Let I = {(x1, 0, · · · , 0) ∈ �N : 0 ≤ x1 ≤ 1}. For every η > 0, define
Aη = ∪x∈IB(x, η) and vη = G(1Aη

) where 1Aη
(x) takes the value 1 if x ∈ Aη and

zero otherwise. It is easy to see that vη ∈ C0(�N ) and for every x ∈ �N

vη(x) ↓ 0 as η ↓ 0.

Therefore, in view of Dini’s theorem, (vη) converges uniformly on �N to zero as η
tends to zero. So, for every n ≥ 0 we may find ηn > 0 such that vηn

≤ 2−n in �N .
Choose qn ∈ C(�N ) such that

1I ≤ qn ≤ 1Aηn
.
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For every x ∈ �N , define pn(x) = qn(x− an) and

p(x) =
∞

∑

n=0

pn(x)

where an = (n, 0, · · · , 0) for every n ≥ 0. Since the previous sum is locally finite,
the function p is continuous on �N . Moreover, Gpn ∈ C0(�N ) and

sup
x∈
�

N

Gpn(x) ≤ sup
x∈
�

N

vηn
≤ 2−n

for every n ≥ 0, whence Gp ∈ C0(�N ). On the other hand, for all n ≥ 0 and all
x1 ∈ � such that n ≤ x1 ≤ n + 1 we have

p(x1, 0, · · · , 0) ≥ qn(x1 − n, 0, · · · , 0) ≥ 1I(x1 − n, 0, · · · , 0) = 1.

Whence φ(r) ≥ 1 for all r ≥ 0 and thereby condition (6) does not holds. �

We conclude this paper by the proof of Corollary 2 which gives a characteri-
zation of all asymptotically quasi-radial function p for which problem (1) has a
solution.

Proof of Corollary 2. Hypothesis (10) means that for some sufficiently large real
R we have c−1ϕ(|x|) ≤ p(x) ≤ cϕ(|x|) for all x ∈ �N such that |x| ≥ R. Notice
that if (11) is valid for some a > 0 then it holds for a = 0. This follows from the
fact that ϕ is locally bounded on �+ .

(c)⇒(b): Let v := Gϕ. Using spherical coordinates we obtain that

v(0) =
1

N − 2

∫ ∞

0

rϕ(r) dr.

Then (11) implies that v(0) < ∞ which in turn implies that v is a continuous
superharmonic function on �N (see Proposition 1). Furthermore inf�N v = 0 (see
Theorem in [6, p.48]). From the explicit form of G we clearly see that v is radial
on �N . Consequently, the classical minimum principle yields that v(x) ≥ v(y)
for all x, y ∈ �N such that |x| ≤ |y|. Hence

lim
|x|→∞

v(x) = inf�
N
v = 0

which means that v ∈ C0(�N ). To see that Gp is also in C0(�N ), it is enough to
observe that

Gp ≤ G(p1B(0,R)) + cGϕ.

So statement (b) follows from (b) in Corollary 1.
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(b)⇒(a): Trivial.

(a)⇒(c): The function Gp is bounded on �N by Theorem 2. Seeing that

v ≤ G(ϕ1B(0,R)) + cGp,

we deduce that v is bounded on �N as well. Hence v(0) <∞ and (c) holds true.
�
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