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Abstract. We investigate the tightness property of the capacity induced by the reduc-
tion operator with respect to the resolvent of a right Markov process. We emphasize
conditions for the tightness of capacity and quasi continuity property of the excessive
functions, without assuming any sector condition. We extend and improve results of
Lyons-Rockner, Ma-Rockner and Fitzsimmons, mainly obtained in the Dirichlet forms
context.

1 Preliminaries and main results

Let U = (Uy)a>o be a proper sub-Markovian resolvent of kernels on a Radon
measurable space (£, B) and denote by £(U) the set of all U-excessive functions
on E (recall that a positive B-universally measurable numerical function s on £
is termed U-excessive if alU,s < s for all @ > 0 and sup,, aUys = s). We assume
that the set £(U) N pB of B-measurable U-excessive functions on F is min-stable,
contains the positive constant functions and generates B; pB denotes the sets
of all positive numerical B-measurable functions on E. Such a resolvent will be
called in the sequel B-sub-Markovian resolvent on FE.

Let m be a U-excessive measure (i.e. m is a o-finite measure on (E, B) such
that m o alU, < m for all a > 0; see e.g. [7] or [12] for more details on excessive
functions and measures). A o-finite measure on (E, B) of the form po U (where
u is a measure) is called potential. The set E is named m-semisaturated
provided that every U-excessive measure dominated by a potential p o U with
polU < m is also a potential.

We consider also a topology 7 on E, which is natural (with respect to U),
i.e. (E,T) is a metrizable topological space with countable base such that every
T-open set is finely open and B-measurable. We suppose in addition that the
universally completions of B and B(E) coincide, where B(E) is the family of all
Borel subsets of E. Notice that every Ray topology on E (i.e. the topology
generated by a Ray cone, see Section 2 below) is a natural topology. We remark
that if E' is m-semisaturated with respect to U then there exists a second B-sub-
Markovian resolvent U4’ which coincides with ¢/ m-a.e., the topology 7 remains
natural with respect to Y’ and in addition F is semisaturated with respect to
U' (i.e. it is &-semisaturated for every U'-excessive measure &).

Let X = (Q, F, F;, Xy, 0y, P*) be a transient (Markov) right process with state
space F, a Radon topological space, and let U/ be its associated sub-Markovian



resolvent. Then (cf. [12]) there exists a o-algebra B on E such that B(E) C B C
B(E)*, (E,B) is a Radon measurable space, U is a B-sub-Markovian resolvent
on E and the topology of E is natural (with respect to U). Moreover the set
E is semisaturated with respect to U. Conversely, if U is a B-sub-Markovian
resolvent on a Lusin measurable space (E, B), m is U-excessive measure and E
is m-semisaturated with respect to U, then there exists a Lusin topology 7 on
E such that B(E) = B and a transient right process with state space E, such
that its associated resolvent coincides with & m-almost everywhere (abbreviated
m-a.e.).

If A is a o-finite measure on E we say that the right process X is A-standard
if it possesses left limits in £ P*-a.e. on [0, () and moreover for every increasing
sequence (7},), of stopping times with 7,, /T we have X7, — X¢ P*-a.e. on
[T < (], ¢ being the life time of X.

We assume further that F is m-semisaturated with respect to U.

For all s € £(U) and every subset A of E' we consider as usually the function

Rs =inf{t € EU)/t > s on A},

called the reduced function of s on A. It is known that (see [1]) if A € B then
R4s is universally B-measurable and if moreover A is finely open and s € pB
then R4s € pB.

Let further A be a finite measure on (E,B). A property depending on the
points of E is said to hold A-quasi everywhere (abbreviated A-q.e.) provided
that the set of points where it does not hold is a subset of a set A € B with
RA1 = 0 M-a.e. If U is the resolvent of right process X as above then the following
fundamental result of G.A. Hunt holds for all A € B and s € £(U):

R4s = E%(so Xp,)

where D, is the entry time of A, Dy = inf{t > 0/ X; € A}; see e.g. [7]. In
this case the equality R41 = 0 M-a.e. means that the process (14 0 X})i>o is
P>*-evanescent.

It turns out that the functional M — c\(M), M C E, defined by

ex(M) = inf{\(R%p,)/G € T, M C G}

is a Choquet capacity on (E,T), where p, is a fixed strictly positive, bounded
U-excessive function of the form p, = U f,, with f, € pB, 0 < f, < 1.

Recall that the capacity ¢y on (E,7) is named tight provided that there
exists an increasing sequence (K,), of 7-compact sets such that

infey(E\ K,) =0
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(or equivalently inf,, RE\K»p, = 0 A-a.e.) which is also equivalent with

P [lim Dp\g,, < ¢]) =0
in the probabilistic frame.

We can state now the main results of this paper. Their proofs will be presented
in Section 2.

Theorem 1.1. If (E,T) is a co-Souslin topological space then the following as-
sertions are equivalent for the given finite measure A on E.
i) For every increasing sequence (Gy)n of T-open sets with |J, G, = E we
have
1§Rﬂ%m:0 \—a.e.

i1) For every increasing sequence (Gy), of T-open sets with G, C Gpyq for
all n and |, G, = E we have

inf RP\Gp, =0 X — a.e.

i1i) The capacity cy is tight.

Corollary 1.2. (Lyons-Rockner). Assume that U is the resolvent of a transient
right process with state space E, a co-Souslin topological space, and suppose that
the process has left limits in E P*-a.e. on [0,(), where X is the given finite
measure on (E,B). Then the capacity c) is tight.

Remark. Corollary 1.2 is a result of T. Lyons and M. Réckner [10] and has
important consequences in the study of the quasi-regular Dirichlet forms. In [11]
are presented two proofs of it, one of them due to P.A. Meyer. Our proof is
different and it is related rather to Meyer’s approach.

Theorem 1.3. Suppose that U is the resolvent of a transient right process with
state space E, a co-Souslin topological space, and assume that the topology is
generated by a Ray cone R such that Uy(R) C R for all a > 0. If X\ is a finite
measure on (E,B) then the following assertions are equivalent.

i) The process has left limits in E P*-a.e. on [0, ().

i1) The capacity cy is tight.

i11) The process is \-standard.

We shall prove in the sequel that the tightness property of the capacity c,
always holds in two special situations. Let p o U be the potential component of
the U-excessive measure m.



Theorem 1.4. Assume that (E, B) is a Lusin measurable space and there erists
a second B-sub-Markovian resolvent U* = (U})a>o such that the topology T is
natural and E is m-semisaturated with respect to U* too, and such that U and U*
are in weak duality with respect to m, that is

/gUafdm=/fU29dm

for all f,g € pB and o > 0. Then there exists an increasing sequence (K), of
T -compact sets such that

inf RE\E»p, =0 (m + p)-a.e.

Particularly the capacity cy is tight for every finite measure A on (E, B) such that
AL m+p.

Remark. If two Borel right processes with the common (Lusin) topological space
(E,T) as state space, are in weak duality with respect to a o-finite measure m
(see e.g. [9]), then the associated resolvents satisfy the hypothesis from Theorem
1.4 and consequently the capacity c, is tight for every finite measure A with
A < m + p. This assertion may be obtained alternatively, combining Corollary
1.2 and the result of J.B. Walsh [13] which ensures the existence of the left limits
in the space for processes in weak duality.

Recall that a bounded function s € £(U) is regular provided that for every
sequence (Sp), in E(U), s, ' s, we have inf, R(s — s,) = 0, where R denotes
the reduction operator. See [4] and [6] for more details on regular excessive
functions. It is known that (see e.g. [7]) if U is the resolvent of a transient right
process then a bounded function s € £(U) is regular if and only if there exists
a continuous additive functional having s as potential function. A bounded U-
excessive function s is m-regular if there exists a regular U-excessive function s
such that s = s’ m-a.e.

Theorem 1.5. Assume that (E,T) is a co-Souslin topological space and the fol-
lowing condition is satisfied:

(%) each U-excessive function dominated by p, s m-regqular.

Then the capacity cy is tight for every finite measure X on (E, B) with A < m+ p.

Corollary 1.6. Under the assumption of Theorem 1.5, for every U-excessive
function s there ezists an increasing sequence (K,), of T-compact subsets of E
such that inf, cx(E \ K,,) = 0 and s|k, is T-continuous for all n.



Corollary 1.7. Assume that (E,T) is a Lusin topological space and U is the re-
solvent of a right process with state space E, such that condition (x) from Theorem
1.5 holds. Then the process is A-standard for every finite measure A on (E,B)
with A < m + p.

Remark. 1. If the resolvents U and U* are in weak duality with respect to the
measure m as in Theorem 1.4, then the above property (x) is precisely the axiom
the m-polarity for U*, that is every cosemipolar set is m-copolar; see [5].

2. Suppose that F is a co-Souslin topological space and U is the resolvent of a
right process with state space E, which is associated with a semi-Dirichlet form
(€,D(€)) on L?(E,v), where v is a given o-finite measure. P.J. Fitzsimmons
[8] proved that such a semi-Dirichlet form is quasi-regular. In fact, in this case
if we consider a strictly positive bounded function f, € pBN L'(E,v) with Uf,

bounded, then p, = Uf, lies in the extended domain D(€) of the form and the
measure m = U* f, - v is U-excessive (where (U?),s0 is the dual of the family U as
operators on L?(E,v)). We claim that condition (x) holds in this case. Indeed,
if se&U), s < Po, and (sn)n C E(U) with s, N, then s, s, € D(€) and (sp)n
converges to s in D(€). The reduction operator in D(E) being continuous, we
conclude that R(s — s,) \( 0, hence s is m-regular. Consequently we can derive
the above result of Fitzsimmons applying Theorem 1.5 and Corollary 1.6. Notice
that Theorem 1.5 offers sufficient conditions for tightness of the capacity and
quasi continuity property for excessive functions, without assuming any sector
condition.

2 Proofs of main results

Proof of Theorem 1.1. The implications ii1) = i) = 1) are clear.

i) = iii). Let (E,T) be a metrizable compact space such that E C E
and ’T\ p = T. We denote by ¢, the Choquet capacity on (E T) such that
e(@) = A(RCEp,) = cx(GN E) for all G € T. The tightness of the capacity
¢y is equivalent with the fact that e\(E\ E) = 0. Since E is a co-Souslin set in
(E, 'T) the last equality is equivalent with: ¢,(K) = 0 for all compact subsets K
of E\ E. Let further fix a compact subset K of E\E and (), be a decreasing
sequence of 'T—open subsets of E such that [, C T, forall n and N, =K. If
we put G, = E\ T, then G, C G,,11 for all n, |J, G, = E and by hypothesis we
have inf, R¥\%p, = 0 M-a.e. or equivalently inf, A\(R¥\%"p,) = 0. We conclude
that ¢y (K) < inf, ¢\(T,) = inf, A(RF™"=p,) = inf, A(R”\%"p,) = 0, completing
the proof.



Proof of Corollary 1.2. Let (G,), be an increasing sequence of 7-open sets
with | J,, G, = E. By Theorem 1.1 we have to show that inf, RE\Gnp, = 0 Ma.e.
If X is the right process having U as associated resolvent and we consider the
entry time Dp\¢, of the set E' \ G, then we have sup, Dp\q, > ¢ P*ae. on
Q. Indeed, in the contrary case we have P*([sup, Dp\q, < ¢]) > 0, contradicting
the fact that Xp, ., (w) € E'\ G, for all n and the limit lim, Xp,, ., (w) exists

in (E,T) P*a.e. on [0,(). From A\(RP\Grp,) = E/\(féE\G fo 0 Xydt) we deduce
that inf, R¥\G»p, = 0 M-a.e. and the proof is completed.

Recall now some facts about the Ray cones and Ray topologies. Let V =
(Va)a>o be a bounded sub-Markovian resolvent on (F, B) such that the V-excessive
functions coincide with the U-excessive ones.

A Ray cone (associated with V) is a convex cone R of bounded B-measurable,
U-excessive functions such that:

— The cone R contains the positive constant functions and is min-stable.
-~ Vo((R=R);) C R and V,(R) C R for all a > 0.

— The cone R is separable with respect to the uniform norm.

— The o-algebra on E generated by R coincides with B.

One can show that for every countable set A of bounded B-measurable, U-
excessive functions there exists a Ray cone including A.

The topology 7z on E generated by a Ray cone R (i.e. the coarsest topology
on E for which every function from R is continuous) is called the Ray topology
induced by R.

Proof of Theorem 1.3. The implication ¢) = i) follows from Corollary 1.2
and 7i1) = 1) is clear.

i1) = 1i1i). Let (K,), be an increasing sequence of 7-compact subsets of
E such that inf, RP\X»p, = 0 M-a.e. We denote by Y the Ray compactification
of E with respect to R. Since for every s € R the process (s o X;);>¢ is a
bounded right continuous supermartingale with respect to the filtration (F;);>o
it follows that (cf. [7]) this process has left limits P*-a.e. The Ray cone R being
separable with respect to the uniform norm it results that the process (X;)i>o
has left limits in Y P*-a.e. From lim, RE\K»p, = 0 M-a.e. and A\(RE\Knp,) =
EX( fTCE\Kn fo 0 Xydt) we deduce that sup, Tp\x, > ¢ P*-a.e. Hence for every

w € Q with T\, (w) < ((w) we have X(w) € K, provided that ¢ < Tk, (w)
and so X; (w) € K,,. Consequently the process (X;);>o has left limits in E P*-a.e.
on [0, ().

Let now (7,), be an increasing sequence of stopping times and 7" = lim,, 7,.
We show that lim, X7, = X P*-a.e. on [T < ¢]. From the above considerations



there exists in Y the limit Z = lim,, X7, P*-a.e. and Z(w) € F if T(w) < {(w).
It remains to prove that Z = Xy P*-a.e. on [T < (]. For all f,g € R, a > 0 and
n < m we have ENg(Xt,) - Uaf(X1,,)) = EMg(X1,) - EX™n ([ e f 0 Xydt)) =
EMg(X7,)-e~Tm fTém e~ foX,dt), where g denotes the Ray continuous extension
of g to Y. Letting m — oo we obtain

. ¢
EXg(X1,) Uaf(2)) = EA(Q(XTn)-e_“T/T e” foXdt) = E(9(Xr,)-Uaf(Xr)).

Letting now n — oo we get EN§(Z) - Unf(Z)) = EM§(Z) - Uaf(Xr)) and there-
fore, by monotone class argument, we have

EMN(h - 18)(2)aUaf(2)) = EN(h- 15)(Z)aUa f (X))
for all h € pB(Y). Letting @ — oo we derive that
EN(h-15)(Z) - f(2)) = BX((h- 18)(2) - f(X7)).
Again by monotone class argument we deduce that
EX(h-1p)(Z) - (k- 1£)(2)) = EX(h-18)(2) - k |5 (Xr))
for all £ € pB(Y') and as a consequence
ENG - 1pxg(Z,2)) = EMNG - 15xp(Z, X1))

for all G € pB(Y x Y). Taking G the characteristic function of the diagonal of
Y x'Y we conclude that

P{w € Q/Z(w), Xr(w) € E, Z(w) # Xr(w)}) =0,
completing the proof.

Proof of Theorem 1.4. Let p be a finite measure on (E, B) such that the
negligible sets are the same for y and m + p. Let (G,), be an increasing se-
quence of T-open sets with G, C Gp4q for all n and |, G, = E. We show
that the function v = inf, RF\%»p, equals zero p-a.e. Clearly the function u is
U-excessive and u-m < Uf,-m = (f,-m)oU*, where f, € bpB is the strictly pos-
itive function such that p, = U f, and we assume that m(f,) < oo and U* f, < 1.
Since E is m-semisaturated with respect to U*, there exists a measure v on
(E,B) with u - m = v o U*. Obviously v(1) < (f,-m)(1) < co. The set E being
m-semisaturated with respect to U too, for every n there exists a measure 6,, on
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(E, B) such that 6, (s) = u(RF\%s) for all s € £(U). Hence u(RE\Cru) =0, (u) =
inf 0, (RE\Crp,) = infy, p(RE\Cr (RE\Crp,)) = infy, n(RE\Ckp,) = p(u). It results
that RE\Gry = u p-a.e. If g € pB then by Theorem 1.2 in [5] we have v(U*g) =
[gudm = [gR"\Crudm = L*(RP\Cnu - m,U*g) = L*(u - m,*RF\GU*q) =
v(*BF\G»U*g), where L* denotes the energy functional and *R the reduction op-
erator with respect to the resolvent U*. Because *RE\G»{* fo < U*f, on G we
conclude that v is carried by E \ G, for all n and therefore » = 0 which implies
u-m = 0, inf, RF\C»p, = 0 pu-a.e. By Theorem 1.1 there exists an increasing
sequence (K,), of T-compact sets such that inf, R"\Xnp, = 0 p-a.e. or equiva-
lently inf, R®\knp, = 0 (m + p)-a.e.

Proof of Theorem 1.5. Let p be a finite measure on (E, B) such that the
negligible sets with respect to u and m+p are the same. By Theorem 1.1 it suffices
to show that for every increasing sequence (G,), of T-open sets with G,, C G4,
for all n and | J G,, = E, the function u = inf,, RF\Cp, equals zero p-a.e. Clearly
u is U-excessive and u < p, and by hypothesis there exists a regular U-excessive
function ug such that uy < u and u = ug m-a.e. (we have denoted by < the specific
order in the cone of potentials of all finite U-excessive functions). Let further
(E1, B1) be the saturation of E with respect to U (cf. [2]) and V' the kernel on
(E1, By) such that V1 = ug, where uy denotes the extension by fine continuity of
ug to Fy. Since F is m-semisaturated it follows that the set E; \ E is m-semipolar
and consequently we get V (1p,\g) = 0 m-a.e. on E and so V(1g)\g)|p = 0 p-a.e.
Using again the m-semisaturation of E we deduce that for all n there exists a
finite positive measure j,, on (E, B) such that u(RP\%»s) = u,(s) for all s € &(U).
Hence Mn(u) = infy /an(RE\kao) = infy N(RE\kao) = /J(U), N(RE\GnU) = N(u)
As a consequence RF\Gry = y m-a.e. If T, is a finely open set in B; with
I,NE =G, then V(1g,\r,) = V(lmg,) p-a.e. and V(1gnr,) = V1A RPNV
where A denotes the infimum with respect to the specific order <. Let M, be
the fine closure in E; of the set [RF1\'»V1 < V1]. The set M, N E being u-
polar and p-negligible and from V (1(m\r,)un,) = RENMWDUMYT = V1 prace. it
results that V1 < V(1g\r,) + V(1am,) = V(1g\r,) p#-a.e. and we conclude that
u = V1 =0 p-a.e., completing the proof.

Proposition 2.1. There exists a Ray topology on E which is finer than the
natural topology T .

Proof. Let G be a countable base for the topology 7. We remark that for every
G € G and z € G there exists G’ € G with z € G’ and G’ C G. We consider now
a Ray cone R such that p, € R and RP\Gp, € R for all G € G. Notice that the
function R”\%p, belongs to pB. If G,G' € G and G’ C G then G’ C [RF\p, <
p,] C G' C G and we conclude that every T-open set is Ray open. O

8



Proof of Corollary 1.6. Let A be a finite measure, A < m+p, and s € £(U)NpB.
By Proposition 2.1 there exists a Ray cone R such that inf(s, k) € R for every
natural number k£ and 7 C Tx, where recall that 7z denotes the topology gener-
ated by R. By Theorem 1.5 we deduce that there exists an increasing sequence
(Kp)n of Tr-compact subsets of £ such that inf, R®\¥np, = 0 M-a.e. Since
T C Tr we get T |k, = Tr|k, for all n and inf(s, k)|, is T-continuous for all &k
and n. If s € £(U) then there exists s’ € E(U)NpB, s’ < s, such that s’ = s A-q.e.

Proof of Corollary 1.7. By Proposition 2.1 we may consider a Ray cone R
with respect to U such that U,(R) C R for all @ > 0 and such that the Ray
topology Tz on E is finer than 7. From Theorem 1.5 it results that the capacity
cx on (E,Tr) is tight and let (K,), be an increasing sequence of Tr-compact
subsets of E such that inf, R¥\»p, = 0 M-a.e. By Theorem 1.3 the process X
having U as associated resolvent is A-standard with respect to the topology 7x.
From inf, RP\f»p, = 0 A-a.e. it follows that sup, T\, > ¢ P*-a.e. Because K,
is Tr-compact and Tg is finer than 7 we deduce that 7|k, = Tr|k, for all n.
Since X;(w) € K, for all ¢ < Tp\k, (w) we deduce that P*-a.e. there exists in F
T — lim, » X,(w) for all t < Tr\k,(w) and so X has left limits in £ P*-a.e. on
[0,€).

Let now (7,), be an increasing sequence of stopping times and 7' = lim,, 7,.
We have [T < (] = U,[T < Tp\k,) P*-ae. If w € [T < Tp\k,] then we have
T(w) < Tp\k, (w) < ((w), X1, (w)(w) € K, for all n and consequently

T —limXq, = Tg —lim Xy, = Xp Pae. on [T < Te\ky -

We conclude that
lim Xp, = X7 P*-a.e. on [T < (].
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