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We obtain a new identity for the entropy of a nonlinear image of a measure on Rn, which yields the well-
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space of the measure γ. As an application we also prove a generalized logarithmic Sobolev inequality.
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1. Introduction

This work is devoted to the study of the so called triangular mappings, i.e., mappings
T = (T1, . . . , Tn) : Rn → Rn such that T1 is a function of x1, T2 is a function of (x1, x2),
T3 is a function of (x1, x2, x3) and so on: Ti is a function of (x1, x2, . . . , xi). Analogously one
defines triangular mappings on R∞, the countable product of real lines. A triangular map-
ping is called increasing if every its component Ti is increasing with respect to the variable xi.
The same terminology is used for mappings defined on subsets of Rn or R∞. Consideration of
triangular mappings is very natural in the problems of probability theory connected with trans-
formations of sequences of random variables. The choice of this term is explained by the fact
that for a differentiable triangular transformation (for example, linear) the Jacobi matrix has
a triangular form. In [15], triangular transformations of uniform distributions on convex sets
were constructed (see also [2]), and in [21], there has been actually established the existence of
a triangular mapping T of the standard Gaussian measure γ on Rn into an arbitrary absolutely
continuous probability measure ν = f · γ. Talagrand’s inequality established with the aid of
such transformations estimates the L2-norm of the difference T − I via the integral of f log f
against the measure γ, i.e., the entropy of the Radon–Nikodym density. We establish an exact
equality for the entropy of a nonlinear image of a measure, which directly implies Talagrand’s
inequality. The obtained identity is used in our study of triangular mappings.

It is well known that every Radon probability measure on a metric space is the image of
Lebesgue measure on an interval (or any other atomless probability measure) under certain
Borel mapping. However, the problem often arises of transforming a given measure into an-
other one by means of a mapping from more narrow classes. This subject, which has become
very popular in the past decade, is connected with a whole series of classical problems in the
theory of extremal problems, measure theory, nonlinear analysis, and the theory of nonlin-
ear partial differential equations, in particular, with the well-known Monge–Kantorovich mass
transportation problem. The interaction of all these directions has lead not only to exciting
results on measure transformations, but also to discovery of interesting links between the di-
verse areas and to unexpected applications. In particular, certain new functional inequalities
have been obtained. Among the diverse classes of mappings considered by many authors, one
should distinguish the monotone type mappings (for example, gradients of convex functions)
and the above defined triangular mappings.

Among recent bright results on monotone mappings we note the theorem from [8] and [18] (see
a detailed discussion in [23]) according to which every absolutely continuous probability measure
µ on Rn can be transformed into any probability measure ν on Rn by means of a transformation
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T of the form T (x) = ∇ϕ(x), where ϕ is a convex function. Such transformations are natural
analogs of increasing functions on the real line. This theorem plays an important role in
obtaining a number of interesting inequalities in [19], [9]. In the papers [11], [12], an infinite
dimensional analog of this theorem has been obtained in the partial case of a Gaussian measure,
namely, it has been shown that a Radon Gaussian measure γ with the Cameron–Martin space
H can be transformed into any probability measure ν = f · γ that is absolutely continuous
with respect to γ and satisfies some additional restriction by a monotone (in a natural sense)
mapping of the form

T (x) = x+ F (x), F : X → H, (1.1)

where F (x) = ∇Hϕ(x) for some function ϕ from the Sobolev class W 2,1(γ). For example, the
aforementioned restriction is satisfied if f log f ∈ L1(γ). The transformations of the form (1.1)
are abstract Girsanov transformations of the classic Wiener space; many works are devoted to
their study (see references in [3] and [22]). In the case of the classic Wiener space C[0, 1], the
Cameron–Martin space consists of the absolutely continuous functions x with x(0) = 0 and
x′ ∈ L2[0, 1]. It was made clear in the works of Cameron and Martin, Maruayama, Prokhorov,
Skorokhod, and Girsanov that under broad assumptions a mapping of the form

T (w)(t) = w(t) +

∫ t

0

σ
(
s, w(·)

)
ds

transforms the Wiener measure into an equivalent one, and many important in applications
mappings that accomplish equivalent transformations of the Wiener measure have the indicated
form. We remark that measures of the form γ ◦ T−1 with a mapping T of type (1.1) are called
representable in Definition 2.7.1 of the book [22]. It is shown in Chapter 2 of that book that
the set of representable measures is everywhere dense in the set of all probability measures
absolutely continuous with respect to γ in the metric generated by the variation norm. In
addition, it is proved there that any probability measure µ equivalent to γ can be transformed
into γ by a mapping of the form (1.1). It has been shown in [10] that the measure γ can be
transformed into every probability measure ν that is absolutely continuous with respect to it
by a mapping of the form T (x) = U(x)+F (x), where U preserves γ and F : X → H. However,
the problem of existence of a transformation T = I + F with a mapping F taking on values
in the Cameron–Martin space and transforming the measure γ into an arbitrary probability
measure ν absolutely continuous with respect to γ was left open in the cited papers. Our
main results (they have been announced in [7]; here some assertions are reinforced) are as
follows. In §2 we introduce and study canonical triangular mappings of measures. In §3 we
establish an exact equality for the entropy of a nonlinear image of a measure on Rn, which
yields Talagrand’s inequality and reinforces a result of the work [16], obtained for gradient
mappings. In §4 some applications of the obtained results are given. In the infinite dimensional
case, we prove the existence of a triangular mapping T of a centered Radon Gaussian γ into
an arbitrary probability measure ν that is absolutely continuous with respect to γ such that
T (x) = x+ F (x), where F takes on values in the Cameron–Martin space H of the measure γ.
A generalized logarithmic Sobolev inequality is obtained.

On Gaussian measures, see [3]. One can assume throughout that we deal with the countable
power of the standard Gaussian measure on the real line. In this case, the Cameron–Martin
space H is the classic Hilbert space l2.

Let µ◦T−1 denote the image of a measure µ under a measurable mapping T , i.e., the measure
defined by the equality µ◦T−1(B) := µ

(
T−1(B)

)
. Let W p,r

loc (Rn), where p ≥ 1 and r ∈ N, denote
the Sobolev class of functions on Rn which along with their generalized partial derivatives up
to order r belong to Lp(U) for every ball U .

2. Properties of triangular transformations of measures

We recall (details can be found in [4, Ch. 10]) that for every Borel probability measure µ on
the space Rn×Rk having the projection µn on Rn, there exist conditional probability measures
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µx on the affine subspaces x + Rk, where x ∈ Rn, such that for every Borel set B in Rn × Rk,
the function x 7→ µx(B) is Borel measurable and one has

µ(B) =

∫
Rn

µx(B)µn(dx). (2.1)

One can also define conditional measures on one and the same space Rk (such conditional
measures will be denoted by µx in order to distinguish them from the conditional measures µx

on the fibers), but then (2.1) should be written in the form

µ(B) =

∫
Rn

µx(B
x)µn(dx).

where Bx := {y ∈ Rk : (x, y) ∈ B}. The measure µx is the image of the measure µx under
the shift by the vector x. For every bounded (or µ-integrable) Borel function ϕ on Rn+k there
holds the equality ∫

Rn+k

ϕ(z)µ(dz) =

∫
Rn

∫
x+Rk

ϕ(z)µx(dz)µn(dx)

=

∫
Rn

∫
Rk

ϕ(x, y)µx(dy)µn(dx),

where in the last integral the points of Rn+k are written in the form z = (x, y).
If the measure µ is given by a density % with respect to Lebesgue measure (by convention we

take a Borel version of %), then the measure µn is given by density

%n(x) =

∫
Rk

%(x, y) dy,

and the conditional measures are given by densities

%x(y) = %(x, y)
(∫

Rk

%(x, z) dz
)−1

with respect to the k-dimensional Lebesgue measure. In this case, for the points x such that
the integral of %(x, z) in z vanishes (the set of all such points is Borel measurable and has
µn-measure zero), we take for %x some fixed probability density (for definiteness we take the
standard Gaussian density).

For every pair of probability measures µ and ν on Rn, where µ is absolutely continuous, there
exists a Borel increasing triangular mapping Tµ,ν that transforms µ into ν. This mapping is
defined on some Borel set of full µ-measure, and every kth component of Tµ,ν , as a function of
the variables x1, . . . , xk, is defined on a Borel set in Rk whose intersections with the straight
lines parallel to the kth coordinate line are intervals. As shown below, such a mapping is unique
up to a redefinition on a set of µ-measure zero provided that ν possesses nonatomic conditional
measures on the coordinate lines (e.g., is absolutely continuous). We shall call canonical the
version of Tµ,ν that is defined as follows by induction on n. For n = 1 we set

Fµ(t) := µ
(
(−∞, t)

)
, t ∈ R1, Gµ(u) := inf

{
s : Fµ(s) ≥ u

}
, u ∈ (0, 1),

Tµ,ν := Gν ◦ Fµ.

If the function Gν has a finite limit as u → 0 or u → 1, then we define Gν(0) or Gν(1) as the
corresponding limit. If the function Fµ assumes some of the values 0 and 1 (the sets F−1

µ (0) and

F−1
µ (1) are either empty or rays) and the function Gν has no finite limit at the corresponding

point, then the mapping Fµ,ν is defined on some interval (bounded or unbounded) of full µ-
measure. The mapping Fµ takes µ to Lebesgue measure λ on (0, 1), and Gν takes λ to ν. This
remains true for any probability measures provided that µ has no atoms. Note that the function
Gν is left continuous. Indeed, suppose that points ui increase to u, but Gν(ui) < Gν(u) − ε,
where ε > 0. Then there exist points si with Fν(si) ≥ ui and si < Gν(u)− ε. We may assume
that the sequence {si} increases to some s ≤ Gν(u) − ε. This gives Fν(s) ≥ u by the left
continuity of Fν , which contradicts the definition of Gν(u). Since the function Fµ is continuous,
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the function Gν ◦ Fµ is left continuous. If the measure ν is equivalent to Lebesgue measure
(or at least is positive on all intervals), then this function is continuous. It is readily seen that
the function Gν is injective (unlike, generally speaking, the function Fν) if ν has no atoms (for
example, is absolutely continuous). In the case n = 2 we denote by µ1 and ν1 the projections of
the measures µ and ν to the first coordinate line and take the canonical mapping T1 that takes
µ1 to ν1. Let µx and νx denote the conditional probability measures on the second coordinate
line, x ∈ R1. For µ1-almost every x1, one has the conditional probability density

%x1
µ (x2) := %µ(x1, x2)

(∫
R
%µ(x1, u) du

)−1

.

The measure on the real line with density %x1
µ can be transformed by a one dimensional canonical

mapping to the conditional probability measure νT1(x1). The corresponding canonical mapping
is denoted by x2 7→ T2(x1, x2) (according to the one dimensional case, the domain of definition
of this mapping may be a proper interval). If ν has a density %ν , then νT1(x1) is defined by

density %
T1(x1)
ν ( · ), where

%x1
ν (x2) := %ν(x1, x2)

(∫
R
%ν(x1, u) du

)−1

.

We observe that

∫
%ν

(
T1(x1), u

)
du > 0 for µ1-almost all x1 by the equality ν1 = µ1 ◦ T−1

1 . It

is clear that T := (T1, T2) is an increasing triangular mapping and takes µ into ν. Indeed, for
every bounded Borel function h on R2 we have∫

h(x, t)dν =

∫ ∫
h(x, t) νx(dt)ν1(dx).

By using twice the change of variable, we obtain a chain of equalities∫ ∫
h(x, t) νx(dt) ν1(dx) =

∫ ∫
h
(
T1(x), t

)
νT1(x)(dt)µ1(dx)

=

∫ ∫
h
(
T1(x), T2(x, t)

)
µx(dt)µ1(dx) =

∫
h ◦ T dµ.

The construction continues inductively by using one dimensional conditional densities on the
last coordinate line. If for some n ≥ 1 the existence of canonical triangular mappings is already
established, then such a mapping for measures on Rn+1 is constructed in the same way as in the
two dimensional case considered above. Namely, the projections of the measures µ and ν on Rn

are denoted by µn and νn. The corresponding conditional measures on the last coordinate line
are denoted by µx and νx, x ∈ Rn, and the density of µx is denoted by %x

µ. By the inductive
assumption there exists a canonical Borel triangular mapping T = (T1, . . . , Tn) : Rn → Rn

taking µn to νn (the domain of definition of T may be a proper Borel subset of Rn of full
µn-measure). We take for Tµ,ν the mapping Tµ,ν = (T1, . . . , Tn+1), where the last component is
defined as follows: for fixed x = (x1, . . . , xn) ∈ Rn, the function t 7→ Tn+1(x1, . . . , xn, t) is the
canonical transformation of the measure with density %x

µ to the measure νT (x). The domain of
definition of Tn+1 is a Borel set of full µ-measure such that its intersections with the straight
lines parallel to the last coordinate line are intervals (bounded or unbounded). Let us verify
that the function Tn+1 is Borel. Since it is increasing and left continuous in xn+1, it suffices
to verify that it is Borel with respect to x = (x1, . . . , xn) whenever xn+1 is fixed (see, e.g., [4,
Lemma 6.4.6]). By construction we have

Tn+1(x, xn+1) = GνT (x)

(
Fµx(xn+1)

)
.

The function x 7→ Fµx(xn+1) = µx

(
(−∞, xn+1)

)
is Borel measurable. Hence it suffices to show

that the function (x, z) 7→ GνT (x)
(z) on Rn×(0, 1) is Borel measurable. Since it is increasing and

left continuous in z, one has only to verify that the function x 7→ GνT (x)
(z) is Borel measurable

for every fixed z, which by the Borel measurability of T reduces everything to the justification of
the Borel measurability of the function ψ : x 7→ Gνx(z). For every c ∈ R1 the set {x : ψ(x) < c}
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is the projection of the set E :=
{
(x, s) : νx

(
(−∞, s)

)
≥ z, s < c

}
on Rn. The set E is Borel,

because so is the function (x, s) 7→ νx

(
(−∞, s)

)
, which is increasing and left continuous in s

and Borel measurable in x. Since the sections Ex := {s : (x, s) ∈ E} are semiclosed intervals,
hence are σ-compact, the Arsenin–Kunugui theorem (see [14, Theorem 35.46]) yields the Borel
measurability of the projection of E. Thus, the Borel measurability of T is established. The
chain of equalities indicated above remains valid if we replace µ1 and ν1 by µn and νn, which
shows that we obtain a required mapping.

If the measure µ is equivalent to Lebesgue measure, then one can take a nonvanishing Borel
version of its density. Then the mapping Tµ,ν is defined on all of Rn (the same is true if
the projection of µ on the first coordinate line and the conditional measures on the other
coordinate lines are not concentrated on rays). In the general case, the domain of definition of
Tµ,ν is a Borel set of full µ-measure such that the kth component is defined on a Borel set in Rk

whose intersections with the straight lines parallel to the kth coordinate line are intervals. The
mapping Tµ,ν is defined on the whole space also in the case where the measure ν is concentrated
on a bounded set, because in such a case, if n = 1, the function Tµ,ν is defined on the whole
real line due to existence of finite limits of the function Gν at the points 0 and 1. In general,
one cannot always extend Tµ,ν to an increasing mapping on the whole space. For example, if
µ is Lebesgue measure on the interval [0, 1], considered as on the whole real line, and ν is the
standard Gaussian measure on the real line, then the mapping Tµ,ν is defined on (0, 1), but
cannot be extended to an increasing function on the whole real line.

Finally, instead of transformations of measures on Rn one can deal with transformations of
measures on the cube [0, 1]n. Then the mapping Tµ,ν is defined on the whole cube, because in
the one dimensional case it is defined on the whole closed interval [0, 1]. In some respects, it
is more convenient to consider mappings of the cube. We observe that the case Rn reduces to
the case [0, 1]n. To this end, by using the mapping (x1, . . . , xn) 7→ (arctgx1, . . . , arctgxn) and
its inverse we pass from Rn to (0, 1)n (this preserves the class of increasing triangular Borel
mappings). Given two measures µ and ν on (0, 1)n, we take the mapping Tµ,ν on the cube
[0, 1]n corresponding to their extensions to this cube and let Ω = T−1

µ,ν

(
(0, 1)n

)
.

It is clear that in the case where the measure µ is equivalent to Lebesgue measure, the
mapping Tµ,ν is injective, since its first component is injective on the real line, the second
component T2(x1, x2) is injective as a function of x2 with fixed x1 and so on. Hence by Lusin’s
theorem Tµ,ν takes all Borel sets to Borel ones. In the general case, if ν possesses atomless
conditional measures on the coordinate lines (e.g., is absolutely continuous), then the mapping
Tµ,ν is injective on a Borel set of full µ-measure. Indeed, in the one dimensional case this is
obvious (in this case ν is atomless). The multidimensional case is justified by induction. To
this end, we take a set E ⊂ Rn−1 with µn−1(E) = 1 on which the mapping (T1, . . . , Tn−1)
is injective. Then E × R1 contains a set of full µ-measure on which T is injective, since for
every y = (x1, . . . , xn−1) ∈ E, the function t 7→ Tn(x1, . . . , xn−1, t) is injective on a set of full
µy-measure.

We note that in a similar manner an increasing triangular Borel mapping Tµ,ν is constructed
in a more general case where ν is an arbitrary Borel probability measure on Rn and a Borel
probability measure µ is such that its projections on Rk, k = 1, . . . , n, and the corresponding
conditional measures have no atoms. A justification is given in [1]. With the help of finite
dimensional canonical triangular mappings one constructs in an obvious way a canonical Borel
triangular mapping Tµ,ν on the space R∞ transforming a Borel probability measure µ to a
Borel probability measure ν, where it is assumed that the finite dimensional projections of µ
satisfy the aforementioned condition, for example, are absolutely continuous. To this end, the
components of Tµ,ν are constructed inductively as the components of the canonical triangular
mappings that transform the projections of µ on Rn to the projections of ν. According to
our construction the first n components of the canonical mapping on Rn+1 give the canonical
mapping on Rn.
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It is clear from the construction that the mapping Tµ,ν depends on our choice of conditional
measures for µ and ν. However, there holds the following uniqueness property in the class of
µ-equivalent increasing triangular mappings.

Lemma 2.1. Let µ be a Borel probability measure on R∞. Suppose that increasing triangular
Borel mappings T = (Tn)∞n=1 and S = (Sn)∞n=1 are such that µ ◦ T−1 = µ ◦ S−1 and that, for
every n, the mapping (T1, . . . , Tn) is injective on a Borel set of full measure with respect to the
projection of µ on Rn. Then T (x) = S(x) µ-a.e.

In particular, if the projections of the measures µ and ν on the spaces Rn are absolutely
continuous, then there exists a canonical triangular mapping Tµ,ν and it is unique up to µ-
equivalence in the class of increasing Borel triangular mappings that transform µ into ν.

Proof. It is clear that our assertion reduces to the case of mappings on Rn. We prove it by
induction on n. Let n = 1. Suppose that a point x0 belongs to the topological support of µ.
If T (x0) < S(x0), then x0 cannot be an atom of µ, since µ(x : T (x) < t) = µ(x : S(x) < t)
for all t and one can take t = (T (x0) + S(x0))/2. Now we may assume that both functions T
and S are continuous at x0, since their discontinuity points form an at most countable set. By
the continuity of both functions at x0 there exists a point x1 > x0 that is not an atom of µ
such that the functions T and S are continuous at x1 and T (x1) < S(x0). Taking t = T (x1)
we obtain that there exists a point y < x0 such that µ((y, x1)) = 0 contrary to the fact that x0

belongs to the topological support of µ.
Suppose our assertion is proved for some n ≥ 1. Let us consider the case of Rn+1. Set

ν := µ ◦ T−1 = µ ◦ S−1. Denote by µn and νn the projections of µ and ν on Rn. On the last
coordinate line we fix conditional measures µy and νy, y ∈ Rn. By the inductive assumption,
for any i ≤ n we have Ti(x) = Si(x) µ-a.e. Indeed, the images of the measure µn under the
mappings T0 := (T1, . . . , Tn) and S0 := (S1, . . . , Sn) coincide (they coincide with νn). This gives
T0 = S0 µn-a.e., which is equivalent to the coincidence of these mappings µ-a.e., because they
depend only on y := (x1, . . . , xn). Let us show now that for µn-a.e. y = (x1, . . . , xn), there
holds the equality Tn+1(x1, . . . , xn, xn+1) = Sn+1(x1, . . . , xn, xn+1) for µy-a.e. xn+1. To this end,
by the one dimensional case it suffices to verify the coincidence µn-a.e. of the measures µy ◦F−1

y

and µy ◦G−1
y , where

Fy(t) = Tn+1(x1, . . . , xn, t), Gy(t) = Sn+1(x1, . . . , xn, t).

By hypothesis, there exists a Borel set E ⊂ Rn with µn(E) = 1 such that the mapping T0 = S0 is
Borel and injective on E. There is a Borel mapping J on Rn such that J(T0(y)) = J(S0(y)) = y
for all y ∈ E. Let us take a countable family of bounded Borel functions ϕi on Rn separating
Borel measures and an analogous countable family of functions ψj on the real line. Let ζi =
ϕi ◦J . Then ζi(S0(y)) = ζi(T0(y)) = ϕi(y) for all y ∈ E, i.e., µn-a.e. For all i and j, there holds
the equality∫

Rn+1

ζi(y)ψj(t) ν(dydt) =

∫
Rn+1

ζi
(
S0(y)

)
ψj

(
Sn+1(y, t)

)
µ(dydt)

=

∫
Rn

(∫
R1

ψj

(
Sn+1(y, t)

)
µy(dt)

)
ϕi(y)µn(dy) =

∫
Rn

(∫
R1

ψj(t)µy ◦G−1
y (dt)

)
ϕi(y)µn(dy).

The same equality is fulfilled for the measures µy ◦F−1
y in place of µy ◦G−1

y . Due to our choice

of the functions ϕi and ψj we obtain the equality µy ◦G−1
y = µy ◦ F−1

y for µn-a.e. y. �

The assumption that ν possesses atomless conditional measures on the coordinate lines is
essential for the uniqueness statement. Indeed, let µ be Lebesgue on the square [0, 1]2 and
let T1(x1) = S1(x1) = 0, T2(x1, x2) = x2, S2(x1, x2) = (x2 + 1)/2 if 0 ≤ x1 ≤ 1/2, and
S2(x1, x2) = (x2 − 1)/2 if 1/2 < x1 ≤ 1. Then T and S transform µ into Lebesgue measure on
the unit interval of the second coordinate line.

It is interesting to compare the canonical triangular mapping Tµ,ν transforming a probability
measure µ on Rn to a probability measure ν with the mapping Ψ which also takes µ to ν and
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satisfies the equality∫
Rn

|Ψ(x)− x|2 µ(dx) = inf
σ∈M(µ,ν)

{∫
R2n

|y − x|2 σ(dxdy)
}
,

whereM(µ, ν) is the set of all probability measures on Rn×Rn having µ and ν as the projections
to the factors. It is known (see [20], [23]) that if µ is absolutely continuous and both measures
have finite second moments, then the minimum is attained at a measure σ which is the image
of µ under the mapping x 7→

(
Ψ(x), x

)
for some mapping Ψ that is the gradient of some

convex function V . In the one dimensional case Ψ is an increasing function and hence coincides
with Tµ,ν . However, in higher dimensions this is no longer true: typical triangular mappings
are not gradients, because the derivative of a gradient is given by a symmetric matrix (such a
matrix can be triangular only if it is diagonal). It would be interesting to clarify how big is
the difference between the indicated minimum and the value given by the canonical triangular
mapping.

Theorem 2.2. Suppose a sequence of absolutely continuous probability measures νj on Rn

converges in variation to a measure ν and let µ be a probability measure on Rn equivalent
to Lebesgue measure. Then the sequence of canonical triangular mappings Tµ,νj

converges in
measure µ to the mapping Tµ,ν.

Proof. Let n = 1. Then lim
j→∞

Tµ,νj
(t) = Tµ,ν(t) for almost every t, since the function Fµ is

strictly increasing and lim
j→∞

Gνj
(u) = Gν(u) for all points u ∈ (0, 1) at which the function Gν

is continuous, i.e., except for an at most countable set. Indeed, let u0 ∈ (0, 1) be a continuity
point of Gν and s0 = Gν(u0). It follows by the continuity of Gν at u0 that for an arbitrarily
small ε > 0 there holds the inequality

Fν(s0 − ε) < Fν(s0) < Fν(s0 + ε).

Convergence of measures νj to ν in variation yields uniform convergence of the functions Fνj
to

Fν . Hence for δ :=
(
Fν(s0 + ε)− u0

)
/2 one can find a number N1 such that for every j > N1,

there holds the inequality |Fνj
(s0 + ε)− Fν(s0 + ε)| < δ. Therefore,

Fνj
(s0 + ε)− u0 = Fνj

(s0 + ε)− Fν(s0 + ε) + Fν(s0 + ε)− u0 ≥ Fν(s0 + ε)− u0 − δ = δ > 0.

Hence for every j > N1 we have s0 + ε ≥ inf
{
t : Fνj

(t) ≥ u0

}
= Gνj

(u0). Similarly, there exists
N2 such that s0−ε ≤ Gνj

(u0) for all j ≥ N2. Thus, |Gνj
(u0)−s0| < ε for all sufficiently large j.

Suppose the theorem is proven for some n ≥ 1 and we are given probability measures νj =
fj dx convergent in variation to a measure ν = f dx on Rn+1. It suffices to verify that every
subsequence in {Tµ,νj

} contains a further subsequence convergent µ-a.e. We recall the following
fact (see Corollary 9.9.11 in [4]). Let µ be a Radon probability measure on a completely regular
space X with the Borel σ-algebra B, let Tj : X → X be measurable transformations convergent
µ-a.e. to a transformation T , let the measures µ◦T−1

j and µ◦T−1 be absolutely continuous with

respect to µ, and let their densities fj := d(µ ◦ T−1
j )/dµ be uniformly integrable. Suppose that

B-measurable functions ϕj converge in measure µ to a function ϕ. Then the functions ϕj ◦ Tj

converge in measure to ϕ ◦ T . Let Pn denote the projection from Rn+1 on Rn and let µ(n), ν(n)

and ν
(n)
j denote the projections of the measures µ, ν and νj on Rn. It is clear that the measure

µ(n) is equivalent to Lebesgue measure. By the inductive assumption and the Riesz theorem
one can assume, passing to a subsequence, that the mappings Pn ◦ Tµ,νj

converge µ(n)-a.e. to
the mapping Pn ◦ Tµ,ν , since they are the natural extensions of the mappings Ψj := T

µ(n),ν
(n)
j

and Ψ := Tµ(n),ν(n) , respectively, i.e., Pn ◦Tµ,νj
= Ψj ◦Pn, Pn ◦Tµ,ν = Ψ◦Pn. This is readily seen

from the properties of canonical mappings. Since the measures νj converge in variation to the
measure ν, passing to a subsequence once again, we may assume that fj → f a.e. In addition,
the densities fj are uniformly integrable. Set

Φj(x) :=
(
Ψj(Pnx), xn+1

)
, Φ(x) :=

(
Ψ(Pnx), xn+1

)
.
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Let νj,z, z ∈ Rn, denote the conditional measures on the last coordinate line for the measure νj.
It follows by the above described inductive construction of the components of canonical map-
pings and the considered one dimensional case that it suffices to obtain convergence of the one
dimensional conditional measures νj,Ψj(y) to the conditional measure νΨ(y) for almost all y ∈ Rn.
For every z ∈ Rn we let

θj(z) :=

∫
R1

fj(z, s) ds, θ(z) :=

∫
R1

f(z, s) ds.

The conditional measures νj,z and νz are given, respectively, by the densities

gj(z, t) = fj(z, t)/θj(z), g(z, t) = f(z, t)/θ(z).

Here g(z, t) = 0 if θ(z) = 0, and likewise for gj. The functions θj converge to θ with respect
to the norm of L1(Rn), hence in measure µ(n). According to the aforementioned assertion
θj

(
Ψj(y)

)
→ θ

(
Ψ(y)

)
in measure µ(n). Let us pass to an a.e. convergent subsequence. By the

same assertion the functions fj ◦Φj converge in measure µ to f ◦Φ. Indeed, let us consider the
measure µ′ := µ(n) ⊗ γ, where γ is the standard Gaussian measure on the last coordinate line.

This measure is equivalent to µ, and the measures µ′ ◦ Φ−1
j = ν

(n)
j ⊗ γ converge in variation to

the measure µ′ ◦Φ−1 = ν(n)⊗ γ. Passing to a subsequence we obtain that for µ(n)-almost every
y, the functions gj

(
Ψj(y), t

)
of the real argument t converge a.e. to the function g

(
Ψ(y), t

)
.

Since we deal with probability densities, we obtain convergence in L1(R1), i.e., convergence in
variation of the corresponding measures, which gives convergence a.e. of the last components
of Tµ,νj

. �

There holds the following change of variables formula for increasing triangular mappings.

Lemma 2.3. Let T = (T1, . . . , Tn) : Rn → Rn be an increasing Borel triangular mapping.
Suppose that the functions

xi 7→ Ti(x1, . . . , xi)

are absolutely continuous on all compact intervals for a.e. (x1, . . . , xi−1) ∈ Ri−1. Set by defini-
tion detDT :=

∏n
i=1 ∂xi

Ti. Then for every Borel function ϕ that is integrable on the set T (Rn),
the function ϕ ◦ T detDT is integrable over Rn and there holds the equality∫

T (Rn)

ϕ(y) dy =

∫
Rn

ϕ
(
T (x)

)
detDT (x) dx. (2.2)

If the mapping T is defined only on a Borel set Ω ⊂ Rn and every function Ti is defined on a
Borel set in Ri whose sections by the straight lines parallel to the ith coordinate line are intervals
and the indicated condition is fulfilled for the compact intervals in those sections, then the same
assertion is true with Ω in place of Rn.

Proof. For n = 1 our assertion coincides with the classic change of variables formula for abso-
lutely continuous functions. Next we apply induction on n and assume the assertion to be true
in the case of dimension n−1. We make the function ϕ zero outside the Souslin set T (Rn). Let
S = (T1, . . . , Tn−1). Then for almost every yn ∈ R1, the function (y1, . . . , yn−1) 7→ ϕ(y1, . . . , yn)
is integrable over Rn−1, hence by the inductive assumption and the fact that the mapping S
on Rn−1 satisfies our hypotheses, we obtain∫

T (Rn)

ϕ(y) dy =

∫
Rn

ϕ(y) dy =

∫ +∞

−∞

∫
Rn−1

ϕ
(
S(z), yn

)
detDS(z) dz dyn,

which after interchanging the limits of integration and the change of variable yn = Tn(z, xn)
for fixed z ∈ Rn−1 leads to (2.2) by the equality detDT = (detDS)∂xnTn. A similar reasoning
applies to the second case mentioned in the formulation, when T is defined on Ω. �

Let us give a simple sufficient condition on the measures µ and ν ensuring the absolute
continuity of the ith component of Tµ,ν with respect to the variable xi.
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Lemma 2.4. A canonical triangular mapping Tµ,ν on Rn that transforms an absolutely contin-
uous probability measure µ to a probability measure ν satisfies the hypothesis of the preceding
lemma if the measure ν is equivalent to Lebesgue measure.

Proof. It suffices to observe that in the one dimensional case the function Tµ,ν is absolutely
continuous on the intervals, since Tµ,ν = Gν ◦ Fµ, where both functions are increasing and
absolutely continuous on the intervals. The absolute continuity of Fµ is obvious and the absolute
continuity (on every interval) of the function Gν that is inverse to the absolutely continuous
function Fν follows by the fact that it is continuous, increasing and has Lusin’s property (N)
(see Exercise 5.8.48 in [4]). Property (N) follows by the condition F ′

ν > 0 a.e. (see Lemma
5.8.13 in [4]). �

If the measure ν is not equivalent to Lebesgue measure, then the ith component of the
canonical triangular mapping may be discontinuous. For example, the canonical mapping of
Lebesgue measure on [0, 1] to the measure ν with density 2 on [0, 1/4] ∪ [3/4, 1] and 0 on
(1/4, 3/4) has a jump. Nevertheless, the change of variables formula proven above remains
valid without assumption on the absolute continuity made in the lemma if T is a canonical
mapping of absolutely continuous measures (certainly, not every increasing Borel triangular
mapping has this property).

Proposition 2.5. Let µ and ν be probability measures on Rn with densities %µ and %ν with
respect to Lebesgue measure. Then for the canonical triangular mapping Tµ,ν = (T1, . . . , Tn)
there holds the equality

%µ(x) = %ν

(
Tµ,ν(x)

)
detDTµ,ν(x) for µ-a.e. x, (2.3)

where detDTµ,ν :=
∏n

i=1 ∂xi
Ti exists almost everywhere by the monotonicity of Ti in xi.

Proof. Let us consider first the one dimensional case. Then Tµ,ν = S ◦ T , where T is the
canonical mapping of the measure µ to Lebesgue measure λ on (0, 1), i.e., the distribution
function of the measure µ, and S is the canonical mapping of the measure λ to the measure ν,
i.e., the inverse function to the distribution function Fν of the measure ν. By differentiating
the identity Fν

(
S(y)

)
= y we obtain %ν

(
S(y)

)
S ′(y) = 1 a.e. Indeed, it suffices to observe that

if Z is a Lebesgue measure zero set on which the derivative of Fν does not exist or differs
from %ν , then S−1(Z) has Lebesgue measure zero. This is a direct consequence of the equality
λ ◦ S−1 = ν and the absolute continuity of ν. Now we observe that

%ν

(
S
(
T (x)

))
S ′

(
T (x)

)
= 1 for µ-a.e. x.

This is clear from the equality µ ◦ T−1 = λ. In a similar manner with the help of the equality
µ ◦ T−1 = λ we conclude that

T ′µ,ν(x) = S ′
(
T (x)

)
T ′(x) for µ-a.e. x.

Thus, for µ-a.e. x we obtain

%ν

(
Tµ,ν(x)

)
T ′µ,ν(x) = %ν

(
Tµ,ν(x)

)
S ′

(
T (x)

)
T ′(x) = T ′(x) = %µ(x).

Next we use induction on n and assume our assertion to be proven in dimension n − 1. We

write the points of Rn in the form (x, xn), x ∈ Rn−1. Set T̃ (x) =
(
T1(x), . . . , Tn−1(x)

)
. The

projections of the measures µ and ν on Rn−1 are denoted by µ′ and ν ′, and their densities with
respect to Lebesgue measure on Rn−1 are denoted by %µ′ and %ν′ , respectively. We observe that

T̃ coincides with Tµ′,ν′ . By the inductive assumption one has

%µ′(x) = %ν′
(
T̃ (x)

)
detDT̃ (x) µ′-a.e. (2.4)

For µ′-a.e. fixed x ∈ Rn−1, the function t 7→ Tn(x, t) transforms the one dimensional conditional
density %x

µ(xn) = %µ(x, xn)/%µ′(x) of the measure µ to the conditional density

%T̃ (x)
ν (xn) = %ν

(
T̃ (x), xn

)
/%ν′

(
T̃ (x)

)
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of the measure ν. According to the one dimensional case we obtain

%µ(x, xn)

%µ′(x)
=
%ν

(
T̃ (x), Tn(x, xn)

)
%ν′

(
T̃ (x)

) ∂xnTn(x, xn) for µx-a.e. xn.

Together with (2.4) and the equality detDT (x, xn) = ∂xnTn(x, xn) detDT̃ (x) this completes
the proof. �

We emphasize once again that the partial derivative in the formulation is an almost every-
where existing usual partial derivative, not the one in the sense of distributions (which has a
singular component in the case of a function that is not absolutely continuous). This result
substantially reinforces the one proved in [2] under additional conditions on the densities of
the given measures. Let us give a sufficient condition for the continuous differentiability of a
canonical mapping.

Lemma 2.6. Suppose that probability measures µ and ν on Rn are given by continuous positive
densities %µ and %ν whose Sobolev partial derivatives up to order n+ 1 are integrable over Rn.
Then the canonical triangular mapping Tµ,ν is continuously differentiable. The same is true if
in place of the integrability of partial derivatives up to order n + 1 we require the continuity
of the first order partial derivatives of the densities and the existence of nonnegative integrable
functions θ1,. . . ,θn on the real line such that the functions %µ, %ν, |∂xi

%µ|, |∂xi
%µ| are estimated

by the function θ1(x1) · · · θn(xn).

Proof. First we consider the canonical mapping of the measure µ to Lebesgue measure λ on the
open cube (0, 1)n. In this case the last component Tn of the corresponding canonical mapping
has the form

Tn(x, xn) =

∫ xn

−∞
%µ(x, s) ds

(∫ +∞

−∞
%µ(x, s) ds

)−1

,

where the points of Rn are written as (x, xn), x ∈ Rn−1. We observe that the function ∂xnTn is
continuous. To this end, it suffices to make sure of the continuity of the function

G(x) :=

∫ +∞

−∞
%µ(x, s) ds.

It is easily seen that this function has Sobolev partial derivatives up to order n that are inte-
grable over Rn−1, which by the Sobolev embedding theorem implies the continuity of G.

The functions ∂xi
Tn, i ≤ n − 1, are continuous as well. Indeed, by the positivity of %µ it

suffices to verify the continuity of the functions

Hi(x, xn) :=

∫ xn

−∞
∂xi
%µ(x, s) ds.

These functions have integrable Sobolev partial derivatives up to order n + 1, hence are con-
tinuous. Therefore, the mapping Tµ,λ is continuously differentiable.

In the general case, the mapping Tµ,ν is the composition of the mappings Tµ,λ and Tλ,ν = T−1
ν,λ .

The continuous differentiability of Tλ,ν follows by the inverse mapping theorem due to the
nondegeneracy of DTν,λ. The second assertion of the lemma is proved similarly with the help
of Lebesgue’s dominated convergence theorem. �

3. Estimates of the entropy of the Radon–Nikodym densities

If a probability measure ν is given by a density f with respect to a probability measure µ
and f log f ∈ L1(µ), where we set f(x) log f(x) = 0 whenever f(x) = 0, then we let

Entµ(f) :=

∫
f log f dµ.

The Fredholm–Carleman determinant det2A of a matrix A is defined by the equality

det 2A = exp
(
Tr(I − A)

)
detA,
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where I is the unit matrix and Tr is the matrix trace. Let D and D2 denote the first and second
derivatives. For a positive function ψ on Rn from the class C2 and two vectors v1, v2 ∈ Rn, we
introduce the operator

Λ
[
ψ, v1, v2

]
=

∫ 1

0

sD2
[
− logψ

](
(1− s)v1 + sv2

)
ds.

Theorem 3.1. Suppose that we are given a probability measure µ = exp(−Φ) dx on Rn and
two injective locally Lipschitzian mappings Tf and Tg with µ◦T−1

f = f ·µ and µ◦T−1
g = g ·µ =

exp(−Θ) dx such that Φ,Θ ∈ C2(Rn), f > 0 a.e. and f log(f/g) ∈ L1(µ). Let Tg have a locally
Lipschitzian inverse T−1

g , let T = (T1, . . . , Tn) := Tf ◦ T−1
g , and let detDT > 0 a.e. Suppose

that the functions 〈
DTf (x)

(
DTg(x)

)−1
ei, ei

〉
, (3.1)

log det
[
DTf (x)

(
DTg(x)

)−1
]
, (3.2)

∂xi
Θ(x)

(
Ti(x)− xi

)
g(x) (3.3)

are µ-integrable, or, which is equivalent, the functions

∂xi
Ti, log detDT, ∂xi

Θ(x)
(
Ti(x)− xi

)
are g · µ-integrable. Then there holds the equality

Entg·µ

(f
g

)
(3.4)

=

∫
Rn

〈
Λ

[
e−Θ, Tf , Tg

](
Tf − Tg

)
, Tf − Tg

〉
dµ−

∫
Rn

log det2

[
DTf (DTg)

−1
]
dµ

=

∫
Rn

{〈
Λ

[
e−Θ, T (x), x

](
T (x)− x

)
, T (x)− x

〉
− log det2DT (x)

}
g(x)µ(dx).

In particular, this is true if Tf = Tµ,f ·µ and Tg = Tµ,g·µ are canonical triangular mappings
satisfying the indicated integrability conditions. In addition, in this case one has the inequality
log det2DTf (DTg)

−1 ≤ 0.

Proof. The set Tf (Rn) is Borel measurable by the injectivity of Tf , and its complement has
measure zero by the equivalence of the measure f · µ and Lebesgue measure. Let Sg := T−1

g .
The mapping T is locally Lipschitzian as well. By the differentiation of composition formula
one has

DT (x) = DTf

(
Sg(x)

)
DSg(x) = DTf

(
Sg(x)

)[
DTg

(
Sg(x)

)]−1
a.e.

By the change of variables formula for locally Lipschitzian mappings, for every Lebesgue in-
tegrable function ϕ on Rn, the function ϕ ◦ T detDT is also integrable and there holds the
equality ∫

Rn

ϕ
(
T (x)

)
detDT (x) dx =

∫
Rn

ϕ(y) dy.

Hence for every bounded Borel function ψ on Rn, on the account of the equality f ·µ = (g·µ)◦T−1

we obtain∫
Rn

ψ
(
T (x)

)
f
(
T (x)

)
exp

[
−Φ

(
T (x)

)]
detDT (x) dx =

∫
Rn

ψ(y)f(y) exp[−Φ(y)] dy

=

∫
Rn

ψ
(
T (x)

)
g(x) exp[−Φ(x)] dx.

Since the mapping T is injective, we arrive at the equality

f
(
T (x)

)
exp

[
−Φ

(
T (x)

)]
detDT (x) = g(x) exp[−Φ(x)] = exp[−Θ(x)] a.e. (3.5)

By taking the logarithm we obtain

log f
(
T (x)

)
− Φ

(
T (x)

)
+ log detDT (x) = −Θ(x) a.e. (3.6)
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Adding (Φ− log g)
(
T (x)

)
= Θ

(
T (x)

)
on both sides we obtain

log f
(
T (x)

)
− log g

(
T (x)

)
= Θ

(
T (x)

)
−Θ(x)− log detDT (x) a.e.

Let us apply the identity

Ψ(a)−Ψ(b) =
〈
∇Ψ(b), a− b

〉
+

∫ 1

0

s
〈
D2Ψ

(
(b− a)s+ a

)
(b− a), b− a

〉
ds (3.7)

to Ψ = Θ and a = T (x), b = y. We obtain almost everywhere

log f
(
T (x)

)
− log g

(
T (x)

)
=

〈
∇Θ(x), T (x)− x

〉
+

∫ 1

0

s
〈
D2Θ

(
sx+ (1− s)T (x)

)(
x− T (x)

)
, x− T (x)

〉
ds− log detDT (x). (3.8)

Note that the left-hand side of equality (3.8) is integrable with respect to the measure g · µ
by the integrability of the function f log(f/g) with respect to the measure µ and the equality
(g · µ) ◦ T−1 = f · µ. Hence∫

Rn

log
f
(
T (x)

)
g
(
T (x)

) g(x)µ(dx) =

∫
Rn

f(x) log
f(x)

g(x)
µ(dx).

The first and third summands on the right in (3.8) are integrable with respect to the measure
g · µ by hypothesis. Hence the second summand on the right in (3.8) is also integrable with
respect to g · µ. Integrating (3.8) against the measure g · µ, we arrive at the equality∫

Rn

log
f
(
T (x)

)
g
(
T (x)

) g(x)µ(dx) =

∫
Rn

〈
∇Θ(x), T (x)− x

〉
g(x)µ(dx) (3.9)

+

∫
Rn

[∫ 1

0

s
〈
D2Θ

(
sx+ (1− s)T (x)

)(
x− T (x)

)
, x− T (x)

〉
ds

]
g(x)µ(dx)

−
∫

Rn

log det
{
DTf

(
Sg(x)

)[
DTg

(
Sg(x)

)]−1
}
g(x)µ(dx).

Since (g · µ) ◦ S−1
g = µ, the last integral on the right-hand side is written as∫

Rn

log detDTf (x)
(
DTg(x)

)−1
µ(dx).

We observe that −∇Θ is the logarithmic gradient of the function % := exp(−Θ), i.e., −∇Θ =

∇%/%. By hypothesis, the functions
∂xi
%(x)

%(x)
(Ti(x)− xi) and ∂xi

Ti are integrable with respect

to the measure % dx = g · µ, because the integrability of the functions

∂xi
Ti(x) = 〈DT (x)ei, ei〉 =

〈
DTf

(
Sg(x)

)[
DTg

(
Sg(x)

)]−1
ei, ei

〉
with respect to the measure g · µ follows, in view of the equality (g · µ) ◦ S−1

g = µ, by the

integrability of the functions
〈
DTf (x)

(
DTg(x)

)−1
ei, ei

〉
with respect to the measure µ. Thus,

by means of the integration by parts formula the first integral on the right-hand side in (3.9)
is transformed to∫

Rn

n∑
i=1

∂xi

(
Ti(x)− xi

)
g(x)µ(dx) =

∫
Rn

n∑
i=1

∂xi
Ti(x) g(x)µ(dx)− n

=

∫
Rn

n∑
i=1

〈
DTf (x)

(
DTg(x)

)−1
ei, ei

〉
µ(dx)− n.
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The justification of integration by parts under our assumptions follows by [3, Theorem 5.1.2].
By using the equality x = Tg

(
Sg(x)

)
and changing variables once again we arrive at the identity∫

Rn

f log
f

g
dµ =

∫
Rn

〈
Λ

[
e−Θ, Tf , Tg

](
Tf − Tg

)
, Tf − Tg

〉
dµ

+

∫
Rn

(
Tr

[
DTf (x)

(
DTg(x)

)−1
]
− n− log det

[
DTf (x)

(
DTg(x)

)−1
])
µ(dx).

=

∫
Rn

〈
Λ

[
e−Θ, Tf , Tg

](
Tf − Tg

)
, Tf − Tg

〉
dµ−

∫
Rn

log det2

[
DTf (x)

(
DTg(x)

)−1
]
dµ.

In the case where Tf and Tg are canonical triangular mappings, the matrices DTf and DTg are
lower-triangular and their diagonal elements are positive. The matrix DTf (DTg)

−1 possesses
these two properties as well. It remains to observe that if A is a triangular matrix with numbers
αi > 0 at the diagonal, then 0 < det2A ≤ 1, since αi exp(1− αi) ≤ 1. �

In the case where Tg(x) = x and g = 1 we arrive at the following assertion.

Corollary 3.2. Suppose we are given probability measures µ = exp(−Φ) dx and f · µ on Rn,
where Φ ∈ C2(Rn) and f > 0 a.e. Let T = (T1, . . . , Tn) be a locally Lipschitzian mapping such
that µ ◦ T−1 = f · µ and detDT > 0 a.e. Suppose that the functions

f log f, 〈DT (x)ei, ei〉, log detDT (x), ∂xi
Φ(x)

(
Ti(x)− xi

)
are integrable with respect to the measure µ. Then one has

Entµ(f) =

∫
Rn

〈
Λ

[
e−Φ, T (x), x

](
T (x)− x

)
, T (x)− x

〉
µ(dx)−

∫
Rn

log det2DT dµ.

In particular, this is true if T is a canonical triangular mapping satisfying the indicated inte-
grability conditions. In addition, in this case one has the inequality log det2DT ≤ 0.

Remark 3.3. It is obvious from the proof of the theorem that the regularity conditions on
the functions Φ,Θ and mappings Tf and Tg can be relaxed as follows: it suffices to have the

inclusions Ti, g ∈ W 1,1
loc (Rn), Φ,Θ ∈ W 1,2

loc (Rn) and the validity of formula (3.5). This concerns
also the corollary. Moreover, the same reasoning leads to the following general result.

Theorem 3.4. Let measures µ = exp(−Φ) dx, f ·µ and g·µ = exp(−Θ) dx satisfy the hypotheses
of the preceding theorem and let Borel mappings Tf and Tg on Rn be such that µ ◦ T−1

f = f · µ,
µ◦T−1

g = g ·µ. Suppose that there exist a Borel mapping T = (T1, . . . , Tn) on Rn and an almost
everywhere positive measurable function JT such that Tf = T ◦ Tg and almost everywhere there
holds the equality

f
(
T (x)

)
exp

[
−Φ

(
T (x)

)]
JT (x) = g(x) exp[−Φ(x)] = exp[−Θ(x)]. (3.10)

In addition, suppose that the functions xi 7→ Ti(x1, . . . , xi−1, xi, xi+1, . . . , xn) are absolutely
continuous on all intervals for almost all (x1, . . . , xi−1, xi+1, . . . , xn), and one has

f

g
log

f

g
, ∂xi

Ti, log JT , ∂xi
Θ(x)

(
Ti(x)− xi

)
∈ L1(g · µ). (3.11)

Then there holds the equality

Entg·µ

(f
g

)
=

∫
Rn

〈
Λ

[
e−Θ, T (x), x

](
T (x)− x

)
, T (x)− x

〉
+

∫
Rn

[
divT (x)− n− log JT (x)

]
g(x)µ(dx),

where divT (x) :=
n∑

i=1

∂xi
Ti(x).

In particular, this equality holds true if f > 0 a.e., Tf and Tg are canonical triangular
mappings and condition (3.11) is fulfilled.
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Remark 3.5. The conditions imposed on the mappings Tf and Tg and the measures f · µ
and g · µ are not independent; however, in the stated form they are more convenient for the
subsequent applications. In the case where g = 1 and Tg = I, the following condition on
the mapping Tf is sufficient for the validity of formula (3.5): Tf belongs to the Sobolev class

W 1,1
loc (Rn,Rn), is invertible, has Lusin’s property (N), and detDT (x) > 0 a.e. (see [13]). For

example, if Tf ∈ W p,1
loc (Rn,Rn), where p > n, then it suffices that the continuous version of Tf

be invertible and detDT (x) > 0 a.e.

Remark 3.6. (i) All the integrability conditions imposed in Theorem 3.1 are fulfilled if the
mappings Tf and Tg coincide with the identity mapping outside some compact set.

(ii) The integrability conditions on the functions (3.1)–(3.3) are fulfilled if we are given the
integrability of the function |∇Θ|g with respect to the measure µ and the function Tk(x)− xk

for every k = 1, . . . , n has the form θk(x1, . . . , xk), where the function θk on Rk has compact

support. Indeed, in this case the functions ∂xi
Ti, log detDT =

n∑
i=1

log ∂xi
Ti and Ti(x)− xi = θi

are bounded, since the functions θi and ∂xi
θi are bounded and the function ∂xi

Ti = 1 + ∂xi
θi is

separated from zero due to the fact that it does not vanish and equals 1 at all points x whose
projections on Rk do not belong to some compact set.

(iii) In the case where Tg(x) = x, g = 1 and F (x) := Tf (x)− x, a sufficient condition for the
integrability of the functions (3.1)–(3.3) is µ-integrability of the function

|∇Φ(x)||F (x)|+ ‖DTf (x)‖+ | log detDTf (x)|.

For example, this condition is fulfilled if the measure µ has all moments, there holds the estimate

‖DTf (x)‖+ |∇Φ(x)| ≤ c1 + c2|x|k,

and the function detDTf (x) is separated from zero.

Remark 3.7. If the function |T (x)−x|g(x) is integrable with respect to µ, which is equivalent
to µ-integrability of the function |Tf (x) − Tg(x)|, then in place of the µ-integrability of every

function
〈
DTf (x)

(
DTg(x)

)−1
ei, ei

〉
in (3.1) it suffices to have µ-integrability of their sum that

equals Tr
[
DTf (x)

(
DTg(x)

)−1
]
. In other words, in place of g · µ-integrability of the functions

∂xi
Ti it suffices to require the integrability of their sum divT . To this end, in the justification

of the equality ∫
Rn

〈∇%(x), T (x)− x〉 dx = −
∫

Rn

divT (x) %(x) dx+ n

with % = exp(−Θ) in place of %, we substitute ζ%, where ζ ∈ C∞
0 (Rn). We obtain∫

Rn

ζ(x)〈∇%(x), T (x)− x〉 dx+

∫
〈∇ζ(x), T (x)− x〉%(x) dx

= −
∫

Rn

divT (x) ζ(x)%(x) dx+ n

∫
Rn

ζ(x)%(x) dx.

Now it remains to take a sequence of functions ζk ∈ C0(Rn) such that 0 ≤ ζk ≤ 1, ζk(x) = 1
if |x| ≤ k and |∇ζk(x)| ≤ M < ∞ for some constant M independent of k. Here the second
integral on the left-hand side approaches zero by Lebesgue’s dominated convergence theorem.

For n = 1 and g = 1 the established equality (naturally, without traces and determinants)
is present in the reasoning in [21], and in [9] a close argumentation with the use of Taylor’s
formula is employed in the derivation of an inequality for some optimal mappings. In the
multidimensional case an equality of such a type in a more special situation was obtained first
in [16]. The exact equality found by us may be a source of diverse functional inequalities, which
will be demonstrated below.

Let us give a modification of Theorem 3.1 imposing somewhat different conditions. Suppose
that as above we are given three probability measures µ = exp(−Φ) dx, g · µ = exp(−Θ) dx
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and f · µ on Rn and mappings Tf , Tg : Rn → Rn transforming the measure µ to g · µ and f · µ,
respectively. Suppose that there exists a Borel mapping T = (T1, . . . , Tn) such that Tf = T ◦Tg.

Theorem 3.8. (i) Let T ∈ W 1,1
loc (Rn,Rn) and let formula (3.5) be valid. Suppose that the

measures f · µ and g · µ have finite second moments, |∇Θ| ∈ L2
loc(g · µ) and that the quantity

Entg·µ

(
f
g

)
is finite. Let detDT ≥ 0 and D2Θ ≥ C · I, C ∈ R. Assume that there exists a

function w ∈ L1(g · µ) such that − log det2DT ≥ w. Then

Entg·µ

(f
g

)
=

∫
Rn

〈
Λ

[
e−Θ, Tf , Tg

](
Tf − Tg

)
, Tf − Tg

〉
dµ−

∫
Rn

log det2DT g dµ.

(ii) Let T be a canonical triangular mapping. Then for the validity of the foregoing equality,
in which by definition we set

det2DT :=
n∏

i=1

exp(1− ∂xi
Ti)∂xi

Ti,

it suffices to have only the following conditions: f > 0 a.e., the measures f ·µ and g ·µ possess
finite second moments, |∇Θ| ∈ L2

loc(g · µ), (f/g) log(f/g) ∈ L1(g · µ) and D2Θ ≥ C · I, where
C ∈ R.

Proof. (i) Since log detDT can be expressed via the logarithm of the Fredholm–Carleman de-
terminant of the matrix DT by means of the equality

log detDT = log det2DT − Tr(I −DT ),

as in the proof of the preceding theorem, we obtain the formula

log f
(
T (x)

)
− log g

(
T (x)

)
−

〈
∇Θ(x), T (x)− x

〉
+ Tr

(
DT (x)− I

)
=

∫ 1

0

s
〈
D2Θ

(
sx+ (1− s)T (x)

)(
x− T (x)

)
, x− T (x)

〉
ds− log det2DT (x).

We observe that the functions standing on the left-hand side are locally integrable with respect
to the measure g ·µ. Indeed, the integrability of the function log f

(
T (x)

)
− log g

(
T (x)

)
follows

by the change of variables formula from the integrability of the function f log f
g

with respect to

the measure µ. Let F (x) := T (x)− x. The existence of finite second moments of the measures
f · µ and g · µ means µ-integrability of the functions x2g and |T |2g, since (g · µ) ◦ T−1 = f · µ.
Thus, |F | ∈ L2(g · µ). Taking into account that ∇Θ ∈ L2

loc(g · µ), Hölder’s inequality gives the
local g ·µ-integrability of the functions 〈∇Θ, F 〉. Let us fix a nonnegative function ϕ ∈ C∞

0 (Rn).
Integrating the indicated formula with respect to the measure ϕg · µ, we obtain∫

Rn

log
f(T )

g(T )
ϕg dµ−

∫
Rn

〈∇Θ, F 〉ϕg dµ+

∫
Rn

Tr(DF )ϕg dµ

=

∫
Rn

[∫ 1

0

s
〈
D2Θ

(
x+ (1− s)F (x)

)(
F (x)

)
, F (x)

〉
ds

]
ϕ(x)g(x)µ(dx)

−
∫

Rn

log det2DTϕg dµ.

The splitting of the integral on the right-hand side in the sum of the two integrals is possible,
because both integrands are estimated from below by integrable functions. Integrating by parts,
we obtain ∫

Rn

log
f(T )

g(T )
ϕg dµ−

∫
Rn

〈
∇ϕ, F

〉
g dµ

=

∫
Rn

[∫ 1

0

s
〈
D2Θ

(
x+ (1− s)F (x)

)(
F (x)

)
, F (x)

〉
ds

]
ϕ(x)g(x)µ(dx)

−
∫

Rn

log det2DTϕg dµ.



16

Let us take a sequence of functions ϕj ∈ C∞
0 (Rn) with 0 ≤ ϕj ≤ 1 and uniformly bounded

gradients such that ϕj(x) = 1 whenever |x| ≤ j. By using that〈
D2Θ

(
x+ (1− s)F (x)

)(
F (x)

)
, F (x)

〉
≥ C|F (x)|2

and − log det2DT ≥ w, where the functions |F |2g and wg are integrable with respect to µ, we
conclude by Fatou’s theorem that the functions log det2DT and∫ 1

0

s
〈
D2Θ

(
x+ (1− s)F (x)

)(
F (x)

)
, F (x)

〉
ds

are integrable with respect to the measure g ·µ and that in the last equality one can set ϕ = 1.
After a change of variables this gives∫

Rn

log
f

g
f dµ =

∫
Rn

〈
Λ

[
e−Θ, Tf , Tg

](
Tf − Tg

)
, Tf − Tg

〉
dµ

−
∫

Rn

log det2DTg dµ.

Assertion (i) is proven. Assertion (ii) is readily seen from the above reasoning, since formula
(3.5) is valid according to what has been proven above, detDT ≥ 0, det2DT ≤ 1, and the
functions xi 7→ Ti(x1, . . . , xi−1, xi) are absolutely continuous on all intervals. �

We shall say that a probability measure µ on Rn with a twice differentiable density exp(−Φ)
is uniformly convex with constant C > 0 if

D2Φ(x) ≥ C · I.

Corollary 3.9. Suppose that the measure g · µ in Theorem 3.8 is uniformly convex with con-
stant C. Then for the canonical triangular mappings Tf and Tg we have

Entg·µ

(f
g

)
≥ C

2

∫
Rn

∣∣Tf (x)− Tg(x)
∣∣2 µ(dx).

Proof. By the estimate D2Θ ≥ C · I we obtain〈∫ 1

0

sD2Θ
(
(1− s)Tf + sTg

)
(v), v

〉
ds ≥ C

2
|v|2

for every vector v. �

Corollary 3.10. Suppose that a probability measure µ on the space Rn is uniformly convex
with constant C (for example, let µ be the standard Gaussian measure). Let ν be an absolutely
continuous probability measure on Rn such that letting f := dν/dµ we have f log f ∈ L1(µ).
Then for the canonical triangular mapping Tµ,ν we have∫

|x− Tµ,ν(x)|2 µ(dx) ≤ 2

C

∫
f(x) log f(x)µ(dx). (3.12)

In the case of the standard Gaussian measure one has C = 1.

Proof. Let us find a sequence of smooth functions fj convergent a.e. to f such that the measures
νj := fj · µ are probabilistic, fj = 1 outside of some cube Kj, and the quantities Entµ(fj)
converge to Entµ(f). To this end, we find first a positive convex function θ on R such that
the function θ(|f log f |) is integrable with respect to µ. It is readily verified that there exists
a sequence of nonnegative smooth functions fj convergent a.e. to f such that fj = 1 outside

of some cube Kj,

∫
Rn

fj dµ = 1, and the quantities

∫
θ(|fj log fj|) dµ are uniformly bounded.

By the uniform integrability of the functions fj log fj their integrals converge to the integral
of f log f . It follows by the definition of uniform convexity that the measure µ is equivalent
to Lebesgue measure. By construction we have convergence of the probability densities fj in
L1(µ), i.e., convergence in variation of the measures νj. Then by Theorem 2.2 the sequence of
the canonical triangular mappings Tµ,νj

converges in measure µ to the mapping Tµ,ν . Suppose
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that for the mappings Tµ,νj
estimate (3.12) is known. Then by Fatou’s theorem it holds also

for Tµ,ν . Thus, our assertion reduces to the case where the function f is smooth and coincides
with 1 outside of some cube. Set T := Tµ,ν . By convexity the measure µ has finite second
moment. Hence the measure f · µ has finite second moment too, which gives µ-integrability of
the function |T |2. The function |∇Θ| is locally bounded by the convexity of Θ. Thus, assertion
(ii) of the preceding theorem applies. �

4. Some applications of triangular transformations

Here we discuss applications of the above results to measures on the countable product of
real lines and to generalized logarithmic Sobolev inequalities.

Theorem 4.1. Let µ be the product of countably many copies of a probability measure σ on the
real line that is uniformly convex with constant C (for example, is a nondegenerate Gaussian
measure) considered on the space R∞ of all real sequences and let ν be a Borel probability
measure on R∞ that is absolutely continuous with respect to µ. Then there exists a Borel
triangular mapping T : R∞ → R∞ such that T (x) = x + F (x), where F : R∞ → l2 and
ν = µ ◦ T−1. If, in addition, letting f := dν/dµ, we have f log f ∈ L1(µ), then∫

|F (x)|2l2 µ(dx) ≤ 2

C

∫
f(x) log f(x)µ(dx). (4.1)

Proof. Suppose first that f log f ∈ L1(µ). Denote by νn the projection of ν on the space Rn. It
is clear that νn = fn ·µn, where µn is the product of n copies of the measure σ and fn ∈ L1(µn).
Indeed, for every Borel set A in Rn we have

νn(A) =

∫
R∞

IAf µ(dx) =

∫
R∞

IAEBn
µ f µ(dx) =

∫
A

EBn
µ f µn(dx) =

∫
A

fn µn(dx),

where EBn
µ f is the conditional expectation of f with respect to the σ-algebra Bn generated

by the first n coordinate functions. Thus, fn = EBn
µ f . Since the function x log x is convex,

Jensen’s inequality for conditional expectations yields the uniform boundedness of the integrals∫
fn log fn dµn. Let us take the canonical triangular mapping Tn = (T 1

n , . . . , T
n
n ) on Rn trans-

forming µn to νn. By the uniqueness of canonical mappings Tn coincides with (T 1
n+1, . . . , T

n
n+1),

i.e., T k
n = T k

m whenever n,m ≥ k. Hence we obtain the functions T 1 = T 1
1 , T 2 = T 2

2 ,. . . ,
T n = T n

n ,. . . , defining a Borel triangular mapping T . For every cylindrical Borel set B with a
base Bn in Rn we have

µ ◦ T−1(B) = µn

(
T−1

n (Bn)
)

= νn(Bn) = ν(B).

Therefore, µ ◦ T−1 = ν. The uniform boundedness of the integrals of |x − Tn(x)|2 against the
measure µ (which follows by Corollary 3.9) and Fatou’s theorem yield that F (x) := T (x)−x ∈ l2
for µ-a.e. x and estimate (4.1) holds true. We redefine F by zero on the Borel set F−1(R∞\l2)
of zero µ-measure.

In the general case we consider a partition of R∞ into disjoint sets En of positive µ-measure
on each of which the function f is bounded. To this end, we choose all sets of nonzero µ-
measure among the sets {k ≤ f < k + 1}. Let us partition the real line into intervals Dn with
µ1(Dn) = ν(En). The measure IDn · µ1 can be transformed by means of an increasing mapping
Ψn on the interval to the measure ν(En)µ1. Let us represent µ in the form µ = µ1⊗µ′, where µ′ is
the product of countably many copies of σ corresponding to the coordinates x2, x3, . . .. Then the
mapping x 7→

(
Ψn(x1), x2, x3, . . .

)
transforms the measure (IDn ·µ1)⊗µ′ to ν(En)µ. According

to what has been proven above, there exists a triangular mapping Λn with Λn(x) − x ∈ l2

transforming the measure ν(En)µ to the measure IEn · ν. Therefore, we obtain a triangular

mapping T that transforms the measure µ =
∞∑

n=1

(IDn · µ1)⊗ µ′ to the measure
∞∑

n=1

IEn · ν = ν.

On Dn×R1×R1× · · · the mapping T equals the composition of Ψn and Λn. Since Ψn has the
aforementioned form, we obtain x− T (x) ∈ l2. �
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Corollary 4.2. Let γ be a centered Radon Gaussian measure on a locally convex space X, let H
be the Cameron–Martin space of the measure γ, let {en} be an orthogonal basis in H, and let ên

be the corresponding measurable linear functionals (see [3, Ch. 2]). Then for every probability
measure ν that is absolutely continuous with respect to the measure γ, there exists a Borel
mapping T : X → X of the form T (x) = x + F (x), where F : X → H, such that ν = γ ◦ T−1

and T is triangular with respect to {en}, i.e., ên ◦ T is a Borel function of ê1, . . . , ên. In other
words,

(
F (x), en

)
H

= ϕn

(
ê1(x), . . . , ên(x)

)
, where ϕn is a Borel function on Rn. Finally, if for

f := dν/dγ we have f log f ∈ L1(γ), then∫
|F (x)|2H γ(dx) ≤ 2

∫
f(x) log f(x) γ(dx).

The established result means that every probability measure that is absolutely continuous
with respect to γ is representable in the sense of Definition 2.7.1 in [22]. It remains unclear
whether one can transform γ to any absolutely continuous probability measure ν by an increas-
ing triangular mapping or by a monotone mapping of the type considered in [11] if we do not
impose additional conditions on f .

The method employed above is applicable to proving some generalizations of the logarithmic
Sobolev inequality (cf. [9], [19]).

Proposition 4.3. Suppose we are given three probability measures µ = exp(−Φ) dx, f · µ and
g ·µ on Rn, where f > 0, g > 0, Φ is a function from the class C2 on Rn, and f log f, g log g ∈
L1(µ). Assume also that we are given canonical triangular locally Lipschitzian mappings Tf

and Tg, where Tg has a locally Lipschitzian inverse mapping T−1
g , such that µ ◦T−1

f = f ·µ and

µ ◦ T−1
g = g · µ. Let T = (T1, . . . , Tn) := Tf ◦ T−1

g . Suppose that the functions

∂xi
Ti, log detDT, ∂xi

Φ(x)
(
Ti(x)− xi

)
, ∂xi

g(x)
(
Ti(x)− xi

)
are g · µ-integrable. Then there holds the inequality∫

Rn

(f log f − g log g) dµ ≥
∫

Rn

〈
∇g(Tg), Tf − Tg

〉 1

g(Tg)
dµ

+

∫
Rn

〈
Λ[e−Φ, Tf , Tg]

(
Tf − Tg

)
, Tf − Tg

〉
dµ.

In particular, in the case f = 1 we have T = T−1
g and∫

Rn

g log g dµ ≤−
∫

Rn

〈
∇g(x), T (x)− x

〉
µ(dx) (4.2)

−
∫

Rn

〈
Λ[e−Φ, T (x), x]

(
T (x)− x

)
, T (x)− x

〉
g(x)µ(dx).

Proof. Let T := Tf ◦T−1
g . Since the mappings Tf and Tg are canonical, one has detDT > 0. In

addition, it follows by the definition of T that f · µ = (g · µ) ◦ T−1. Therefore, equality (3.6) is
fulfilled for T . Adding and subtracting

〈
∇Φ(x), T (x)− x

〉
on the right-hand side of (3.6) and

integrating the obtained formula with respect to the measure g · µ we obtain the relationship∫
Rn

f log f − g log g dµ =

∫
Rn

〈
∇Φ(x), T (x)− x

〉
g(x)µ(dx)

+

∫
Rn

[
Φ

(
T (x)

)
− Φ(x)−

〈
∇Φ(x), T (x)− x

〉]
g(x)µ(dx)−

∫
Rn

log detDT (x)g(x)µ(dx).

Let us transform the first integral on the right in the following way:∫
Rn

〈
∇Φ(x), T (x)− x

〉
g(x)µ(dx) = −

∫
Rn

〈
g(x)∇e−Φ(x), T (x)− x

〉
dx

= −
∫

Rn

〈
∇

(
g(x)e−Φ(x)

)
, T (x)− x

〉
dx+

∫
Rn

〈
e−Φ(x)∇g(x), T (x)− x

〉
dx.
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Integrating by parts, which is possible under the imposed conditions according to [3, Theo-
rem 5.1.2], we arrive at the equality

−
∫

Rn

〈
∇

(
g(x)e−Φ(x)

)
, T (x)− x

〉
dx =

∫
Rn

(TrDT − n)g dµ.

By using identity (3.7) with a = T (x) and b = x, we obtain∫
Rn

[
Φ

(
T (x)

)
− Φ(x)−

〈
∇Φ(x), T (x)− x

〉]
g(x)µ(dx)

=

∫
Rn

[∫ 1

0

s
〈
D2Φ

(
sx+ (1− s)T (x)

)(
x− T (x)

)
, x− T (x)

〉
ds

]
g(x)µ(dx)

=

∫
Rn

〈
Λ[e−Φ, T (x), x]

(
T (x)− x

)
, T (x)− x

〉
g(x)µ(dx)

=

∫
Rn

〈
Λ[e−Φ, Tf , Tg]

(
Tf − Tg

)
, Tf − Tg

〉
dµ.

By using the established equalities, after a change of variables we arrive at the final relationship∫
Rn

(f log f − g log g) dµ =

∫
Rn

〈
∇g(Tg), Tf − Tg

〉 1

g(Tg)
dµ

+

∫
Rn

〈
Λ[e−Φ, Tf , Tg]

(
Tf − Tg

)
, Tf − Tg

〉
dµ+

∫
Rn

(TrDT − n− log detDT )g dµ.

As shown above,∫
Rn

(TrDT − n− log detDT )g dµ = −
∫

Rn

log det2

[
DTf (DTg)

−1
]
dµ.

Since for the triangular canonical mappings one has 0 < det2

[
DTf (DTg)

−1
]
≤ 1, the integral

on the left-hand side of this equality is nonnegative. The proposition is proven. �

Theorem 4.4. Let µ be a probability measure on Rn with a density of the form e−Φ, where Φ
is a smooth convex function with a nondegenerate second derivative. Let ψ be a smooth positive
function such that ψ2 ·µ is a probability measure, and let T be the canonical triangular mapping
transforming ψ2 · µ to µ. Then one has

Entµ(ψ2) ≤
∫

Rn

〈
Λ[e−Φ, T (x), x]−1

(
∇ψ(x)

)
,∇ψ(x)

〉
µ(dx). (4.3)

Proof. Let g := ψ2. Applying inequality (4.2), we obtain∫
Rn

g log g dµ ≤ −
∫

Rn

〈
∇g(x), T (x)− x

〉
µ(dx)

−
∫

Rn

〈
Λ[e−Φ, T (x), x]

(
T (x)− x

)
, T (x)− x

〉
g(x)µ(dx)

= −
∫

Rn

∣∣∣Λ[e−Φ, T (x), x]1/2
(
T (x)− x

)
+

1

2
Λ[e−Φ, T (x), x]−1/2

(∇g(x)
g(x)

)∣∣∣2g(x)µ(dx)

+
1

4

∫
Rn

〈
Λ[e−Φ, T, x]−1

(
∇g(x)

)
,
∇g(x)
g(x)

〉
µ(dx)

≤ 1

4

∫
Rn

〈
Λ[e−Φ, T (x), x]−1

(
∇g(x)

)
,
∇g(x)
g(x)

〉
µ(dx).

Returning to ψ we arrive at estimate (4.3). �

Corollary 4.5. Let µ = exp
[
−V

(∑n
i=1 pi(xi)

)]
be a probability measure on Rn, where V and pi

are smooth even convex functions on the real line, pi ≥ 0, and V , pi and p′′i are increasing on the
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half-line. Let ψ be a smooth function on Rn that is invariant with respect to all transformations

of the form (x1, · · · , xn) 7→ (±x1, · · · ,±xn), and let

∫
ψ2 dµ = 1. Then

Entµ(ψ2) ≤
∫

Rn

〈
A∇ψ,∇ψ

〉
dµ,

where A(x) is the diagonal matrix with the numbers
[∫ 1

0

sV ′
( n∑

i=1

pi(sxi)
)
p′′k(sxk) ds

]−1

, k =

1, . . . , n, at the diagonal.

Proof. Let us consider the probability measure ψ2 ·µ and let Φ = V
(∑n

i=1 pi(xi)
)
. We observe

that
∂2Φ

∂xi∂xj

= V ′′
( n∑

k=1

pk(xk)
)∂pi

∂xi

∂pj

∂xj

+ V ′
( n∑

k=1

pk(xk)
)
p′′i (xi)δij.

It is clear that

D2Φ ≥ V ′( n∑
i=1

pi(xi)
)
diag{p′′1(x1), · · · , p′′n(xn)}.

The invariance of ψ with respect to the transformations of the indicated form yields that the
triangular mapping T =

(
T1(x1), T2(x1, x2), . . . , Tn(x1, . . . , xn)

)
that transforms the measure

ψ2 ·µ to the measure µ has the following property: Ti(x1, · · · , xi−1,−xi) = −Ti(x1, . . . , xi−1, xi).
Since the functions pi and p′′i increase on the half-line, we obtain

pi

(
(1− s)Ti(x) + sxi

)
≥ pi(sxi), p′′i

(
(1− s)Ti(x) + sxi

)
≥ p′′i (sxi).

Thus,
∂2Φ

∂xi∂xj

(
(1− s)T (x) + sx

)
≥ V ′

( n∑
i=1

pi(sxi)
)
p′′i (sxi)δij. Since A(x) is the diagonal matrix

with the numbers
[∫ 1

0

sV ′
( n∑

i=1

pi(sxi)
)
p′′k(sxk) ds

]−1

at the diagonal, one has

∫ 1

0

sD2
[
V

( n∑
i=1

pi(xi)
)](

(1− s)T (x) + sx
)
ds ≥ A(x)−1.

Therefore, Λ
[
exp

(
−V

(∑n
i=1 pi(xi)

))
, T (x), x

]−1

≤ A(x), and our assertion follows by the pre-

ceding theorem. �

Some other results close to this work are obtained in [5], [6], where the infinite dimensional
case is considered, in particular, transformations of uniformly convex and Gaussian measures
on infinite dimensional spaces, and in [17], where gradient type mappings are studied.
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[22] Üstünel A.S., Zakai M. Transformation of measure on Wiener space. Springer, Berlin, 2000.
[23] Villani C. Topics in optimal transportation. Amer. Math. Soc., Rhode Island, Providence, 2003.

Dept. Mechanics and Mathematics, Moscow State University, 119992 Moscow, Russia


