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Abstract. We give an analytic version of a well known Shih’s theorem concerning the Markov processes
whose hitting distributions are dominated by those of a given process. The treatment is purely analytic,
completely different from Shih’s arguments and improves essentially his result.

Introduction

In the paper [11] C.T. Shih has considered two Hunt processes X and X', having a common
locally compact separable metric space (F,7) as state space and he proved that under some obvious
necessary conditions, if the hitting distributions of X’ are dominated by those of X then there exists
a process Y obtained from a random time change in a subprocess of X that is equivalent to X’ (i.e.
they have the same transition function). See also [7] for a different method.

In this article we extend the above result to the general case when the common state space (E,7)
is a Lusin topological space. Our approach is purely analytic and it is completely different from that
developed in [11]. This new treatement extends a similar one (see [6]) considered in the particular
case when there exists a reference measure for the given process X.

If U and U’ are the subMarkovian resolvents associated with X and X'’ then the fact that the
hitting distributions of X dominate those of X’ means that ‘R4 < R4 for all Borel subset A of E
where R? (resp. 'R*4) is the réduite kernel on A associated with U (resp. U’). The fact that there
exists a process Y obtained from a random time change in a subprocess of X which is equivalent to
X' means that there exists a sub-Markovian resolvent W which is exactly subordinate to U (in the
sense of P.A. Meyer [8], [9]) and the set £(W) of all W-excessive functions coincides with the set
E(U'") of all U'-excessive functions.

Our constructions give a sub-Markovian resolvent W with the above property and moreover it
possesses the following maximality property: If W' is a second sub-Markovian resolvent which is
related with & and U’ as above then we have W/f < W fand W f—-W'f € EU') for all f € pB with
Wf < oo.

1 Preliminaries and exact subordination operators

In this paper (E,7T) is a Lusin topological space and U = (U, )a>0 a proper subMarkovian rezolvent
of kernels on (E, B) where B = B(FE) is the o-algebra of all Borel subsets of (F,7). We denote by
B® the g-algebra of all universally B-measurable subsets of E.

As usually we denote by pB (resp. pB™) the set of all positive B (resp. B™))-measurable functions
on E. If F C pB™ we denote by bF the set of all bounded functions from F.

We denote by &(U) the set of all B™ measurable functions which are U-excessive. We assume
that the set E(U) N pB is min-stable, contains the positive constant functions and generates B.

We recall that a U-excessive measure & on (E, B) is termed U-potential if it is of the form £ = poU
where p is a o-finite measure on (E, B).

The set E is called semisaturated with respect to U if any U-excessive measure dominated by a
U-potential is also a U-potential. In the sequel we assume that E is semisaturated with respect to U.



If £ is a U-excessive measure on (E, B), a subset A of E is called ¢-polar if there exists s € E(U)
such that s = 400 on A and s < co-a.e. If p is a o-finite measure on E such that poU € Excy
then we say p-polar instead of p o U-polar.

A subset A of E is called nearly B-measurable with respect to U if for any finite measure p on
(E, B) there exists Ay € B, Ay C A such that A\ Ay is p-polar and u-negligible.

The set of all nearly B-measurable sets is denoted by B™. Obviously B™ is a c-algebra and
Bc B™ c BW., Is is know that any U-excessive function is B™-measurable.

For any f : E — R, we denote by Rf the function

Rf =inf{t € EU) |t > f}

called the réduite of f with respect to U.

For any subset A of E and s € £(U), the function R*s = R(14s) is called the réduite of s on A.
We use the convention 0 - (+00) = (+00) - 0 = 0. Is is know that ([2], [4] ch. I) for any A € B™ and
s € £(U) the function R%s is B™-measurable and it is U-supermedian. In this case we denote by
BA5s the U-excessive regularization of R4s, i.e.

B#s = sup aU,R"s.
«

Since F is semisaturated we respect to I then for any A € B™ and = € E there exists a positive
measure denoted R4 (resp. BZ) on (E,B) such that

RA(s) = R*s(x) (resp.Bi(s) = Bs(x)).
Moreover we denote by R* (resp. B4) the kernel on (E, B™) such that

RAf(x) = R}(f) (resp. B f(z) = B} (f))

for all f € pB™ and x € E.

A set A € B™ is called U thin at x if there exists s € bE(U) such that BAs(x) < s(z) or
equivalently B2 # &,.

The U-fine topology on E is the coarsest topology on E for which any function from £(U) N pB
is continuous. It is easy to see that any U-excessive function is U-fine continuous. It is know that if
A € B™ then it will be U-finely open if and only if the set E\ A is U-thin at any point of A. Also if
A € B™ is U-finely closed then for any 2 € E the measures R4, B2 are carried by A.

A set A C E is called U-absorbent if there exists s € £(U) such that A = [s = 0]. Obviously any
U-absorbent set is U-finely open.

A set A € B™ is called U-subbasic if A is not thin at any point of A or equivalently R4 = B4.
In this case we have B4s = s on A for all s € £(U) and so BA(B4) = BA.

A set A € B™ is called U-basic if A is U-subbasic and A is U-finely closed. If A € B™ is U-
subbasic and fy € pB, 0 < fo < 1 is such that py := Uf, is bounded then the set [BAUp, = po] is
the U-fine closure of A and represent a U-basic set.

A set A € B™ is called B—U-subbasic if it is U-subbasic and B4s € pBNE(U) for all s € pBNE(U).

A set A € B™ is called B — U-basic if it is B — U-subbasic and U-basic set in the same time.
In this case A € B and we have A = [B%p, = po] where py is as above. We notice that if A is a
B — U-subbasic set then B4 is a kernel on (E, B).

In the sequel we consider a second sub-Markovian resolvent U’ = (U)))4~0 on (F, B) such that the
set £(U’') N pB is min-stable, contains the positive constant functions and generates 5. We assume
that F is semisaturated with respect to U’. Also we suppose that the following assertions hold.



1) The topology 7 is natural with respect to both U and U’, i.e. any G € T is U-finely open and
U'-finely open.
2) For all A € B and f € pB we have

IRAf S RAf
3) For any a € E such that the set {a} is U’-absorbent the set {a} is U-finely open.

Proposition 1.1. For any x € E the set {x} is U'-finely open if and if it is U-finely open.

Proof. Assume that {z} is not U’-finely open. Then this means that 'REM@}s(z) = s(z) for all
s € E(U') or equivalently 'REM=) f(z) = f(z) for all f € pB, i.e. 'REM™ = ¢,
By hypothesis 2) it follows that

flx) ="REV f(2) < RPNV f(2) Vf € pB

and so s(x) = REM#s(x) for all s € E(U), i.e. {z} is not U-finely open.
Conversely, assume that {z} is not U-finely open but {z} is U'—finely open. We get

RO f(2) = f(x) Vf€pB

and from

‘RPN f(2) < RV f(2) = f(x) VS €pB
we deduce that there exists 0 < o < 1 such that

'RV f(2) = af(z) VfepB

Since {z} is U'-finely open it follows that the measure ’ REMY s carried by E\{z} and so a = 0.
Hence
'REM=H(2) =0

i.e. {x} is absorbent with respect to U’ and so by hypothesis 3) {z} is U-finely open, contradiction.
U

Proposition 1.2. For every A € B and © € E\A the set A will be U-thin at x if and only if it is
U'-thin at x. Particularly if A € B then A is U-finely open if and only if A is U'-finely open.

Proof. Assume that A is U-thin at . Then there exists s € b&(U) such that R4s(x) < s(x), ie.
the measure RZ is different from e,. Since by hypotheses 2) we have 'RZ < RZ it follows that
'R(s) < R(s) < s(z), i.e. "R +# e, and consequently A is U’-thin at z.

Suppose now that A is I’-thin at x, i.e. 'R4 # ¢, or equivalently the U’-fine closure of A does
not contains z and so 'R? does not charge {}.

Assume now that A is not U-thin at z, i.e. R2 = ¢,. Since 'RZ < RZ it follows that there exists
0 € [0,1] such that 'R? = s, and so, because R4 does not charge {x}, we get § = 0. Hence {x} is
U'-absorbent and therefore by hypothesis 3) {x} is U-finely open and consequently A is U-thin at x,
which leads to a contradiction. O

Corollary 1.3. We have E(U) C EU") and any nearly B-measurable set A C E with respect to U
is also nearly B-measurable set with respect to U'.



Proof. Let s € bE(U) N pB. Hence s is U-finely continuous and therefore s is U'-finely continuous.
Hence for any U’-finely open set G we have 'B%s < B%s < s and so s is U’-excessive.

Let A be a nearly B-measurable set with respect to U. Then for any finite measure p on (£, B)
there exists Ay € B, Ay C A, such that A\ Ag is p-polar (with respect to i) and p-negligible. From
the above considerations it follows that A\Ag is p-polar with respect to U’. Hence A is nearly
B-measurable with respect to U’. O

Proposition 1.4. For any A € B and f € pB we have
IBAf S BAf

Proof. Let f of the form f = u — v where u,v € bE(U) N pB, v < u < co. By hypothesis 2) we
have ' R4y — 'R < R4 — R4v. On the other hand we have £(U) C £U’) and for any s € bE(U),
'BAs (resp. BAs) is the lower semicontinuous regularization of 'R4s (resp. R4s) with respect to the
U-fine topology. Hence we get 'BAu —'B4v < B4u — BAv. O

Proposition 1.5. For any point © € E we have: {x} is U-thin at x if and only if {x} is U'-thin at
T.

Proof. Assume that {2} is ¢-thin at z. Since ‘B < B and from the fact that the measure BL™
is carred by {x}, we get B = ae, with a < 1. Hence 'B{®} = B¢, with 8 < a < 1 and so {z} is
U'-thin at x.

Assume now that {x} is U'-thin at z, i.e. 'Bi = ae, with o < 1. Obviously {z} is not U'-finely
open. Let further (V},), be a decreasing sequence of open sets in F with N,,V,, = {«}. If {z} is not
U-thin at z it follows that B} = BIYE\WY) — o On the other hand we have 'BIYEW» 1 7 g
and 'B{YENR) < v glet o pEAVe) gl B o gLV o Tt follows that

O := BV (1)) < "B (1gay) +'BPY" (L) = "B (1))
BRI < o TBEIVEW) _ g o
and so
1= Sup/Bix}u(E\Vn)l _ Sup/Bim}U(E\Vn)(l{x}) = supf, < ’Bim}(l{x}) = a,
leading to a contradiction. O

Corollary 1.6. For any A € B and x € E we have: A is U-thin at x if and only if A is U'-thin at
x.

Proof. From Proposition 1.5 we may assume that {z} is U-thin and U’ thin at x and so we may
suppose that x € A. In this case the assertion follows from Proposition 1.2. O

Notation. Whenever V is a proper sub-Markovian resolvent of kernels on (E,B), we shall denote
by <ew) the specific order with respect to V, i.e. u <gry v means that there exists s € £(V) such
that v =u + s.

Theorem 1.7. For any finite families (f;)icr, (Ai)ier where f; € bpB, A; € B such that A; is
B — U-basic and B —U'-basic for alli € I and any s € bE(U) N pB with

ZBAifi <s

el



we have

0< Z(BAifz‘ —'BAf,) <ew) S-

el

Proof. Firstly we assume that I has a unique element. Let f € pbB, A € B B — U-basic and
B — U'-basic, and s € bE(U) N pbB such that f < s. We put

uw:=s— (B*f —'BYf) - 'B%s.

We have u = s —'BAs — (BAs —'B4s) + BA(s — f) = 'B*(s — f) and so u > 0.

Let furthere W = (W, )a>0 be the sub-Markovian resolvent on E having as initial kernel W, where
Wf=Uf—'BAUf for all f € pB with U'f < oo. Let now T € B, T C E\A, be a W-basic set.
Then AU T is U'-basic set and we have

WBT (1) = ' BAYT (y) = 'BAYT (s — 'BAs) + ' BAYT(BA(s — f)) — 'BA(s — f)
< BAYT(s —'B%s) + BA(s — f) = 'BY(s — f)
= B*Ts — B + BYs— f)—'BYs— f) = B""s — (B*f - 'Bf) - B <u
and so u € E(W). Since u < s —'BAs, there exists t € £(U’) such that u =t —'B4 < s —'BAs and
sou+'BAs=t—'BA +'BAs e U,
s— (BYf='BYf)eEMU’), Bf—'Bf gecur s.
We consider the general case and let us denote by n; the cardinal of I. From the previous

considerations it follows that the assertion is true for n; = 1. Assume now that the assertion is true
for n; =n and let I with n; =n + 1. For any ¢ € I we put

U =8 — Z (B f; —'BAf))
Jel\{i}
and let g = s — ZieI(BAifi —'BAif), u = inf;c; u;. Obviously we have g < u and u; € £(U’). We
want to show that g € £U’). Since g is U'-finely continuous and g € pB it follows that 'R(g) is
U'-supermedian and a majorant of g and so it belongs to £(U’) N pB.

Let o € (0,1) and let us consider the U-finely open set A € B, given by A := [a'R(g) < g]. We
have 'BA('R(g)) = 'R(g). Indeed, if t € E(U'),t >'R(g) on A, then we get (1—a)t+a’'R(g) > gon E
and so (1 — @)t + a’R(g) > 'R(g), t >'R(g). On the other hand let Ay := A’ U (U,.; A;), where Af
denotes the U’-fine closure of A. We have

/BAog:/BAO (Z/BAZ.]%) —|—/BAO (S_ZBAZJCZ>

iel i€l
=DM fi B ( -2 BAffz-) <D B4 BY ( -2 B“‘ffi)
iel iel el iel
= Z BAif, + BYs — Z BYfi <g.
i€l el

Since g = u; on A; and g < w it follows 'Rg < u < wu; for all i € I and so o/ Rg < au; < g on A;
for all i € I. Hence o/ Rg < g on Ay and so ‘B4 (a/Rg) < 'B%°g. From the above considerations we
deduce

1 1
'Rg='B*('Rg) < —'B*(g) < —g, a'Rg<g onKE.
e} [0

The number « € (0, 1) begin arbitrary we get ¢ ='Rg, g € £(U’), completing the proof. O

bt



Let P be a kernel on (£, B) such that P(E(U)) C £(U) and such that Ps < s for all s € E(U).
Then it is known that (cf [10], [4, ch. II], [3]) for any s € bpB N E(U) there exists s € bpB N EU)
such that s’ — Ps’ = s — Ps and moreover if t € bpBNE(U) is such that s’ — Ps’ < t— Pt then s’ <t.

A kernel P on (E,B) is called exact subordination operator with respect to U provided that

a) P(EU)) Cc E(U), Ps < s forall s € E(U).

b) inf(s, Ps+t— Pt + Pf) € EU) for all s,t € EU), t < oo, and f € pB

We recall the following result (cf. [10], [4, ch. V]):

Theorem 1.8. (G. Mokobodzki) If P is an exact subordination operator with respect to U there
exists a subMarkovian rezolvent of kernels W = (W, )as0 on (E,B) such that

Wo<U, VYVa>0and Wf=Uf—-PUfY fepB,Uf < 0.
Moreover if
Ep:={rxe E|3sc&U),Ps(z) < s(z)}

then Wo(1g\g,) = 0 and the sub-Markovian resolvent W considered on Ep is such that E(W) N pB
is minstable, contains the positive constant functions and generates B|g,. Further the set {s — Ps |
s € bE(U)} is solid in bE(W) with respect to the natural order.

A sub-Markovian resolvent W = (W, )a>0 of kernels on (F, B) is called ezactly subordinate to U
provided that
Wof <U,f VYa>0,fepB Uf < oo.

e Uf—-Wfe&U) Y fepB Uf < .
From Theorem 1.8 it follows that if P is an exact subordination operator with respect to U then
the sub-Markovian resolvent W = (W, )a>0 associated with P by
Wf=Uf-PUf VfepB Uf <o,
is exactly subordinate to U. The following result ([8], [4, ch. V]) represents a converse one.

Theorem 1.9. (P.A. Meyer). Let W = (Wy)a>0 be a sub-Markovian resolvent of kernels on (E, B)
which 1s exactly subordinate to U. Then there exists an exact subordination operator P with respect
to U such that

Wf=Uf-PUf VfepB Uf < .

Theorem 1.10. Let P be a kernel on (E,B) and let V = (V,)a>0 be a sub-Markovian resolvent of
kernels on (E, B) such that £(V) N pB is min-stable, EU) C E(V) and

s,t €bE(U),s <t = Ps=<gny Pt e t.

Then the following assertions are equivalent.

1) P is an exact subordination operator with respect to U and the set {s — Ps | s € bE(U) N pB}
is solid in E(V) with respect to the natural order.

2) For any u € bE(V) N pB such that there ezists s € bE(U) N pB with

Ps ey u <s

we have u € bE(U).
If P satisfies 1) then any subset A of E\Ep, A € B is absorbent with respect to V.
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Proof. 1) = 2). Let u € b€(V) NpB such that there exists s € bE(U) NpB with Ps <gny u < s. Since
u— Ps € bE(V)NpB and u — Ps < s — Ps, there exists s’ € bE(U) N pB such that u — Ps = s’ — Ps’.
From u = inf(s, Ps + s’ — Ps’) it follows that u € b€(U) N pB.
2) = 1). Let s1,59 € bE(U) N pB such that sy < co and f € bpB. We consider the function u on
E given by
u:inf(sl,P51+82 —P82+Pf>.

Since by hypothesis Pf € bE(V) N pB for all f € bpB of the form f = s —t, where s,t € bE(U) N pB
it follows that Pf € bE(V) N pB for all f € bpB and so Pf € bE(V) NpB for all f € pB. Hence
u € bEU) NpB and Ps; gy v < s1. From 2) we deduce that v € bE(U) N pB and therefore P is
an exact subordination operator with respect to U.

Let further v € bE(V) NpB and s € bE(U) NpB be such that v < s — Ps. Using 2) we deduce that
v+ Ps € E(U). We consider W = (W,,)a>0 the sub-Markovian resolvent of kernels on (£, B) such
that Wf=Uf— PUf for all f € pB,Uf < co. We denote by w the réduite of v with respect to W.
We have w € bE(W) N pB, w < s — Ps and there exists an increasing sequence (s,), in bE(U) N pB
such that s, < s for all n € N and s,, — Ps,, /" w. If we consider the function s’ := sup,, s,, then we
have s € bE(U) NpB, v < w = s’ — Ps’. We have v + Ps' € bE(U), Ps' K¢ v+ Ps' < 5" and so
the function s given by sj = v + Ps’ is U-excessive, s; < s and v = s; — Ps’ < s; — Ps(. Hence
sg— Psy >w=s5 —Ps', s; > s, andso s, =5, v=5 —Ps

Suppose that P satisfies 1). Then we have

Ep={x € E|Ufy(x) > PUfo(x)}

where fo € pBB, 0 < fo <1, Ufy bounded. Hence Pf(x) = f(x) on E\FEp for all f € pB. If A € B,
A C E\Ep we get P(1p\a) € £(V) and A = [fo + P(1g\a) = 0] where W fy = U fy — PU fy and so A
is V-absorbent. O

Theorem 1.11. Assume that V = (V,)a>0 5 a sub-Markovian resolvent of kernels on (E,B) which
1s exact subordinate to U and let P the exact subordination operator with respect to U such that

Vi=Uf—-PUf VfepB Uf < .
We assume that Ep = E. Then for any A € B we have
RAs —VRAs = P(R"s) — VR*(R"s))

for all s € bEU), where Y RAs denotes the réduite of s on A with respect to V. Particularly for all
A € B we have
VRA < RA

Proof. Since Ep = F it follows by Theorem 1.8 that the fine topologies with respect to U and V
are the same. Assume firstly that A is finely open with respect to #. Then for all s € bE(U)
we have R4s — P(R4s) € £(V), YRA(Rs — PR"s) < R's — PR"s and there exists s’ € bEU),
s' < s such that YRA(R4s — PR4s) = s’ — Ps'. From s’ — Ps’ < R4s — PRAs it follows that
u:= s — Ps'+ PRAs € E(U), u < R4s. On the other hand we have u — VRA(R*s — PR"s) + PR"s
= (R4 — PR%s) + PR*s = R%s = s on A and so u > R%s, u = R"s. Hence

RAs —VRAs = P(R"s) — YR*(P(R"s)) Vs € bE(U).



Let now A € B. For any finite measure p on (E, B) we have (cf. [4])
pu(RAs) = inf{u(R%s) | G finely open, G D A}
pu(YRA4s) = inf{u(VRCs) | G finely open, G D A}.
On the other hand if G is finely open G D A and G, is finely open with A C G; C G we get
RY% +YRYPR%s = YR%s 4+ P(R%s)
and so, taking R% s instead of s,
RGs +YRE(PRCs) = VR s + P(R%5).

We deduce that R4s +YRY(P(RAs)) = VRAs + P(R“s) for all finely open set G with G D A. Since
P(RAs) € £(U) we get RAs + Y RA(P(R4s)) = YRAs + P(R%s). O

Corollary 1.12. Let V be a sub-Markovian resolvent of kernels on (E,B) as in Theorem 1.10. Then
forany A€ B and x € E, A is V-thin at x if and only if A is U-thin at x.

Proof. The assertion follows from Proposition 1.5 since the sub-Markovian resolvent V satisfies the
two conditions 1), 2) of the resolvent U’ given at the begining of this section. O

2 The techniques for the construction of special exact
subordination operators

A o-balayage with respect to U is a map B : E(U) — E(U) such that it is additive, increasing and
o-continuous from below, contractive (i.e. Bs < s, for all s € £(U)) and idempotent (i.e. B> = B).
A o-balayage with respect to U is called B — o-balayage (with respect to ) if moreover

B(EWU)NpB) C EU) NpB
If A is a U-basic set (resp. B — U-basic set) then the map
s — B%s

is a o-balayage (resp. B — o-balayage) with respect to U.

Conversely since F is semisaturated with respect to U then for every o-balayage (resp. B — o-
balayage) B with respect to U there exists a unique U-basic set (resp. B — U-basic set) A := b(B)
such that

Bs = B%s Vs < &EU).

The set A is called the base of B. We denote by 'B the o-balayage with respect to U’ having the
same base as B.

Let B be a B — o-balayage with respect to U such that 'B is also a B — o-balayage with respect
to U’'. We denote by Pp the map

Pg : bEWU) N B — bE(U) N pB

given by
Pgs:= Bs — Bs A 'Bs.
s
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In the sequel we say simply that B is a o-balayage if B and 'B are simultaneously I —o-balayages.

Proposition 2.1. The following assertions hold:
1) PB(8+t> = PBS+PBt.
2) s >t= Pps Sew) Pgt <ew) t-
3) PB(BS) = PBS.
4) sy /" s = Pgs, /" Pgs.
5) Bs —'Bs = PBS —/BPBS.

Proof. 1f s € bE(U)NpB we have Pgs = Bs—Bs E(ZAA’) 'Bs,'B(Bs 6(1);) 'Bs) = Bs g()&/) 'Bs,’BBs ='Bs,
and so'B(Pps) ='Bs—DBs g(ﬁ/)’Bs, Pps—'B(Pgs) = Bs—'Bs. Analogously if t € b (U)NpB we have

Bt—'Bt = Pgt—'BPpt, B(s+t)—'B(s+t) = Pg(s+t)—'BPg(s+t) and so Pgs+Pgt—'B(Pgs+Ppt) =
Pg(s+t) —'BPg(s +t). Since PBSE(ZA/{,)/BU = PBtg(ﬁ,)/BU = Pp(s + 1) g(ﬁ/)’Bu = 0 for all u €

bE(U'") N pB it follows that Pgp(s +t) = Pgs + Ppgt. From the definition of Pp it follows directly
Pg(Bs) = Pgs for all s € bE(U) N pB.

Let now s,t € bE(U) N pB such that s < t. We have Pgs —'BPgs = Bs —'Bs, Pgt —'BPgt =
Bt —'Bt and so Pgt — Pgs — 'B(Pgt — Pps) = B(t —s) — B'(t — s). Since t — s € pbB then
by Theorem 1.7 there exists u € b(E(U’) such that B(t —s) —'B(t — s) = u —'Bu and moreover

u A 'Bu=0. We have Pgt+'Bu-+'BPgs = Pgs+u-+'BPgt since Pgs A 'Bv=Pgt A 'Bv=0
EU) EU) EU)

for all v € bE(U') N pB, we deduce Pt = Pps + u, i.e. Pps <S¢qry Ppt. On the other hand we get
Bt —'Bt Seun t, Ppt = (Bt —'Bt) Yewn 0 gy t-

Let now (s,), be an increasing sequence in b€ (U)NpB, s € bE(U) N pB such that s = sup,, s,,. We
have Pgs, —'BPgs, = Bs, —'Bs,, Pps, S¢w) Ppsn+1 for alln € N and so Bs — B's = sup,, Pgs, —
'B(sup,, Ppsy,). On the other hand we have Bs — B's = Pgs —'BPgs, sup,, Pps, = Y g Ppsn. Since
PBtg(ﬁr) 'Bv =0 for all v € bEU") NpB, t € bE(U) N pB, it follows that (sup,, Ppsy,) g(ﬁ/)’Bv = 0 for

all v € bE(U") N pB. From sup,, Pgs, —'B(sup,, Pgs,) = Pps —'BPgs we deduce that sup,, Pgs, =
PBS. ]

Proposition 2.2. For any o-balayage B there ezists a unique kernel on (E,B) denoted also by Pp
such that
Pps = Bs — Bsg(z);,)B's Vs ebE(U)NpB.

Moreover we have
i) fepB= Pgfec&U)NpB.
ii) Bf —'Bf = Pgf —'BPpfV f € bpB.

Proof. For any z € E the map bpB 3 f —— PgU f(x) is an U-excessive measure dominated by €, 0U
and so it is U-potential, i.e. there exists a measure Pp, on (F, B) such that

Pp.s = Pps(z) Vseb&U)NpB.

Since for any f € (b&(U)NpB—bE(U)NpB) . the function x — Pg, f is B-measurable it follows that
the function Pgf given Ppf(z) = Pg.(f) is B-measurable and so the map pB > f — Pgpf € pB
is a kernel on (£, B). Since for all f € (b£(U) N pB — bE(U) N pB)+ we have Pgf € E(U') N pB and
Bf —'Bf = Pgf —'BPgf it follows that the same assertion hold for all f € bpB. O



Proposition 2.3. For any s € bE(U) N pB and any finite systems (s;)ier in bEU) N pB and (B;)er

of o-balayages such that ), , s; < s we have

ZPBisi %g(ul) S.

iel

Proof. We have )., B;s; < s and therefore from Theorem 1.7 we obtain ) ., (B;s; —'B;si) Sswr) -

From the definition of Pp, we deduce that the relation

Z Pp,si <swr) s

iel

is equivalent with the relation

Z Bisi Sewry s+ Z Bisi ey 'B;s;.

el i€l

On the other hand we have inductively (following card I)

s+ Z Bisi Aewr) ' Bisi = AEJ(ZCAI')(S + Z Bjsj + Z 'Bjs;).

i€l jeJ JeI\J

Moreover we have

Z Bij ﬁg(u/) s+ Z /Bjs,-

jenJg jenJ

Z Bisi Sewry s+ Z Bisi + Z 'Bys;

el jeJ JjeINJ

or equivalently

and so
Z Bisi Sery Lery(s + Z Bis; + Z 'Bysij) =
iel jeJ JEINJ
=s+ Zie[ Bisi Ag(ul) ,Bisi-

O

Proposition 2.4. Let f € bpB and B be a o-balayage such that Ppf <eqry f- Then we have Bf < f.

Particularly if Pef <ewry f for all o-balayage B then f € E(U).

Proof. From Pgf <ewr) f there exists v € bE(U') such that Pgf + v = f. On the other hand we
have Bf —'Bf = Pgf —'BPgf and so Pgf = Bf —'Bf +'BPgf, f =u+ Bf —'Bf +'BPgf.

Hence 'Bf ='Bu+'Bf —'Bf +'BPgf ='Bu+'BPpf <u+'BPgf and therefore Bf < f.

Assume that Ppf <gquvy [ for all o-balayage B. Then f is U-finely continuous and moreover

Bf < f for all o-balayage B. Hence f = R(f), f € E(U).

Lemma 2.5. Let (P,),en+ be a sequence of kernels on (E, B) such that
a) P,(bpB) C bEU") N pB.

b) Z S < s = Zpksk Sew) S-

k=1 k=1
sk,s€bE(U)NPB

10
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Let further F be a countable subset of bpB such that F + F C F, Q+,F C F, U(F) C bE(U)
and Sy be a countable subset of bE(U) N pB such that

U(f) CSO;Q+80 CS()
S,tGSQ:>S+t,SYg(u)t,R(S—t) € 3Sp.

Then the map
Py :UF) —bEU') N pB

defined by
Po(Uf) == Yeun {Z Pysi | (sk)1<k<n C So, Zsk < Uf}

k=1 k=1
possesses the following properties:
i) Po(Ufi +Ufy) = Po(Ufy) + Po(Ufs) for all fi, fo € F.
i) Po(Uf) ey Po(US) K¢y Uf for all f € F and n € N*.
7,7,7,) fl,fQ € f, S € bS(Z/{), Uf1 < Uf2 + s = P(](Ufl) %g(ul) Po(Ufg) + s.

Proof. Since Sy is countable it follows that the element Py(U f) is well defined in £(U’) for all f € F.
We show now the property iii). Let fi, fo € F, s € b NpB be such that U f; < U fs +s. We consider
a system (s;)1<i<n in S such that Y ", s; < Ufi. From Uf; < Ufs + s there exists s/, s” € Sy such
that > s; =+ 5", § <Ufa, s” <s.Hence for any 1 < i < n there exists u;,v; € Sy such
that s; = w; +v;, 8 =D u, §" =Y e vk Since Yt u; = 8 < U(fa), Do vi < s we get
>zt Piwi) ey Po(Uf2), D25, Pi(vi) Sery s, doity Pisi = 200 Pilui +v) Sery Do(Uf) + s,
Po(Uf1) Sewry Po(Ufa) + 5.
We show that Fy is additive. Let fi, fo € F. We have directly

Py(Uf1) + Bo(U f2) ey Po(U f1 + U f2).

Let now (s;)i<i<, a finite system in Sy such that Y " | s; < Uf; + Ufo. From the properties
of Sy there exists two systems (u;)1<i<n, (Vi)1<i<n in Sp such that s; = w; +v; 1 < i < n and
oriu <Ufy, >0 v <Ufy. Hence we define

Z Pis; = Zpiui + Z Pu; Sewry Po(U f1) + Po(U f2)
i=1 i=1 i=1

and so
Po(Ufr + U f2) Sewry Po(U f1) + Po(U f2).

The property ii) follows directly from the definition of Py and from the property b) of the given
sequence (P,),. O

Lemma 2.6. Let F be a subset of bpB such that
F+FCF,QFCF
f1, fo € F = sup(fi, fo),inf(f1, f2) € F
fhheF hi<lhh=f—HheF

and such that the monoton class M(F) in bpB conincides with bpBB. Assume that U is bounded and
let
Py :U(F) —bEMU')NpB

11



be a map such that

i) B(Ufi +Ufs) = Po(Ufr) + Po(U fa)

i) Po(Uf) K<epy UfFVfeF

ZZZ) fi,fo€F, s€ bg(U) N pB, _

Uft <Ufa+s = Py(U f1) Sewry +Po(Ufa) +s. Then there a kernel P, on (E,B)

uniquely determined such that

1) s € bEMU)NpB = Pys € bEU') N pB

2)feF=hRUf)=hk{UFf)_ _

3) S,t € bS(U) ﬂpB, S S t= PQS %g(ul) P()(t) %g(ul) t.

If moreover T is a kernel on (E,B™) such that T'(bE(U) N pB) C bE(U') and

TWUf) Kew) Po(Uf) VY feF

then B
Ts <ew) Pys, Vs e bS(Z/{)

Proof. We denote for any non empty subset A of bpBB, by A,, As the sets

A, ={febpB|3(fn) CA fu / [}
A5: {fepr | 3<fn>n C-Aafn\f}

We remark that if A possesses the properties
HA+ACA QLACA
11) fl, f2 eA= sup(fl, fg), iﬂf(fg, fg) eA

then A, and As posesses also the same properties 1), 2).
If © is the first uncountable ordinal number we define inductively the subsets

Fl=F, Fi=(F')5, F2 = (F)o, Fo = (F?)s
and for any ordinal number o < €2
Fl' = (F)oy,  Far1 = (F*)s, and F* = UscaFs,  Fa = (F%)s
if & does not possess a precedent. Obviously we have
a<fB=F*CF,CF’ and Uyep F* = UpepFa

if # does not possesses a precedent.
If M(F) is the monoton class in bpB generated by F (i.e. the smallest subset A of bpB with
F C A such that for any uniformly bounded monoton sequence (f,), in A we have lim,,_., f, € A)

then we have
M(F) = UgeaF = UgeaFa.

Firstly two remarks:

1) If f,g € F are such that Uf < Ug then Py(Uf) <ewr) Po(Ug). This fact follows from the
property iii) of Fj.

2) If (fn)n, (gn)n are two sequence in F such that (U f,)n, (Ugn)n are increasing and

sup U f,, <supUg,

12



then
sup Po(U f,) <ewr) sup Po(Ugn).

Particularly if sup,, U f,, = sup,, Ug,, we have

sup POUfn = sup PO(Ugn>

Indeed, if we denote 7, ,, := R(Uf, — Ugy,) then we have r,,,, € bEU) N pB, Uf, < Ugn + Tnm,
inf,, rnm = 0 and therefore, using the property iii) of Py, we deduce that Py(U f,) <e@r) Po(Ugm) +
Tnam Se@’) SUPy Po(Ugm) + Tnm, Po(U fr) Sewry sup,, Po(Ugnm) for all n € N, sup,, Po(U f) <e@r)
sup,, Fo(Ugn)- ~

Form the above considerations it follows that for any f € F, the element Py(U f) from E(U’) NpB
defined by

ﬁo(Uf) :=sup Py(U f,)
where (f,), is an increasing sequence in F with f,, /' f depends only by U f. Also we have
fiofo € Fo = Po(Ufi + Ufo) = Bo(Ufi) + Po(Ufo).

If f € F, and (f,), is an increasing sequence in F with f, / f then using the property ii) of P
we get _
Po(Ufn) Sewr)y Ufn Sery Uf and so Py(U f) = sup Po(U f,) <ewry US.

Let now f,g € F, and s € bE(U) N pB be such that Uf < Ug + s. We show that
ﬁo(Uf) ew) ﬁo(Ug) + S.

Indeed, let (f,)n (resp. (gn).) be an increasing sequence in F such that f,  f, g, / g. For
any n € N we have Uf, < Ug, + U(g — g») + s and therefore, from the property iii) of P, we get
Po(U fn) Sewry Po(Ugn) +U(g = gn) + s ey Po(Ug) + U(g — gn) + 5. Since A,U(g — gn) = 0 we
get Po(Uf) <ewry Fo(Ug) + s. Hence the map Fy : U(F,) — bE(U') NpB is an extension of Py which
possesses the same properties i), ii), iii), as Py. Similarly if f € F, and (f,,), is a decreasing sequence
in F, such that f = inf,, f,, the element of b€(U’) N pB defined by

B(Uf) = inf Py(U f,)

does not depend on the sequence ( Z:")" and we have
) B(Ufi +Ufo) = B(US) + Bo(Uf2) Vi, f2 € Fs
i) Po(Uf) Sewry Po(USf) Vf € Fs
iii) if f, g € Fs and s € bEU) N pB are such that Uf < Ug + s then Py(Uf) <ew) Po(Ug) + s.
From the above consideration it follows that there exists a map

Py : UM(F)) = bEU) NpF
which is an extension of the map
Py :U(F) — bEU') N pB,

such that B B
1) P(](Ufl + UfQ) = P(](Ufl) + P(](Ufg) Vfl, f2 c M(.,F)

13



ii) f € M(F) = B(Uf) Sewn) Uf A )

iii) fi, fo€ M(F),s € EU)NpB, Ufi < Ufy+ s = RUfi ey FoU fo + s.

Let now s € bE(U) N pB and let (f,), a sequence in M(F) such that Uf,, /" s. Obviously we
have

Po(Uf) Sewry Po(Ufusr) ey s
By the above remark 2) it follows that the element from b€ (U’) N pB define by

ﬁos = sup ﬁonn
does not depend on the sequence (Uf,), as above. Using the above definition of ﬁos with s €
bE(U) N pB we have immediately
ﬁo(s—l—t) :ﬁos—i—ﬁot,ﬁos ﬁg(u/) S

and
s, t € bEU)NpB,s <t = Ps <gury Pt.

Let now s € £(U N pB and (s,), an increasing sequence in b€ (U) N pB such that s, " s. We
show that Posn e Pos Let (f,). be a sequence in M(F) such that Uf, ,/ s. From Uf, <
Sm + R(U fr, — sm) we deduce

Po(U f) <ery Po(sm) + R(U fo = $m).
Since inf,, R(U f,, — sm) = 0 we get ﬁO(Ufl) <ew) SUDP,, ﬁo(sm) and so
ﬁoS ﬁg(u/) sup ﬁo(sm), ﬁo = sup ﬁo(sn).

Since FE' is semisaturated with respect to U it follows that the map
Py : bEWU) NpB — bEWU') NpB

can be extended to a kernel on (£, B) denoted also by P By construction P, satisfies the required
conditions 1)- 3). Using the property M(F) = bpB and F, lur= Fo it is easy to see that P, is

uniquely determined.
Let now T be a kernel on (E, B®) such that T(b€(U)) C bE(U') and

TWUf) ey Po(Uf) V feF.
We have T'(U f) <ewr) Py(Uf) for all f € M(F) and so T's <ew) Py(s) for all s € bE(U). O
Theorem 2.7. Let 7y be a countable base of the topology T such that
G1,Go €Ty = G1 UG, G1 NGy €T,
let F be a countable subset of pbBB such that F + F C F, Q. F C F

f17f2 Efjsup(flv.fé)?inf(flvjé) Efa
JuheF, Lisfo=fo—fieF,
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there exists fo € F, 0 < fo < 1 with Ufy is bounded and such that the monotone classe in bpB
generated by F coincides with bpB. Let further Sy be a countable subset of bE(U) N pB such that
U(JT) C SQ, Q+So C Sy and

s,t€Sy=s+t,sYt,R(s—1t)€S.
(2))

Then there ezists a kernel P on (E,B) uniquely determined such that
1) P(bE(U) NpB) C bEU) NpB
2) s, t e bg(u),S <t= Ps Sew) Pt <ew) t

3) feF=PUf) = Yeun {ZPBGis,- 1) si<Uf si€8.Gi € TO}

i=1 i=1
Particularly we have
Ppes Ssurys VG €Ty, s €bE(U)NpB.

Proof. 1If we replace U by the kernel f — U(fy- f) we may assume that U is bounded. Using Lemma
2.5 and Proposition 2.3 we deduce that the map Py : U(F) — bE(U') N pB given by

Py(Uf) = Yewr {ZPBGiSi | Zsi <Uf, s € 8, G; 676}

i=1 =1

verifies the following properties:
1) Po(Ufi +Uf2) = Bo(Ufi) + Po(U fo) for all f1, fo € F.
2) Ppa(Uf) Kewry Po(Uf) Se@ry Uf for all fi, fo € F.
3) fl,f2 eF.s€ bg(U), Uf1 < Ufg + s = PO(Ufl) %g(ul) PO(UfQ) + s.
Using Lemma 2.6 it follows that there exists a kernel P on (E, B) uniquely determined such that
1) PUf)=RUf) VfeF
2) sebEU)NpB = PsebsEU')NpB
3) s,t e bg(U) NpB, s <t= Ps e Pt e t.
From the definition of P it follows PpcU f <gwry Uf for all f € F and G € 7; and so

Ppes gy s Vs € bEWU) N pB.

3 Shih’s Theorem

We recall (see [2], [4, ch. I]) that a Ray cone on (E,B) with respect to U is a convex cone R
of bounded B-measurable U-excessive functions such that there exists a bounded sub Markovian
resolvent V = (V,)a>0 on (£, B) such that (pB) NEU) = (pB) N E(V) and such that

1) 1 € R; 2) R is min-stable; 3) Vo(p(R—R)) CR; 4) Vo(R) C RV a > 0, 5) R is separable
with respect to the uniform norm; 6) The o-algebra on E generated by R coincides with B.

For any countable subset S of bpB N E(U), there exists a Ray cone R with R O S.

If R is a Ray cone with respect to U then the topology 7z on E generated by R, called Ray
topology, is such that the topological space (E,7x) is a Lusin topological space such that the Borel
sets in (E,7Tr) are exactly the Borel sets in (£,7). Moreover from ([2], Proposition 1.2) it follows
that for any compact subset K in (E,7%), any s € R and any finite measure x on (E, B) we have

w(R¥s) = inf{u(Rs) | G € Tr, K C G}.

15



Let further R’ be a Ray cone with respect to U’ and 7. the Ray topology on E generated by R'.
Using the above considerations the topological space (F,7x/) is a Lusin topological space for which
the Borel sets are exactly the Borel sets from (F,7). Also for any compact subset K of (E,7x),
any t € R’ and any finite measure p on (E,B) we have

p('REt) = {inf u('R%s) | G € Tr, K C GY.

In the sequel since (pB) N EU) C (pB) N E(U’) we can choose R and R’ such that R C R’ and
moreover there exists fo € pB, 0 < fy < 1, such that V f is bounded and U fy € R. For simplicity
we write 7' = Tr/. Consequently for any compact subset K in (E,7’) and any finite measure p on
(E, B) we get

W(REU fo) = inf w(R°U fo) | G € T',G D K}, p('R*U fo) = inf u('R°Ufo) | G € T',G > K}/

Remark. If U (resp. U’) is the sub-Markovian resolvent associated with the right process X (resp.
X') with (E,7) as state space, then the preceding relations hold replacing 7 instead of 7" if the
processes X and X’ are assumed to be Hunt processes.

Proposition 3.1. Let K be a T'-compact subset of E, p be a finite measure on (E,B) and s be a
bounded reqular U-excessive function, B-measurable. Then we have

u(REs) =inf{u(R%s) |G €T ,G D> K}
p('REs) = inf{u('R%s) | G € T',G D K}.

Proof. Firstly let f € bpB such that f < fo. We have
p(REUf) <inf{u(RE(Uf)) |G € T',G D> K}
p(REU(fo = f)) < nf{u(R°U(fo— )| G €T',G D K}
érég{u(RG(Uf)) + ég%u(RG(U(fo - f) =

= inf w(RE(Ufo)) = w(RE(Ufo)) = w(RE(UF)) + n(R*(U(fo = £)))

GeT’

and therefore
K . G
wW(RAUf) —52§<“(R Uf).

GeT'!

Analogously we get u('REUf) = infgox p('RU f). Let further (f,,)m be a sequence in pB such that

GeT!

fn <mfo for allm € Nand Uf,, / s. Since s in regular we get inf,,(s — U f,,) = 0. For all m € N
we have Uf,, < s < Uf, +R(s — Uf,) and so

ROUf, < R < RUfn+R(s —Ufn), REUfyn <'RYs <'REUfp, 4+ R(s — Ufpn)
for all G € 7'. From the first part of the proof we get
K _ G I pK o G
uBRU fn) = inf W(B7Ufin), n(R7U fn) = it p(R7U frn) ¥m € N

GeT'! GeT'!
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and so
inf p(R%s) < p(REU fon) + p(R(s = U fm)),
GeT!

inf p('REs) < p('REU fin) + p(R(s = Ufm))-

GeT'!

Since inf R(s — U f,,) = 0 we get

. G K . I DG I hK
CE%M(R s) < u(Rs), ég%u(ﬁ’ s) < p('R%s).

In the sequel we denote by F a countable subset of bpB such that f, € F and
feF=3da>0with f <afy, F+ F C F,;Q.F C F,

fi, fo € F=sup(fi, fo),inf(f1, fo) €F, fr, o€ F il o= fo—fr€F

and such that the monotone class in bpB generated by F is equal with bpB. Also we denote by Sy a
countable subset of (bpB) N E(U) such that U(F) C So, Q+(So) C Sp and s,t € Sy = s+t, s Y t,
R(s —t) € Sy where s Y t means supremum between s and ¢ with respect to the specific order <gq:
We consider a countable base G for the topology 7" which is closed under finite union and finite
intersection. Using Theorem 2.7 there exists a kernel P on (F, B), uniquely determined such that
1) PbpBNEWU)) C bpBN EU)
2) s,t € prﬂ(‘:(Z/l), s<t= Ps e Pt W) t

3) foiPUfZYS(uf){ZPBiGSi 1> s <UF, s ESOaGiEQO}-

i=1 =1

Proposition 3.2. For any o-balayage B and s € bpB N E(U) we have

PBS %g(ul) Ps.

Proof. Assume that s is regular. Firstly we show that the function Ps— (R¥s—'R¥5s) is U'-strongly
supermedian. Indeed, let p, v bee two finite measures on (£, B) such that y <gq v. and let (Gr),
be a decreasing sequence in G, such that

inf (4 v)(R3) = (1 + ) (REs). inf( +0)(Rs) = (u+ V) (R¥).

where Gy in the countable base of 7" closed with respect to finite union and finite intersection which
appear in the definition of P. Since Pge.s <gur) Ps and Bs —'B¢"s + /B Pgpc, = Ppe,s it
follows that B%»s —'BC%ns <ewy Ps and so

u(Ps — (BG”s — 'BG"S)) < v(Ps— (BG”S — 'BG"S)).
Passind n — oo we deduce that

w(Ps — (R¥s —'R¥s)) < v(Ps — (RXs —'R¥5)).
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Since B is a o-balayage then b(B) € B and it is a U-basic and U'-basic set, and so there exists an
increasing sequence (K,), of compact subsets of b(B) with

p(Bs) = sup u(R""s), u('Bs) = sup u('R""s).

From the above considerations it follows
u(Ps — (Bs —'Bs)) < v(Ps — (Bs —'Bs))

and so Ps — (Bs — B's) is U'-strongly supermedian and therefore it is U’-excessive. Hence Bs —
'Bs <ewry Ps and so
PBS = (BS — ,BS) %g(ul) O ﬁg(u/) PS.

If s € bpB N EU) then there exists an increasing sequence (s,), of regular U-excessive functions
sp € bEU) N pB with s, /' s. We have

Pgs,, <ew) Ps, VYneN

and so Pps <gury Ps. ]

Theorem 3.3. Let s € bE(U) N pB and v € bpB N EWU') be such that Ps <eqry u < s. Then
u € bpBNEWU). Particularly for any s € bpB N EU) we have Ps € (bpB) N EU).

Proof. For any o-balayage, using Proposition 3.2, we have Ppu <¢ur) Ps <egw) v and thus by
Proposition 2.4 we deduce that Bu < u. Consequently u € bpB N E(U). O

Theorem 3.4. For any absorbent point a € E with respect to U' we have
PUf, < BEMaty .

Particularly we have

P(U fo)(a) < U fo(a).

Proof. In the proof of this theorem we shall write simply <, A, Y instead of ey, Ae@r), Yewn
respectively. By Theorem 2.7 we have

P(Uf(]) =Y {ZPBGiSi ‘ ZSZ' < Uf(],Si S SO,GZ' € go}
i=1 i=1
Since a is an absorbent point with respect to U’ we have, for any s € bpB N E(U)

B%s \'B% »='Bls VG € Gy, G > a

Pges < BSs—'Blds. VG € Gy, G > a,

0 for all G € Gy,G > a. Analogously if a € b(B%) then we have 'B%s(a) = 0 and so
Pgas(a) = BYs(a) for any s € bpBNEU).
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Let (sg

))1<Z<n be a finite system in Sy with Zs <Ufgforall 1 <k <m, (G¥)i<p<m a finite

1<k<m 1<i<n
=1

system in Gy. We put

Z PBGi‘Sf’ ok = PBGi‘Sf'
aEI;(BGi) aezf;(:Rle
We have .
uF(a) =0, v*(a)= Y  B%s(a)
ag,;mcz)
vk = i (BY sk —'BYY(B Z B%sk(a) - 'B1 <
§ agz;:elc?) agb(BET)
> (B%s; — BN (B%s;)) + BENU fy(a) - BN
o)
and

i=1 k=1

51 <Z PBG?S?) <D Ut ﬁlvk'
Since B sk — /B9 BGisk € £(U') and (B sk — B9 BGsk)(a) = 0, it follows that

w B\{a}
kvlzpcks < BPMa U fo(a).

Hence P(U fo)(a) < BEMUU fo(a), P(Ufy) < BEMU f,. O

Theorem 3.5. The kernel P is an exact subordination operator with respect to U and the sub-
Markovian resolvent V = (V,)as0 on (E, B) associated with P by

Vif=Uf—-PUfY fepB,Uf >0
is exact subordonate to U and E(V) = EU).
Proof. Since by Theorem 3.3 and Theorem 3.5 we have P(E(U) NpB) C E(U) N pB and
s,t ebpBNEWU), s <t = Ps<euy Pt Sswry s

sebpBNEWU),uebpBNEWU'), Ps Seury u < s = u € bEU).

From Theorem 1.10 it follows that P is an exact subordination operator with respect to U such
that any M € B, M C E\Ep is absorbent with respect U’. Particularly any point a € E\Ep is
absorbent with respect to U’ and so by Theorem 3.4 we have a € Ep contradiction. Hence £ = Ep
and therefore from Theorem 1.10 we get £(V) = E(U’). O

Theorem 3.6. Let Q be a kernel on (E,B) such that Q(bE(U)) C bE(U) and such that
S,t S pr N g(Z/{), S S t = QS %g(u/) Qt %g(ul) t.

Then the following assertions are equivalent:
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1) Q is an exact subordination operator with respect to U such that the set {s—Qs/s € E(U)NpB}
is solid in E(U'") with respect to the natural order.
2) For any u € E(U") N pB such that there exists s € bE(U) N pBB with
Qs Sswyu < s

we have u € bE(U).
3) For any o-balayage B we have

Pgs W) Qs Vse bg(Z/{) N pB
4) Ps Sewry Qs s € bEU) N pB.

Proof. From Theorem 1.10 it follows that 1) < 2).

2) = 3). Let B be a o-balayage. We show that for any s € bE(U) N pB we have Bs — 'Bs =
Q(Bs) —'BQ(Bs). Indeed, since 'B(Bs — Q(Bs)) < Bs — @QBs and 'B(Bs — QBs) € bE(U') N pB,
it follows that the function

u:='B(Bs — QBs) + Q(Bs)

belongs to bE(U) N pB and u < Bs.
On the other hand we have
u>'BBs ='Bs on b(B)

and so u > Bs. Therefore uw = Bs and so Bs —'Bs = Q(Bs) — 'BQ(Bs). From the relation
Bs —'Bs = Q(Bs) —'B(Q(Bs)) we get Pgs = (Bs —'Bs) Yeuy 0 Sewry Q(Bs) <eury @s.
3) = 4). For any f € F we have

PUf = Yewr {ZPBGiSi | Zsi <Uf,s€8,G; € gO}
=1 =1

<Sew) {ZQ&' Y s <Ufsi€ 30} <ew) QU
im1

i=1
Since bpB is the monotone class in bpB generated by F we deduce
Ps ey Qs Vs € bE(U) N pB.

4) = 2). Let s € bE(U)NpB and let B be a o-balayage. Let v € bE(U')NpB be such that Qs <ewn
u < s. We have Ps gy @5 Sewry u < s and therefore, by Proposition 2.4, v € bE(U). O

Proposition 3.7. Let () be an exact subordination operator with respect to U such that
S,t c pr N 5(1/{), s<t= QS %E(Z/{’) Qt %g(ul) t,

Ps e Qs Vse bE(Z/{) N pB.
Let further W be the Markovian resolvent of kernel on (E,B) having as initial kernel

Wi=Uf-QUf VfepB Uf < .
Then there exists g € pB™, 0 < g < 1 such that
QUf =PU(gf)+U((L—g)f) VfepB

If moreover Eg = E then we have
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Proof. Let V = (V,)a>0 be the sub-Markovian resolvent of kernels on (E, B) having as initial kernel
V where Vf=Uf—-PUf, fepB, Uf <oo.From

Ps ey Qs Vs € bEU) N pB
we deduce
WiSewnyVi=Uf—-PUf VfepB <o
where fo € pB, 0 < fo <1, Ufo < 0o. From Wf =Uf - QUf <ewy Uf — PUf = Vf for all
f epB, f < fyit follows that there exists g € pbB™, 0 < g < 1 such that
Wf=V(gf) VfepB f<f.
ie.
Uf=QUf=Ul(gf)—PU(gf) YfepB,[</fo
QUf =PU(gf)+U((1—9)f) YfepB f<fo

and so QU f) = P(U(gf)) +U((1 —g)f) fe€pB.
Assume that Eg = E. Then W fy > 0 on E and so for any ¢t € £(U’) we have inf(t, nW fo) € E(W)
for all n. Consequently ¢t € £(W) and so since E(W) C E(U') we get EW) = EU'). O
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