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Abstract. We give an analytic version of a well known Shih’s theorem concerning the Markov processes

whose hitting distributions are dominated by those of a given process. The treatment is purely analytic,

completely different from Shih’s arguments and improves essentially his result.

Introduction

In the paper [11] C.T. Shih has considered two Hunt processes X and X ′, having a common
locally compact separable metric space (E, T ) as state space and he proved that under some obvious
necessary conditions, if the hitting distributions of X ′ are dominated by those of X then there exists
a process Y obtained from a random time change in a subprocess of X that is equivalent to X ′ (i.e.
they have the same transition function). See also [7] for a different method.

In this article we extend the above result to the general case when the common state space (E, T )
is a Lusin topological space. Our approach is purely analytic and it is completely different from that
developed in [11]. This new treatement extends a similar one (see [6]) considered in the particular
case when there exists a reference measure for the given process X.

If U and U ′ are the subMarkovian resolvents associated with X and X ′ then the fact that the
hitting distributions of X dominate those of X ′ means that ′RA ≤ RA for all Borel subset A of E
where RA (resp. ′RA) is the réduite kernel on A associated with U (resp. U ′). The fact that there
exists a process Y obtained from a random time change in a subprocess of X which is equivalent to
X ′ means that there exists a sub-Markovian resolvent W which is exactly subordinate to U (in the
sense of P.A. Meyer [8], [9]) and the set E(W) of all W-excessive functions coincides with the set
E(U ′) of all U ′-excessive functions.

Our constructions give a sub-Markovian resolvent W with the above property and moreover it
possesses the following maximality property: If W ′ is a second sub-Markovian resolvent which is
related with U and U ′ as above then we have W ′f ≤ Wf and Wf −W ′f ∈ E(U ′) for all f ∈ pB with
Wf < ∞.

1 Preliminaries and exact subordination operators

In this paper (E, T ) is a Lusin topological space and U = (Uα)α≥0 a proper subMarkovian rezolvent
of kernels on (E,B) where B = B(E) is the σ-algebra of all Borel subsets of (E, T ). We denote by
B(u) the σ-algebra of all universally B-measurable subsets of E.

As usually we denote by pB (resp. pB(u)) the set of all positive B (resp. B(u))-measurable functions
on E. If F ⊂ pB(u) we denote by bF the set of all bounded functions from F .

We denote by E(U) the set of all B(u) measurable functions which are U -excessive. We assume
that the set E(U) ∩ pB is min-stable, contains the positive constant functions and generates B.

We recall that a U -excessive measure ξ on (E,B) is termed U -potential if it is of the form ξ = µ◦U
where µ is a σ-finite measure on (E,B).

The set E is called semisaturated with respect to U if any U -excessive measure dominated by a
U -potential is also a U -potential. In the sequel we assume that E is semisaturated with respect to U .
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If ξ is a U -excessive measure on (E,B), a subset A of E is called ξ-polar if there exists s ∈ E(U)
such that s = +∞ on A and s < ∞ξ-a.e. If µ is a σ-finite measure on E such that µ ◦ U ∈ ExcU
then we say µ-polar instead of µ ◦ U -polar.

A subset A of E is called nearly B-measurable with respect to U if for any finite measure µ on
(E,B) there exists A0 ∈ B, A0 ⊂ A such that A\A0 is µ-polar and µ-negligible.

The set of all nearly B-measurable sets is denoted by B(n). Obviously B(n) is a σ-algebra and
B ⊂ B(n) ⊂ B(u). Is is know that any U -excessive function is B(n)-measurable.

For any f : E → R̄+ we denote by Rf the function

Rf = inf{t ∈ E(U) | t ≥ f}

called the réduite of f with respect to U .
For any subset A of E and s ∈ E(U), the function RAs = R(1As) is called the réduite of s on A.

We use the convention 0 · (+∞) = (+∞) · 0 = 0. Is is know that ([2], [4] ch. I) for any A ∈ B(n) and
s ∈ E(U) the function RAs is B(u)-measurable and it is U -supermedian. In this case we denote by
BAs the U -excessive regularization of RAs, i.e.

BAs = sup
α

αUαRAs.

Since E is semisaturated we respect to U then for any A ∈ B(n) and x ∈ E there exists a positive
measure denoted RA

x (resp. BA
x ) on (E,B) such that

RA
x (s) = RAs(x) (resp.BA

x (s) = BAs(x)).

Moreover we denote by RA (resp. BA) the kernel on (E,B(u)) such that

RAf(x) = RA
x (f) (resp. BAf(x) = BA

x (f))

for all f ∈ pB(u) and x ∈ E.
A set A ∈ B(n) is called U thin at x if there exists s ∈ bE(U) such that BAs(x) < s(x) or

equivalently BA
x 6= εx.

The U-fine topology on E is the coarsest topology on E for which any function from E(U) ∩ pB
is continuous. It is easy to see that any U -excessive function is U -fine continuous. It is know that if
A ∈ B(n) then it will be U -finely open if and only if the set E\A is U -thin at any point of A. Also if
A ∈ B(n) is U -finely closed then for any x ∈ E the measures RA

x , BA
x are carried by A.

A set A ⊂ E is called U-absorbent if there exists s ∈ E(U) such that A = [s = 0]. Obviously any
U -absorbent set is U -finely open.

A set A ∈ B(n) is called U-subbasic if A is not thin at any point of A or equivalently RA = BA.
In this case we have BAs = s on A for all s ∈ E(U) and so BA(BA) = BA.

A set A ∈ B(n) is called U-basic if A is U -subbasic and A is U -finely closed. If A ∈ B(n) is U -
subbasic and f0 ∈ pB, 0 < f0 ≤ 1 is such that p0 := Uf0 is bounded then the set [BAUp0 = p0] is
the U -fine closure of A and represent a U -basic set.

A set A ∈ B(n) is called B−U-subbasic if it is U -subbasic and BAs ∈ pB∩E(U) for all s ∈ pB∩E(U).
A set A ∈ B(n) is called B − U-basic if it is B − U -subbasic and U -basic set in the same time.

In this case A ∈ B and we have A = [BAp0 = p0] where p0 is as above. We notice that if A is a
B − U -subbasic set then BA is a kernel on (E,B).

In the sequel we consider a second sub-Markovian resolvent U ′ = (U ′
α)α>0 on (E,B) such that the

set E(U ′) ∩ pB is min-stable, contains the positive constant functions and generates B. We assume
that E is semisaturated with respect to U ′. Also we suppose that the following assertions hold.

2



1) The topology T is natural with respect to both U and U ′, i.e. any G ∈ T is U -finely open and
U ′-finely open.

2) For all A ∈ B and f ∈ pB we have

′RAf ≤ RAf.

3) For any a ∈ E such that the set {a} is U ′-absorbent the set {a} is U -finely open.

Proposition 1.1. For any x ∈ E the set {x} is U ′-finely open if and if it is U-finely open.

Proof. Assume that {x} is not U ′-finely open. Then this means that ′RE\{x}s(x) = s(x) for all

s ∈ E(U ′) or equivalently ′RE\{x}f(x) = f(x) for all f ∈ pB, i.e. ′R
E\{x}
x = εx.

By hypothesis 2) it follows that

f(x) = ′RE\{x}f(x) ≤ RE\{x}f(x) ∀f ∈ pB

and so s(x) = RE\{x}s(x) for all s ∈ E(U), i.e. {x} is not U -finely open.
Conversely, assume that {x} is not U -finely open but {x} is U ′–finely open. We get

RE\{x}f(x) = f(x) ∀f ∈ pB

and from
′RE\{x}f(x) ≤ RE\{x}f(x) = f(x) ∀f ∈ pB

we deduce that there exists 0 ≤ α ≤ 1 such that

′RE\{x}f(x) = αf(x) ∀f ∈ pB

Since {x} is U ′-finely open it follows that the measure ′R
E\{x}
x is carried by E\{x} and so α = 0.

Hence
′RE\{x}1(x) = 0

i.e. {x} is absorbent with respect to U ′ and so by hypothesis 3) {x} is U -finely open, contradiction.

Proposition 1.2. For every A ∈ B and x ∈ E\A the set A will be U-thin at x if and only if it is
U ′-thin at x. Particularly if A ∈ B then A is U-finely open if and only if A is U ′-finely open.

Proof. Assume that A is U -thin at x. Then there exists s ∈ bE(U) such that RAs(x) < s(x), i.e.
the measure RA

x is different from εx. Since by hypotheses 2) we have ′RA
x ≤ RA

x it follows that
′RA

x (s) ≤ RA
x (s) < s(x), i.e. ′RA

x 6= εx and consequently A is U ′-thin at x.
Suppose now that A is U ′-thin at x, i.e. ′RA

x 6= εx or equivalently the U ′-fine closure of A does
not contains x and so ′RA

x does not charge {x}.
Assume now that A is not U -thin at x, i.e. RA

x = εx. Since ′RA
x ≤ RA

x it follows that there exists
θ ∈ [0, 1] such that ′RA

x = θεx and so, because RA
x does not charge {x}, we get θ = 0. Hence {x} is

U ′-absorbent and therefore by hypothesis 3) {x} is U -finely open and consequently A is U -thin at x,
which leads to a contradiction.

Corollary 1.3. We have E(U) ⊂ E(U ′) and any nearly B-measurable set A ⊂ E with respect to U
is also nearly B-measurable set with respect to U ′.
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Proof. Let s ∈ bE(U) ∩ pB. Hence s is U -finely continuous and therefore s is U ′-finely continuous.
Hence for any U ′-finely open set G we have ′BGs ≤ BGs ≤ s and so s is U ′-excessive.

Let A be a nearly B-measurable set with respect to U . Then for any finite measure µ on (E,B)
there exists A0 ∈ B, A0 ⊂ A, such that A\A0 is µ-polar (with respect to U) and µ-negligible. From
the above considerations it follows that A\A0 is µ-polar with respect to U ′. Hence A is nearly
B-measurable with respect to U ′.

Proposition 1.4. For any A ∈ B and f ∈ pB we have

′BAf ≤ BAf.

Proof. Let f of the form f = u − v where u, v ∈ bE(U) ∩ pB, v ≤ u < ∞. By hypothesis 2) we
have ′RAu − ′RAv ≤ RAu − RAv. On the other hand we have E(U) ⊂ E(U ′) and for any s ∈ bE(U),
′BAs (resp. BAs) is the lower semicontinuous regularization of ′RAs (resp. RAs) with respect to the
U -fine topology. Hence we get ′BAu − ′BAv ≤ BAu − BAv.

Proposition 1.5. For any point x ∈ E we have: {x} is U-thin at x if and only if {x} is U ′-thin at
x.

Proof. Assume that {x} is U -thin at x. Since ′B
{x}
x ≤ B

{x}
x and from the fact that the measure B

{x}
x

is carred by {x}, we get B
{x}
x = αεx with α < 1. Hence ′B{x} = βεx with β ≤ α < 1 and so {x} is

U ′-thin at x.
Assume now that {x} is U ′-thin at x, i.e. ′B

{x}
x = αεx with α < 1. Obviously {x} is not U ′-finely

open. Let further (Vn)n be a decreasing sequence of open sets in E with ∩nVn = {x}. If {x} is not

U -thin at x it follows that B
{x}
x = B

{x}∪(E\Vn)
x = εx. On the other hand we have ′B

{x}∪(E\Vn)
x 1 ↗ 1

and ′B
{x}∪(E\Vn)
x ≤ (′B

{x}
x + ′B

E\Vn
x ), ′B

{x}∪(E\Vn)
x ≤ B

{x}∪(E\Vn)
x = εx. It follows that

θn := B
′{x}∪(E\Vn)
x (1{x}) ≤

′B{x}
x (1{x}) + ′BE\Vn

x (1{x}) = ′B{x}
x (1{x})

′B{x}∪(E\Vn)
x ≤ εx,

′B{x}∪(E\Vn)
x = θn · εx

and so
1 = sup

n

′B{x}∪(E\Vn)
x 1 = sup

n

′B{x}∪(E\Vn)
x (1{x}) = sup

n

θn ≤ ′B{x}
x (1{x}) = α,

leading to a contradiction.

Corollary 1.6. For any A ∈ B and x ∈ E we have: A is U-thin at x if and only if A is U ′-thin at
x.

Proof. From Proposition 1.5 we may assume that {x} is U -thin and U ′ thin at x and so we may
suppose that x 6∈ A. In this case the assertion follows from Proposition 1.2.

Notation. Whenever V is a proper sub-Markovian resolvent of kernels on (E,B), we shall denote
by 4E(V) the specific order with respect to V, i.e. u 4E(V) v means that there exists s ∈ E(V) such
that v = u + s.

Theorem 1.7. For any finite families (fi)i∈I , (Ai)i∈I where fi ∈ bpB, Ai ∈ B such that Ai is
B − U-basic and B − U ′-basic for all i ∈ I and any s ∈ bE(U) ∩ pB with

∑

i∈I

BAifi ≤ s
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we have
0 ≤

∑

i∈I

(BAifi −
′BAifi) 4E(U ′) s.

Proof. Firstly we assume that I has a unique element. Let f ∈ pbB, A ∈ B B − U -basic and
B − U ′-basic, and s ∈ bE(U) ∩ pbB such that f ≤ s. We put

u := s − (BAf − ′BAf) − ′BAs.

We have u = s − ′BAs − (BAs − ′BAs) + BA(s − f) − ′BA(s − f) and so u ≥ 0.
Let furthere W = (Wα)α≥0 be the sub-Markovian resolvent on E having as initial kernel W, where

Wf = U ′f − ′BAU ′f for all f ∈ pB with U ′f < ∞. Let now T ∈ B, T ⊂ E\A, be a W-basic set.
Then A ∪ T is U ′-basic set and we have

WBT (u) = ′BA∪T (u) = ′BA∪T (s − ′BAs) + ′BA∪T (BA(s − f)) − ′BA(s − f)

≤ BA∪T (s − ′BAs) + BA(s − f) − ′BA(s − f)

= BA∪T s − BAs + BA(s − f) − ′BA(s − f) = BA∪T s − (BAf − ′BAf) − BAs ≤ u

and so u ∈ E(W). Since u ≤ s− ′BAs, there exists t ∈ E(U ′) such that u = t− ′BAt ≤ s− ′BAs and
so u + ′BAs = t − ′BAt + ′BAs ∈ E(U ′),

s − (BAf − ′BAf) ∈ E(U ′), BAf − ′BAf 4E(U ′) s.

We consider the general case and let us denote by nI the cardinal of I. From the previous
considerations it follows that the assertion is true for nI = 1. Assume now that the assertion is true
for nI = n and let I with nI = n + 1. For any i ∈ I we put

ui := s −
∑

j∈I\{i}

(BAjfj −
′BAjfj)

and let g = s −
∑

i∈I(B
Aifi −

′BAifi), u = infi∈I ui. Obviously we have g ≤ u and ui ∈ E(U ′). We
want to show that g ∈ E(U ′). Since g is U ′-finely continuous and g ∈ pB it follows that ′R(g) is
U ′-supermedian and a majorant of g and so it belongs to E(U ′) ∩ pB.

Let α ∈ (0, 1) and let us consider the U -finely open set A ∈ B, given by A := [α′R(g) < g]. We
have ′BA(′R(g)) = ′R(g). Indeed, if t ∈ E(U ′), t ≥ ′R(g) on A, then we get (1−α)t+α′R(g) ≥ g on E
and so (1 − α)t + α′R(g) ≥ ′R(g), t ≥ ′R(g). On the other hand let A0 := Āf ∪ (

⋃
i∈I Ai), where Āf

denotes the U ′-fine closure of A. We have

′BA0g = ′BA0

(
∑

i∈I

′BAifi

)
+ ′BA0

(
s −

∑

i∈I

BAifi

)

=
∑

i∈I

′BAifi + ′BA0

(
s −

∑

i∈I

BAifi

)
≤
∑

i∈I

BAifi + BA0

(
s −

∑

i∈I

BAifi

)

=
∑

i∈I

BAifi + BA0s −
∑

i∈I

BAifi ≤ g.

Since g = ui on Ai and g ≤ u it follows ′Rg ≤ u ≤ ui for all i ∈ I and so α′Rg ≤ αui ≤ g on Ai

for all i ∈ I. Hence α′Rg ≤ g on A0 and so ′BA0(α′Rg) ≤ ′BA0g. From the above considerations we
deduce

′Rg = ′BA0(′Rg) ≤
1

α
′BA0(g) ≤

1

α
g, α ′Rg ≤ g on E.

The number α ∈ (0, 1) begin arbitrary we get g = ′Rg, g ∈ E(U ′), completing the proof.
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Let P be a kernel on (E,B) such that P (E(U)) ⊂ E(U) and such that Ps ≤ s for all s ∈ E(U).
Then it is known that (cf [10], [4, ch. II], [3]) for any s ∈ bpB ∩ E(U) there exists s′ ∈ bpB ∩ E(U)
such that s′−Ps′ = s−Ps and moreover if t ∈ bpB∩E(U) is such that s′−Ps′ ≤ t−Pt then s′ ≤ t.

A kernel P on (E,B) is called exact subordination operator with respect to U provided that
a) P (E(U)) ⊂ E(U), Ps ≤ s for all s ∈ E(U).
b) inf(s, Ps + t − Pt + Pf) ∈ E(U) for all s, t ∈ E(U), t < ∞, and f ∈ pB

We recall the following result (cf. [10], [4, ch. V]):

Theorem 1.8. (G. Mokobodzki) If P is an exact subordination operator with respect to U there
exists a subMarkovian rezolvent of kernels W = (Wα)α>0 on (E,B) such that

Wα ≤ Uα ∀ α ≥ 0 and Wf = Uf − PUf ∀ f ∈ pB, Uf < ∞.

Moreover if
EP := {x ∈ E | ∃s ∈ E(U), P s(x) < s(x)}

then Wα(1E\EP
) = 0 and the sub-Markovian resolvent W considered on EP is such that E(W) ∩ pB

is minstable, contains the positive constant functions and generates B|EP
. Further the set {s − Ps |

s ∈ bE(U)} is solid in bE(W) with respect to the natural order.

A sub-Markovian resolvent W = (Wα)α≥0 of kernels on (E,B) is called exactly subordinate to U
provided that

Wαf ≤ Uαf ∀α > 0, f ∈ pB, Uf < ∞.

and
Uf − Wf ∈ E(U) ∀ f ∈ pB, Uf < ∞.

From Theorem 1.8 it follows that if P is an exact subordination operator with respect to U then
the sub-Markovian resolvent W = (Wα)α≥0 associated with P by

Wf = Uf − PUf ∀ f ∈ pB, Uf < ∞,

is exactly subordinate to U . The following result ([8], [4, ch. V]) represents a converse one.

Theorem 1.9. (P.A. Meyer). Let W = (Wα)α≥0 be a sub-Markovian resolvent of kernels on (E,B)
which is exactly subordinate to U . Then there exists an exact subordination operator P with respect
to U such that

Wf = Uf − PUf ∀ f ∈ pB, Uf < ∞.

Theorem 1.10. Let P be a kernel on (E,B) and let V = (Vα)α≥0 be a sub-Markovian resolvent of
kernels on (E,B) such that E(V) ∩ pB is min-stable, E(U) ⊂ E(V) and

s, t ∈ bE(U), s ≤ t ⇒ Ps 4E(V) Pt 4E(V) t.

Then the following assertions are equivalent.
1) P is an exact subordination operator with respect to U and the set {s − Ps | s ∈ bE(U) ∩ pB}

is solid in E(V) with respect to the natural order.
2) For any u ∈ bE(V) ∩ pB such that there exists s ∈ bE(U) ∩ pB with

Ps 4E(V) u ≤ s

we have u ∈ bE(U).
If P satisfies 1) then any subset A of E\EP , A ∈ B is absorbent with respect to V.
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Proof. 1) ⇒ 2). Let u ∈ bE(V)∩pB such that there exists s ∈ bE(U)∩pB with Ps 4E(V) u ≤ s. Since
u−Ps ∈ bE(V)∩ pB and u−Ps ≤ s−Ps, there exists s′ ∈ bE(U)∩ pB such that u−Ps = s′ −Ps′.
From u = inf(s, Ps + s′ − Ps′) it follows that u ∈ bE(U) ∩ pB.

2) ⇒ 1). Let s1, s2 ∈ bE(U) ∩ pB such that s2 < ∞ and f ∈ bpB. We consider the function u on
E given by

u = inf(s1, P s1 + s2 − Ps2 + Pf).

Since by hypothesis Pf ∈ bE(V) ∩ pB for all f ∈ bpB of the form f = s − t, where s, t ∈ bE(U) ∩ pB
it follows that Pf ∈ bE(V) ∩ pB for all f ∈ bpB and so Pf ∈ bE(V) ∩ pB for all f ∈ pB. Hence
u ∈ bE(U) ∩ pB and Ps1 4E(V) u ≤ s1. From 2) we deduce that u ∈ bE(U) ∩ pB and therefore P is
an exact subordination operator with respect to U .

Let further v ∈ bE(V)∩ pB and s ∈ bE(U)∩ pB be such that v ≤ s−Ps. Using 2) we deduce that
v + Ps ∈ E(U). We consider W = (Wα)α≥0 the sub-Markovian resolvent of kernels on (E,B) such
that Wf = Uf − PUf for all f ∈ pB, Uf < ∞. We denote by w the réduite of v with respect to W.
We have w ∈ bE(W) ∩ pB, w ≤ s − Ps and there exists an increasing sequence (sn)n in bE(U) ∩ pB
such that sn ≤ s for all n ∈ N and sn − Psn ↗ w. If we consider the function s′ := supn sn then we
have s′ ∈ bE(U) ∩ pB, v ≤ w = s′ − Ps′. We have v + Ps′ ∈ bE(U), P s′ 4E(V) v + Ps′ ≤ s′ and so
the function s′0 given by s′0 = v + Ps′ is U -excessive, s′0 ≤ s and v = s′0 − Ps′ ≤ s′0 − Ps′0. Hence
s′0 − Ps′0 ≥ w = s′ − Ps′, s′0 ≥ s′, and so s′0 = s′, v = s′ − Ps′

Suppose that P satisfies 1). Then we have

EP = {x ∈ E | Uf0(x) > PUf0(x)}

where f0 ∈ pB, 0 < f0 ≤ 1, Uf0 bounded. Hence Pf(x) = f(x) on E\EP for all f ∈ pB. If A ∈ B,
A ⊂ E\EP we get P (1E\A) ∈ E(V) and A = [f0 + P (1E\A) = 0] where Wf0 = Uf0 − PUf0 and so A
is V-absorbent.

Theorem 1.11. Assume that V = (Vα)α≥0 is a sub-Markovian resolvent of kernels on (E,B) which
is exact subordinate to U and let P the exact subordination operator with respect to U such that

V f = Uf − PUf ∀ f ∈ pB, Uf < ∞.

We assume that EP = E. Then for any A ∈ B we have

RAs − VRAs = P (RAs) − VRA(RAs))

for all s ∈ bE(U), where VRAs denotes the réduite of s on A with respect to V. Particularly for all
A ∈ B we have

VRA ≤ RA.

Proof. Since EP = E it follows by Theorem 1.8 that the fine topologies with respect to U and V
are the same. Assume firstly that A is finely open with respect to U . Then for all s ∈ bE(U)
we have RAs − P (RAs) ∈ E(V), VRA(RAs − PRAs) ≤ RAs − PRAs and there exists s′ ∈ bE(U),
s′ ≤ s such that VRA(RAs − PRAs) = s′ − Ps′. From s′ − Ps′ ≤ RAs − PRAs it follows that
u := s′ − Ps′ + PRAs ∈ E(U), u ≤ RAs. On the other hand we have u− VRA(RAs− PRAs) + PRAs
= (RAs − PRAs) + PRAs = RAs = s on A and so u ≥ RAs, u = RAs. Hence

RAs − VRAs = P (RAs) − VRA(P (RAs)) ∀s ∈ bE(U).
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Let now A ∈ B. For any finite measure µ on (E,B) we have (cf. [4])

µ(RAs) = inf{µ(RGs) | G finely open, G ⊃ A}

µ(VRAs) = inf{µ(VRGs) | G finely open, G ⊃ A}.

On the other hand if G is finely open G ⊃ A and G1 is finely open with A ⊂ G1 ⊂ G we get

RGs + VRGPRGs = VRGs + P (RGs)

and so, taking RG1s instead of s,

RG1s + VRG(PRG1s) = VRG1s + P (RG1s).

We deduce that RAs + VRG(P (RAs)) = VRAs + P (RAs) for all finely open set G with G ⊃ A. Since
P (RAs) ∈ E(U) we get RAs + VRA(P (RAs)) = VRAs + P (RAs).

Corollary 1.12. Let V be a sub-Markovian resolvent of kernels on (E,B) as in Theorem 1.10. Then
for any A ∈ B and x ∈ E, A is V-thin at x if and only if A is U-thin at x.

Proof. The assertion follows from Proposition 1.5 since the sub-Markovian resolvent V satisfies the
two conditions 1), 2) of the resolvent U ′ given at the begining of this section.

2 The techniques for the construction of special exact

subordination operators

A σ-balayage with respect to U is a map B : E(U) → E(U) such that it is additive, increasing and
σ-continuous from below, contractive (i.e. Bs ≤ s, for all s ∈ E(U)) and idempotent (i.e. B2 = B).
A σ-balayage with respect to U is called B − σ-balayage (with respect to U) if moreover

B(E(U) ∩ pB) ⊂ E(U) ∩ pB

If A is a U -basic set (resp. B − U -basic set) then the map

s → BAs

is a σ-balayage (resp. B − σ-balayage) with respect to U .
Conversely since E is semisaturated with respect to U then for every σ-balayage (resp. B − σ-

balayage) B with respect to U there exists a unique U -basic set (resp. B − U -basic set) A := b(B)
such that

Bs = BAs ∀s ∈ E(U).

The set A is called the base of B. We denote by ′B the σ-balayage with respect to U ′ having the
same base as B.

Let B be a B − σ-balayage with respect to U such that ′B is also a B − σ-balayage with respect
to U ′. We denote by PB the map

PB : bE(U) ∩ B → bE(U) ∩ pB

given by
PBs := Bs − Bs f

E(U ′)

′Bs.
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In the sequel we say simply that B is a σ-balayage if B and ′B are simultaneously B−σ-balayages.

Proposition 2.1. The following assertions hold:
1) PB(s + t) = PBs + PBt.
2) s ≥ t ⇒ PBs 4E(U ′) PBt 4E(U ′) t.
3) PB(Bs) = PBs.
4) sn ↗ s ⇒ PBsn ↗ PBs.
5) Bs − ′Bs = PBs − ′BPBs.

Proof. If s ∈ bE(U)∩pB we have PBs = Bs−Bs f
E(U ′)

′Bs, ′B(Bs f
E(U ′)

′Bs) = Bs f
E(U ′)

′Bs, ′BBs = ′Bs,

and so ′B(PBs) = ′Bs−Bs f
E(U ′)

′Bs, PBs−′B(PBs) = Bs−′Bs. Analogously if t ∈ bE(U)∩pB we have

Bt−′Bt = PBt−′BPBt, B(s+t)−′B(s+t) = PB(s+t)−′BPB(s+t) and so PBs+PBt−′B(PBs+PBt) =
PB(s + t) − ′BPB(s + t). Since PBs f

E(U ′)

′Bu = PBt f
E(U ′)

′Bu = PB(s + t) f
E(U ′)

′Bu = 0 for all u ∈

bE(U ′) ∩ pB it follows that PB(s + t) = PBs + PBt. From the definition of PB it follows directly
PB(Bs) = PBs for all s ∈ bE(U) ∩ pB.

Let now s, t ∈ bE(U) ∩ pB such that s ≤ t. We have PBs − ′BPBs = Bs − ′Bs, PBt − ′BPBt =
Bt − ′Bt and so PBt − PBs − ′B(PBt − PBs) = B(t − s) − B ′(t − s). Since t − s ∈ pbB then
by Theorem 1.7 there exists u ∈ b(E(U ′) such that B(t − s) − ′B(t − s) = u − ′Bu and moreover
u f

E(U ′)

′Bu = 0. We have PBt+ ′Bu+ ′BPBs = PBs+u+ ′BPBt since PBs f
E(U ′)

′Bv = PBt f
E(U ′)

′Bv = 0

for all v ∈ bE(U ′) ∩ pB, we deduce PBt = PBs + u, i.e. PBs 4E(U ′) PBt. On the other hand we get
Bt − ′Bt 4E(U ′) t, PBt = (Bt − ′Bt) gE(U ′) 0 4E(U ′) t.

Let now (sn)n be an increasing sequence in bE(U)∩pB, s ∈ bE(U)∩pB such that s = supn sn. We
have PBsn−

′BPBsn = Bsn−
′Bsn, PBsn 4E(U ′) PBsn+1 for all n ∈ N and so Bs−B ′s = supn PBsn−

′B(supn PBsn). On the other hand we have Bs−B ′s = PBs− ′BPBs, supn PBsn = gE(U ′)PBsn. Since
PBt f

E(U ′)

′Bv = 0 for all v ∈ bE(U ′) ∩ pB, t ∈ bE(U) ∩ pB, it follows that (supn PBsn) f
E(U ′)

′Bv = 0 for

all v ∈ bE(U ′) ∩ pB. From supn PBsn − ′B(supn PBsn) = PBs − ′BPBs we deduce that supn PBsn =
PBs.

Proposition 2.2. For any σ-balayage B there exists a unique kernel on (E,B) denoted also by PB

such that
PBs = Bs − Bs f

E(U ′)
B′s ∀ s ∈ bE(U) ∩ pB.

Moreover we have
i) f ∈ pB ⇒ PBf ∈ E(U ′) ∩ pB.
ii) Bf − ′Bf = PBf − ′BPBf ∀ f ∈ bpB.

Proof. For any x ∈ E the map bpB 3 f 7−→ PBUf(x) is an U -excessive measure dominated by εx ◦U
and so it is U -potential, i.e. there exists a measure PB,x on (E,B) such that

PB,xs = PBs(x) ∀ s ∈ bE(U) ∩ pB.

Since for any f ∈ (bE(U)∩pB−bE(U)∩pB)+ the function x 7−→ PB,xf is B-measurable it follows that
the function PBf given PBf(x) = PB,x(f) is B-measurable and so the map pB 3 f 7−→ PBf ∈ pB
is a kernel on (E,B). Since for all f ∈ (bE(U) ∩ pB − bE(U) ∩ pB)+ we have PBf ∈ E(U ′) ∩ pB and
Bf − ′Bf = PBf − ′BPBf it follows that the same assertion hold for all f ∈ bpB.
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Proposition 2.3. For any s ∈ bE(U) ∩ pB and any finite systems (si)i∈I in bE(U) ∩ pB and (Bi)i∈I

of σ-balayages such that
∑

i∈I si ≤ s we have

∑

i∈I

PBi
si 4E(U ′) s.

Proof. We have
∑

i∈I Bisi ≤ s and therefore from Theorem 1.7 we obtain
∑

i∈I(Bisi−
′Bisi) 4E(U ′) s.

From the definition of PBi
we deduce that the relation

∑

i∈I

PBi
si 4E(U ′) s

is equivalent with the relation

∑

i∈I

Bisi 4E(U ′) s +
∑

i∈I

Bisi fE(U ′)
′Bisi.

On the other hand we have inductively (following card I)

s +
∑

i∈I

Bisi fE(U ′)
′Bisi = fE(U ′)

J⊂I

(s +
∑

j∈J

Bjsj +
∑

j∈I\J

′Bjsj).

Moreover we have ∑

j∈I\J

Bjsj 4E(U ′) s +
∑

j∈I\J

′Bjsi

or equivalently ∑

i∈I

Bisi 4E(U ′) s +
∑

j∈J

Bisi +
∑

j∈I\J

′Bjsj

and so ∑

i∈I

Bisi 4E(U ′) fE(U ′)(s +
∑

j∈J

Bisi +
∑

j∈I\J

′Bjsij) =

= s +
∑

i∈I Bisi fE(U ′)
′Bisi.

Proposition 2.4. Let f ∈ bpB and B be a σ-balayage such that PBf 4E(U ′) f. Then we have Bf ≤ f.
Particularly if PBf 4E(U ′) f for all σ-balayage B then f ∈ E(U).

Proof. From PBf 4E(U ′) f there exists u ∈ bE(U ′) such that PBf + u = f. On the other hand we
have Bf − ′Bf = PBf − ′BPBf and so PBf = Bf − ′Bf + ′BPBf, f = u + Bf − ′Bf + ′BPBf.
Hence ′Bf = ′Bu + ′Bf − ′Bf + ′BPBf = ′Bu + ′BPBf ≤ u + ′BPBf and therefore Bf ≤ f.

Assume that PBf 4E(U ′) f for all σ-balayage B. Then f is U -finely continuous and moreover
Bf ≤ f for all σ-balayage B. Hence f = R(f), f ∈ E(U).

Lemma 2.5. Let (Pn)n∈N∗ be a sequence of kernels on (E,B) such that
a) Pn(bpB) ⊂ bE(U ′) ∩ pB.

b)
∞∑

k=1
sk,s∈bE(U)∩pB

sk ≤ s ⇒
∞∑

k=1

Pksk 4E(U ′) s.
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Let further F be a countable subset of bpB such that F + F ⊂ F , Q+,F ⊂ F , U(F) ⊂ bE(U)
and S0 be a countable subset of bE(U) ∩ pB such that

U(F) ⊂ S0; Q+S0 ⊂ S0

s, t ∈ S0 ⇒ s + t, s gE(U) t, R(s − t) ∈ S0.

Then the map
P0 : U(F) → bE(U ′) ∩ pB

defined by

P0(Uf) := gE(U ′)

{
n∑

k=1

Pksk | (sk)1≤k≤n ⊂ S0,
n∑

k=1

sk ≤ Uf

}

possesses the following properties:
i) P0(Uf1 + Uf2) = P0(Uf1) + P0(Uf2) for all f1, f2 ∈ F .
ii) Pn(Uf) 4E(U ′) P0(Uf) 4E(U ′) Uf for all f ∈ F and n ∈ N

∗.
iii) f1, f2 ∈ F , s ∈ bE(U), Uf1 ≤ Uf2 + s ⇒ P0(Uf1) 4E(U ′) P0(Uf2) + s.

Proof. Since S0 is countable it follows that the element P0(Uf) is well defined in E(U ′) for all f ∈ F .
We show now the property iii). Let f1, f2 ∈ F , s ∈ bE ∩ pB be such that Uf1 ≤ Uf2 + s. We consider
a system (si)1≤i≤n in S0 such that

∑m

i=1 si ≤ Uf1. From Uf1 ≤ Uf2 + s there exists s′, s′′ ∈ S0 such
that

∑m

i=1 si = s′ + s′′, s′ ≤ Uf2, s′′ ≤ s. Hence for any 1 ≤ i ≤ n there exists ui, vi ∈ S0 such
that si = ui + vi, s′ =

∑m

i=1 ui, s′′ =
∑m

k=1 vk. Since
∑m

i=1 ui = s′ ≤ U(f2),
∑m

i=1 vi ≤ s we get∑m

i=1 Pi(ui) 4E(U ′) P0(Uf2),
∑m

i=1 Pi(vi) 4E(U ′) s,
∑m

i=1 Pisi =
∑m

i=1 Pi(ui + vi) 4E(U ′) P0(Uf2) + s,
P0(Uf1) 4E(U ′) P0(Uf2) + s.

We show that P0 is additive. Let f1, f2 ∈ F . We have directly

P0(Uf1) + P0(Uf2) 4E(U ′) P0(Uf1 + Uf2).

Let now (si)1≤i≤n a finite system in S0 such that
∑n

i=1 si ≤ Uf1 + Uf2. From the properties
of S0 there exists two systems (ui)1≤i≤n, (vi)1≤i≤n in S0 such that si = ui + vi 1 ≤ i ≤ n and∑m

i=1 ui ≤ Uf1,
∑n

i=1 vi ≤ Uf2. Hence we define

m∑

i=1

Pisi =
∑

i=1

Piui +
n∑

i=1

Pivi 4E(U ′) P0(Uf1) + P0(Uf2)

and so
P0(Uf1 + Uf2) 4E(U ′) P0(Uf1) + P0(Uf2).

The property ii) follows directly from the definition of P0 and from the property b) of the given
sequence (Pn)n.

Lemma 2.6. Let F be a subset of bpB such that

F + F ⊂ F , Q+F ⊂ F

f1, f2 ∈ F ⇒ sup(f1, f2), inf(f1, f2) ∈ F

f1, f2 ∈ F , f1 ≤ f2 ⇒ f2 − f1 ∈ F

and such that the monoton class M(F) in bpB conincides with bpB. Assume that U is bounded and
let

P0 : U(F) → bE(U ′) ∩ pB
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be a map such that
i) P0(Uf1 + Uf2) = P0(Uf1) + P0(Uf2)
ii) P0(Uf) 4E(U ′) Uf ∀f ∈ F
iii) f1, f2 ∈ F , s ∈ bE(U) ∩ pB,

Uf1 ≤ Uf2 + s ⇒ P0(Uf1) 4E(U ′) +P0(Uf2) + s. Then there a kernel P̃o on (E,B)
uniquely determined such that

1) s ∈ bE(U) ∩ pB ⇒ P̃0s ∈ bE(U ′) ∩ pB

2) f ∈ F ⇒ P̃0(Uf) = P0(Uf)

3) s, t ∈ bE(U) ∩ pB, s ≤ t ⇒ P̃0s 4E(U ′) P̃0(t) 4E(U ′) t.
If moreover T is a kernel on (E,B(u)) such that T (bE(U) ∩ pB) ⊂ bE(U ′) and

T (Uf) 4E(U ′) P0(Uf) ∀ f ∈ F

then
Ts 4E(U ′) P̃0s, ∀s ∈ bE(U).

Proof. We denote for any non empty subset A of bpB, by Aσ, Aδ the sets

Aσ = {f ∈ bpB | ∃(fn) ⊂ A, fn ↗ f}

Aδ = {f ∈ bpB | ∃(fn)n ⊂ A, fn ↘ f}.

We remark that if A possesses the properties
i) A + A ⊂ A, Q+A ⊂ A
ii) f1, f2 ∈ A ⇒ sup(f1, f2), inf(f2, f2) ∈ A

then Aσ and Aδ posesses also the same properties 1), 2).
If Ω is the first uncountable ordinal number we define inductively the subsets

F1 = Fσ,F1 = (F1)δ,F
2 = (F1)σ,F2 = (F2)δ

and for any ordinal number α < Ω

Fα+1 = (Fα)σ, Fα+1 = (Fα+1)δ, and Fα = ∪β<αFβ, Fα = (Fα)δ

if α does not possess a precedent. Obviously we have

α < β ⇒ Fα ⊂ Fα ⊂ Fβ, and ∪α<β Fα = ∪α<βFα

if β does not possesses a precedent.
If M(F) is the monoton class in bpB generated by F (i.e. the smallest subset A of bpB with

F ⊂ A such that for any uniformly bounded monoton sequence (fn)n in A we have limn→∞ fn ∈ A)
then we have

M(F) = ∪α∈ΩF
α = ∪α∈ΩFα.

Firstly two remarks:
1) If f, g ∈ F are such that Uf ≤ Ug then P0(Uf) 4E(U ′) P0(Ug). This fact follows from the

property iii) of P0.
2) If (fn)n, (gn)n are two sequence in F such that (Ufn)n, (Ugn)n are increasing and

sup
n

Ufn ≤ sup
n

Ugn

12



then
sup

n

P0(Ufn) 4E(U ′) sup
n

P0(Ugn).

Particularly if supn Ufn = supn Ugn we have

sup
n

P0Ufn = sup
n

P0(Ugn).

Indeed, if we denote rn,m := R(Ufn − Ugm) then we have rn,m ∈ bE(U) ∩ pB, Ufn ≤ Ugn + rn,m,
infm rn,m = 0 and therefore, using the property iii) of P0, we deduce that P0(Ufn) 4E(U ′) P0(Ugm) +
rn,m 4E(U ′) supm P0(Ugm) + rn,m, P0(Ufn) 4E(U ′) supm P0(Ugm) for all n ∈ N, supn P0(Ufn) 4E(U ′)

supn P0(Ugn).

Form the above considerations it follows that for any f ∈ Fσ the element P̃0(Uf) from E(U ′)∩pB
defined by

P̃0(Uf) := sup
n

P0(Ufn)

where (fn)n is an increasing sequence in F with fn ↗ f depends only by Uf . Also we have

f1, f2 ∈ Fσ ⇒ P̃0(Uf1 + Uf2) = P̃0(Uf1) + P̃0(Uf2).

If f ∈ Fσ and (fn)n is an increasing sequence in F with fn ↗ f then using the property ii) of P0

we get
P0(Ufn) 4E(U ′) Ufn 4E(U ′) Uf and so P̃0(Uf) = sup

n

P0(Ufn) 4E(U ′) Uf.

Let now f, g ∈ Fσ and s ∈ bE(U) ∩ pB be such that Uf ≤ Ug + s. We show that

P̃0(Uf) 4E(U ′) P̃0(Ug) + s.

Indeed, let (fn)n (resp. (gn)n) be an increasing sequence in F such that fn ↗ f , gn ↗ g. For
any n ∈ N we have Ufn ≤ Ugn + U(g − gn) + s and therefore, from the property iii) of P0 we get

P0(Ufn) 4E(U ′) P0(Ugn) + U(g − gn) + s 4E(U ′) P̃0(Ug) + U(g − gn) + s. Since fnU(g − gn) = 0 we

get P̃0(Uf) 4E(U ′) P̃0(Ug) + s. Hence the map P̃0 : U(Fσ) → bE(U ′)∩ pB is an extension of P0 which
possesses the same properties i), ii), iii), as P0. Similarly if f ∈ Fσ and (fn)n is a decreasing sequence
in F , such that f = infn fn the element of bE(U ′) ∩ pB defined by

P̃0(Uf) = inf
n

P0(Ufn)

does not depend on the sequence (fn)n and we have

i) P̃0(Uf1 + Uf2) = P̃0(Uf1) + P̃0(Uf2) ∀f1, f2 ∈ Fδ

ii) P̃0(Uf) 4E(U ′) P0(Uf) ∀f ∈ Fδ

iii) if f, g ∈ Fδ and s ∈ bE(U) ∩ pB are such that Uf ≤ Ug + s then P̃0(Uf) 4E(U ′) P̃0(Ug) + s.
From the above consideration it follows that there exists a map

P̃0 : U(M(F)) → bE(U ′) ∩ pF

which is an extension of the map

P0 : U(F) → bE(U ′) ∩ pB,

such that
i) P̃0(Uf1 + Uf2) = P̃0(Uf1) + P̃0(Uf2) ∀f1, f2 ∈ M(F)
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ii) f ∈ M(F) ⇒ P̃0(Uf) 4E(U ′) Uf

iii) f1, f2 ∈ M(F), s ∈ E(U) ∩ pB, Uf1 ≤ Uf2 + s ⇒ P̂0Uf1 4E(U ′) P̂0Uf2 + s.
Let now s ∈ bE(U) ∩ pB and let (fn)n a sequence in M(F) such that Ufn ↗ s. Obviously we

have
P̃0(Ufn) 4E(U ′) P̃0(Ufn+1) 4E(U ′) s.

By the above remark 2) it follows that the element from bE(U ′) ∩ pB define by

P̃0s := sup
n

P̃0Ufn

does not depend on the sequence (Ufn)n as above. Using the above definition of P̃0s with s ∈
bE(U) ∩ pB we have immediately

P̃0(s + t) = P̃0s + P̃0t, P̃0s 4E(U ′) s

and
s, t ∈ bE(U) ∩ pB, s ≤ t ⇒ Ps 4E(U ′) Pt.

Let now s ∈ E(U ∩ pB and (sn)n an increasing sequence in bE(U) ∩ pB such that sn ↗ s. We

show that P̃0sn ↗ P̃0s. Let (fn)n be a sequence in M(F) such that Ufn ↗ s. From Ufn ≤
sm + R(Ufn − sm) we deduce

P̃0(Ufn) 4E(U ′) P̃0(sm) + R(Ufn − sm).

Since infm R(Ufn − sm) = 0 we get P̃0(Uf1) 4E(U ′) supm P̃0(sm) and so

P̃0s 4E(U ′) sup
m

P̃0(sm), P̃0 = sup
n

P̃0(sn).

Since E is semisaturated with respect to U it follows that the map

P̃0 : bE(U) ∩ pB → bE(U ′) ∩ pB

can be extended to a kernel on (E,B) denoted also by P̃0. By construction P̃0 satisfies the required

conditions 1)- 3). Using the property M(F) = bpB and P̃0 |U(F)= P0 it is easy to see that P̃0 is
uniquely determined.

Let now T be a kernel on (E,B(u)) such that T (bE(U)) ⊂ bE(U ′) and

T (Uf) 4E(U ′) P0(Uf) ∀ f ∈ F .

We have T (Uf) 4E(U ′) P̃0(Uf) for all f ∈ M(F) and so Ts 4E(U ′) P̃0(s) for all s ∈ bE(U).

Theorem 2.7. Let T0 be a countable base of the topology T such that

G1, G2 ∈ T0 ⇒ G1 ∪ G2, G1 ∩ G2 ∈ T0,

let F be a countable subset of pbB such that F + F ⊂ F , Q+F ⊂ F

f1, f2 ∈ F ⇒ sup(f1, f2), inf(f1, f2) ∈ F ,

f1, f2 ∈ F , f1 ≤ f2 ⇒ f2 − f1 ∈ F ,
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there exists f0 ∈ F , 0 < f0 ≤ 1 with Uf0 is bounded and such that the monotone classe in bpB
generated by F coincides with bpB. Let further S0 be a countable subset of bE(U) ∩ pB such that
U(F) ⊂ S0, Q+S0 ⊂ S0 and

s, t ∈ S0 ⇒ s + t, s g t
E(U)

, R(s − t) ∈ S0.

Then there exists a kernel P on (E,B) uniquely determined such that
1) P (bE(U) ∩ pB) ⊂ bE(U) ∩ pB
2) s, t ∈ bE(µ), s ≤ t ⇒ Ps 4E(U ′) Pt 4E(U ′) t

3) f ∈ F ⇒ P (Uf) = gE(U ′)

{
n∑

i=1

PBGi si |

n∑

i=1

si ≤ Uf, si ∈ S0, Gi ∈ T0

}

Particularly we have
PBGs 4E(U ′) s ∀ G ∈ T0, s ∈ bE(U) ∩ pB.

Proof. If we replace U by the kernel f → U(f0 ·f) we may assume that U is bounded. Using Lemma
2.5 and Proposition 2.3 we deduce that the map P0 : U(F) → bE(U ′) ∩ pB given by

P0(Uf) = gE(U ′)

{
n∑

i=1

PBGi si |

n∑

i=1

si ≤ Uf, si ∈ S0, Gi ∈ T0

}

verifies the following properties:
1) P0(Uf1 + Uf2) = P0(Uf1) + P0(Uf2) for all f1, f2 ∈ F .
2) PBG(Uf) 4E(U ′) P0(Uf) 4E(U ′) Uf for all f1, f2 ∈ F .
3) f1, f2 ∈ F , s ∈ bE(U), Uf1 ≤ Uf2 + s ⇒ P0(Uf1) 4E(U ′) P0(Uf2) + s.
Using Lemma 2.6 it follows that there exists a kernel P on (E,B) uniquely determined such that
1) P (Uf) = P0(Uf) ∀f ∈ F
2) s ∈ bE(U) ∩ pB ⇒ Ps ∈ bE(U ′) ∩ pB
3) s, t ∈ bE(U) ∩ pB, s ≤ t ⇒ Ps 4E(U ′) Pt 4E(U ′) t.
From the definition of P it follows PBGUf 4E(U ′) Uf for all f ∈ F and G ∈ T0 and so

PBGs 4E(U ′) s ∀s ∈ bE(U) ∩ pB.

3 Shih’s Theorem

We recall (see [2], [4, ch. I]) that a Ray cone on (E,B) with respect to U is a convex cone R
of bounded B-measurable U -excessive functions such that there exists a bounded sub Markovian
resolvent V = (Vα)α≥0 on (E,B) such that (pB) ∩ E(U) = (pB) ∩ E(V) and such that

1) 1 ∈ R; 2) R is min-stable; 3) V0(p(R− R)) ⊂ R; 4) Vα(R) ⊂ R ∀ α > 0, 5) R is separable
with respect to the uniform norm; 6) The σ-algebra on E generated by R coincides with B.

For any countable subset S of bpB ∩ E(U), there exists a Ray cone R with R ⊃ S.
If R is a Ray cone with respect to U then the topology TR on E generated by R, called Ray

topology, is such that the topological space (E, TR) is a Lusin topological space such that the Borel
sets in (E, TR) are exactly the Borel sets in (E, T ). Moreover from ([2], Proposition 1.2) it follows
that for any compact subset K in (E, TR), any s ∈ R and any finite measure µ on (E,B) we have

µ(RKs) = inf{µ(RGs) | G ∈ TR, K ⊂ G}.

15



Let further R′ be a Ray cone with respect to U ′ and TR′ the Ray topology on E generated by R′.
Using the above considerations the topological space (E, TR′) is a Lusin topological space for which
the Borel sets are exactly the Borel sets from (E, T ). Also for any compact subset K of (E, TR′),
any t ∈ R′ and any finite measure µ on (E,B) we have

µ(′RKt) = {inf µ(′RGs) | G ∈ TR′ , K ⊂ G}.

In the sequel since (pB) ∩ E(U) ⊂ (pB) ∩ E(U ′) we can choose R and R′ such that R ⊂ R′ and
moreover there exists f0 ∈ pB, 0 < f0 ≤ 1, such that V f0 is bounded and Uf0 ∈ R. For simplicity
we write T ′ = TR′ . Consequently for any compact subset K in (E, T ′) and any finite measure µ on
(E,B) we get

µ(RKUf0) = inf µ(RGUf0) | G ∈ T ′, G ⊃ K}, µ(′RKUf0) = inf µ(′RGUf0) | G ∈ T ′, G ⊃ K}./

Remark. If U (resp. U ′) is the sub-Markovian resolvent associated with the right process X (resp.
X ′) with (E, T ) as state space, then the preceding relations hold replacing T instead of T ′ if the
processes X and X ′ are assumed to be Hunt processes.

Proposition 3.1. Let K be a T ′-compact subset of E, µ be a finite measure on (E,B) and s be a
bounded regular U-excessive function, B-measurable. Then we have

µ(RKs) = inf{µ(RGs) | G ∈ T ′, G ⊃ K}

µ(′RKs) = inf{µ(′RGs) | G ∈ T ′, G ⊃ K}.

Proof. Firstly let f ∈ bpB such that f ≤ f0. We have

µ(RKUf) ≤ inf{µ(RG(Uf)) | G ∈ T ′, G ⊃ K}

µ(RKU(f0 − f)) ≤ inf{µ(RGU(f0 − f)) | G ∈ T ′, G ⊃ K}

inf
G⊃K
G∈T

µ(RG(Uf)) + inf
G⊃K
G∈T ′

µ(RG(U(f0 − f)) =

= inf
G⊃K
G∈T ′

µ(RG(Uf0)) = µ(RK(Uf0)) = µ(RK(Uf)) + µ(RK(U(f0 − f)))

and therefore
µ(RKUf) = inf

G⊃K
G∈T ′

µ(RGUf).

Analogously we get µ(′RKUf) = infG⊃K
G∈T ′

µ(′RUf). Let further (fm)m be a sequence in pB such that

fm ≤ mf0 for all m ∈ N and Ufm ↗ s. Since s in regular we get infm(s − Ufm) = 0. For all m ∈ N

we have Ufm ≤ s ≤ Ufm + R(s − Ufm) and so

RGUfm ≤ RGs ≤ RGUfm + R(s − Ufm), RGUfm ≤ ′RGs ≤ ′RGUfm + R(s − Ufm)

for all G ∈ T ′. From the first part of the proof we get

µ(RKUfm) = inf
G⊃K
G∈T ′

µ(RGUfm), µ(′RKUfm) = inf
G⊃K
G∈T ′

µ(RGUfm) ∀m ∈ N
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and so
inf

G⊃K
G∈T ′

µ(RGs) ≤ µ(RKUfm) + µ(R(s − Ufm)),

inf
G⊃K
G∈T ′

µ(′RGs) ≤ µ(′RKUfm) + µ(R(s − Ufm)).

Since inf
m

R(s − Ufm) = 0 we get

inf
G⊃K
G∈T ′

µ(RGs) ≤ µ(RKs), inf
G⊃K
G∈T ′

µ(′RGs) ≤ µ(′RKs).

In the sequel we denote by F a countable subset of bpB such that f0 ∈ F and

f ∈ F ⇒ ∃ α > 0 with f ≤ αf0, F + F ⊂ F ; Q+F ⊂ F ,

f1, f2 ∈ F ⇒ sup(f1, f2), inf(f1, f2) ∈ F , f1, f2 ∈ F , f1 ≤ f2 ⇒ f2 − f1 ∈ F

and such that the monotone class in bpB generated by F is equal with bpB. Also we denote by S0 a
countable subset of (bpB) ∩ E(U) such that U(F) ⊂ S0, Q+(S0) ⊂ S0 and s, t ∈ S0 ⇒ s + t, s g t,
R(s− t) ∈ S0 where s g t means supremum between s and t with respect to the specific order 4E(U):

We consider a countable base G0 for the topology T ′ which is closed under finite union and finite
intersection. Using Theorem 2.7 there exists a kernel P on (E,B), uniquely determined such that

1) P (bpB ∩ E(U)) ⊂ bpB ∩ E(U ′)
2) s, t ∈ bpB ∩ E(U), s ≤ t ⇒ Ps 4E(U ′) Pt 4E(U ′) t

3) f ∈ F ⇒ PUf = gE(U ′)

{
n∑

i=1

PBG
i
si |

n∑

i=1

si ≤ Uf, si ∈ S0, Gi ∈ G0

}
.

Proposition 3.2. For any σ-balayage B and s ∈ bpB ∩ E(U) we have

PBs 4E(U ′) Ps.

Proof. Assume that s is regular. Firstly we show that the function Ps− (RKs− ′RKs) is U ′-strongly
supermedian. Indeed, let µ, ν bee two finite measures on (E,B) such that µ ≤E(U ′) ν. and let (Gn)n

be a decreasing sequence in G0 such that

inf
n

(µ + ν)(RGns) = (µ + ν)(RKs), inf
n

(µ + ν)(′RGns) = (µ + ν)(′RKs),

where G0 in the countable base of T ′ closed with respect to finite union and finite intersection which
appear in the definition of P . Since PBGn s 4E(U ′) Ps and BGns − ′BGns + ′BGnPBGn = PBGn s it
follows that BGns − ′BGns 4E(U ′) Ps and so

µ(Ps − (BGns − ′BGns)) ≤ ν(Ps − (BGns − ′BGns)).

Passind n → ∞ we deduce that

µ(Ps − (RKs − ′RKs)) ≤ ν(Ps − (RKs − ′RKs)).
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Since B is a σ-balayage then b(B) ∈ B and it is a U -basic and U ′-basic set, and so there exists an
increasing sequence (Kn)n of compact subsets of b(B) with

µ(Bs) = sup
n

µ(RKns), µ(′Bs) = sup
n

µ(′RKns).

From the above considerations it follows

µ(Ps − (Bs − ′Bs)) ≤ ν(Ps − (Bs − ′Bs))

and so Ps − (Bs − B ′s) is U ′-strongly supermedian and therefore it is U ′-excessive. Hence Bs −
′Bs 4E(U ′) Ps and so

PBs := (Bs − ′Bs) 4E(U ′) ◦ 4E(U ′) Ps.

If s ∈ bpB ∩ E(U) then there exists an increasing sequence (sn)n of regular U -excessive functions
sn ∈ bE(U) ∩ pB with sn ↗ s. We have

PBsn 4E(U ′) Psn ∀n ∈ N

and so PBs 4E(U ′) Ps.

Theorem 3.3. Let s ∈ bE(U) ∩ pB and u ∈ bpB ∩ E(U ′) be such that Ps 4E(U ′) u ≤ s. Then
u ∈ bpB ∩ E(U). Particularly for any s ∈ bpB ∩ E(U) we have Ps ∈ (bpB) ∩ E(U).

Proof. For any σ-balayage, using Proposition 3.2, we have PBu 4E(U ′) Ps 4E(U ′) u and thus by
Proposition 2.4 we deduce that Bu ≤ u. Consequently u ∈ bpB ∩ E(U).

Theorem 3.4. For any absorbent point a ∈ E with respect to U ′ we have

PUf0 ≤ BE\{a}Uf0.

Particularly we have
P (Uf0)(a) < Uf0(a).

Proof. In the proof of this theorem we shall write simply 4, f, g instead of 4E(U ′), fE(U ′), gE(U ′)

respectively. By Theorem 2.7 we have

P (Uf0) = g

{
n∑

i=1

PBGi si |
n∑

i=1

si ≤ Uf0, si ∈ S0, Gi ∈ G0

}

Since a is an absorbent point with respect to U ′ we have, for any s ∈ bpB ∩ E(U)

BGs f
′BGs <

′B{a}s ∀G ∈ G0, G 3 a

and so
PBGs 4 BGs − ′B{a}s, ∀G ∈ G0, G 3 a,

PBGs(a) = 0 for all G ∈ G0, G 3 a. Analogously if a 6∈ b(BGi) then we have ′BGs(a) = 0 and so
PBGs(a) = BGs(a) for any s ∈ bpB ∩ E(U).
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Let (s
(k)
i )1≤i≤n

1≤k≤m

be a finite system in S0 with

n∑

i=1

sk
i ≤ Uf0 for all 1 ≤ k ≤ m, (Gk

i )1≤k≤m
1≤i≤n

a finite

system in G0. We put

uk =

n∑

i=1
a∈b(BGi )

P
B

Gk
i
sk

i , vk :=

n∑

i=1
a6∈b(RGi )

P
B

Gk
i
sk

i .

We have

uk(a) = 0, vk(a) =
n∑

i=1
a6∈b(RGi )

BGisi(a),

vk =

n∑

i=1

a6∈b(B
Gk

i )

(BGk
i sk

i −
′B{a}(BGk

i si)) +

n∑

i=1

a6∈b(B
Gk

i )

BGk
i sk

i (a) · ′B{a}1 4

n∑

i=1

a6∈b(B
Gk

i )

(BGk
i si −

′B{a}(BGk
i si)) + BE\{a}Uf0(a) · ′B{a}1

and
m
g

k=1

(
n∑

i=1

PBGk
i s

k
i

)
4

n∑

k=1

uk +
m
g

k=1
vk.

Since BGk
i sk

i −
′B{a}BGk

i sk
i ∈ E(U ′) and (BGk

i sk
i −

′B{a}BGk
i sk

i )(a) = 0, it follows that

[
m
g

k=1
(

m∑

i=1

P
B

Gk
i
si)](a) ≤ BE\{a}Uf0(a).

Hence P (Uf0)(a) ≤ BE\{a}Uf0(a), P (Uf0) ≤ BE\{a}Uf0.

Theorem 3.5. The kernel P is an exact subordination operator with respect to U and the sub-
Markovian resolvent V = (Vα)α≥0 on (E,B) associated with P by

V f = Uf − PUf ∀ f ∈ pB, Uf > 0

is exact subordonate to U and E(V) = E(U ′).

Proof. Since by Theorem 3.3 and Theorem 3.5 we have P (E(U) ∩ pB) ⊂ E(U) ∩ pB and

s, t ∈ bpB ∩ E(U), s ≤ t ⇒ Ps 4E(U ′) Pt 4E(U ′) s,

s ∈ bpB ∩ E(U), u ∈ bpB ∩ E(U ′), P s 4E(U ′) u ≤ s ⇒ u ∈ bE(U).

From Theorem 1.10 it follows that P is an exact subordination operator with respect to U such
that any M ∈ B, M ⊂ E\EP is absorbent with respect U ′. Particularly any point a ∈ E\EP is
absorbent with respect to U ′ and so by Theorem 3.4 we have a ∈ EP contradiction. Hence E = EP

and therefore from Theorem 1.10 we get E(V) = E(U ′).

Theorem 3.6. Let Q be a kernel on (E,B) such that Q(bE(U)) ⊂ bE(U) and such that

s, t ∈ bpB ∩ E(U), s ≤ t ⇒ Qs 4E(U ′) Qt 4E(U ′) t.

Then the following assertions are equivalent:
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1) Q is an exact subordination operator with respect to U such that the set {s−Qs/s ∈ E(U)∩pB}
is solid in E(U ′) with respect to the natural order.

2) For any u ∈ E(U ′) ∩ pB such that there exists s ∈ bE(U) ∩ pB with

Qs 4E(U ′) u ≤ s

we have u ∈ bE(U).
3) For any σ-balayage B we have

PBs 4E(U ′) Qs ∀s ∈ bE(U) ∩ pB

4) Ps 4E(U ′) Qs s ∈ bE(U) ∩ pB.

Proof. From Theorem 1.10 it follows that 1) ⇔ 2).
2) ⇒ 3). Let B be a σ-balayage. We show that for any s ∈ bE(U) ∩ pB we have Bs − ′Bs =

Q(Bs) − ′BQ(Bs). Indeed, since ′B(Bs − Q(Bs)) ≤ Bs − QBs and ′B(Bs − QBs) ∈ bE(U ′) ∩ pB,
it follows that the function

u := ′B(Bs − QBs) + Q(Bs)

belongs to bE(U) ∩ pB and u ≤ Bs.
On the other hand we have

u ≥ ′BBs = ′Bs on b(B)

and so u ≥ Bs. Therefore u = Bs and so Bs − ′Bs = Q(Bs) − ′BQ(Bs). From the relation
Bs − ′Bs = Q(Bs) − ′B(Q(Bs)) we get PBs = (Bs − ′Bs) gE(U ′) 0 4E(U ′) Q(Bs) 4E(U ′) Qs.

3) ⇒ 4). For any f ∈ F we have

PUf = gE(U ′)

{
n∑

i=1

PBGi si |
n∑

i=1

si ≤ Uf, si ∈ S0, Gi ∈ G0

}

4E(U ′)

{
n∑

i=1

Qsi |
n∑

i=1

si ≤ Uf, si ∈ S0

}
4E(U ′) QUf.

Since bpB is the monotone class in bpB generated by F we deduce

Ps 4E(U ′) Qs ∀s ∈ bE(U) ∩ pB.

4) ⇒ 2). Let s ∈ bE(U)∩pB and let B be a σ-balayage. Let u ∈ bE(U ′)∩pB be such that Qs 4E(U ′)

u ≤ s. We have Ps 4E(U ′) Qs 4E(U ′) u ≤ s and therefore, by Proposition 2.4, u ∈ bE(U).

Proposition 3.7. Let Q be an exact subordination operator with respect to U such that

s, t ∈ bpB ∩ E(U), s ≤ t ⇒ Qs 4E(U ′) Qt 4E(U ′) t,

P s 4E(U ′) Qs ∀s ∈ bE(U) ∩ pB.

Let further W be the Markovian resolvent of kernel on (E,B) having as initial kernel

Wf := Uf − QUf ∀f ∈ pB, Uf < ∞.

Then there exists g ∈ pB(u), 0 ≤ g ≤ 1 such that

QUf = P (U(gf)) + U((1 − g)f) ∀f ∈ pB.

If moreover EQ = E then we have
E(W) = E(U ′).
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Proof. Let V = (Vα)α≥0 be the sub-Markovian resolvent of kernels on (E,B) having as initial kernel
V where V f = Uf − PUf, f ∈ pB, Uf < ∞. From

Ps 4E(U ′) Qs ∀s ∈ bE(U) ∩ pB

we deduce
Wf 4E(U ′) V f = Uf − PUf ∀f ∈ pB, f ≤ f0,

where f0 ∈ pB, 0 < f0 ≤ 1, Uf0 < ∞. From Wf = Uf − QUf 4E(U ′) Uf − PUf = V f for all
f ∈ pB, f ≤ f0 it follows that there exists g ∈ pbB(u), 0 ≤ g ≤ 1 such that

Wf = V (gf) ∀f ∈ pB, f ≤ f0.

i.e.
Uf − QUf = U(gf) − PU(gf) ∀f ∈ pB, f ≤ f0

QUf = PU(gf) + U((1 − g)f) ∀f ∈ pB, f ≤ f0

and so Q(Uf) = P (U(gf)) + U((1 − g)f) f ∈ pB.
Assume that EQ = E. Then Wf0 > 0 on E and so for any t ∈ E(U ′) we have inf(t, nWf0) ∈ E(W)

for all n. Consequently t ∈ E(W) and so since E(W) ⊂ E(U ′) we get E(W) = E(U ′).
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