Hitting distributions domination and subordonate resolvents; an analytic approach

NICU BOBOC and GHEORGHE BUCUR

University of Bucharest, Faculty of Mathematics and Informatics, Str. Academiei nr. 14, RO-010014 Bucharest, Romania

Abstract. We give an analytic version of a well known Shih's theorem concerning the Markov processes whose hitting distributions are dominated by those of a given process. The treatment is purely analytic, completely different from Shih's arguments and improves essentially his result.

Introduction

In the paper [11] C.T. Shih has considered two Hunt processes X and X', having a common locally compact separable metric space (E, \mathcal{T}) as state space and he proved that under some obvious necessary conditions, if the hitting distributions of X' are dominated by those of X then there exists a process Y obtained from a random time change in a subprocess of X that is equivalent to X' (i.e. they have the same transition function). See also [7] for a different method.

In this article we extend the above result to the general case when the common state space (E, \mathcal{T}) is a Lusin topological space. Our approach is purely analytic and it is completely different from that developed in [11]. This new treatment extends a similar one (see [6]) considered in the particular case when there exists a reference measure for the given process X.

If \mathcal{U} and \mathcal{U}' are the subMarkovian resolvents associated with X and X' then the fact that the hitting distributions of X dominate those of X' means that $R^A \leq R^A$ for all Borel subset A of E where R^A (resp. R^A) is the réduite kernel on A associated with \mathcal{U} (resp. \mathcal{U}'). The fact that there exists a process Y obtained from a random time change in a subprocess of X which is equivalent to X' means that there exists a sub-Markovian resolvent \mathcal{W} which is exactly subordinate to \mathcal{U} (in the sense of P.A. Meyer [8], [9]) and the set $\mathcal{E}(\mathcal{W})$ of all \mathcal{W} -excessive functions coincides with the set $\mathcal{E}(\mathcal{U}')$ of all \mathcal{U}' -excessive functions.

Our constructions give a sub-Markovian resolvent \mathcal{W} with the above property and moreover it possesses the following maximality property: If \mathcal{W}' is a second sub-Markovian resolvent which is related with \mathcal{U} and \mathcal{U}' as above then we have $W'f \leq Wf$ and $Wf - W'f \in \mathcal{E}(\mathcal{U}')$ for all $f \in p\mathcal{B}$ with $Wf < \infty$.

1 Preliminaries and exact subordination operators

In this paper (E, \mathcal{T}) is a Lusin topological space and $\mathcal{U} = (U_{\alpha})_{\alpha \geq 0}$ a proper subMarkovian rezolvent of kernels on (E, \mathcal{B}) where $\mathcal{B} = \mathcal{B}(E)$ is the σ -algebra of all Borel subsets of (E, \mathcal{T}) . We denote by $\mathcal{B}^{(u)}$ the σ -algebra of all universally \mathcal{B} -measurable subsets of E.

As usually we denote by $p\mathcal{B}$ (resp. $p\mathcal{B}^{(u)}$) the set of all positive \mathcal{B} (resp. $\mathcal{B}^{(u)}$)-measurable functions on E. If $\mathcal{F} \subset p\mathcal{B}^{(u)}$ we denote by $b\mathcal{F}$ the set of all bounded functions from \mathcal{F} .

We denote by $\mathcal{E}(\mathcal{U})$ the set of all $\mathcal{B}^{(u)}$ measurable functions which are \mathcal{U} -excessive. We assume that the set $\mathcal{E}(\mathcal{U}) \cap \mathcal{P}\mathcal{B}$ is min-stable, contains the positive constant functions and generates \mathcal{B} .

We recall that a \mathcal{U} -excessive measure ξ on (E, \mathcal{B}) is termed \mathcal{U} -potential if it is of the form $\xi = \mu \circ U$ where μ is a σ -finite measure on (E, \mathcal{B}) .

The set E is called *semisaturated* with respect to \mathcal{U} if any \mathcal{U} -excessive measure dominated by a \mathcal{U} -potential is also a \mathcal{U} -potential. In the sequel we assume that E is semisaturated with respect to \mathcal{U} .

If ξ is a \mathcal{U} -excessive measure on (E, \mathcal{B}) , a subset A of E is called ξ -polar if there exists $s \in \mathcal{E}(\mathcal{U})$ such that $s = +\infty$ on A and $s < \infty \xi$ -a.e. If μ is a σ -finite measure on E such that $\mu \circ U \in \operatorname{Exc}_{\mathcal{U}}$ then we say μ -polar instead of $\mu \circ U$ -polar.

A subset A of E is called *nearly* \mathcal{B} -measurable with respect to \mathcal{U} if for any finite measure μ on (E, \mathcal{B}) there exists $A_0 \in \mathcal{B}$, $A_0 \subset A$ such that $A \setminus A_0$ is μ -polar and μ -negligible.

The set of all nearly \mathcal{B} -measurable sets is denoted by $\mathcal{B}^{(n)}$. Obviously $\mathcal{B}^{(n)}$ is a σ -algebra and $\mathcal{B} \subset B^{(n)} \subset \mathcal{B}^{(u)}$. Is is know that any \mathcal{U} -excessive function is $\mathcal{B}^{(n)}$ -measurable.

For any $f: E \to \overline{\mathbb{R}}_+$ we denote by Rf the function

$$Rf = \inf\{t \in \mathcal{E}(\mathcal{U}) \mid t \ge f\}$$

called the réduite of f with respect to \mathcal{U} .

For any subset A of E and $s \in \mathcal{E}(\mathcal{U})$, the function $R^A s = R(1_A s)$ is called the *réduite of s on A*. We use the convention $0 \cdot (+\infty) = (+\infty) \cdot 0 = 0$. Is is know that ([2], [4] ch. I) for any $A \in \mathcal{B}^{(n)}$ and $s \in \mathcal{E}(\mathcal{U})$ the function $R^A s$ is $\mathcal{B}^{(u)}$ -measurable and it is \mathcal{U} -supermedian. In this case we denote by $B^A s$ the \mathcal{U} -excessive regularization of $R^A s$, i.e.

$$B^A s = \sup_{\alpha} \alpha U_{\alpha} R^A s$$

Since E is semisaturated we respect to \mathcal{U} then for any $A \in \mathcal{B}^{(n)}$ and $x \in E$ there exists a positive measure denoted R_x^A (resp. B_x^A) on (E, \mathcal{B}) such that

$$R^A_x(s) = R^A s(x) \quad (\text{resp.} B^A_x(s) = B^A s(x)).$$

Moreover we denote by R^A (resp. B^A) the kernel on $(E, \mathcal{B}^{(u)})$ such that

$$R^A f(x) = R^A_x(f)$$
 (resp. $B^A f(x) = B^A_x(f)$)

for all $f \in p\mathcal{B}^{(u)}$ and $x \in E$.

A set $A \in \mathcal{B}^{(n)}$ is called \mathcal{U} thin at x if there exists $s \in b\mathcal{E}(\mathcal{U})$ such that $B^A s(x) < s(x)$ or equivalently $B_x^A \neq \varepsilon_x$.

The \mathcal{U} -fine topology on E is the coarsest topology on E for which any function from $\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ is continuous. It is easy to see that any \mathcal{U} -excessive function is \mathcal{U} -fine continuous. It is know that if $A \in \mathcal{B}^{(n)}$ then it will be \mathcal{U} -finely open if and only if the set $E \setminus A$ is \mathcal{U} -thin at any point of A. Also if $A \in \mathcal{B}^{(n)}$ is \mathcal{U} -finely closed then for any $x \in E$ the measures R_x^A , B_x^A are carried by A.

A set $A \subset E$ is called \mathcal{U} -absorbent if there exists $s \in \mathcal{E}(\mathcal{U})$ such that A = [s = 0]. Obviously any \mathcal{U} -absorbent set is \mathcal{U} -finely open.

A set $A \in \mathcal{B}^{(n)}$ is called \mathcal{U} -subbasic if A is not thin at any point of A or equivalently $R^A = B^A$. In this case we have $B^A s = s$ on A for all $s \in \mathcal{E}(\mathcal{U})$ and so $B^A(B^A) = B^A$.

A set $A \in \mathcal{B}^{(n)}$ is called \mathcal{U} -basic if A is \mathcal{U} -subbasic and A is \mathcal{U} -finely closed. If $A \in \mathcal{B}^{(n)}$ is \mathcal{U} -subbasic and $f_0 \in p\mathcal{B}, 0 < f_0 \leq 1$ is such that $p_0 := Uf_0$ is bounded then the set $[B^A U p_0 = p_0]$ is the \mathcal{U} -fine closure of A and represent a \mathcal{U} -basic set.

A set $A \in \mathcal{B}^{(n)}$ is called $\mathcal{B}-\mathcal{U}$ -subbasic if it is \mathcal{U} -subbasic and $B^A s \in p\mathcal{B}\cap \mathcal{E}(\mathcal{U})$ for all $s \in p\mathcal{B}\cap \mathcal{E}(\mathcal{U})$.

A set $A \in \mathcal{B}^{(n)}$ is called $\mathcal{B} - \mathcal{U}$ -basic if it is $\mathcal{B} - \mathcal{U}$ -subbasic and \mathcal{U} -basic set in the same time. In this case $A \in \mathcal{B}$ and we have $A = [B^A p_0 = p_0]$ where p_0 is as above. We notice that if A is a $\mathcal{B} - \mathcal{U}$ -subbasic set then B^A is a kernel on (E, \mathcal{B}) .

In the sequel we consider a second sub-Markovian resolvent $\mathcal{U}' = (U'_{\alpha})_{\alpha>0}$ on (E, \mathcal{B}) such that the set $\mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$ is min-stable, contains the positive constant functions and generates \mathcal{B} . We assume that E is semisaturated with respect to \mathcal{U}' . Also we suppose that the following assertions hold.

1) The topology \mathcal{T} is *natural* with respect to both \mathcal{U} and \mathcal{U}' , i.e. any $G \in \mathcal{T}$ is \mathcal{U} -finely open and \mathcal{U}' -finely open.

2) For all $A \in \mathcal{B}$ and $f \in p\mathcal{B}$ we have

$$R^{A}f \leq R^{A}f.$$

3) For any $a \in E$ such that the set $\{a\}$ is \mathcal{U}' -absorbent the set $\{a\}$ is \mathcal{U} -finely open.

Proposition 1.1. For any $x \in E$ the set $\{x\}$ is \mathcal{U}' -finely open if and if it is \mathcal{U} -finely open.

Proof. Assume that $\{x\}$ is not \mathcal{U}' -finely open. Then this means that ${}^{RE \setminus \{x\}}s(x) = s(x)$ for all $s \in \mathcal{E}(\mathcal{U}')$ or equivalently ${}^{RE \setminus \{x\}}f(x) = f(x)$ for all $f \in p\mathcal{B}$, i.e. ${}^{RR}_{x} = \varepsilon_{x}$.

By hypothesis 2) it follows that

$$f(x) = 'R^{E \setminus \{x\}} f(x) \le R^{E \setminus \{x\}} f(x) \quad \forall f \in p\mathcal{B}$$

and so $s(x) = R^{E \setminus \{x\}} s(x)$ for all $s \in \mathcal{E}(\mathcal{U})$, i.e. $\{x\}$ is not \mathcal{U} -finely open.

Conversely, assume that $\{x\}$ is not \mathcal{U} -finely open but $\{x\}$ is \mathcal{U}' -finely open. We get

$$R^{E \setminus \{x\}} f(x) = f(x) \quad \forall f \in p\mathcal{B}$$

and from

$$\forall R^{E \setminus \{x\}} f(x) \le R^{E \setminus \{x\}} f(x) = f(x) \quad \forall f \in p\mathcal{B}$$

we deduce that there exists $0 \leq \alpha \leq 1$ such that

$${}^{\prime}R^{E\setminus\{x\}}f(x) = \alpha f(x) \quad \forall f \in p\mathcal{B}$$

Since $\{x\}$ is \mathcal{U}' -finely open it follows that the measure $R_x^{E\setminus\{x\}}$ is carried by $E\setminus\{x\}$ and so $\alpha = 0$. Hence

$$'R^{E\setminus\{x\}}1(x) = 0$$

i.e. $\{x\}$ is absorbent with respect to \mathcal{U}' and so by hypothesis 3) $\{x\}$ is \mathcal{U} -finely open, contradiction.

Proposition 1.2. For every $A \in \mathcal{B}$ and $x \in E \setminus A$ the set A will be \mathcal{U} -thin at x if and only if it is \mathcal{U} -thin at x. Particularly if $A \in \mathcal{B}$ then A is \mathcal{U} -finely open if and only if A is \mathcal{U} -finely open.

Proof. Assume that A is \mathcal{U} -thin at x. Then there exists $s \in b\mathcal{E}(\mathcal{U})$ such that $R^A s(x) < s(x)$, i.e. the measure R_x^A is different from ε_x . Since by hypotheses 2) we have $'R_x^A \leq R_x^A$ it follows that $'R_x^A(s) \leq R_x^A(s) < s(x)$, i.e. $'R_x^A \neq \varepsilon_x$ and consequently A is \mathcal{U} -thin at x.

Suppose now that A is \mathcal{U}' -thin at x, i.e. $R_x^A \neq \varepsilon_x$ or equivalently the \mathcal{U}' -fine closure of A does not contains x and so R_x^A does not charge $\{x\}$.

Assume now that A is not \mathcal{U} -thin at x, i.e. $R_x^A = \varepsilon_x$. Since $R_x^A \leq R_x^A$ it follows that there exists $\theta \in [0, 1]$ such that $R_x^A = \theta \varepsilon_x$ and so, because R_x^A does not charge $\{x\}$, we get $\theta = 0$. Hence $\{x\}$ is \mathcal{U} -absorbent and therefore by hypothesis 3) $\{x\}$ is \mathcal{U} -finely open and consequently A is \mathcal{U} -thin at x, which leads to a contradiction.

Corollary 1.3. We have $\mathcal{E}(\mathcal{U}) \subset \mathcal{E}(\mathcal{U}')$ and any nearly \mathcal{B} -measurable set $A \subset E$ with respect to \mathcal{U} is also nearly \mathcal{B} -measurable set with respect to \mathcal{U}' .

Proof. Let $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$. Hence s is \mathcal{U} -finely continuous and therefore s is \mathcal{U}' -finely continuous. Hence for any \mathcal{U}' -finely open set G we have $B^G s \leq B^G s \leq s$ and so s is \mathcal{U}' -excessive.

Let A be a nearly \mathcal{B} -measurable set with respect to \mathcal{U} . Then for any finite measure μ on (E, \mathcal{B}) there exists $A_0 \in \mathcal{B}$, $A_0 \subset A$, such that $A \setminus A_0$ is μ -polar (with respect to \mathcal{U}) and μ -negligible. From the above considerations it follows that $A \setminus A_0$ is μ -polar with respect to \mathcal{U}' . Hence A is nearly \mathcal{B} -measurable with respect to \mathcal{U}' .

Proposition 1.4. For any $A \in \mathcal{B}$ and $f \in p\mathcal{B}$ we have

$$B^{A}f \leq B^{A}f.$$

Proof. Let f of the form f = u - v where $u, v \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}, v \leq u < \infty$. By hypothesis 2) we have ${}^{\prime}R^{A}u - {}^{\prime}R^{A}v \leq R^{A}u - R^{A}v$. On the other hand we have $\mathcal{E}(\mathcal{U}) \subset \mathcal{E}(\mathcal{U}')$ and for any $s \in b\mathcal{E}(\mathcal{U})$, ${}^{\prime}B^{A}s$ (resp. $B^{A}s$) is the lower semicontinuous regularization of ${}^{\prime}R^{A}s$ (resp. $R^{A}s$) with respect to the \mathcal{U} -fine topology. Hence we get ${}^{\prime}B^{A}u - {}^{\prime}B^{A}v \leq B^{A}u - B^{A}v$.

Proposition 1.5. For any point $x \in E$ we have: $\{x\}$ is \mathcal{U} -thin at x if and only if $\{x\}$ is \mathcal{U}' -thin at x.

Proof. Assume that $\{x\}$ is \mathcal{U} -thin at x. Since $B_x^{\{x\}} \leq B_x^{\{x\}}$ and from the fact that the measure $B_x^{\{x\}}$ is carred by $\{x\}$, we get $B_x^{\{x\}} = \alpha \varepsilon_x$ with $\alpha < 1$. Hence $B_x^{\{x\}} = \beta \varepsilon_x$ with $\beta \leq \alpha < 1$ and so $\{x\}$ is \mathcal{U} -thin at x.

Assume now that $\{x\}$ is \mathcal{U}' -thin at x, i.e. $B_x^{\{x\}} = \alpha \varepsilon_x$ with $\alpha < 1$. Obviously $\{x\}$ is not \mathcal{U}' -finely open. Let further $(V_n)_n$ be a decreasing sequence of open sets in E with $\bigcap_n V_n = \{x\}$. If $\{x\}$ is not \mathcal{U} -thin at x it follows that $B_x^{\{x\}} = B_x^{\{x\}\cup(E\setminus V_n)} = \varepsilon_x$. On the other hand we have $B_x^{\{x\}\cup(E\setminus V_n\}} \uparrow 1$ and $B_x^{\{x\}\cup(E\setminus V_n\}} \leq (B_x^{\{x\}} + B_x^{E\setminus V_n}), B_x^{\{x\}\cup(E\setminus V_n\}} \leq B_x^{\{x\}\cup(E\setminus V_n\}} = \varepsilon_x$. It follows that

$$\begin{aligned} \theta_n &:= B_x^{\{x\} \cup (E \setminus V_n)}(1_{\{x\}}) \le B_x^{\{x\}}(1_{\{x\}}) + B_x^{E \setminus V_n}(1_{\{x\}}) = B_x^{\{x\}}(1_{\{x\}}) \\ & {}^{\prime}B_x^{\{x\} \cup (E \setminus V_n)} \le \varepsilon_x, {}^{\prime}B_x^{\{x\} \cup (E \setminus V_n)} = \theta_n \cdot \varepsilon_x \end{aligned}$$

and so

$$1 = \sup_{n} {}^{\prime}B_{x}^{\{x\}\cup(E\setminus V_{n})}1 = \sup_{n} {}^{\prime}B_{x}^{\{x\}\cup(E\setminus V_{n})}(1_{\{x\}}) = \sup_{n} \theta_{n} \leq {}^{\prime}B_{x}^{\{x\}}(1_{\{x\}}) = \alpha,$$

leading to a contradiction.

Corollary 1.6. For any $A \in \mathcal{B}$ and $x \in E$ we have: A is \mathcal{U} -thin at x if and only if A is \mathcal{U} -thin at x.

Proof. From Proposition 1.5 we may assume that $\{x\}$ is \mathcal{U} -thin and \mathcal{U}' thin at x and so we may suppose that $x \notin A$. In this case the assertion follows from Proposition 1.2.

Notation. Whenever \mathcal{V} is a proper sub-Markovian resolvent of kernels on (E, \mathcal{B}) , we shall denote by $\preccurlyeq_{\mathcal{E}(\mathcal{V})}$ the specific order with respect to \mathcal{V} , i.e. $u \preccurlyeq_{\mathcal{E}(\mathcal{V})} v$ means that there exists $s \in \mathcal{E}(\mathcal{V})$ such that v = u + s.

Theorem 1.7. For any finite families $(f_i)_{i \in I}$, $(A_i)_{i \in I}$ where $f_i \in bp\mathcal{B}$, $A_i \in \mathcal{B}$ such that A_i is $\mathcal{B} - \mathcal{U}$ -basic and $\mathcal{B} - \mathcal{U}'$ -basic for all $i \in I$ and any $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ with

$$\sum_{i \in I} B^{A_i} f_i \le s$$

we have

$$0 \leq \sum_{i \in I} (B^{A_i} f_i - 'B^{A_i} f_i) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} s.$$

Proof. Firstly we assume that I has a unique element. Let $f \in pb\mathcal{B}$, $A \in \mathcal{B} \ \mathcal{B} - \mathcal{U}$ -basic and $\mathcal{B} - \mathcal{U}$ -basic, and $s \in b\mathcal{E}(\mathcal{U}) \cap pb\mathcal{B}$ such that $f \leq s$. We put

$$u := s - (B^A f - {}^{\prime}B^A f) - {}^{\prime}B^A s.$$

We have $u = s - {}^{\prime}B^{A}s - (B^{A}s - {}^{\prime}B^{A}s) + B^{A}(s - f) - {}^{\prime}B^{A}(s - f)$ and so $u \ge 0$.

Let furthere $\mathcal{W} = (W_{\alpha})_{\alpha \geq 0}$ be the sub-Markovian resolvent on E having as initial kernel W, where $Wf = U'f - B^AU'f$ for all $f \in p\mathcal{B}$ with $U'f < \infty$. Let now $T \in \mathcal{B}$, $T \subset E \setminus A$, be a \mathcal{W} -basic set. Then $A \cup T$ is \mathcal{U} -basic set and we have

$${}^{\mathcal{W}}B^{T}(u) = {}^{\prime}B^{A\cup T}(u) = {}^{\prime}B^{A\cup T}(s - {}^{\prime}B^{A}s) + {}^{\prime}B^{A\cup T}(B^{A}(s - f)) - {}^{\prime}B^{A}(s - f)$$

$$\leq B^{A\cup T}(s - {}^{\prime}B^{A}s) + B^{A}(s - f) - {}^{\prime}B^{A}(s - f)$$

$$= B^{A\cup T}s - B^{A}s + B^{A}(s - f) - {}^{\prime}B^{A}(s - f) = B^{A\cup T}s - (B^{A}f - {}^{\prime}B^{A}f) - B^{A}s \leq u$$

and so $u \in \mathcal{E}(\mathcal{W})$. Since $u \leq s - B^A s$, there exists $t \in \mathcal{E}(\mathcal{U}')$ such that $u = t - B^A t \leq s - B^A s$ and so $u + B^A s = t - B^A t + B^A s \in \mathcal{E}(\mathcal{U}')$,

$$s - (B^A f - {}^{\prime}B^A f) \in \mathcal{E}(\mathcal{U}'), \quad B^A f - {}^{\prime}B^A f \preccurlyeq_{\mathcal{E}(\mathcal{U}')} s.$$

We consider the general case and let us denote by n_I the cardinal of I. From the previous considerations it follows that the assertion is true for $n_I = 1$. Assume now that the assertion is true for $n_I = n$ and let I with $n_I = n + 1$. For any $i \in I$ we put

$$u_i := s - \sum_{j \in I \setminus \{i\}} (B^{A_j} f_j - B^{A_j} f_j)$$

and let $g = s - \sum_{i \in I} (B^{A_i} f_i - B^{A_i} f_i)$, $u = \inf_{i \in I} u_i$. Obviously we have $g \leq u$ and $u_i \in \mathcal{E}(\mathcal{U}')$. We want to show that $g \in \mathcal{E}(\mathcal{U}')$. Since g is \mathcal{U}' -finely continuous and $g \in p\mathcal{B}$ it follows that R(g) is \mathcal{U}' -supermedian and a majorant of g and so it belongs to $\mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$.

Let $\alpha \in (0,1)$ and let us consider the \mathcal{U} -finely open set $A \in \mathcal{B}$, given by $A := [\alpha' R(g) < g]$. We have $B^A(R(g)) = R(g)$. Indeed, if $t \in \mathcal{E}(\mathcal{U}'), t \geq R(g)$ on A, then we get $(1-\alpha)t + \alpha' R(g) \geq g$ on E and so $(1-\alpha)t + \alpha' R(g) \geq R(g), t \geq R(g)$. On the other hand let $A_0 := \overline{A}^f \cup (\bigcup_{i \in I} A_i)$, where \overline{A}^f denotes the \mathcal{U} -fine closure of A. We have

$${}^{\prime}B^{A_{0}}g = {}^{\prime}B^{A_{0}}\left(\sum_{i\in I}{}^{\prime}B^{A_{i}}f_{i}\right) + {}^{\prime}B^{A_{0}}\left(s - \sum_{i\in I}B^{A_{i}}f_{i}\right)$$

$$= \sum_{i\in I}{}^{\prime}B^{A_{i}}f_{i} + {}^{\prime}B^{A_{0}}\left(s - \sum_{i\in I}B^{A_{i}}f_{i}\right) \le \sum_{i\in I}B^{A_{i}}f_{i} + B^{A_{0}}\left(s - \sum_{i\in I}B^{A_{i}}f_{i}\right)$$

$$= \sum_{i\in I}B^{A_{i}}f_{i} + B^{A_{0}}s - \sum_{i\in I}B^{A_{i}}f_{i} \le g.$$

Since $g = u_i$ on A_i and $g \leq u$ it follows $Rg \leq u \leq u_i$ for all $i \in I$ and so $\alpha Rg \leq \alpha u_i \leq g$ on A_i for all $i \in I$. Hence $\alpha Rg \leq g$ on A_0 and so $B^{A_0}(\alpha Rg) \leq B^{A_0}g$. From the above considerations we deduce

$${}^{\prime}Rg = {}^{\prime}B^{A_0}({}^{\prime}Rg) \le \frac{1}{\alpha}{}^{\prime}B^{A_0}(g) \le \frac{1}{\alpha}g, \quad \alpha {}^{\prime}Rg \le g \quad \text{on } E.$$

The number $\alpha \in (0,1)$ begin arbitrary we get g = Rg, $g \in \mathcal{E}(\mathcal{U})$, completing the proof.

Let P be a kernel on (E, \mathcal{B}) such that $P(\mathcal{E}(\mathcal{U})) \subset \mathcal{E}(\mathcal{U})$ and such that $Ps \leq s$ for all $s \in \mathcal{E}(\mathcal{U})$. Then it is known that (cf [10], [4, ch. II], [3]) for any $s \in bp\mathcal{B} \cap \mathcal{E}(\mathcal{U})$ there exists $s' \in bp\mathcal{B} \cap \mathcal{E}(\mathcal{U})$ such that s' - Ps' = s - Ps and moreover if $t \in bp\mathcal{B} \cap \mathcal{E}(\mathcal{U})$ is such that $s' - Ps' \leq t - Pt$ then $s' \leq t$.

A kernel P on (E, \mathcal{B}) is called exact subordination operator with respect to \mathcal{U} provided that

a) $P(\mathcal{E}(\mathcal{U})) \subset \mathcal{E}(\mathcal{U}), Ps \leq s \text{ for all } s \in \mathcal{E}(\mathcal{U}).$

b) $\inf(s, Ps + t - Pt + Pf) \in \mathcal{E}(\mathcal{U})$ for all $s, t \in \mathcal{E}(\mathcal{U}), t < \infty$, and $f \in p\mathcal{B}$

We recall the following result (cf. [10], [4, ch. V]):

Theorem 1.8. (G. Mokobodzki) If P is an exact subordination operator with respect to \mathcal{U} there exists a subMarkovian resolvent of kernels $\mathcal{W} = (W_{\alpha})_{\alpha>0}$ on (E, \mathcal{B}) such that

$$W_{\alpha} \leq U_{\alpha} \quad \forall \ \alpha \geq 0 \ and \ Wf = Uf - PUf \ \forall \ f \in p\mathcal{B}, Uf < \infty$$

Moreover if

$$E_P := \{ x \in E \mid \exists s \in \mathcal{E}(\mathcal{U}), Ps(x) < s(x) \}$$

then $W_{\alpha}(1_{E \setminus E_P}) = 0$ and the sub-Markovian resolvent \mathcal{W} considered on E_P is such that $\mathcal{E}(\mathcal{W}) \cap p\mathcal{B}$ is minstable, contains the positive constant functions and generates $\mathcal{B}|_{E_P}$. Further the set $\{s - Ps \mid s \in b\mathcal{E}(\mathcal{U})\}$ is solid in $b\mathcal{E}(\mathcal{W})$ with respect to the natural order.

A sub-Markovian resolvent $\mathcal{W} = (W_{\alpha})_{\alpha \geq 0}$ of kernels on (E, \mathcal{B}) is called *exactly subordinate* to \mathcal{U} provided that

$$W_{\alpha}f \leq U_{\alpha}f \quad \forall \alpha > 0, f \in p\mathcal{B}, Uf < \infty.$$

and

$$Uf - Wf \in \mathcal{E}(\mathcal{U}) \quad \forall f \in p\mathcal{B}, Uf < \infty.$$

From Theorem 1.8 it follows that if P is an exact subordination operator with respect to \mathcal{U} then the sub-Markovian resolvent $\mathcal{W} = (W_{\alpha})_{\alpha \geq 0}$ associated with P by

$$Wf = Uf - PUf \quad \forall f \in p\mathcal{B}, Uf < \infty,$$

is exactly subordinate to \mathcal{U} . The following result ([8], [4, ch. V]) represents a converse one.

Theorem 1.9. (P.A. Meyer). Let $\mathcal{W} = (W_{\alpha})_{\alpha \geq 0}$ be a sub-Markovian resolvent of kernels on (E, \mathcal{B}) which is exactly subordinate to \mathcal{U} . Then there exists an exact subordination operator P with respect to \mathcal{U} such that

$$Wf = Uf - PUf \quad \forall f \in p\mathcal{B}, Uf < \infty.$$

Theorem 1.10. Let P be a kernel on (E, \mathcal{B}) and let $\mathcal{V} = (V_{\alpha})_{\alpha \geq 0}$ be a sub-Markovian resolvent of kernels on (E, \mathcal{B}) such that $\mathcal{E}(\mathcal{V}) \cap p\mathcal{B}$ is min-stable, $\mathcal{E}(\mathcal{U}) \subset \mathcal{E}(\mathcal{V})$ and

$$s, t \in b\mathcal{E}(\mathcal{U}), s \leq t \Rightarrow Ps \preccurlyeq_{\mathcal{E}(\mathcal{V})} Pt \preccurlyeq_{\mathcal{E}(\mathcal{V})} t.$$

Then the following assertions are equivalent.

1) P is an exact subordination operator with respect to \mathcal{U} and the set $\{s - Ps \mid s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}\}$ is solid in $\mathcal{E}(\mathcal{V})$ with respect to the natural order.

2) For any $u \in b\mathcal{E}(\mathcal{V}) \cap p\mathcal{B}$ such that there exists $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ with

$$Ps \preccurlyeq_{\mathcal{E}(\mathcal{V})} u \le s$$

we have $u \in b\mathcal{E}(\mathcal{U})$.

If P satisfies 1) then any subset A of $E \setminus E_P$, $A \in \mathcal{B}$ is absorbent with respect to \mathcal{V} .

Proof. 1) \Rightarrow 2). Let $u \in b\mathcal{E}(\mathcal{V}) \cap p\mathcal{B}$ such that there exists $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ with $Ps \preccurlyeq_{\mathcal{E}(\mathcal{V})} u \leq s$. Since $u - Ps \in b\mathcal{E}(\mathcal{V}) \cap p\mathcal{B}$ and $u - Ps \leq s - Ps$, there exists $s' \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ such that u - Ps = s' - Ps'. From $u = \inf(s, Ps + s' - Ps')$ it follows that $u \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$.

2) \Rightarrow 1). Let $s_1, s_2 \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ such that $s_2 < \infty$ and $f \in bp\mathcal{B}$. We consider the function u on E given by

$$u = \inf(s_1, Ps_1 + s_2 - Ps_2 + Pf).$$

Since by hypothesis $Pf \in b\mathcal{E}(\mathcal{V}) \cap p\mathcal{B}$ for all $f \in bp\mathcal{B}$ of the form f = s - t, where $s, t \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ it follows that $Pf \in b\mathcal{E}(\mathcal{V}) \cap p\mathcal{B}$ for all $f \in bp\mathcal{B}$ and so $Pf \in b\mathcal{E}(\mathcal{V}) \cap p\mathcal{B}$ for all $f \in p\mathcal{B}$. Hence $u \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ and $Ps_1 \preccurlyeq_{\mathcal{E}(\mathcal{V})} u \leq s_1$. From 2) we deduce that $u \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ and therefore P is an exact subordination operator with respect to \mathcal{U} .

Let further $v \in b\mathcal{E}(\mathcal{V}) \cap p\mathcal{B}$ and $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ be such that $v \leq s - Ps$. Using 2) we deduce that $v + Ps \in \mathcal{E}(\mathcal{U})$. We consider $\mathcal{W} = (W_{\alpha})_{\alpha \geq 0}$ the sub-Markovian resolvent of kernels on (E, \mathcal{B}) such that Wf = Uf - PUf for all $f \in p\mathcal{B}, Uf < \infty$. We denote by w the réduite of v with respect to \mathcal{W} . We have $w \in b\mathcal{E}(\mathcal{W}) \cap p\mathcal{B}, w \leq s - Ps$ and there exists an increasing sequence $(s_n)_n$ in $b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ such that $s_n \leq s$ for all $n \in \mathbb{N}$ and $s_n - Ps_n \nearrow w$. If we consider the function $s' := \sup_n s_n$ then we have $s' \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}, v \leq w = s' - Ps'$. We have $v + Ps' \in b\mathcal{E}(\mathcal{U}), Ps' \preccurlyeq_{\mathcal{E}(\mathcal{V})} v + Ps' \leq s'$ and so the function s'_0 given by $s'_0 = v + Ps'$ is \mathcal{U} -excessive, $s'_0 \leq s$ and $v = s'_0 - Ps' \leq s'_0 - Ps'_0$. Hence $s'_0 - Ps'_0 \geq w = s' - Ps', s'_0 \geq s'$, and so $s'_0 = s', v = s' - Ps'$

Suppose that P satisfies 1). Then we have

$$E_P = \{ x \in E \mid Uf_0(x) > PUf_0(x) \}$$

where $f_0 \in p\mathcal{B}$, $0 < f_0 \leq 1$, Uf_0 bounded. Hence Pf(x) = f(x) on $E \setminus E_P$ for all $f \in p\mathcal{B}$. If $A \in \mathcal{B}$, $A \subset E \setminus E_P$ we get $P(1_{E \setminus A}) \in \mathcal{E}(\mathcal{V})$ and $A = [f_0 + P(1_{E \setminus A}) = 0]$ where $Wf_0 = Uf_0 - PUf_0$ and so A is \mathcal{V} -absorbent.

Theorem 1.11. Assume that $\mathcal{V} = (V_{\alpha})_{\alpha \geq 0}$ is a sub-Markovian resolvent of kernels on (E, \mathcal{B}) which is exact subordinate to \mathcal{U} and let P the exact subordination operator with respect to \mathcal{U} such that

$$Vf = Uf - PUf \quad \forall f \in p\mathcal{B}, Uf < \infty.$$

We assume that $E_P = E$. Then for any $A \in \mathcal{B}$ we have

$$R^{A}s - {}^{\mathcal{V}}R^{A}s = P(R^{A}s) - {}^{\mathcal{V}}R^{A}(R^{A}s))$$

for all $s \in b\mathcal{E}(\mathcal{U})$, where ${}^{\mathcal{V}}R^{A}s$ denotes the réduite of s on A with respect to \mathcal{V} . Particularly for all $A \in \mathcal{B}$ we have

$$\mathcal{V}R^A < R^A$$

Proof. Since $E_P = E$ it follows by Theorem 1.8 that the fine topologies with respect to \mathcal{U} and \mathcal{V} are the same. Assume firstly that A is finely open with respect to \mathcal{U} . Then for all $s \in b\mathcal{E}(\mathcal{U})$ we have $R^A s - P(R^A s) \in \mathcal{E}(\mathcal{V})$, $\mathcal{V}R^A(R^A s - PR^A s) \leq R^A s - PR^A s$ and there exists $s' \in b\mathcal{E}(\mathcal{U})$, $s' \leq s$ such that $\mathcal{V}R^A(R^A s - PR^A s) = s' - Ps'$. From $s' - Ps' \leq R^A s - PR^A s$ it follows that $u := s' - Ps' + PR^A s \in \mathcal{E}(\mathcal{U})$, $u \leq R^A s$. On the other hand we have $u - \mathcal{V}R^A(R^A s - PR^A s) + PR^A s = (R^A s - PR^A s) + PR^A s = s$ on A and so $u \geq R^A s$, $u = R^A s$. Hence

$$R^{A}s - {}^{\mathcal{V}}R^{A}s = P(R^{A}s) - {}^{\mathcal{V}}R^{A}(P(R^{A}s)) \; \forall s \in b\mathcal{E}(\mathcal{U}).$$

Let now $A \in \mathcal{B}$. For any finite measure μ on (E, \mathcal{B}) we have (cf. [4])

$$\mu(R^A s) = \inf \{ \mu(R^G s) \mid G \text{ finely open, } G \supset A \}$$
$$\mu(^{\nu}R^A s) = \inf \{ \mu(^{\nu}R^G s) \mid G \text{ finely open, } G \supset A \}.$$

On the other hand if G is finely open $G \supset A$ and G_1 is finely open with $A \subset G_1 \subset G$ we get

$$R^G s + {}^{\mathcal{V}} R^G P R^G s = {}^{\mathcal{V}} R^G s + P(R^G s)$$

and so, taking $R^{G_1}s$ instead of s,

$$R^{G_1}s + {}^{\mathcal{V}}R^G(PR^{G_1}s) = {}^{\mathcal{V}}R^{G_1}s + P(R^{G_1}s).$$

We deduce that $R^{A}s + {}^{\nu}R^{G}(P(R^{A}s)) = {}^{\nu}R^{A}s + P(R^{A}s)$ for all finely open set G with $G \supset A$. Since $P(R^{A}s) \in \mathcal{E}(\mathcal{U})$ we get $R^{A}s + {}^{\nu}R^{A}(P(R^{A}s)) = {}^{\nu}R^{A}s + P(R^{A}s)$.

Corollary 1.12. Let \mathcal{V} be a sub-Markovian resolvent of kernels on (E, \mathcal{B}) as in Theorem 1.10. Then for any $A \in \mathcal{B}$ and $x \in E$, A is \mathcal{V} -thin at x if and only if A is \mathcal{U} -thin at x.

Proof. The assertion follows from Proposition 1.5 since the sub-Markovian resolvent \mathcal{V} satisfies the two conditions 1), 2) of the resolvent \mathcal{U}' given at the beginning of this section.

2 The techniques for the construction of special exact subordination operators

A σ -balayage with respect to \mathcal{U} is a map $B : \mathcal{E}(\mathcal{U}) \to \mathcal{E}(\mathcal{U})$ such that it is additive, increasing and σ -continuous from below, contractive (i.e. $Bs \leq s$, for all $s \in \mathcal{E}(\mathcal{U})$) and idempotent (i.e. $B^2 = B$). A σ -balayage with respect to \mathcal{U} is called $\mathcal{B} - \sigma$ -balayage (with respect to \mathcal{U}) if moreover

$$B(\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}) \subset \mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$$

If A is a \mathcal{U} -basic set (resp. $\mathcal{B} - \mathcal{U}$ -basic set) then the map

$$s \to B^A s$$

is a σ -balayage (resp. $\mathcal{B} - \sigma$ -balayage) with respect to \mathcal{U} .

Conversely since E is semisaturated with respect to \mathcal{U} then for every σ -balayage (resp. $\mathcal{B} - \sigma$ balayage) B with respect to \mathcal{U} there exists a unique \mathcal{U} -basic set (resp. $\mathcal{B} - \mathcal{U}$ -basic set) A := b(B)such that

$$Bs = B^A s \quad \forall s \in \mathcal{E}(\mathcal{U})$$

The set A is called the *base* of B. We denote by 'B the σ -balayage with respect to \mathcal{U}' having the same base as B.

Let B be a $\mathcal{B} - \sigma$ -balayage with respect to \mathcal{U} such that 'B is also a $\mathcal{B} - \sigma$ -balayage with respect to \mathcal{U}' . We denote by P_B the map

$$P_B: b\mathcal{E}(\mathcal{U}) \cap \mathcal{B} \to b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$$

given by

$$P_{\mathcal{B}}s := Bs - Bs \underset{\mathcal{E}(\mathcal{U}')}{\wedge} Bs.$$

In the sequel we say simply that B is a σ -balayage if B and 'B are simultaneously $\mathcal{B}-\sigma$ -balayages.

Proposition 2.1. The following assertions hold:

1) $P_B(s+t) = P_B s + P_B t.$ 2) $s \ge t \Rightarrow P_B s \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P_B t \preccurlyeq_{\mathcal{E}(\mathcal{U}')} t.$ 3) $P_B(Bs) = P_B s.$ 4) $s_n \nearrow s \Rightarrow P_B s_n \nearrow P_B s.$ 5) $Bs - 'Bs = P_B s - 'BP_B s.$

Proof. If $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ we have $P_B s = Bs - Bs \underset{\mathcal{E}(\mathcal{U}')}{\wedge} 'Bs, 'B(Bs \underset{\mathcal{E}(\mathcal{U}')}{\wedge} 'Bs) = Bs \underset{\mathcal{E}(\mathcal{U}')}{\wedge} 'Bs, 'BBs = 'Bs,$ and so $'B(P_B s) = 'Bs - Bs \underset{\mathcal{E}(\mathcal{U}')}{\wedge} 'Bs, P_B s - 'B(P_B s) = Bs - 'Bs.$ Analogously if $t \in b\mathcal{E}(\mathcal{U}) \cap pB$ we have $Bt - 'Bt = P_B t - 'BP_B t, B(s+t) - 'B(s+t) = P_B(s+t) - 'BP_B(s+t)$ and so $P_B s + P_B t - 'B(P_B s + P_B t) =$ $P_B(s+t) - 'BP_B(s+t).$ Since $P_B s \underset{\mathcal{E}(\mathcal{U}')}{\wedge} 'Bu = P_B t \underset{\mathcal{E}(\mathcal{U}')}{\wedge} 'Bu = P_B(s+t) \underset{\mathcal{E}(\mathcal{U}')}{\wedge} 'Bu = 0$ for all $u \in$ $b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ it follows that $P_B(s+t) = P_B s + P_B t.$ From the definition of P_B it follows directly $P_B(Bs) = P_B s$ for all $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}.$

Let now $s, t \in b\mathcal{E}(\mathcal{U}) \cap pB$ such that $s \leq t$. We have $P_B s - {}'BP_B s = Bs - {}'Bs, P_B t - {}'BP_B t = Bt - {}'Bt$ and so $P_B t - P_B s - {}'B(P_B t - P_B s) = B(t - s) - B'(t - s)$. Since $t - s \in pb\mathcal{B}$ then by Theorem 1.7 there exists $u \in b(\mathcal{E}(\mathcal{U}))$ such that $B(t - s) - {}'B(t - s) = u - {}'Bu$ and moreover $u \downarrow_{\mathcal{E}(\mathcal{U})} {}'Bu = 0$. We have $P_B t + {}'Bu + {}'BP_B s = P_B s + u + {}'BP_B t$ since $P_B s \downarrow_{\mathcal{E}(\mathcal{U})} {}'Bv = P_B t \downarrow_{\mathcal{E}(\mathcal{U})} {}'Bv = 0$ for all $v \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$, we deduce $P_B t = P_B s + u$, i.e. $P_B s \preccurlyeq_{\mathcal{E}(\mathcal{U})} P_B t$. On the other hand we get $Bt - {}'Bt \preccurlyeq_{\mathcal{E}(\mathcal{U})} t$, $P_B t = (Bt - {}'Bt) \gamma_{\mathcal{E}(\mathcal{U})} 0 \preccurlyeq_{\mathcal{E}(\mathcal{U})} t$.

Let now $(s_n)_n$ be an increasing sequence in $b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$, $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ such that $s = \sup_n s_n$. We have $P_B s_n - {}^{\prime}BP_B s_n = Bs_n - {}^{\prime}Bs_n$, $P_B s_n \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P_B s_{n+1}$ for all $n \in \mathbb{N}$ and so $Bs - B's = \sup_n P_B s_n - {}^{\prime}B(\sup_n P_B s_n)$. On the other hand we have $Bs - B's = P_B s - {}^{\prime}BP_B s$, $\sup_n P_B s_n = \Upsilon_{\mathcal{E}(\mathcal{U}')}P_B s_n$. Since $P_B t \underset{\mathcal{E}(\mathcal{U}')}{\wedge} Bv = 0$ for all $v \in b\mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$, $t \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$, it follows that $(\sup_n P_B s_n) \underset{\mathcal{E}(\mathcal{U}')}{\wedge} Bv = 0$ for all $v \in b\mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$. From $\sup_n P_B s_n - {}^{\prime}B(\sup_n P_B s_n) = P_B s - {}^{\prime}BP_B s$ we deduce that $\sup_n P_B s_n = P_B s$.

Proposition 2.2. For any σ -balayage B there exists a unique kernel on (E, \mathcal{B}) denoted also by P_B such that

$$P_B s = Bs - Bs \underset{\mathcal{E}(\mathcal{U}')}{\wedge} B's \quad \forall \ s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$$

Moreover we have

i) $f \in p\mathcal{B} \Rightarrow P_B f \in \mathcal{E}(\mathcal{U}') \cap p\mathcal{B}.$ *ii)* $Bf - 'Bf = P_B f - 'BP_B f \forall f \in bp\mathcal{B}.$

Proof. For any $x \in E$ the map $bp\mathcal{B} \ni f \longmapsto P_B Uf(x)$ is an \mathcal{U} -excessive measure dominated by $\varepsilon_x \circ U$ and so it is \mathcal{U} -potential, i.e. there exists a measure $P_{B,x}$ on (E, \mathcal{B}) such that

$$P_{B,x}s = P_Bs(x) \quad \forall s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}.$$

Since for any $f \in (b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B} - b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B})_+$ the function $x \longmapsto P_{B,x}f$ is \mathcal{B} -measurable it follows that the function $P_B f$ given $P_B f(x) = P_{B,x}(f)$ is \mathcal{B} -measurable and so the map $p\mathcal{B} \ni f \longmapsto P_B f \in p\mathcal{B}$ is a kernel on (E, \mathcal{B}) . Since for all $f \in (b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B} - b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B})_+$ we have $P_B f \in \mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$ and $Bf - Bf = P_B f - Bf f$ it follows that the same assertion hold for all $f \in bp\mathcal{B}$. **Proposition 2.3.** For any $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ and any finite systems $(s_i)_{i \in I}$ in $b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ and $(B_i)_{i \in I}$ of σ -balayages such that $\sum_{i \in I} s_i \leq s$ we have

$$\sum_{i\in I} P_{B_i} s_i \preccurlyeq_{\mathcal{E}(\mathcal{U}')} s.$$

Proof. We have $\sum_{i \in I} B_i s_i \leq s$ and therefore from Theorem 1.7 we obtain $\sum_{i \in I} (B_i s_i - B_i s_i) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} s$. From the definition of P_{B_i} we deduce that the relation

$$\sum_{i\in I} P_{B_i} s_i \preccurlyeq_{\mathcal{E}(\mathcal{U}')} s$$

is equivalent with the relation

$$\sum_{i \in I} B_i s_i \preccurlyeq_{\mathcal{E}(\mathcal{U}')} s + \sum_{i \in I} B_i s_i \wedge_{\mathcal{E}(\mathcal{U}')} B_i s_i.$$

On the other hand we have inductively (following card I)

$$s + \sum_{i \in I} B_i s_i \, \lambda_{\mathcal{E}(\mathcal{U}')} \, {}^{\prime}B_i s_i = \lambda_{\mathcal{E}(\mathcal{U}')} (s + \sum_{j \in J} B_j s_j + \sum_{j \in I \setminus J} {}^{\prime}B_j s_j).$$

Moreover we have

$$\sum_{j \in I \setminus J} B_j s_j \preccurlyeq_{\mathcal{E}(\mathcal{U}')} s + \sum_{j \in I \setminus J} B_j s_i$$

or equivalently

$$\sum_{i \in I} B_i s_i \preccurlyeq_{\mathcal{E}(\mathcal{U}')} s + \sum_{j \in J} B_i s_i + \sum_{j \in I \setminus J} {}^{\prime} B_j s_j$$

and so

$$\sum_{i \in I} B_i s_i \preccurlyeq_{\mathcal{E}(\mathcal{U}')} \wedge_{\mathcal{E}(\mathcal{U}')} (s + \sum_{j \in J} B_i s_i + \sum_{j \in I \setminus J} {}'B_j s_{ij}) = s + \sum_{i \in I} B_i s_i \wedge_{\mathcal{E}(\mathcal{U}')} {}'B_i s_i.$$

Proposition 2.4. Let $f \in bp\mathcal{B}$ and B be a σ -balayage such that $P_B f \preccurlyeq_{\mathcal{E}(\mathcal{U}')} f$. Then we have $Bf \leq f$. Particularly if $P_B f \preccurlyeq_{\mathcal{E}(\mathcal{U}')} f$ for all σ -balayage B then $f \in \mathcal{E}(\mathcal{U})$.

Proof. From $P_B f \preccurlyeq_{\mathcal{E}(\mathcal{U}')} f$ there exists $u \in b\mathcal{E}(\mathcal{U}')$ such that $P_B f + u = f$. On the other hand we have $Bf - Bf = P_B f - BP_B f$ and so $P_B f = Bf - Bf + BP_B f$, $f = u + Bf - Bf + BP_B f$. Hence $Bf = Bu + Bf - Bf + BP_B f = Bu + BP_B f \le u + BP_B f$ and therefore $Bf \le f$.

Assume that $P_B f \preccurlyeq_{\mathcal{E}(\mathcal{U}')} f$ for all σ -balayage B. Then f is \mathcal{U} -finely continuous and moreover $Bf \leq f$ for all σ -balayage B. Hence $f = R(f), f \in \mathcal{E}(\mathcal{U})$.

Lemma 2.5. Let $(P_n)_{n \in \mathbb{N}^*}$ be a sequence of kernels on (E, \mathcal{B}) such that a) $P_n(bp\mathcal{B}) \subset b\mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$. b) $\sum_{\substack{k=1 \ k \in \mathcal{B}}}^{\infty} s_k \leq s \Rightarrow \sum_{k=1}^{\infty} P_k s_k \preccurlyeq_{\mathcal{E}(\mathcal{U}')} s.$ Let further \mathcal{F} be a countable subset of bpB such that $\mathcal{F} + \mathcal{F} \subset \mathcal{F}$, $Q_+, \mathcal{F} \subset \mathcal{F}$, $U(\mathcal{F}) \subset b\mathcal{E}(\mathcal{U})$ and \mathcal{S}_0 be a countable subset of $b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ such that

$$U(\mathcal{F}) \subset \mathcal{S}_0; Q_+ \mathcal{S}_0 \subset \mathcal{S}_0$$
$$s, t \in \mathcal{S}_0 \Rightarrow s + t, s \Upsilon_{\mathcal{E}(\mathcal{U})} t, R(s - t) \in \mathcal{S}_0$$

Then the map

$$P_0: U(\mathcal{F}) \to b\mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$$

defined by

$$P_0(Uf) := \Upsilon_{\mathcal{E}(\mathcal{U}')} \left\{ \sum_{k=1}^n P_k s_k \mid (s_k)_{1 \le k \le n} \subset \mathcal{S}_0, \sum_{k=1}^n s_k \le Uf \right\}$$

possesses the following properties:

i) $P_0(Uf_1 + Uf_2) = P_0(Uf_1) + P_0(Uf_2)$ for all $f_1, f_2 \in \mathcal{F}$. ii) $P_n(Uf) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P_0(Uf) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Uf$ for all $f \in \mathcal{F}$ and $n \in \mathbb{N}^*$. iii) $f_1, f_2 \in \mathcal{F}, s \in b\mathcal{E}(\mathcal{U}), Uf_1 \leq Uf_2 + s \Rightarrow P_0(Uf_1) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P_0(Uf_2) + s$.

Proof. Since S_0 is countable it follows that the element $P_0(Uf)$ is well defined in $\mathcal{E}(\mathcal{U}')$ for all $f \in \mathcal{F}$. We show now the property iii). Let $f_1, f_2 \in \mathcal{F}, s \in b\mathcal{E} \cap p\mathcal{B}$ be such that $Uf_1 \leq Uf_2 + s$. We consider a system $(s_i)_{1 \leq i \leq n}$ in S_0 such that $\sum_{i=1}^m s_i \leq Uf_1$. From $Uf_1 \leq Uf_2 + s$ there exists $s', s'' \in S_0$ such that $\sum_{i=1}^m s_i = s' + s'', \quad s' \leq Uf_2, \quad s'' \leq s$. Hence for any $1 \leq i \leq n$ there exists $u_i, v_i \in S_0$ such that $s_i = u_i + v_i, \quad s' = \sum_{i=1}^m u_i, s'' = \sum_{k=1}^m v_k$. Since $\sum_{i=1}^m u_i = s' \leq U(f_2), \sum_{i=1}^m v_i \leq s$ we get $\sum_{i=1}^m P_i(u_i) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P_0(Uf_2), \sum_{i=1}^m P_i(v_i) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} s, \sum_{i=1}^m P_i s_i = \sum_{i=1}^m P_i(u_i + v_i) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P_0(Uf_2) + s$.

We show that P_0 is additive. Let $f_1, f_2 \in \mathcal{F}$. We have directly

$$P_0(Uf_1) + P_0(Uf_2) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P_0(Uf_1 + Uf_2).$$

Let now $(s_i)_{1 \leq i \leq n}$ a finite system in \mathcal{S}_0 such that $\sum_{i=1}^n s_i \leq Uf_1 + Uf_2$. From the properties of \mathcal{S}_0 there exists two systems $(u_i)_{1 \leq i \leq n}$, $(v_i)_{1 \leq i \leq n}$ in \mathcal{S}_0 such that $s_i = u_i + v_i$ $1 \leq i \leq n$ and $\sum_{i=1}^m u_i \leq Uf_1$, $\sum_{i=1}^n v_i \leq Uf_2$. Hence we define

$$\sum_{i=1}^{m} P_i s_i = \sum_{i=1}^{m} P_i u_i + \sum_{i=1}^{n} P_i v_i \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P_0(Uf_1) + P_0(Uf_2)$$

and so

$$P_0(Uf_1 + Uf_2) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P_0(Uf_1) + P_0(Uf_2).$$

The property ii) follows directly from the definition of P_0 and from the property b) of the given sequence $(P_n)_n$.

Lemma 2.6. Let \mathcal{F} be a subset of $bp\mathcal{B}$ such that

$$\mathcal{F} + \mathcal{F} \subset \mathcal{F}, Q_{+}\mathcal{F} \subset \mathcal{F}$$
$$f_{1}, f_{2} \in \mathcal{F} \Rightarrow \sup(f_{1}, f_{2}), \inf(f_{1}, f_{2}) \in \mathcal{F}$$
$$f_{1}, f_{2} \in \mathcal{F}, f_{1} \leq f_{2} \Rightarrow f_{2} - f_{1} \in \mathcal{F}$$

and such that the monoton class $\mathcal{M}(\mathcal{F})$ in $bp\mathcal{B}$ conincides with $bp\mathcal{B}$. Assume that U is bounded and let

$$P_0: U(\mathcal{F}) \to b\mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$$

be a map such that i) $P_0(Uf_1 + Uf_2) = P_0(Uf_1) + P_0(Uf_2)$ ii) $P_0(Uf) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Uf \forall f \in \mathcal{F}$ iii) $f_1, f_2 \in \mathcal{F}, s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B},$ $Uf_1 \leq Uf_2 + s \Rightarrow P_0(Uf_1) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} + P_0(Uf_2) + s.$ Then there a kernel \tilde{P}_o on (E, \mathcal{B}) uniquely determined such that 1) $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B} \Rightarrow \tilde{P}_0 s \in b\mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$ 2) $f \in \mathcal{F} \Rightarrow \tilde{P}_0(Uf) = P_0(Uf)$ 3) $s, t \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}, s \leq t \Rightarrow \tilde{P}_0 s \preccurlyeq_{\mathcal{E}(\mathcal{U}')} \tilde{P}_0(t) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} t.$ If moreover T is a kernel on $(E, \mathcal{B}^{(u)})$ such that $T(b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}) \subset b\mathcal{E}(\mathcal{U}')$ and

$$T(Uf) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P_0(Uf) \quad \forall f \in \mathcal{F}$$

then

$$Ts \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P_0 s, \quad \forall s \in b\mathcal{E}(\mathcal{U})$$

Proof. We denote for any non empty subset \mathcal{A} of $bp\mathcal{B}$, by \mathcal{A}_{σ} , \mathcal{A}_{δ} the sets

$$\mathcal{A}_{\sigma} = \{ f \in bp\mathcal{B} \mid \exists (f_n) \subset \mathcal{A}, f_n \nearrow f \}$$
$$\mathcal{A}_{\delta} = \{ f \in bp\mathcal{B} \mid \exists (f_n)_n \subset \mathcal{A}, f_n \searrow f \}.$$

We remark that if \mathcal{A} possesses the properties

- i) $\mathcal{A} + \mathcal{A} \subset \mathcal{A}, \quad Q_+ \mathcal{A} \subset \mathcal{A}$
- ii) $f_1, f_2 \in \mathcal{A} \Rightarrow \sup(f_1, f_2), \inf(f_2, f_2) \in \mathcal{A}$

then \mathcal{A}_{σ} and \mathcal{A}_{δ} possesses also the same properties 1), 2).

If Ω is the first uncountable ordinal number we define inductively the subsets

$$\mathcal{F}^1 = \mathcal{F}_{\sigma}, \mathcal{F}_1 = (\mathcal{F}^1)_{\delta}, \mathcal{F}^2 = (\mathcal{F}_1)_{\sigma}, \mathcal{F}_2 = (\mathcal{F}^2)_{\delta}$$

and for any ordinal number $\alpha < \Omega$

$$\mathcal{F}^{\alpha+1} = (\mathcal{F}_{\alpha})_{\sigma}, \quad \mathcal{F}_{\alpha+1} = (\mathcal{F}^{\alpha+1})_{\delta}, \text{ and } \mathcal{F}^{\alpha} = \cup_{\beta < \alpha} \mathcal{F}_{\beta}, \quad \mathcal{F}_{\alpha} = (\mathcal{F}^{\alpha})_{\delta}$$

if α does not possess a precedent. Obviously we have

$$\alpha < \beta \Rightarrow \mathcal{F}^{\alpha} \subset \mathcal{F}_{\alpha} \subset \mathcal{F}^{\beta}, \text{ and } \cup_{\alpha < \beta} \mathcal{F}^{\alpha} = \cup_{\alpha < \beta} \mathcal{F}_{\alpha}$$

if β does not possesses a precedent.

If $\mathcal{M}(\mathcal{F})$ is the monoton class in $bp\mathcal{B}$ generated by \mathcal{F} (i.e. the smallest subset \mathcal{A} of $bp\mathcal{B}$ with $\mathcal{F} \subset \mathcal{A}$ such that for any uniformly bounded monoton sequence $(f_n)_n$ in \mathcal{A} we have $\lim_{n\to\infty} f_n \in \mathcal{A}$) then we have

$$\mathcal{M}(\mathcal{F}) = \cup_{\alpha \in \Omega} \mathcal{F}^{\alpha} = \cup_{\alpha \in \Omega} \mathcal{F}_{\alpha}$$

Firstly two remarks:

1) If $f, g \in \mathcal{F}$ are such that $Uf \leq Ug$ then $P_0(Uf) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P_0(Ug)$. This fact follows from the property iii) of P_0 .

2) If $(f_n)_n$, $(g_n)_n$ are two sequence in \mathcal{F} such that $(Uf_n)_n$, $(Ug_n)_n$ are increasing and

$$\sup_n Uf_n \le \sup_n Ug_n$$

then

$$\sup_{n} P_0(Uf_n) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} \sup_{n} P_0(Ug_n)$$

Particularly if $\sup_n Uf_n = \sup_n Ug_n$ we have

$$\sup_{n} P_0 U f_n = \sup_{n} P_0 (Ug_n).$$

Indeed, if we denote $r_{n,m} := R(Uf_n - Ug_m)$ then we have $r_{n,m} \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$, $Uf_n \leq Ug_n + r_{n,m}$, inf_m $r_{n,m} = 0$ and therefore, using the property iii) of P_0 , we deduce that $P_0(Uf_n) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P_0(Ug_m) + r_{n,m} \preccurlyeq_{\mathcal{E}(\mathcal{U}')} \sup_m P_0(Ug_m) + r_{n,m}$, $P_0(Uf_n) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} \sup_m P_0(Ug_m)$ for all $n \in \mathbb{N}$, $\sup_n P_0(Uf_n) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} \sup_n P_0(Ug_n)$.

Form the above considerations it follows that for any $f \in \mathcal{F}_{\sigma}$ the element $\widetilde{P}_0(Uf)$ from $\mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$ defined by

$$\widetilde{P}_0(Uf) := \sup_n P_0(Uf_n)$$

where $(f_n)_n$ is an increasing sequence in \mathcal{F} with $f_n \nearrow f$ depends only by Uf. Also we have

$$f_1, f_2 \in \mathcal{F}_{\sigma} \Rightarrow \widetilde{P}_0(Uf_1 + Uf_2) = \widetilde{P}_0(Uf_1) + \widetilde{P}_0(Uf_2).$$

If $f \in \mathcal{F}_{\sigma}$ and $(f_n)_n$ is an increasing sequence in \mathcal{F} with $f_n \nearrow f$ then using the property ii) of P_0 we get

$$P_0(Uf_n) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Uf_n \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Uf$$
 and so $\widetilde{P}_0(Uf) = \sup_n P_0(Uf_n) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Uf$.

Let now $f, g \in \mathcal{F}_{\sigma}$ and $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ be such that $Uf \leq Ug + s$. We show that

$$\widetilde{P}_0(Uf) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} \widetilde{P}_0(Ug) + s.$$

Indeed, let $(f_n)_n$ (resp. $(g_n)_n$) be an increasing sequence in \mathcal{F} such that $f_n \nearrow f$, $g_n \nearrow g$. For any $n \in \mathbb{N}$ we have $Uf_n \leq Ug_n + U(g - g_n) + s$ and therefore, from the property iii) of P_0 we get $P_0(Uf_n) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P_0(Ug_n) + U(g - g_n) + s \preccurlyeq_{\mathcal{E}(\mathcal{U}')} \widetilde{P}_0(Ug) + U(g - g_n) + s$. Since $\lambda_n U(g - g_n) = 0$ we get $\widetilde{P}_0(Uf) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} \widetilde{P}_0(Ug) + s$. Hence the map $\widetilde{P}_0 : \mathcal{U}(\mathcal{F}_\sigma) \to b\mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$ is an extension of P_0 which possesses the same properties i), ii), iii), as P_0 . Similarly if $f \in \mathcal{F}_\sigma$ and $(f_n)_n$ is a decreasing sequence in \mathcal{F} , such that $f = \inf_n f_n$ the element of $b\mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$ defined by

$$\widetilde{P}_0(Uf) = \inf_n P_0(Uf_n)$$

does not depend on the sequence $(f_n)_n$ and we have

- i) $\widetilde{P}_0(Uf_1 + Uf_2) = \widetilde{P}_0(Uf_1) + \widetilde{P}_0(Uf_2) \ \forall f_1, f_2 \in \mathcal{F}_{\delta}$
- ii) $\dot{P}_0(Uf) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P_0(Uf) \ \forall f \in \mathcal{F}_{\delta}$

iii) if $f, g \in \mathcal{F}_{\delta}$ and $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ are such that $Uf \leq Ug + s$ then $\widetilde{P}_0(Uf) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} \widetilde{P}_0(Ug) + s$. From the above consideration it follows that there exists a map

$$\widetilde{P}_0: U(\mathcal{M}(\mathcal{F})) \to b\mathcal{E}(\mathcal{U}') \cap p\mathcal{F}$$

which is an extension of the map

$$P_0: U(\mathcal{F}) \to b\mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$$

such that

i)
$$\widetilde{P}_0(Uf_1 + Uf_2) = \widetilde{P}_0(Uf_1) + \widetilde{P}_0(Uf_2) \ \forall f_1, f_2 \in \mathcal{M}(\mathcal{F})$$

ii) $f \in \mathcal{M}(\mathcal{F}) \Rightarrow \widetilde{P}_0(Uf) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Uf$

iii) $f_1, f_2 \in \mathcal{M}(\mathcal{F}), s \in \mathcal{E}(\mathcal{U}) \cap p\mathcal{B}, Uf_1 \leq Uf_2 + s \Rightarrow \hat{P}_0 Uf_1 \preccurlyeq_{\mathcal{E}(\mathcal{U}')} \hat{P}_0 Uf_2 + s.$

Let now $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ and let $(f_n)_n$ a sequence in $\mathcal{M}(\mathcal{F})$ such that $Uf_n \nearrow s$. Obviously we have

$$\widetilde{P}_0(Uf_n) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} \widetilde{P}_0(Uf_{n+1}) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} s$$

By the above remark 2) it follows that the element from $b\mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$ define by

$$\widetilde{P}_0 s := \sup_n \widetilde{P}_0 U f_n$$

does not depend on the sequence $(Uf_n)_n$ as above. Using the above definition of $\tilde{P}_0 s$ with $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ we have immediately

$$\widetilde{P}_0(s+t) = \widetilde{P}_0 s + \widetilde{P}_0 t, \widetilde{P}_0 s \preccurlyeq_{\mathcal{E}(\mathcal{U}')} s$$

and

$$s, t \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}, s \leq t \Rightarrow Ps \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Pt.$$

Let now $s \in \mathcal{E}(\mathcal{U} \cap p\mathcal{B} \text{ and } (s_n)_n$ an increasing sequence in $b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ such that $s_n \nearrow s$. We show that $\widetilde{P}_0 s_n \nearrow \widetilde{P}_0 s$. Let $(f_n)_n$ be a sequence in $\mathcal{M}(\mathcal{F})$ such that $Uf_n \nearrow s$. From $Uf_n \le s_m + R(Uf_n - s_m)$ we deduce

$$\widetilde{P}_0(Uf_n) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} \widetilde{P}_0(s_m) + R(Uf_n - s_m).$$

Since $\inf_m R(Uf_n - s_m) = 0$ we get $\widetilde{P}_0(Uf_1) \preccurlyeq_{\mathcal{E}(\mathcal{U})} \sup_m \widetilde{P}_0(s_m)$ and so

$$\widetilde{P}_0 s \preccurlyeq_{\mathcal{E}(\mathcal{U}')} \sup_m \widetilde{P}_0(s_m), \widetilde{P}_0 = \sup_n \widetilde{P}_0(s_n).$$

Since E is semisaturated with respect to \mathcal{U} it follows that the map

$$\widetilde{P}_0: b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B} \to b\mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$$

can be extended to a kernel on (E, \mathcal{B}) denoted also by \widetilde{P}_0 . By construction \widetilde{P}_0 satisfies the required conditions 1)- 3). Using the property $\mathcal{M}(\mathcal{F}) = bp\mathcal{B}$ and $\widetilde{P}_0 \mid_{\mathcal{U}(\mathcal{F})} = P_0$ it is easy to see that \widetilde{P}_0 is uniquely determined.

Let now T be a kernel on $(E, \mathcal{B}^{(u)})$ such that $T(b\mathcal{E}(\mathcal{U})) \subset b\mathcal{E}(\mathcal{U}')$ and

$$T(Uf) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P_0(Uf) \ \forall f \in \mathcal{F}.$$

We have $T(Uf) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} \widetilde{P}_0(Uf)$ for all $f \in \mathcal{M}(\mathcal{F})$ and so $Ts \preccurlyeq_{\mathcal{E}(\mathcal{U}')} \widetilde{P}_0(s)$ for all $s \in b\mathcal{E}(\mathcal{U})$. \Box

Theorem 2.7. Let \mathcal{T}_0 be a countable base of the topology \mathcal{T} such that

$$G_1, G_2 \in \mathcal{T}_0 \Rightarrow G_1 \cup G_2, G_1 \cap G_2 \in \mathcal{T}_0,$$

let \mathcal{F} be a countable subset of $pb\mathcal{B}$ such that $\mathcal{F} + \mathcal{F} \subset \mathcal{F}, \ Q_+\mathcal{F} \subset \mathcal{F}$

$$f_1, f_2 \in \mathcal{F} \Rightarrow \sup(f_1, f_2), \inf(f_1, f_2) \in \mathcal{F},$$

$$f_1, f_2 \in \mathcal{F}, f_1 \leq f_2 \Rightarrow f_2 - f_1 \in \mathcal{F},$$

there exists $f_0 \in \mathcal{F}$, $0 < f_0 \leq 1$ with Uf_0 is bounded and such that the monotone classe in $bp\mathcal{B}$ generated by \mathcal{F} coincides with $bp\mathcal{B}$. Let further \mathcal{S}_0 be a countable subset of $b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ such that $U(\mathcal{F}) \subset \mathcal{S}_0, Q_+\mathcal{S}_0 \subset \mathcal{S}_0$ and

$$s, t \in \mathcal{S}_0 \Rightarrow s+t, s \underset{\mathcal{E}(\mathcal{U})}{\curlyvee} t, R(s-t) \in \mathcal{S}_0$$

Then there exists a kernel P on (E, \mathcal{B}) uniquely determined such that 1) $P(b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}) \subset b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ 2) $s, t \in b\mathcal{E}(\mu), s \leq t \Rightarrow Ps \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Pt \preccurlyeq_{\mathcal{E}(\mathcal{U}')} t$ 3) $f \in \mathcal{F} \Rightarrow P(Uf) = \Upsilon_{\mathcal{E}(\mathcal{U}')} \left\{ \sum_{i=1}^{n} P_{B^{G_i}} s_i \mid \sum_{i=1}^{n} s_i \leq Uf, s_i \in \mathcal{S}_0, G_i \in \mathcal{T}_0 \right\}$ Particularly we have

 $P_{B^G S} \preccurlyeq_{\mathcal{E}(\mathcal{U}')} s \quad \forall \ G \in \mathcal{T}_0, \ s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}.$

Proof. If we replace U by the kernel $f \to U(f_0 \cdot f)$ we may assume that U is bounded. Using Lemma 2.5 and Proposition 2.3 we deduce that the map $P_0 : \mathcal{U}(\mathcal{F}) \to b\mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$ given by

$$P_0(Uf) = \Upsilon_{\mathcal{E}(\mathcal{U}')} \left\{ \sum_{i=1}^n P_{B^{G_i}} s_i \mid \sum_{i=1}^n s_i \le Uf, s_i \in \mathcal{S}_0, G_i \in \mathcal{T}_0 \right\}$$

verifies the following properties:

1) $P_0(Uf_1 + Uf_2) = P_0(Uf_1) + P_0(Uf_2)$ for all $f_1, f_2 \in \mathcal{F}$. 2) $P_{B^G}(Uf) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P_0(Uf) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Uf$ for all $f_1, f_2 \in \mathcal{F}$. 3) $f_1, f_2 \in \mathcal{F}, s \in b\mathcal{E}(\mathcal{U}), Uf_1 \leq Uf_2 + s \Rightarrow P_0(Uf_1) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P_0(Uf_2) + s$. Using Lemma 2.6 it follows that there exists a kernel P on (E, \mathcal{B}) uniquely determined such that 1) $P(Uf) = P_0(Uf) \quad \forall f \in \mathcal{F}$ 2) $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B} \Rightarrow Ps \in b\mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$ 3) $s, t \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}, s \leq t \Rightarrow Ps \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Pt \preccurlyeq_{\mathcal{E}(\mathcal{U}')} t$. From the definition of P it follows $P_{B^G}Uf \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Uf$ for all $f \in \mathcal{F}$ and $G \in \mathcal{T}_0$ and so

$P_{B^GS} \preccurlyeq_{\mathcal{E}(\mathcal{U}')} s$ is	$\forall s \in b\mathcal{E}(\mathcal{U})$	$\cap p\mathcal{B}.$
--	---	----------------------

11	_	-	

3 Shih's Theorem

We recall (see [2], [4, ch. I]) that a *Ray cone* on (E, \mathcal{B}) with respect to \mathcal{U} is a convex cone \mathcal{R} of bounded \mathcal{B} -measurable \mathcal{U} -excessive functions such that there exists a bounded sub Markovian resolvent $\mathcal{V} = (V_{\alpha})_{\alpha \geq 0}$ on (E, \mathcal{B}) such that $(p\mathcal{B}) \cap \mathcal{E}(\mathcal{U}) = (p\mathcal{B}) \cap \mathcal{E}(\mathcal{V})$ and such that

1) $1 \in \mathcal{R}$; 2) \mathcal{R} is min-stable; 3) $V_0(p(\mathcal{R} - \mathcal{R})) \subset \mathcal{R}$; 4) $V_\alpha(\mathcal{R}) \subset \mathcal{R} \forall \alpha > 0, 5) \mathcal{R}$ is separable with respect to the uniform norm; 6) The σ -algebra on E generated by \mathcal{R} coincides with \mathcal{B} .

For any countable subset S of $bp\mathcal{B} \cap \mathcal{E}(\mathcal{U})$, there exists a Ray cone \mathcal{R} with $\mathcal{R} \supset S$.

If \mathcal{R} is a Ray cone with respect to \mathcal{U} then the topology $\mathcal{T}_{\mathcal{R}}$ on E generated by \mathcal{R} , called *Ray* topology, is such that the topological space $(E, \mathcal{T}_{\mathcal{R}})$ is a Lusin topological space such that the Borel sets in $(E, \mathcal{T}_{\mathcal{R}})$ are exactly the Borel sets in (E, \mathcal{T}) . Moreover from ([2], Proposition 1.2) it follows that for any compact subset K in $(E, \mathcal{T}_{\mathcal{R}})$, any $s \in \mathcal{R}$ and any finite measure μ on (E, \mathcal{B}) we have

$$\mu(R^{K}s) = \inf\{\mu(R^{G}s) \mid G \in \mathcal{T}_{\mathcal{R}}, K \subset G\}.$$

Let further \mathcal{R}' be a Ray cone with respect to \mathcal{U}' and $\mathcal{T}_{\mathcal{R}'}$ the Ray topology on E generated by \mathcal{R}' . Using the above considerations the topological space $(E, \mathcal{T}_{\mathcal{R}'})$ is a Lusin topological space for which the Borel sets are exactly the Borel sets from (E, \mathcal{T}) . Also for any compact subset K of $(E, \mathcal{T}_{\mathcal{R}'})$, any $t \in \mathcal{R}'$ and any finite measure μ on (E, \mathcal{B}) we have

$$\mu('R^K t) = \{\inf \mu('R^G s) \mid G \in \mathcal{T}_{\mathcal{R}'}, K \subset G\}.$$

In the sequel since $(p\mathcal{B}) \cap \mathcal{E}(\mathcal{U}) \subset (p\mathcal{B}) \cap \mathcal{E}(\mathcal{U}')$ we can choose \mathcal{R} and \mathcal{R}' such that $\mathcal{R} \subset \mathcal{R}'$ and moreover there exists $f_0 \in p\mathcal{B}$, $0 < f_0 \leq 1$, such that Vf_0 is bounded and $Uf_0 \in \mathcal{R}$. For simplicity we write $\mathcal{T}' = \mathcal{T}_{\mathcal{R}'}$. Consequently for any compact subset K in (E, \mathcal{T}') and any finite measure μ on (E, \mathcal{B}) we get

$$\mu(R^{K}Uf_{0}) = \inf \mu(R^{G}Uf_{0}) \mid G \in \mathcal{T}', G \supset K\}, \ \mu(R^{K}Uf_{0}) = \inf \mu(R^{G}Uf_{0}) \mid G \in \mathcal{T}', G \supset K\}.$$

Remark. If \mathcal{U} (resp. \mathcal{U}') is the sub-Markovian resolvent associated with the right process X (resp. X') with (E, \mathcal{T}) as state space, then the preceding relations hold replacing \mathcal{T} instead of \mathcal{T}' if the processes X and X' are assumed to be Hunt processes.

Proposition 3.1. Let K be a \mathcal{T}' -compact subset of E, μ be a finite measure on (E, \mathcal{B}) and s be a bounded regular \mathcal{U} -excessive function, \mathcal{B} -measurable. Then we have

$$\mu(R^{K}s) = \inf\{\mu(R^{G}s) \mid G \in \mathcal{T}', G \supset K\}$$
$$\mu(R^{K}s) = \inf\{\mu(R^{G}s) \mid G \in \mathcal{T}', G \supset K\}.$$

Proof. Firstly let $f \in bp\mathcal{B}$ such that $f \leq f_0$. We have

$$\begin{split} \mu(R^{K}Uf) &\leq \inf\{\mu(R^{G}(Uf)) \mid G \in \mathcal{T}', G \supset K\} \\ \mu(R^{K}U(f_{0}-f)) &\leq \inf\{\mu(R^{G}U(f_{0}-f)) \mid G \in \mathcal{T}', G \supset K\} \\ &\inf_{\substack{G \supset K\\G \in \mathcal{T}}} \mu(R^{G}(Uf)) + \inf_{\substack{G \supset K\\G \in \mathcal{T}'}} \mu(R^{G}(Uf_{0}-f)) = \\ &= \inf_{\substack{G \supset K\\G \in \mathcal{T}'}} \mu(R^{G}(Uf_{0})) = \mu(R^{K}(Uf_{0})) = \mu(R^{K}(Uf)) + \mu(R^{K}(U(f_{0}-f))) \end{split}$$

and therefore

$$\mu(R^{K}Uf) = \inf_{\substack{G \supset K \\ G \in \mathcal{T}'}} \mu(R^{G}Uf).$$

Analogously we get $\mu({}^{\prime}R^{K}Uf) = \inf_{\substack{G \supset K \\ G \in \mathcal{T}'}} \mu({}^{\prime}RUf)$. Let further $(f_m)_m$ be a sequence in $p\mathcal{B}$ such that $f_m \leq mf_0$ for all $m \in \mathbb{N}$ and $Uf_m \nearrow s$. Since s in regular we get $\inf_m(s - Uf_m) = 0$. For all $m \in \mathbb{N}$ we have $Uf_m \leq s \leq Uf_m + \mathcal{R}(s - Uf_m)$ and so

$$R^{G}Uf_{m} \leq R^{G}s \leq R^{G}Uf_{m} + \mathcal{R}(s - Uf_{m}), \ R^{G}Uf_{m} \leq R^{G}s \leq R^{G}Uf_{m} + R(s - Uf_{m})$$

for all $G \in \mathcal{T}'$. From the first part of the proof we get

$$\mu(R^{K}Uf_{m}) = \inf_{\substack{G \supset K\\G \in \mathcal{T}'}} \mu(R^{G}Uf_{m}), \ \mu('R^{K}Uf_{m}) = \inf_{\substack{G \supset K\\G \in \mathcal{T}'}} \mu(R^{G}Uf_{m}) \ \forall m \in \mathbb{N}$$

and so

$$\inf_{\substack{G \supset K \\ G \in \mathcal{T}'}} \mu(R^G s) \le \mu(R^K U f_m) + \mu(R(s - U f_m)),$$

$$\inf_{\substack{G \supset K \\ G \in \mathcal{T}'}} \mu(R^G s) \le \mu(R^K U f_m) + \mu(R(s - U f_m)).$$

Since $\inf_{m} R(s - Uf_m) = 0$ we get

$$\inf_{\substack{G \supset K \\ G \in \mathcal{T}'}} \mu(R^G s) \le \mu(R^K s), \inf_{\substack{G \supset K \\ G \in \mathcal{T}'}} \mu(R^G s) \le \mu(R^K s).$$

	In	the sequel	we denote	by \mathcal{F}	a countable	subset of	$bp\mathcal{B}$	such that	$f_0 \in \mathcal{F}$	and
--	----	------------	-----------	------------------	-------------	-----------	-----------------	-----------	-----------------------	-----

$$f \in \mathcal{F} \Rightarrow \exists \alpha > 0 \text{ with } f \leq \alpha f_0, \ \mathcal{F} + \mathcal{F} \subset \mathcal{F}; Q_+ \mathcal{F} \subset \mathcal{F},$$

 $f_1, f_2 \in \mathcal{F} \Rightarrow \sup(f_1, f_2), \inf(f_1, f_2) \in \mathcal{F}, \ f_1, f_2 \in \mathcal{F}, f_1 \leq f_2 \Rightarrow f_2 - f_1 \in \mathcal{F}$

and such that the monotone class in $bp\mathcal{B}$ generated by \mathcal{F} is equal with $bp\mathcal{B}$. Also we denote by \mathcal{S}_0 a countable subset of $(bp\mathcal{B}) \cap \mathcal{E}(\mathcal{U})$ such that $U(\mathcal{F}) \subset \mathcal{S}_0$, $Q_+(\mathcal{S}_0) \subset \mathcal{S}_0$ and $s, t \in \mathcal{S}_0 \Rightarrow s + t$, $s \uparrow t$, $R(s-t) \in \mathcal{S}_0$ where $s \uparrow t$ means supremum between s and t with respect to the specific order $\preccurlyeq_{\mathcal{E}(\mathcal{U})}$:

We consider a countable base \mathcal{G}_0 for the topology \mathcal{T}' which is closed under finite union and finite intersection. Using Theorem 2.7 there exists a kernel P on (E, \mathcal{B}) , uniquely determined such that

1)
$$P(bp\mathcal{B} \cap \mathcal{E}(\mathcal{U})) \subset bp\mathcal{B} \cap \mathcal{E}(\mathcal{U}')$$

2) $s, t \in bp\mathcal{B} \cap \mathcal{E}(\mathcal{U}), s \leq t \Rightarrow Ps \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Pt \preccurlyeq_{\mathcal{E}(\mathcal{U}')} t$
3) $f \in \mathcal{F} \Rightarrow PUf = \Upsilon_{\mathcal{E}(\mathcal{U}')} \left\{ \sum_{i=1}^{n} P_{B_{i}^{G}}s_{i} \mid \sum_{i=1}^{n} s_{i} \leq Uf, s_{i} \in \mathcal{S}_{0}, G_{i} \in \mathcal{G}_{0} \right\}.$

Proposition 3.2. For any σ -balayage B and $s \in bp\mathcal{B} \cap \mathcal{E}(\mathcal{U})$ we have

$$P_B s \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P s.$$

Proof. Assume that s is regular. Firstly we show that the function $Ps - (R^K s - R^K s)$ is \mathcal{U}' -strongly supermedian. Indeed, let μ , ν bee two finite measures on (E, \mathcal{B}) such that $\mu \leq_{\mathcal{E}(\mathcal{U}')} \nu$. and let $(G_n)_n$ be a decreasing sequence in \mathcal{G}_0 such that

$$\inf_{n} (\mu + \nu)(R^{G_{n}}s) = (\mu + \nu)(R^{K}s), \ \inf_{n} (\mu + \nu)(R^{G_{n}}s) = (\mu + \nu)(R^{K}s),$$

where \mathcal{G}_0 in the countable base of \mathcal{T}' closed with respect to finite union and finite intersection which appear in the definition of P. Since $P_{B^{G_n}s} \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Ps$ and $B^{G_n}s - B^{G_n}s + B^{G_n}P_{B^{G_n}s} = P_{B^{G_n}s}$ it follows that $B^{G_n}s - B^{G_n}s \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Ps$ and so

$$\mu(Ps - (B^{G_n}s - {}^{\prime}B^{G_n}s)) \le \nu(Ps - (B^{G_n}s - {}^{\prime}B^{G_n}s)).$$

Passind $n \to \infty$ we deduce that

$$\mu(Ps - (R^{K}s - {}^{\prime}R^{K}s)) \le \nu(Ps - (R^{K}s - {}^{\prime}R^{K}s)).$$

Since B is a σ -balayage then $b(B) \in \mathcal{B}$ and it is a \mathcal{U} -basic and \mathcal{U} -basic set, and so there exists an increasing sequence $(K_n)_n$ of compact subsets of b(B) with

$$\mu(Bs) = \sup_{n} \mu(R^{K_n}s), \ \mu(Bs) = \sup_{n} \mu(R^{K_n}s).$$

From the above considerations it follows

$$\mu(Ps - (Bs - 'Bs)) \le \nu(Ps - (Bs - 'Bs))$$

and so Ps - (Bs - B's) is \mathcal{U}' -strongly supermedian and therefore it is \mathcal{U}' -excessive. Hence $Bs - 'Bs \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Ps$ and so

$$P_B s := (Bs - 'Bs) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} \circ \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Ps.$$

If $s \in bp\mathcal{B} \cap \mathcal{E}(\mathcal{U})$ then there exists an increasing sequence $(s_n)_n$ of regular \mathcal{U} -excessive functions $s_n \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ with $s_n \nearrow s$. We have

$$P_B s_n \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P s_n \quad \forall n \in \mathbb{N}$$

and so $P_B s \preccurlyeq_{\mathcal{E}(\mathcal{U}')} P s$.

Theorem 3.3. Let $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ and $u \in bp\mathcal{B} \cap \mathcal{E}(\mathcal{U}')$ be such that $Ps \preccurlyeq_{\mathcal{E}(\mathcal{U}')} u \leq s$. Then $u \in bp\mathcal{B} \cap \mathcal{E}(\mathcal{U})$. Particularly for any $s \in bp\mathcal{B} \cap \mathcal{E}(\mathcal{U})$ we have $Ps \in (bp\mathcal{B}) \cap \mathcal{E}(\mathcal{U})$.

Proof. For any σ -balayage, using Proposition 3.2, we have $P_B u \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Ps \preccurlyeq_{\mathcal{E}(\mathcal{U}')} u$ and thus by Proposition 2.4 we deduce that $Bu \leq u$. Consequently $u \in bp\mathcal{B} \cap \mathcal{E}(\mathcal{U})$.

Theorem 3.4. For any absorbent point $a \in E$ with respect to \mathcal{U}' we have

$$PUf_0 \leq B^{E \setminus \{a\}} Uf_0$$

Particularly we have

$$P(Uf_0)(a) < Uf_0(a).$$

Proof. In the proof of this theorem we shall write simply \preccurlyeq , \land , \curlyvee instead of $\preccurlyeq_{\mathcal{E}(\mathcal{U}')}, \land_{\mathcal{E}(\mathcal{U}')}, \curlyvee_{\mathcal{E}(\mathcal{U}')}$ respectively. By Theorem 2.7 we have

$$P(Uf_0) = \Upsilon \left\{ \sum_{i=1}^n P_{B^{G_i}} s_i \mid \sum_{i=1}^n s_i \le Uf_0, s_i \in \mathcal{S}_0, G_i \in \mathcal{G}_0 \right\}$$

Since a is an absorbent point with respect to \mathcal{U}' we have, for any $s \in bp\mathcal{B} \cap \mathcal{E}(\mathcal{U})$

$$B^G s \land 'B^G s \succcurlyeq 'B^{\{a\}} s \quad \forall G \in \mathcal{G}_0, G \ni a$$

and so

$$P_{B^G}s \preccurlyeq B^Gs - B^{\{a\}}s, \quad \forall G \in \mathcal{G}_0, G \ni a,$$

 $P_{B^G}s(a) = 0$ for all $G \in \mathcal{G}_0, G \ni a$. Analogously if $a \notin b(B^{G_i})$ then we have $B^Gs(a) = 0$ and so $P_{B^G}s(a) = B^Gs(a)$ for any $s \in bp\mathcal{B} \cap \mathcal{E}(\mathcal{U})$.

Let $(s_i^{(k)})_{\substack{1 \le i \le n \\ 1 \le k \le m}}$ be a finite system in \mathcal{S}_0 with $\sum_{i=1}^n s_i^k \le U f_0$ for all $1 \le k \le m$, $(G_i^k)_{\substack{1 \le k \le m \\ 1 \le i \le n}}$ a finite system in \mathcal{G}_0 . We put

$$u^k = \sum_{i=1 \atop a \in b(B^{G_i})}^n P_{B^{G_i^k}} s_i^k, \quad v^k := \sum_{i=1 \atop a \not\in b(R^{G_i})}^n P_{B^{G_i^k}} s_i^k.$$

We have

$$u^{k}(a) = 0, \quad v^{k}(a) = \sum_{\substack{i=1\\a \notin b(R^{G_{i}})}}^{n} B^{G_{i}}s_{i}(a),$$

$$v^{k} = \sum_{\substack{i=1\\a \notin b(B^{G_{i}^{k}})}}^{n} (B^{G_{i}^{k}}s_{i}^{k} - B^{\{a\}}(B^{G_{i}^{k}}s_{i})) + \sum_{\substack{i=1\\a \notin b(B^{G_{i}^{k}})}}^{n} B^{G_{i}^{k}}s_{i}^{k}(a) \cdot B^{\{a\}}1 \preccurlyeq$$

$$\sum_{\substack{i=1\\a \notin b(B^{G_{i}^{k}})}}^{n} (B^{G_{i}^{k}}s_{i} - B^{\{a\}}(B^{G_{i}^{k}}s_{i})) + B^{E \setminus \{a\}}Uf_{0}(a) \cdot B^{\{a\}}1$$

and

$$\overset{m}{\underset{k=1}{\Upsilon}} \left(\sum_{i=1}^{n} P_B G_i^k s_i^k \right) \preccurlyeq \sum_{k=1}^{n} u^k + \overset{m}{\underset{k=1}{\Upsilon}} v^k.$$

Since $B^{G_i^k} s_i^k - B^{\{a\}} B^{G_i^k} s_i^k \in \mathcal{E}(\mathcal{U}')$ and $(B^{G_i^k} s_i^k - B^{\{a\}} B^{G_i^k} s_i^k)(a) = 0$, it follows that

$$[\mathop{\Upsilon}\limits_{k=1}^{m}(\sum_{i=1}^{m}P_{B^{G_{i}^{k}}}s_{i})](a) \leq B^{E \setminus \{a\}}Uf_{0}(a).$$

Hence $P(Uf_0)(a) \leq B^{E \setminus \{a\}} Uf_0(a), \ P(Uf_0) \leq B^{E \setminus \{a\}} Uf_0.$

Theorem 3.5. The kernel P is an exact subordination operator with respect to \mathcal{U} and the sub-Markovian resolvent $\mathcal{V} = (V_{\alpha})_{\alpha \geq 0}$ on (E, \mathcal{B}) associated with P by

 $Vf = Uf - PUf \ \forall \ f \in p\mathcal{B}, Uf > 0$

is exact subordonate to \mathcal{U} and $\mathcal{E}(\mathcal{V}) = \mathcal{E}(\mathcal{U}')$.

Proof. Since by Theorem 3.3 and Theorem 3.5 we have $P(\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}) \subset \mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ and

 $s, t \in bp\mathcal{B} \cap \mathcal{E}(\mathcal{U}), s \leq t \Rightarrow Ps \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Pt \preccurlyeq_{\mathcal{E}(\mathcal{U}')} s,$

$$s \in bp\mathcal{B} \cap \mathcal{E}(\mathcal{U}), u \in bp\mathcal{B} \cap \mathcal{E}(\mathcal{U}'), Ps \preccurlyeq_{\mathcal{E}(\mathcal{U}')} u \leq s \Rightarrow u \in b\mathcal{E}(\mathcal{U}).$$

From Theorem 1.10 it follows that P is an exact subordination operator with respect to \mathcal{U} such that any $M \in \mathcal{B}$, $M \subset E \setminus E_P$ is absorbent with respect \mathcal{U}' . Particularly any point $a \in E \setminus E_P$ is absorbent with respect to \mathcal{U}' and so by Theorem 3.4 we have $a \in E_P$ contradiction. Hence $E = E_P$ and therefore from Theorem 1.10 we get $\mathcal{E}(\mathcal{V}) = \mathcal{E}(\mathcal{U}')$.

Theorem 3.6. Let Q be a kernel on (E, \mathcal{B}) such that $Q(b\mathcal{E}(\mathcal{U})) \subset b\mathcal{E}(\mathcal{U})$ and such that

$$s, t \in bp\mathcal{B} \cap \mathcal{E}(\mathcal{U}), s \leq t \Rightarrow Qs \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Qt \preccurlyeq_{\mathcal{E}(\mathcal{U}')} t.$$

Then the following assertions are equivalent:

1) Q is an exact subordination operator with respect to \mathcal{U} such that the set $\{s-Qs/s \in \mathcal{E}(\mathcal{U}) \cap p\mathcal{B}\}$ is solid in $\mathcal{E}(\mathcal{U}')$ with respect to the natural order.

2) For any $u \in \mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$ such that there exists $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ with

$$Qs \preccurlyeq_{\mathcal{E}(\mathcal{U}')} u \leq s$$

we have $u \in b\mathcal{E}(\mathcal{U})$.

3) For any σ -balayage B we have

$$P_B s \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Q s \quad \forall s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$$

4) $Ps \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Qs \quad s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}.$

Proof. From Theorem 1.10 it follows that $1) \Leftrightarrow 2$.

2) \Rightarrow 3). Let *B* be a σ -balayage. We show that for any $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ we have Bs - 'Bs = Q(Bs) - 'BQ(Bs). Indeed, since $'B(Bs - Q(Bs)) \leq Bs - QBs$ and $'B(Bs - QBs) \in b\mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$, it follows that the function

$$u := 'B(Bs - QBs) + Q(Bs)$$

belongs to $b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ and $u \leq Bs$.

On the other hand we have

$$u \ge 'BBs = 'Bs$$
 on $b(B)$

and so $u \geq Bs$. Therefore u = Bs and so Bs - 'Bs = Q(Bs) - 'BQ(Bs). From the relation Bs - 'Bs = Q(Bs) - 'B(Q(Bs)) we get $P_Bs = (Bs - 'Bs) \Upsilon_{\mathcal{E}(\mathcal{U}')} 0 \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Q(Bs) \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Qs$. 3) \Rightarrow 4). For any $f \in \mathcal{F}$ we have

$$PUf = \Upsilon_{\mathcal{E}(\mathcal{U}')} \left\{ \sum_{i=1}^{n} P_{B^{G_i}} s_i \mid \sum_{i=1}^{n} s_i \leq Uf, s_i \in \mathcal{S}_0, G_i \in \mathcal{G}_0 \right\}$$
$$\preccurlyeq_{\mathcal{E}(\mathcal{U}')} \left\{ \sum_{i=1}^{n} Qs_i \mid \sum_{i=1}^{n} s_i \leq Uf, s_i \in \mathcal{S}_0 \right\} \preccurlyeq_{\mathcal{E}(\mathcal{U}')} QUf.$$

Since $bp\mathcal{B}$ is the monotone class in $bp\mathcal{B}$ generated by \mathcal{F} we deduce

$$Ps \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Qs \quad \forall s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}.$$

4) \Rightarrow 2). Let $s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$ and let B be a σ -balayage. Let $u \in b\mathcal{E}(\mathcal{U}') \cap p\mathcal{B}$ be such that $Qs \preccurlyeq_{\mathcal{E}(\mathcal{U}')} u \leq s$. We have $Ps \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Qs \preccurlyeq_{\mathcal{E}(\mathcal{U}')} u \leq s$ and therefore, by Proposition 2.4, $u \in b\mathcal{E}(\mathcal{U})$.

Proposition 3.7. Let Q be an exact subordination operator with respect to \mathcal{U} such that

$$s, t \in bp\mathcal{B} \cap \mathcal{E}(\mathcal{U}), s \leq t \Rightarrow Qs \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Qt \preccurlyeq_{\mathcal{E}(\mathcal{U}')} t,$$

 $Ps \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Qs \quad \forall s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}.$

Let further \mathcal{W} be the Markovian resolvent of kernel on (E, \mathcal{B}) having as initial kernel

$$Wf := Uf - QUf \quad \forall f \in p\mathcal{B}, Uf < \infty.$$

Then there exists $g \in p\mathcal{B}^{(u)}$, $0 \leq g \leq 1$ such that

$$QUf = P(U(gf)) + U((1-g)f) \quad \forall f \in p\mathcal{B}.$$

If moreover $E_Q = E$ then we have

$$\mathcal{E}(\mathcal{W}) = \mathcal{E}(\mathcal{U}').$$

Proof. Let $\mathcal{V} = (V_{\alpha})_{\alpha \geq 0}$ be the sub-Markovian resolvent of kernels on (E, \mathcal{B}) having as initial kernel V where Vf = Uf - PUf, $f \in p\mathcal{B}$, $Uf < \infty$. From

$$Ps \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Qs \quad \forall s \in b\mathcal{E}(\mathcal{U}) \cap p\mathcal{B}$$

we deduce

$$Wf \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Vf = Uf - PUf \quad \forall f \in p\mathcal{B}, f \leq f_0$$

where $f_0 \in p\mathcal{B}$, $0 < f_0 \leq 1$, $Uf_0 < \infty$. From $Wf = Uf - QUf \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Uf - PUf = Vf$ for all $f \in p\mathcal{B}$, $f \leq f_0$ it follows that there exists $g \in pb\mathcal{B}^{(u)}$, $0 \leq g \leq 1$ such that

$$Wf = V(gf) \quad \forall f \in p\mathcal{B}, f \leq f_0.$$

i.e.

$$Uf - QUf = U(gf) - PU(gf) \quad \forall f \in p\mathcal{B}, f \leq f_0$$
$$QUf = PU(gf) + U((1 - g)f) \quad \forall f \in p\mathcal{B}, f \leq f_0$$

and so Q(Uf) = P(U(gf)) + U((1-g)f) $f \in p\mathcal{B}$.

Assume that $E_Q = E$. Then $Wf_0 > 0$ on E and so for any $t \in \mathcal{E}(\mathcal{U}')$ we have $\inf(t, nWf_0) \in \mathcal{E}(\mathcal{W})$ for all n. Consequently $t \in \mathcal{E}(\mathcal{W})$ and so since $\mathcal{E}(\mathcal{W}) \subset \mathcal{E}(\mathcal{U}')$ we get $\mathcal{E}(\mathcal{W}) = \mathcal{E}(\mathcal{U}')$.

Acknowledgement. The authors acknowledge support from Deutsche Forschungsgemeinschaft, through Project GZ:436 RUM 113/23/0-1 and from the Romanian Ministry of Education and Research (CNCSIS grant No. 33079/2004, code 1603).

References

- H. Been Saad, Généralisation des noyaux V_h et applications. In: Lecture Notes in Math. 196; Springer Verlag 1984, pp. 14-39.
- [2] L. Beznea and N. Boboc, Excessive functions and excessive measures: Hunt's theorem on balayages, quasi-continuity. In: Classical and Modern Potential Theory and Appl., (NATO ASI Series C 430), Kluwer Acad. Publish. 1994, pp. 71-92.
- [3] L. Beznea and N. Boboc, Kuran's regularity criterion and localization in excessive structures. Bull. London Math. Soc. 28(1996), 273-282.
- [4] L. Beznea and N. Boboc, Potential Theory and Right Processes, Kluwer Acad. Publish. 2004.
- [5] N. Boboc and Gh. Bucur, Excessive and supermedian functions with respect to subordinated resolvent of kernels. Rev. Roum. Math. Pures et Appl. 39(1994), 875-878.
- [6] N. Boboc and Gh. Bucur, Dilation operators in excessive structures; existence and uniqueness, In: Potential Theory ICPT 94, Walter de Gruyter& Co 1996, pp. 311-339.
- [7] J. Franchi anf Y. Le Jan, Sur les trajectoires intrinsèques des processus de Markov et le théorèm de Shih.
 Ann. Inst. H. Poincaré Probab. Statist. 20(1984), 103-126.
- [8] P.A. Meyer, Semi-groups en dualité, In: Sém. de Th: du Potentiel (Brelot-Choquet-Deny) 5^eannée: 1960/61, Secrétariat math. Paris 1961, no.10, p. 1-14.
- [9] P.A. Meyer, Fonctionelles multiplicatives et additives de Markov, Ann. Inst. Fourier (Grenoble) 12(1962), 125-230.
- [10] G. Mokobodzki, Operateur de subordination des resolventes 1983 (unpublished manuscript).
- [11] C.T. Shih, Markov processus where hitting distributions are dominated by those of a given process. Trans. Amer. Math. Soc. 129(1967), 157-179.