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Abstract

Finite dimensional realizations for a Heath, Jarrow and Morton type
interest rate model with jumps are discussed in the case where the in-
terest rate model can be described by a linear stochastic differential
equation. The existence of such finite dimensional realizations can be
proven under some assumptions on the Lie algebra generated by the
coefficients. These finite dimensional realizations can under certain con-
ditions be expressed in terms of invariant tangential manifolds similarly
to the purely Wiener driven case studied in previous work by, e.g., T.
Björk, D. Filipovic, J. Teichmann and the present author.
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1 Introduction

The problem of finite dimensional realizations for Heath, Jarrow and Morton type interest
rate models is well discussed in the literature. For example the purely Wiener driven case
has been studied in [Bj-S], [B-C] and in a completely general Hilbert space setting in [L1]
and [Fi-T]. Also certain situations with jumps have been discussed, e.g. in [B-DM-K-R]
and [B-K-R]. In the purely Wiener driven case one obtains a representation result of the
form: if there exists a finite dimensional realization at a certain point then there exists
also an invariant tangential manifold for the same stochastic differential equation at that
point. The problem of characterizing finite dimensional realizations by invariant tangen-
tial manifolds, however, is in this situation with jumps much more complicated, since
invariance might get lost whenever there is a jump, and moreover there is no obvious way
of defining tangency at the jump times. However, there are certain situations where the
same methodology can be applied to derive finite dimensional realizations. This is e.g.
the case when the interest rate curve can be described by a stochastic differential equation
with deterministic coefficients as discussed in [B-G]. In this paper we will study the more
general case when the interest rate curve r can be described by a linear stochastic differ-
ential equation with stochastic coefficients. The existence of finite dimensional realizations
can be proven under some assumptions on the Lie algebra generated by the coefficients
and finite dimensional realizations can under certain conditions be expressed in terms of
invariant tangential manifolds similarly to the purely Wiener driven case as studied, for
example, in [Bj-S], [B-C], [Fi-T], [L1]. Here we require the assumption of linearity in
the r -variable since then the solution of the stochastic differential equation for an initial
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point after the first jump is just the solution of the stochastic differential equation where
we subtract the jumps with initial point before the jump plus the solution of the same
stochastic differential equation with initial condition given by the value obtained just after
the first jump.

Let us remark that for the general jump diffusion case, i.e. where the interest rate curve
r is described by a general stochastic differential equation, an approximation of the un-
derlying geometry is needed. In fact a treatment of the general case was given in [L2]
by applying techniques of geometric measure theory. One can then represent finite di-
mensional realizations by approximating tangent spaces instead of invariant tangential
manifolds.

2 The General Setting

2.1 The Space of Forward Rates

Consider a financial market living on a stochastic basis satisfying the usual conditions, i.e.
on a filtered probability space (Ω,A,F = (Ft)t≥0, P ).

Definition 2.1 Let (St)t≥0 be the family of right-shifts, Stf = f(t+ ·), t ∈ R+, defined
on the space L2(R+).

Proposition 2.2 St : L2(R+) → L2(R+) is for every t ≥ 0 a bounded linear operator on
L2(R+). Moreover, (St)t≥0 is a strongly continuous semigroup of contractions generated
by the (unbounded) operator Ã defined by Ãh = d

dxh on

D(Ã) :=
{

h ∈ L2(R+) : Ãh ∈ L2(R+), and h(0) = 0
}

= H1,2
0 (R+)

(actually h should be thought of as a Borel version of an L2 -class).

Remark 2.3 The boundary condition h(0) = 0 in the domain of the operator Ã arises
naturally since for f ∈ L2(R+) such that also f ′ ∈ L2(R+) we have

∫ y

0
f(x)f ′(x)dx

= |f(y)|2 − |f(0)|2 −
∫ y

0
f ′(x)f(x)dx.

Since the integrals converge as x → +∞ to
∫∞
0 f(x)f ′(x)dx, respectively

∫∞
0 f ′(x)f(x)dx,

|f(x)|2 tends to a limit as x →∞. Since f ∈ L2(R+) we have necessarily

lim
x→∞ |f(x)|2 = 0.

Hence the boundary condition for x → ∞ is satisfied automatically. Thus we only
have to impose the condition f(0) = 0 on the functions f ∈ L2(R+) to achieve that
f ∈ D(Ã). Hence the domain of Ã corresponds to the Sobolev space H1,2

0 (R+) of
functions in L2(R+) which possess a weak derivative lying again in L2(R+) and satisfying
the boundary condition f(0) = 0 (expressed by the index 0 ).
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Proof of Proposition 2.2. We first show that St is bounded. For t ≥ 0 we have (with
‖ · ‖L2 standing for ‖ · ‖L2(R+))

‖Sth‖2
L2 =

∫ ∞

0
h2(t + x)dx

=
∫ ∞

t
h2(x)dx ≤ ‖h‖2

L2 ,

hence ‖St‖L(L2(R+),L2(R+)) ≤ 1, i.e. St is for every t ≥ 0 a contraction.
Now we prove that Ã is the generator of the C0 -semigroup (St)t≥0. Therefore we have
to show that for every h ∈ D(Ã)

∥∥∥∥
Sth− S0h

t
− Ãh

∥∥∥∥
L2

−→ 0

for every t ≥ 0. But

∥∥∥∥
Sth− S0h

t
− Ãh

∥∥∥∥
L2

=
∫ ∞

0

∣∣∣∣
1
t
(h(t + x)− h(x))− h′(x)

∣∣∣∣
2

dx

=
∫ ∞

0

∣∣∣∣
1
t

∫ t

0
(h′(s + x)− h′(x))ds

∣∣∣∣
2

dx

≤
∫ ∞

0

1
t

∫ t

0

∣∣h′(s + x)− h′(x)
∣∣2 ds · dx

≤ 1
t

∫ t

0

∫ ∞

0
|h′(s + x)− h′(x)|2dxds,

which vanishes for t → 0 since h′ ∈ L2(R+) and for every f ∈ L2(R+) the function

s 7→
∫ ∞

0
|f(s + x)− f(x)|2dx

is continuous on [0,∞) and vanishes at 0. Thus Ã is the infinitesimal generator of the
semigroup (St)t≥0. 2

The operator Ã is skew symmetric since for any two functions f, g ∈ D(Ã) we have

(1)

(Ãf, g)L2 =
∫ ∞

0
Ãf(x)g(x)dx

=
∫ ∞

0
f ′(x)g(x)dx

= −
∫ ∞

0
f(x)g′(x)dx = −(f, Ãg)L2 .

Proposition 2.4 The operator Â defined by Âh = h′ with D(Â) = H1,2(R+) (without
boundary condition) is an extension of Ã and Â 6= Ã, hence iÃ is not self-adjoint.

Proof. Equation (1) holds also when f ∈ D(Ã) and g ∈ H1,2(R+) without boundary
condition. Hence there exists an operator Â with

Âh(x) = h′(x) and D(Â) = H1,2(R+).
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Vice versa, let h ∈ D(Â) and Âh = h∗. Then for all f ∈ D(Ã) the following holds

(Ãf, h)L2 = (f, h∗)L2

=
∫ ∞

0
f(x)h∗(x)dx

= −
∫ ∞

0
f(x)

d

dx

(
−

∫ x

0
h∗(y)dy + C

)
dx

where C is any arbitrary constant. Then by using partial integration it follows that

(2) (A∗f, h)L2 =
∫ ∞

0
f ′(x)

(
−

∫ x

0
h∗(y)dy + C

)
dx

since f satisfies, as an element of D(Ã), the boundary condition. From (2) we obtain
for arbitrary f ∈ D(Ã) the following relation

(3)

∫ ∞

0
f ′(x)

(
h(x)−

∫ x

0
h∗(y)dy + C

)
dx

=
∫ ∞

0
f ′(x)h(x)dx−

∫ ∞

0
f ′(x)

(∫ x

0
h∗(y)dy + C

)
dx

=
∫ ∞

0
f ′(x)h(x)dx +

∫ ∞

0
f(x)h∗(x)dx

=
∫ ∞

0
f ′(x)h(x)dx−

∫ ∞

0
f ′(x)h(x)dx = 0.

Compute C from the equation
∫ ∞

0

(
h(x)−

∫ x

0
h∗(y)dy + C

)
dx = 0

and take afterward for f the function

f0(x) :=
∫ x

0

(
h(y)−

∫ y

0
h∗(u)du + C

)
dy,

which obviously belongs to D(Ã). Then formula (3) becomes
∫ ∞

0

∣∣∣∣h(x)−
∫ x

0
h∗(y)dy + C

∣∣∣∣
2

dx = 0.

Hence,

h(x)−
∫ x

0
h∗(y)dy + C = 0.

Thus the following equation holds Lebesgue almost everywhere

h′(x) = h∗(x).

Consequently the domain of the operator Â consists of all functions h ∈ H1,2(R+) and
we have

Âh(x) = h′(x).

Thus iÃ is not self-adjoint, since the functions in D(Ã) satisfy the boundary condition
and the functions in D(Â) do not necessarily have this property. Hence Ã 6⊆ Â. 2

Proposition 2.5 There does not exist a skew symmetric strict extension of Ã on L2(R+).
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Proof. The domain of such an extension ˜̃A would have to contain a function H ∈ L2(R+)
which does not vanish for x = 0. Then, however, we would have

( ˜̃AH, H)L2 =
∫ ∞

0
H ′(x)H(x)dx

= |H(0)|2 −
∫ ∞

0
H(x)H ′(x)dx

6= −(H, ˜̃AH)L2

which is impossible. 2

Proposition 2.6 Ã is on L2(R+) a maximal skew symmetric operator (in the sense of
[AcGl]).

Proof. Ã maximal follows from the Proposition above. 2

Now define A := Â. Then A is defined on H1,2(R+). Since every Hilbert space is reflex-
ive, we can apply Lemma 10.1 and Corollary 10.6 in [Pa], pages 39 and 41, respectively,
to obtain that the adjoint semigroup S∗t of St is again a C0 -semigroup of contrac-
tions on

(
L2(R+)

)∗ = L2(R+), where the adjoint S∗t of St is a linear operator from
D(S∗t ) ⊂ L2(R+) into L2(R+).

Proposition 2.7 The operator A = Â is the infinitesimal generator of the adjoint semi-
group S∗t .

Proof. The dual operator P ∗ of a linear operator P from a Banach space X into
another Banach space Y is defined by the following equation

(x, P ∗y∗)X = (Px, y∗)Y ∗

for x ∈ X and y∗ ∈ Y ∗. Since
(
L2(R)

)∗ = L2(R) we obtain for the operator St on
L2(R) the following identity

(Stf, g)L2 =
∫ ∞

−∞
f(t + x)g(x)dx =

∫ ∞

−∞
f(x)g(x− t)dx = (f, S−tg)L2 .

Since the adjoint of the operator St on the L2 -space on the whole real line when re-
stricted to the positive real line should coincide with the adjoint of the operator St on(
L2(R+)

)∗ = L2(R+) we obtain

(S∗t f)(x) = f(x− t)

on L2(R+), such that x− t ≥ 0. Then the Proposition follows similarly to the proof of
Proposition 2.2, in which we did not use the boundary condition. 2

Now we can define the iterated operators An, n ∈ N, recursively by

D(An) =
{
h ∈ D(An−1)|Ah ∈ L2(R+)

}
= Hn,2(R+).

Then

D(A∞) :=
∞⋂

n=1

Hn,2(R+) = H∞,2(R+)

since Hn,2(R+) ⊂ Hn−1,2(R+) for every n ∈ N. This is a Hilbert space with inner
product given by

(f, g)H∞,2 :=
∑

n∈N
(f (n), g(n))L2 .
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Assumption 2.8 The Hilbert space H of forward curves is assumed to satisfy the fol-
lowing properties:

(1) Assume that the Hilbert space H can be continuously embedded into the Hilbert
space L2(R+) (that is, for every x ∈ R+ the pointwise evaluation evx : h 7→ h(x)
is a continuous linear functional on H ).

(2) Assume that H is separable.

Remark 2.9 For any space H as in Assumption 2.8 one has that the right-shifts (St)t≥0

define a strongly continuous semigroup of operators on H with infinitesimal generator
A.

In fact, we only have to choose the mapping ι : H → L2(R+), which defines the embedding
of H in L2(R+). This mapping is by assumption continuous. Since the right-shifts St

define a continuous semigroup of operators in the space H = L2(R+) (see Proposition
2.2) the result follows by continuity of ι, when we replace in the proof the function
h ∈ L2(R+) by ι(h̃), which is again an element of L2(R+) where h̃ ∈ H. For simplicity
of computations we will always work with H = L2(R+) in the following.

For the following investigations the next Definition will be quite useful.

Definition 2.10 Let B :
(
C ∩ L2(R+)

)× (
C ∩ L2(R+)

) → (
C ∩ L2(R+)

)
be defined by

B(f, g)(x) := f(x)
∫ x

0
g(y)dy

for x ∈ R+. We write shortly B(f) instead of B(f, f).

Proposition 2.11 B :
(
C ∩ L2(R+)

) × (
C ∩ L2(R+)

) → (
C ∩ L2(R+)

)
defines a con-

tinuous, bilinear mapping.

Proof. Bilinearity is obvious. We first prove continuity in the first component

‖B(f1, g)−B(f2, g)‖2
L2 =

∫ ∞

0

∣∣∣∣f1(x)
∫ x

0
g(y)dy − f2(x)

∫ x

0
g(y)dy

∣∣∣∣
2

dx

=
∫ ∞

0
|f1(x)− f2(x)|2 ·

∣∣∣∣
∫ x

0
g(y)dy

∣∣∣∣
2

dx

≤ ‖g‖2
L2 ·

∫ ∞

0
|f1(x)− f2(x)|2 dx

= ‖g‖2
L2 · ‖f1(x)− f2(x)‖2

L2

which tends to 0 as f1 tends to f2 in L2 since g ∈ L2(R+), hence the norm |g|2L2 is
bounded. Continuity in the second component follows similarly. 2

Remark 2.12 One can show similarly to Remark 2.9 that for any space H in Assump-
tion 2.8 the mapping B defined on H ×H is bilinear and continuous.

Condition (2) in Assumption 2.8 is needed in our setting since the stochastic differential
equation of the forward rates, which we will consider in the sequel, is a general infinite
dimensional one in the sense of [D-Z], that is it is driven in particular by an infinite
dimensional Q -Wiener process with values in the Hilbert space H. To define proper
integration with respect to such a process, it is essential to assume that H is separable.

6



2.2 The Driving Processes

Let Q be a strictly positive symmetric linear operator on H with TrQ < ∞. Then
there exists an orthonormal system {ek}k≥1 in H and a bounded sequence {λk}k≥1 of
positive real numbers such that

Qek = λkek for k ∈ N.

Let {Wt}t≥0 be an H -valued Q -Wiener process in the sense of [D-Z], that is:

Definition 2.13 An H -valued stochastic process {Wt}t≥0 is called a Q-Wiener process
if

(i) W0 = 0

(ii) W has continuous trajectories,

(iii) W has independent increments,

(iv) the law L(Wt −Ws) = N (0, (t− s)Q) for t ≥ s ≥ 0.

If a process {Wt}t∈[0,T ] satisfies (i)-(iv) for t, s ∈ [0, T ] then we say that W is a Q -
Wiener process on [0, T ].

Proposition 2.14 Assume that W is a Q-Wiener process, with TrQ < +∞. Then
the following statements hold.

(i) W is a Gaussian process on H0 and

E [W (t)] = 0 and Cov [W (t)] = tQ, t ≥ 0.

(ii) For arbitrary t, the process W has the expansion

(4) W (t) =
∞∑

j=1

√
λjW

j(t)ej

where

W j(t) =
1√
λj

〈W (t), ej〉, j = 1, 2, . . . ,

are real-valued Brownian motions mutually independent on (Ω,A, P ) and the series
in (4) is convergent in L2(Ω,A, P ).

Proof. See [D-Z], Proposition 4.1, page 87. 2

It follows from the expansion of the Q -Wiener process, that the quadratic variation of
the stochastic process StdWt for some suitable process St is given by

(5) 〈〈StdWt〉〉 = (StQ
1/2)(StQ

1/2)∗dt,
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since
(StdWt)

2 = 〈StdWt, StdWt〉H

=
∞∑

j,k=1

〈
St

√
λjdW j

t ej , St

√
λkdW k

t ek

〉
H

=
∞∑

j,k=1

〈
StQ

1/2ejdW j
t , StQ

1/2ekdW k
t

〉
H

=
∞∑

j=1

〈
StQ

1/2ej , StQ
1/2ej

〉
H

dt

= Tr
[
(StQ

1/2)(StQ
1/2)∗

]
dt.

Hence (StdWt)
2 − 〈〈StdWt〉〉 is a local martingale (in the sense of, for example, [D-Z]).

Let µ be a marked point process on R+×E with compensator ν(dt, dx) on a measurable
Blackwell space (E, E) (for the definition and properties of such a space see for example
[De-Me] or [Ge]).

Assumption 2.15 (1) Suppose that the marked point process µ has only finitely
many jumps in every finite time interval.

(2) Assume that the marked point process is càdlàg.

(3) We also assume that µ is an optional P̃ − σ -finite marked point process.

Then by theorem II.1.8. in [J] we know that there exists a unique compensator, denoted by
ν, and we assume that ν(ω; [0, t]×E) < ∞ P -a.s. for ω ∈ Ω and for finite t . Moreover
we assume that the marked point process µ has an intensity λ, i.e. the P -compensator
ν is of the form

ν(dt, dx) = λ(t, dx)dt,

where λ(t, A) is a predictable process for all A ∈ E . We denote by µ̄ the local martingale

µ̄ := µ− ν.

It is not assumed that W and µ are independent. The filtration F = (Ft) is the natural
filtration, generated by W and µ , i.e.

Ft = σ {Ws, µ([0, s]×A), B; 0 ≤ s ≤ t, A ∈ E , B ∈ N} ,

where N is the set of all P -null sets of A. Then (Ft)t∈[0,T ] is right continuous since the

processes W and µ are right continuous. Moreover
(
Ω,A, P, (Ft)t∈[0,T ]

)
is a complete

right continuous stochastic basis.

3 Interest Rate Models with Jumps

We denote by T ∈ R+ the time-of-maturity and by x = T − t the time-to-maturity.
Now let

α : ([0, T ]×H × Ω; B([0, T ])⊗ B(H)⊗A) −→ (H,B(H))

be a measurable, adapted, integrable, stochastic process and

β : ([0, T ]×H × Ω; B([0, T ])⊗ B(H)⊗A) −→ (L2(U0, H),B(L2(U0,H)))
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a measurable, adapted, square integrable stochastic process, where L2(U0,H) is the space
of Hilbert-Schmidt operators from U0 in H, and

U0 := Q1/2(H).

We remark that the space U0 is separable. Furthermore, let

δ : ([0, T ]×H ×E × Ω; B([0, T ])⊗ B(H)⊗ E ⊗A) −→ (H,B(H))

be a locally bounded, predictable stochastic process with values in the Hilbert space H.
Let δ be such that ∫ T

0

∫

E
‖δ(t, rt, y)‖H µ(dt, dy) < +∞.

Then the integral ∫

E
δ(·, r·, y)µ(·, dy)

is well defined since δ is measurable with respect to E and µ(A, dy) is a measure on E
for fixed A ∈ B([0, T ]). Since by assumption 2.15 the marked point process µ has càdlàg
paths which are of finite variation, we obtain that µ is a π -process and the integral

∫ t

0

∫

E
δ(s, rs, y)µ̄(ds, dy)

is well defined (see [Met-P] for the definition of the integral with respect to a π -process
and properties of this integral). Moreover the integral above is itself a càdlàg process. For
such processes we have, in particular, a general Itô formula (see [Met-P], page 45) which
we will essentially use in the following.
The coefficients α and δ take values in the Hilbert space H and β takes values in
L0

2(U0,H). Sometimes we will write for example α(t, rt(T )) which shall denote that we
evaluate α(t, rt) at the maturity times T ∈ R+, i.e. α(t, rt(T )) should be understood
as α(t, rt)(T ). This is well defined since H can be continuously embedded in the space
L2(R+,R) by definition of our Hilbert space H and hence α(t, rt(T )) is real valued.
Similarly β(t, rt(T )) takes values in L0

2(U0,R) and hence β(t, rt(T ))dWt is real valued.

Now consider the following stochastic differential equation

(6)
df(t, T ) = α(t, f(t, T ))dt + β(t, f(t, T ))dWt

+
∫

E
δ(t, f(t, T ), y)(µ(dt, dy)− ν(dt, dy)).

This describes the forward rate dynamics. The forward rate curve at time t can also
depend on the past of the interest rate curve until the time t.

Let P (t, T ) for t ∈ [0, T ] denote the price process of the default-free zero-coupon bond
with nominal value set to one unit, which is maturing at time T. Thus we have for time t
equal to the maturity time T that P (T, T ) = 1, and we assume that P (t, T ) is strictly
positive. The bond price dynamics are defined via the forward rate process f(t, T ) such
that

P (t, T ) = exp
{
−

∫ T

t
f(t, u)du

}
, t ≤ T.

This is well defined since f(t, ·) ∈ H is an integrable function of the maturity time T.
Then P (t, T ) is continuously differentiable with respect to the maturity time T, and
hence the forward rate can also be characterized by

f(t, T ) =
−∂ ln P (t, T )

∂T
, t ≤ T.
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The short rate process rt is defined by rt = f(t, t). Moreover we assume that there exists
an asset B(t) that pays rt, i.e. if we invest one unit of money at time 0 in this asset
there is a payout at time t of

B(t)−1 := exp
(∫ t

0
rsds

)
.

B is also called the money market account and is usually taken as the numéraire so that
all other derivatives are discounted by this asset, i.e. they are expressed in units of this
asset. For example the discounted bond price process Z(t, T ) is given as

Z(t, T ) := P (t, T ) ·B(t) = exp
{
−

∫ t

0
rsds

}
· P (t, T ).

Since we will work with the process P (t, T ) for t ≥ 0 and not only with 0 ≤ t ≤ T we
simply set the value of P (t, T ) for t ≥ T to the amount we get if we invest the money
market account at time T in the money market account, i.e.

P (t, T ) := B(t)−1 ·B(T ).

In the following we are particularly interested in the forward rate dynamics, for which we
finally would like to find finite dimensional realizations. The short rate and bond price
dynamics can be handled analogously. In [B-K-R] relations for the finite dimensional case
are investigated, i.e. for the case when W is an m -dimensional Wiener process. Since we
want to apply methods from differential geometry and Fubini’s Theorem as well as Itô’s
Formula, we need a few more assumptions on the coefficients α, β, δ defining the process
in (6).

Assumption 3.1 1. The processes α, β and δ are smooth vector fields.

2. All processes are regular enough such that integration and differentiation can be
exchanged and the order of integration can be exchanged as well.

3. The coefficients are continuous in t and for finite t and T ≥ t we have
∫ T

0

∫ T

t
|α(s, f(s, u))| duds < ∞, and

∫ T

0

∫ T

t

∣∣∣βk(s, f(s, u))
∣∣∣
2
duds < ∞,

and ∫ T

0

∫ T

t

∫

E
|δ(s, f(s, u), y)|2 du ν(ds, dy) < ∞,

where βk(s, f(s, u)) = β(s, f(s, u))ek and {ek}k≥1 denotes an orthonormal basis
of the space U0.

As we will see below Assumption 3.1 (1) can only be satisfied when f(t, T ) ∈ D(A∞) since
otherwise α is not even defined. We will comment on this later on. The integrability
conditions in Assumption 3.1 (3.) are fulfilled if the coefficients are bounded for t, T and
f(t, T ) from a bounded set and ν([0, t]×E) < ∞ for finite t. Assumption 3.1 (2.) (also
used in [B-K-R]) is of course unprecise but it can indeed be made precise, however, at
the disadvantage of becoming ”rather technical” (for example involving conditions under
which the Fubini Theorem holds). From the context below it should, however, become
more clear what the condition actually involves.
For convenience reasons we extend the definitions of the coefficients by putting them equal
to zero for T > t.
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4 A Heath, Jarrow and Morton Drift Condition

Let the stochastic evolution of the forward rate be given by (6). We would like to know
under what conditions for the processes α, β and δ a martingale measure exists (see e.g.
[B-K-R], page 220). This is interesting since the existence of a martingale measure implies
the absence of arbitrage in the market.

Now it is convenient to use Musiela notation [Mu], i.e. to describe the forward rate in the
Heath, Jarrow and Morton model using a parametrization in terms of time-to-maturity in
contrast to time-of-maturity.
Therefore define r(t, ·) := f(t, t + ·), not to be confused with the spot rate rt := f(t, t),
and assume that the forward rate dynamics for the r -process are again given by the
stochastic differential equation

(7) drs = α(s, rs)ds + β(s, rs)dWs +
∫

E
δ(s, rs, y)µ̄(ds, dy)

where the coefficients satisfy the assumptions in the former section. Assume that the
initial rate r0 is in the domain of the operator A = ∂

∂x which, as we saw, is equal
to H1,2(R+). This ensures that there exists a strong solution of the above equation and
that rs is again in the domain of A. Obviously the coefficients are not the same as the
coefficients for the forward rate process f(t, T ) in the time-of-maturity parametrization.

Proposition 4.1 For the forward rates given by equation (7) the discounted price process
Z(t, T, r(t, T )) on [0, T ] satisfies the linear stochastic differential equation

dZ(t, T, r(t, T ))
Z(t−, T, r(t−, T ))

=
[
r(t, T − t)− r(t, 0) + A(t, T − t, r(t, T )) +

1
2

Tr
[(

S(t, T )Q1/2
)(

S(t, T )Q1/2
)∗]]

dt

+S(t, T − t, r(t, T ))dWt +
∫

E
D(t, T − t, r(t, T ), y)µ̄(dt, dy)

+
∫

E

(
eD(t,T−t,r(t,T ),y) − 1−D(t, T − t, r(t, T ), y)

)
µ(dt, dy)

where

A(t, T, r(t, T )) := −
∫ T

0
α(t, r(t, u))du

S(t, T, r(t, T )) := −
∫ T

0
β(t, r(t, u))du

D(t, T, r(t, T ), y) := −
∫ T

0
δ(t, r(t, u), y)du.

Proof. Let F (t, T ) := Z(t, T + t). Applying Fubini’s Theorem we get

ln F (t, T ) = −
∫ t

0
rsds−

∫ T

0
r(t, u)du

= −
∫ t

0
r(s, 0)ds−

∫ T

0
r(0, u)du−

∫ t

0

∫ T

0
α(s, r(s, u))duds

−
∫ t

0

∫ T

0
β(s, r(s, u))dudWs −

∫ t

0

∫

E

∫ T

0
δ(s, r(s, u), y)duµ̄(ds, dy).
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Now it follows from Itô’s Formula (see e.g. [Met-P] for a general Itô Formula) that

dF (t, T )
F (t−, T )

=
[
−r(t, 0) + A(t, T, r(t, T )) +

1
2

Tr
[(

S(t, T )Q1/2
) (

S(t, T )Q1/2
)∗]]

dt

+S(t, T, r(t, T ))dWt +
∫

E
(exp(D(t, T, r(t, T ), y))− 1)µ̄(dt, dy)

+
∫

E
(exp(D(t, T, r(t, T ), y))− 1−D(t, T, r(t, T ), y))ν(dt, dy)

and thus the proposition is proved since

dZ(t, T ) = dF (t, T − t)− ∂F (t, T − t)
∂x

dt = dF (t, T − t) + Z(t, T )r(t, T − t)dt.

2

Now we get an important result as a corollary which gives an equation for the drift
coefficient which is similar to the HJM drift condition.

Corollary 4.2 Assume that ν(dt, dy) = λt(dy)dt. Then P is a martingale measure if
and only if

∫ t

0

∫

E

(
eD(t,u,r(t,u),y) − 1−D(t, u, r(t, u), y)

)
λt(dy)dt < ∞

for finite t and u , and
(8)

r(t, x) = r(t, 0)−A(t, x, r(t, x))− 1
2

Tr
[(

S(t, T )Q1/2
)(

S(t, T )Q1/2
)∗]

−R(t, x, r(t, x))

(dPdt− a.e.) where

R(t, x, r(t, x)) :=
∫

E

(
eD(t,x,r(t,x),y) − 1−D(t, x, r(t, x), y)

)
λt(dy)

and the functions A(t, x, r(t, x)), S(t, x, r(t, x)) and D(t, x, r(t, x), y) are defined as above.

Remark 4.3 The relation (8) implies that r(t, x) is an absolutely continuous function
under an assumption such that the integrals given by the mappings A,S and R are all
well defined and
(9)

α(t, r(t, x)) = − ∂

∂x
A(t, x, r(t, x))

=
∂

∂x
r(t, x) +

1
2

∂

∂x
Tr

[(
S(t, x)Q1/2

)(
S(t, x)Q1/2

)∗]
+

∂

∂x
R(t, x, r(t, x))

=
∂

∂x
r(t, x) +

1
2

∞∑

k=1

∂

∂x

{
S(t, x)Q1/2ek · S(t, x)Q1/2ek

}
+

∂

∂x
R(t, x, r(t, x))

=
∂

∂x
r(t, x) +

∞∑

k=1

∂

∂x
S(t, x)Q1/2ek

(
S(t, x)Q1/2ek

)
+

∂

∂x
R(t, x, r(t, x))

=
∂

∂x
r(t, x) +

∞∑

k=1

βk(t, r(t, x))
∫ x

t
βk(t, r(t, v))dv +

∂

∂x
R(t, x)
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where βk(t, rt) = β(t, rt)Q1/2ek ∈ H for an orthonormal basis {ek}k≥1 of the Hilbert
space H (then the sequence {Q1/2ek}k≥1 is an orthonormal basis of U0 = Q1/2H since
Q is a strictly positive nuclear operator) and

βk(t, r(t, v)) = β(t, r(t, v))Q1/2ek ∈ R.

Moreover,
∂

∂x
R(t, x) = −

∫

E

(
eD(t,x,r(t,x),y) − 1

)
δ(t, r(t, x), y)λt(dy).

One can deduce from the forward rate equation and (9) that if the model is specified
under a martingale measure then the dynamics of the forward rate curve are given by the
following stochastic evolution equation

dr(t, x) = [Ar(t, x) + C(t, x, r(t, x))] dt + β(t, r(t, x))dWt +
∫

E
δ(t, r(t, x), y)µ̄(dt, dy)

where A := ∂/∂x, and

(10)
C(t, r(t, x)) :=

∞∑

k=1

βk(t, r(t, x))
∫ x

0
βk(t, r(t, v))dv

−
∫

E
(exp(D(t, x, r(t, x), y))− 1) δ(t, r(t, x), y)λt(dy).

We can indeed apply the operator A to the forward rate rt since we assumed r0 to be
in the domain of the operator A which ensures the existence of a strong solution of the
forward rate equation (7) lying again in the domain of the operator A. Hence Ar(t, x),
understood as Art evaluated at x, is well defined.

Hence we have the following
(generalized Heath-Jarrow-Morton drift condition)

(11) α(t, r(t, x)) = Ar(t, x) + C(t, x, r(t, x)).

The relation (11) generalizes the Heath-Jarrow-Morton drift condition for forward rate
models without jumps. The drift term α is uniquely determined by the diffusion volatility
β , the jump volatility δ and the intensity measure λ.

5 Finite Dimensional Realizations

Now we want to discuss the existence of finite dimensional realizations as introduced in
[Bj-S], [B-C], [B-G], [B-DM-K-R], [Fi], [Fi-T], i.e. one tries to find a model that is finite
dimensional and represents the original infinite dimensional model. For the purely Wiener
driven case this theory has been extended to our general Hilbert space setting in [L1] and
[Fi-T]. The case with driving Wiener process and marked point process with deterministic
coefficients has already been discussed in [B-G]. We will here derive a similar result for the
case where the interest rate process is defined by a linear stochastic differential equation.
Finally we will give an explicit example to illustrate our theory.
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5.1 The Continuous Case

We consider forward rate dynamics of the form

(12)





drt(x) = α(t, rt(x))dt + β(t, rt(x)) ◦ dWt +
∫

E
δ(t, rt(x), y)µ̄(dt, dy)

rs(x) = r0(x),





where {r0(x);x ≥ 0} is a given initial process for a fixed initial time s ∈ R+ and the
coefficients α, β and δ are defined as in section 3. Here µ̄ = µ−ν is the local martingale
associated to a general continuous marked process µ on a Blackwell mark space (E, E)
with compensator ν and with intensity measure λ.

Remark 5.1 We use the notation
∫
E δ(t, rt(x), y)µ̄(dt, dy) which is analogous to the

usual notation for a marked point process although in this section µ̄ shall denote a
continuous process instead of a jump process. The reason for this notation is that in the
next section where we discuss the jump diffusion case with linear coefficients we will use
the results for the continuous case and in this context the mentioned notation will turn
out to be useful.

We start with a Stratonovich stochastic differential equation for simplicity reasons, since
we then can apply the usual differentiation rules which are more convenient especially
since we will describe finite dimensional realizations by invariant manifolds. Of course,
one could also start with an Itô stochastic differential equation and transform it into a
Stratonovich stochastic differential equation (since rt is a semi martingale) which would
just add a term to the drift part. For such a forward rate process we have the following
relation between the drift and the volatilities which is in analogy to equation (11) for
continuous µ̄.

(13)
α(t, rt(x)) =

∂

∂x
rt(x) +

∞∑

k=1

βk(t, rt(x))
∫ x

0
βk(t, rt(v))dv

−
∫

E

(
eD(t,x,rt(x),y) − 1

)
δ(t, rt(x), y)λt(dy),

where βk = β · ek for some orthonormal basis {ek}k≥1 of U0 and D is defined by

D(t, x, rt(x), y) = −
∫ x

0
δ(t, rt(u), y)du.

We now define finite dimensional realizations in a fashion similar to the one used in the
theory for purely Wiener driven forward rates (cf. [L1]).

Definition 5.2 The stochastic differential equation (12) has a local d -dimensional re-
alization at the initial curve (r0, s) if there exist a point z0 ∈ V, smooth vector fields
a : V → H, b : V → L2(U0,H) and c : V × E → H on an open d -dimensional subset
V of H and a smooth mapping g : V → H with g(z0) = r0(x), such that r has a
local representation

(14) rt(x) = g(Zt)(x),

where Z is the solution of the V -valued Stratonovich stochastic differential equation:

(15)





dZt = a(Zt)dt + b(Zt) ◦ dWt +
∫

E
c(Zt, y)µ̄(dt, dy)

Zs = z0.
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Here ”local” means that the representation holds for all times t with s ≤ t < τ(r0, s)
P-a.s., where τ(r0, s) is a strictly positive stopping time for every (r0, s) ∈ D(A) × R+

with τ(r0, s) > s.

In analogy to [L1] we define the forward curve manifold G via the finitely parameterized
family of forward rate curves g.

Definition 5.3 Given a mapping g : V → D(A∞), the forward curve manifold G ⊆
D(A∞) is defined as G = Im[g] = {g(z) : z ∈ V }, where V is an open d -dimensional
connected subset of H.

Throughout this section we will suppose that the following assumptions holds.

Assumption 5.4 We assume that for every initial point r0 ∈ G , there exists a unique
strong solution in H of the forward rate equation

drt(x) = α(t, rt(x))dt + β(t, rt(x)) ◦ dWt +
∫

E
δ(t, rt(x), y)µ̄(dt, dy).

This is only possible if the initial point r0 is in the domain D(A) of the operator
A. Since we will later on impose a condition on the Lie algebra generated by drift and
volatilities, which is sufficient for the existence of finite dimensional realizations, and since
this Lie algebra is only defined for an initial point r0 ∈ D(A∞) we will here already
assume the same. Hence we suppose as above that the forward curve manifold G is a
subset of the space D(A∞) and we choose the initial point r0 in G. The reason why
we define the forward curve manifold G as a subset of D(A∞) instead of just taking an
initial point in D(A∞) and defining G ⊂ H is that we will later on give a condition for
the existence of finite dimensional realizations in terms of invariant tangential manifolds.
G is invariant if rt ∈ G for all times t near the initial time s (see Definition 5.8). The
solution rt however exists and is well defined only if rt is in the domain of the operator
A.
Moreover we will have to impose some assumption on the mapping g in equation (14) as
well as for the mapping g of the forward rate manifold G = Im[g].

Assumption 5.5 Let ġ and g′ denote the Fréchet derivatives of g : V → D(A∞) with
respect to the x and z variables respectively. We assume the following:

(1) The mapping z 7→ g(z) is injective and the Fréchet derivative g′(z) with respect
to the z -variable is injective for all z ∈ V.

(2) The mapping z 7→ ġ(z) is a continuous map from V to D(A∞).

Definition 5.6 Consider an interest rate model M, that is a specification of the volatility
functions β(t, rt) and δ(t, rt, y), as well as a given forward curve manifold G. The
drift term α is then uniquely determined via the generalized Heath-Jarrow-Morton drift
condition (13). We say that G is locally r -invariant under the action of the forward
rate process rt if, for each initial curve r0 ∈ G ⊂ D(A∞), there exists a strictly positive
( Q -a.s.) stopping time τ(r0, s), and a stochastic process Z with state space V and
possessing a Stratonovich differential of the form

dZt = a(Zt)dt + b(Zt) ◦ dWt +
∫

E
c(Zt, y)µ̄(dt, dy),
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such that, for all t with 0 ≤ t ≤ τ(r0), Q -a.s., we have the representation

rt(x) = g(Zt)(x),

for all x, Q -a.s.. If τ(r0) = +∞ for all r0 ∈ G ⊂ D(A∞), Q -a.s., we say that G is
globally r -invariant.

Proposition 5.7 Let r0 be an initial curve lying in D(A∞). Under Assumption 5.4 the
following statements are equivalent:

(i) There exists a local finite dimensional realization at the initial point (r0, s) for the
stochastic differential equation (12) given via a mapping g and a finite dimensional
process Z so that rt = g(Zt), and the mapping g satisfies Assumptions (1) and
(2) in 5.5.

(ii) There exists an invariant (w.r.t. the stochastic differential equation (12)) finite
dimensional submanifold G = Im[g] with r0 ∈ G ⊂ D(A∞) such that g satisfies
assumptions (1) and (2) in 5.5, where invariance is meant in the sense of Definition
(5.8).

Definition 5.8 A submanifold G in D(A∞) is said to be invariant under the action of
the stochastic differential equation (12), if rt ∈ G for all t ≥ s and all (r0, s) ∈ G×R+.
G is said to be locally invariant under the action of the stochastic differential equation
(12), if rt ∈ G for all s ≤ t < τ(r0, s) for every choice of (r0, s) ∈ G × R+ where
τ(r0, s) is a positive stopping time greater than s.

Proof. This proof is analogous to the proof of proposition 4.2 in [B-C].
If we know that there exists a locally finite dimensional realization of r near the initial
point r0 ∈ D(A∞) given via a mapping g satisfying assumptions 5.5 (1) and (2) then the
solution rt exists for t near the initial time s and is well defined, that is in particular
rt ∈ D(A∞). Hence Im[g] is a submanifold on D(A∞) and since g defines a finite
dimensional realization this obviously implies invariance by definition.
Conversely if we know that there exists an invariant finite dimensional submanifold G
with r0 ∈ G ⊂ D(A∞) we can write the initial point as r0 = g(z0) for a unique z0 ∈ V,
where

G = Im[g] = {g(z) : z ∈ V }
for some open finite dimensional subset V of H and g satisfies assumption 5.5. Thus
g is differentiable and g′(z0) is injective and we conclude that g′(z0) has a bounded left
inverse L , that is

Lg′(z0) = z0

is the identity on V. Define that mapping h : V → V by h(z) = Lg(z). Applying the
standard inverse function theorem (see e.g. [Sp]) to h we obtain (locally) a mapping
f0 : V → V such that

f0(h(z)) = z, for all z ∈ U,

where U is a neighborhood of z0. The mapping f : H → V defined by f(r) = f0(Lr)
is then a local left inverse of g, i.e. there exist neighborhoods U and W of z0 and
g(z0), respectively, such that f(g(z)) = z, for all z ∈ U. We now define the process Z
by Zt = f(rt). From the Stratonovich dynamics of r, the Z -dynamics are

dZt = f ′(rt)α(t, rt(x))dt + f ′(rt)β(t, rt(x)) ◦ dWt +
∫

E
f ′(rt)δ(t, rt(x), y)µ̄(dt, dy).
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Thus, Z is the solution to a finite dimensional stochastic differential equation (15) with

a(z) = f ′(g(z))α(g(z)),
b(z) = f ′(g(z))β(g(z)),

c(z, y) =
∫

E
f ′(g(z))δ(g(z), y)µ̄(·, dy).

By construction Zt = f(rt) and since g is inverse to f we have

g(Zt) = g(f(rt)) = rt

locally to r0, so we have proved that there exists a locally finite dimensional realization
near r0. 2

The proposition shows that under Assumptions 5.4 and 5.5 r -invariance is equivalent to
invariance in the sense of Definition 5.8.

Theorem 5.9 Let g be a mapping such that assumption (5.5) holds. The forward curve
manifold G = Im[g] given by Definition 5.3 is locally invariant for the forward rate
process rt(x) defined by the stochastic differential equation (12) with initial curve r0 ∈
G ⊂ D(A∞) if and only if the following conditions hold for all t ∈ [0, T ]

1. (consistent drift condition)

ġ(z) +
∞∑

k=1

Bβk(t, r)−
∫

E
δ(t, r, y)

(
eD(t,x,r,y) − 1

)
λt(dy) ∈ Im[g′(z)]

2. (consistent volatility conditions)

βk(t, r) ∈ Im[g′(z)]

δ(t, r, y) ∈ Im[g′(z)], ∀y ∈ E,

for all k ∈ N where r ∈ H such that r = g(z) for some z ∈ V and B is defined by

(Bh)(·) = h(·)
∫ ·

0
h(s)ds

and βk is defined as βk(t, r) := β(t, r)ek for all k ∈ N where {ek}k∈N is a countable
basis for the separable Hilbert space U0 = Q1/2H.

We remark that the sum
∞∑

k=1

Bβk(t, rt) =
∞∑

k=1

βk(t, rt(·))
∫ ·

0
βk(t, rt(s))ds

is well defined since β is a square integrable stochastic process.

As proved in Section 4, there exists a generalized Heath-Jarrow-Morton drift condition
between drift α and the other coefficients which can be described in our continuous case
as:

α(t, rt(x)) =
∂

∂x
rt(x) +

∞∑

k=1

βk(t, rt(x))
∫ x

s
βk(t, rt(s))ds

−
∫

E

(
eD(t,x,rt(x),y) − 1

)
δ(t, rt(x), y)λt(dy)
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and the forward rate equation can be written as

drt(x) =
( ∂

∂x
rt(x) +

∞∑

k=1

βk(t, rt(x))
∫ x

s
βk(t, rt(x))ds

−
∫

E

(
eD(t,x,rt(x),y) − 1

)
δ(t, rt(x), y)λt(dy)

)
dt

+β(t, rt(x)) ◦ dW (t) +
∫

E
δ(t, rt(x), y)µ̄(dt, dy).

Proof of Theorem 5.9. ⇒ Assume the forward curve manifold G is locally invariant
for the forward rate process rt defined by the stochastic differential equation (12). Thus
Proposition 5.7 states that there exists a locally finite dimensional realization at the initial
point r0 ∈ D(A∞) for (12). Taking the differential in the equation rt(x) = g(Zt)(x),
where Zt is a process as in definition 5.2 one obtains
(16)

drt(x) = g′(Zt)(x)a(Zt)dt + g′(Zt)(x)b(Zt) ◦ dWt +
∫

E
g′(Zt)(x)c(Zt, y)µ̄(dt, dy)

Moreover we have

drt(x) =
( ∂

∂x
rt(x) +

∞∑

k=1

Bβk(t, rt(x))

−
∫

E
δ(t, rt(x), y)

(
eD(t,x,rt(x),y) − 1

)
λt(dy)

)
dt

+β(t, rt(x)) ◦ dWt +
∫

E
δ(t, rt(x), y)µ̄(dt, dy).

Comparing this with (16) and equating coefficients produces the three conditions in the
theorem. Since the initial point r0, and thus Zs = z0, can be chosen arbitrarily in
D(A∞) the conditions hold in full generality.
⇐ Assume that the conditions in the theorem hold. The linear map g′(z) is injective for
each z by Assumption 5.5. Thus there exist unique a(z), b(z) and c(z, y) such that

(17)





g′(z)(x)a(z)(x) = ġ(z)(x) +
∞∑

k=1

Bβk(t, rt(x))

−
∫

E
δ(t, rt(x), y)

(
eD(t,x,rt(x),y) − 1

)
λt(dy),

g′(z)(x)bk(z)(x) = βk(t, rt(x)),

g′(z)(x)c(z, y)(x) = δ(t, rt(x), y),





where bk(z)(x) = (b(z)ek)(x) with {ek}k≥1 an orthonormal basis of U0 = Q1/2H. a, b
and c are defined on the finite dimensional subspace V of H and a(z)(x) ∈ R is
understood as a(z) ∈ H evaluated at the point x (similarly for b and c ). Since V
is finite dimensional, g′(z) has closed range. g′(z)∗g′(z) is invertible since g′(z) is
injective and has closed range (here g′(z)∗ denotes the adjoint of g′(z) ). If u = g′(z)x,
then H(z)u = x where

H(z) := (g′(z)∗g′(z))−1g′(z)∗.

H(z) is called left inverse of g′(z). Then

a(z) = H(z)α(g(z)),

b(z) = H(z)β(g(z)),

c(z, y) = H(z)δ(g(z), y),
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with

α(t, rt(x)) =
∂

∂x
rt(x) +

∞∑

k=1

Bβk(t, rt(x))

−
∫

E
δ(t, rt(x), y)

(
eD(t,x,rt(x),y) − 1

)
λt(dy).

The mapping g′(z) 7→ H(z) is smooth in the operator norm since the mappings

g′(z) 7→ g′(z)∗ and L 7→ L−1

for invertible L are smooth. Hence a, b and c are smooth functions and thus locally
Lipschitz continuous. Define Z as the unique strong solution to equation (15), and define
the infinite dimensional process un by u(t, x) = g(Z(t))(x). Then we obtain

dut = g′(Zt)a(Zt)dt + g′(Zt)b(Zt) ◦ dW (t) +
∫

E
g′(Zt)c(Zt, y)µ̄(dt, dy).

Considering equation (17) we see that u is a strong solution to the infinite dimensional
stochastic differential equation

drt(x) = α(t, rt(x))dt + β(t, rt(x)) ◦ dWt +
∫

E
δ(t, rt(x), y)µ̄(dt, dy).

with initial condition u0 = g(z0) ∈ D(A∞). For arbitrary r0 ∈ G ⊂ D(A∞) we may
uniquely select z0 ∈ V such that rs(x) = u0(x) = g(z0)(x). Thus r and u both
solve equation (12) with the same initial condition strongly. By uniqueness of the strong
solution to this forward rate equation, we obtain that rt = ut = g(Zt). Thus we have
shown r -invariance, and r -invariance obviously implies invariance w.r.t. the stochastic
differential equation (12) in the sense of Definition 5.8. 2

As a consequence we obtain the following proposition.

Proposition 5.10 Let r0 be a given initial curve in D(A∞) at a given initial time
s ≥ 0. The stochastic differential equation (12) has a locally finite dimensional realization
at (r0, s) so that g in (14) satisfies assumption 5.5 if and only if there exists a finite
dimensional tangential manifold G = Im[g] ⊂ D(A∞) for

{α(t, r), β(t, r)(u), δ(t, r, y) : u ∈ U0, y ∈ E}

for all t near the initial time s ∈ [0, T ] and all r ∈ H near the initial curve r0,
containing the initial curve r0 and so that g satisfies Assumption 5.5. The dimension
of a minimal realization coincides with the dimension of the minimal tangential manifolds.

Remark 5.11 Recall that U0 = Q1/2H. In the Proposition β has to depend on u ∈ U0

since β takes values in the space L0
2(U0,H). Hence we have to evaluate β at u for all

u ∈ U0. The existence of a finite dimensional tangential manifold G for

{α(t, r), β(t, r)(u), δ(t, r, y) : u ∈ U0, y ∈ E}

is then understood in the sense that for all t near the initial time s and for all r near
the initial curve r0 G should be tangential for

{α(t, r), β(t, r)(u), δ(t, r, y) : u ∈ U0, y ∈ E} .
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Proof. ⇒ Suppose there exists a locally finite dimensional realization at (r0, s) for the
stochastic differential equation (12) with initial point r0 ∈ D(A∞). Hence there exist a
point z0 in a finite dimensional subset V of H , smooth vector fields a : V → H and
b : V → L0

2(H) and c : V × E → H and a smooth mapping g : V → D(A∞) with
g(z0) = r0(x) such that r has the local representation

rt(x) = g(Zt)(x)

where Z is the solution of the finite dimensional Stratonovich stochastic differential equa-
tion: 




dZt = a(Zt)dt + b(Zt) ◦ dWt +
∫

E
c(Zt, y)µ̄(dt, dy).

Zs = z0.





Thus we define the forward curve manifold G as the image of the mapping g

G = Im[g] = {g(z) : z ∈ V } ⊂ D(A∞).

Obviously the initial point r0 is contained in G. This manifold is invariant under the
action of the stochastic differential equation (12) since rt ∈ G by definition. By applying
Theorem 5.9 we know that

α(t, rt(x)) ∈ TG(rt(x))

β(t, rt(x))(u) ∈ TG(rt(x))

δ(t, rt(x), y) ∈ TG(rt(x))

for all rt near r0 ∈ D(A∞) where α is given by the generalized Heath-Jarrow-Morton
drift condition (13) for the stochastic differential equation (12) as in Theorem (5.9). Hence
G is also tangential for

{α(t, rt), β(t, rt)(u), δ(t, rt, y) : u ∈ U0, y ∈ E} .

⇐ Now assume that there exists a finite dimensional tangential manifold G ⊂ D(A∞)
for

{α(t, rt), β(t, rt)(u), δ(t, rt, y) : u ∈ U0, y ∈ E} .

By Theorem 5.9 this is equivalent to the fact that G is invariant under the forward rate
process rt with initial point r0 ∈ D(A∞). This, however, means that rt ∈ G and thus
there exists a finite dimensional realization for the stochastic differential equation (12)
near the initial point r0 ∈ D(A∞). 2

Definition 5.12 Let f, g : U → X be smooth vector fields on an open subset U of a
real Banach space X. Their Lie bracket is the vector field

[f, g](x) = f ′(x)g(x)− f(x)g′(x),

where f ′(x)[g(x)] denotes the Fréchet derivative of f and similarly for g. Let F be
the smooth distribution on U generated by f and g, that is for every x ∈ U

span{f(x), g(x)} = F (x).

F is called involutive if for f and g their Lie bracket also lies in F, that is if for
all x ∈ U, [f, g](x) ∈ F (x). The Lie algebra generated by F, denoted by {F}LA or
{f, g}LA, is defined as the minimal involutive distribution containing F. Hence the Lie
algebra generated by f and g is the minimal distribution containing f, g, their bracket
and their brackets of brackets, and so on.
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In the following we denote by {α, β, δ}LA the Lie algebra generated by the smooth vector
fields α(t, ·), β(t, ·)(u) and δ(t, ·, y) on H for t ∈ [0, T ], u ∈ U0 and y ∈ E.

Theorem 5.13 Assume that the vector fields α, β, δ and an initial curve r̂ ∈ D(A∞)
are given. Then the following statements are equivalent:

(i) For each choice of initial point r0 near r̂ ∈ D(A∞) , there exists a local d -
dimensional realization at (r0, s) of the infinite dimensional stochastic differential
equation (12).

(ii) The Lie algebra {α, β, δ}LA has dimension d near (r̂, s).

Remark 5.14 The Lie algebra {α, β, δ}LA is well defined in a neighborhood of r̂ ∈
D(A∞) since the drift term α which is given via the Heath, Jarrow and Morton drift
condition (11)

α(t, rt(x)) =
∂

∂x
rt(x) +

∞∑

k=1

βk(t, rt(x))
∫ x

s
βk(t, rt(s))ds

−
∫

E

(
eD(t,x,rt(x),y) − 1

)
δ(t, rt(x), y)λt(dy)

is infinitely often weak differentiable for rt(x) ∈ D(A∞) by definition of the Hilbert space
D(A∞) = H∞,2(R+) and since all coefficients are assumed to be smooth vector fields.

Proof. From the above observations it follows that G is a tangential manifold for the
distribution generated by

{α, β(u), δ(y) : u ∈ U0, y ∈ E}
if and only if it is tangential for

{α, β, δ}LA .

The Lie algebra is only defined for rt ∈ D(A∞). Then the rest follows from Proposition
5.10, which states that there exists a finite dimensional realization at (r0, s) for r0 ∈
D(A∞) if and only if there exists a finite dimensional tangential manifold G ⊂ D(A∞)
for α, β, δ containing the initial point. In this situation the condition that G is tangential
for the Lie algebra is well defined since G ⊂ D(A∞). 2

Now we formulate the main theorem for the case of a continuous forward rate model.

Theorem 5.15 (Main Theorem) Let β and δ be as above and consider an initial
forward rate curve r0 ∈ D(A∞). Then the forward rate model (12) generated by β and
δ admits a locally finite dimensional realization at (r0, s) if and only if

dim {α, β, δ}LA < ∞
in a neighborhood of r0 ∈ D(A∞) and the drift α is given as

α(t, rt(x)) =
∂

∂x
rt(x) +

∞∑

k=1

Bβk(t, rt(x))−
∫

E
δ(t, rt(x), y)

(
eD(t,x,rt(x),y) − 1

)
λt(dy).

where B is defined as above.

Proof. From Theorem 5.13 it follows that the condition

dim {α, β, δ}LA < ∞
at (r0, s) is equivalent to the fact that for every initial value r0 ∈ D(A∞) there exists a
d -dimensional realization of the infinite dimensional stochastic differential equation (12).
The proof of Theorem 5.9 gives the representation of α. 2
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5.2 The Linear Case

Now we consider an interest rate model as in Section 3 driven by a Wiener process as well
as a marked point process which will be denoted by µ and is defined as in general setting
2 and µ̄ = µ − ν where ν = λt(dy)dt is the P -compensator of µ. Thus we have the
following r -dynamics

(18)





drt(x) = α(t, rt(x))dt + β(t, rt(x)) ◦ dWt +
∫

E
δ(t, rt(x), y)µ̄(dt, dy)

rs(x) = r0(x),





where r0 is a given initial curve in an arbitrary separable Hilbert space H satisfying
Assumption 2.8 for a fixed initial time s ∈ R+ and the coefficients α, β and δ are
defined as in Section 3, however, on an arbitrary separable Hilbert space H.

We now define finite dimensional realizations in a similar fashion to the theory for purely
Wiener driven forward rates.

Definition 5.16 The stochastic differential equation (18) has a local d-dimensional re-
alization at the initial curve r0 if there exist a point z0 ∈ V, smooth vector fields
a : V → H, b : V → L2(H) and c : V × E → H on an open d -dimensional subset
V of H and a smooth mapping g : V → H with g(z0) = r0, such that r has a local
representation

(19) rt(x) = g(Zt)(x),

where Z is the solution of the V -valued Stratonovich stochastic differential equation:

(20)





dZ(t) = a(Z(t))dt + b(Z(t)) ◦ dWt +
∫

E
c(Z(t), y)µ̄(dt, dy)

Zs = z0.





Here ”local” means that the representation holds for all times t with s ≤ t < τ(r0(x), s)
P-a.s., where τ(r0, s) is a strictly positive stopping time for every (r0, s) ∈ D(A) × R+

with τ(r0, s) > s.

However there are some difficulties since we now have jumps at certain times and hence
we will no longer be able to describe finite dimensional realizations in terms of invariant
tangential submanifolds since whenever there is a jump invariance will get lost and more-
over tangency can no longer be defined in the usual way. Furthermore, we will have to
change the initial curve r0 after any jump. Thus, if we assume that there exists a finite
dimensional realization to equation (18) near r0 for an initial time s before the first
jump occurs, we have to add the jump to the initial curve at the jump time to receive the
new initial curve for the next time interval, i.e. up to the next jump. However this will
change the whole solution of the stochastic differential equation (18). This is why it is not
possible to describe finite dimensional realization for the stochastic differential equation
(18) when the coefficients are arbitrary functions of t, x and the forward rate rt itself.
However, if the coefficients are linear in r the solution r of the stochastic differential
equation (21) as below for the new initial point after the first jump would just be the
solution of the stochastic differential equation before the jump without any jumps plus
the solution of the same stochastic differential equation but with initial condition given by
the value obtained just after the first jump. We will explain this in more detail later on.
Thus in such a setting it is possible to describe finite dimensional realizations via invariant
tangential submanifolds.
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Now we suppose that the coefficients in the forward rate model (18) are linear in the
r -variable and independent of the time t , i.e. we assume an interest rate model of the
form

(21)





drt(x) = α(x) · rt(x)dt + β(x) · rt(x) ◦ dWt +
∫

E
δ(x, y)rt(x)µ̄(dt, dy)

rs(x) = r0(x).





r0 is again a given initial curve and s ∈ R+ an initial time. In this sequel we use
the Musiela parameterization, where x denotes the time-to-maturity rather than the
standard HJM parameterization where x would denote the time-of-maturity. This is
supposed to be a general interest rate model and not a particular forward rate model.
In the case of a forward rate model we would have to take into account the generalized
Heath-Jarrow-Morton drift condition (11) which determines the drift term uniquely by
the volatility terms. Within that framework it would not be possible to have a linear drift
part when the volatilities are linear in r. This, however will be of great importance in
the following as already mentioned above. In contrast to the former continuous setting
where we consider an Heath, Jarrow and Morton forward rate model, we can choose here
the initial curve arbitrary in the Hilbert space H. The reason therefore is that we here
consider a general linear interest rate model and not an HJM model any longer. Hence
we do not have an HJM drift condition as before. Thus the drift term α(x)rt(x) above
does not, in general, depend on the operator A as before. The condition we will need
later on is that the Lie algebra generated by drift and volatilities is well defined, i.e. all
coefficients have to be smooth vector fields.

To overcome the problems connected with the jumps we define stopping times Tn(ω) for
a fixed ω ∈ Ω, namely the jump times, by

T0(ω) := s ∈ R+

Tn(ω) := min{t : µ̄t+(ω)− µ̄t−(ω) > 0 and t > Tn−1(ω)}, n ≥ 1.

Then we consider the stochastic differential equation (21) for the times between the jumps
0 ≤ t < T1(ω), T1(ω) ≤ t < T2(ω), . . . . In these time intervals r is only driven by a
continuous process and thus we can apply the standard theory developed in section 5.1.
Here we assume that α, β(u), u ∈ U, and δ are smooth vector fields on H × R+ and
on H × R+ ×E respectively.
Now we consider the stochastic differential equation (21) without jumps, that is at every
time Tn(ω) when there would be a jump we subtract the jump size so that we receive
a continuous interest rate r as solution. Hence we consider the stochastic differential
equation

(22)





dr̃t(x) = α(x)r̃t(x)dt + β(x)r̃t(x) ◦ dWt +
∫

E
δ(x, y)r̃t(x)µ̄(dt, dy)

−
∑

n∈N

∑

(Tn(ω);Tn(ω)≤t)

∫

E
δ(x, y)r̃Tn(ω)(x)µ̄(dt, dy)

r̃s(x) = r0(x).





All the statements in the former subsection still hold in this linear case since we only used
the generalized Heath-Jarrow-Morton drift condition in the theorem (16) which can be
easily reformulated as follows.

Theorem 5.17 Let g be a mapping such that assumption (5.5) holds. The forward curve
manifold G given by definition (5.3) is locally invariant for the interest rate process r̃t(x)
without jumps defined by the stochastic differential equation (22) with initial curve r0 if
and only if the following conditions hold
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1. (consistent drift condition)
α(x)r̃t ∈ Im[g′(z)]

2. (consistent diffusion volatility condition)

βk(x)r̃t ∈ Im[g′(z)]

3. (consistent jump volatility condition)

δ(x, y)r̃t −
∑

n∈N

∑

(Tn(ω);Tn(ω)≤t)

δ(x, y)r̃Tn(ω) ∈ Im[g′(z)],

for all k ∈ N where r̃ = g(z) and B is defined by

(Bh)(x) = h(x)
∫ x

0
h(s)ds

and βk is defined as βk(x)r̃ := β(x)r̃ · ek for all k ∈ N where {ek}k∈N is a countable
basis for the separable Hilbert space U0 = Q1/2H.

The notation forward curve manifold is of course not really suitable in this situation
since we consider a general interest rate model rather than a special forward rate model.
However we will keep this notation since only the name should be different and the rest
is just the same in both models. Hence a new notation would probably only lead to
confusion. The proof of Theorem (5.17) is similar to the proof of Theorem 5.9 if we
replace the forward rate drift by our linear drift α(x)rt(x).

Proof. ⇒ Assume the forward curve manifold G is locally invariant for the interest rate
process rt(x) defined by the stochastic differential equation (22) with initial point r0 ∈ H.
Thus Proposition 5.7 states that there exists a locally finite dimensional realization near
r0 for (22). Taking the differential in the equation r̃t(x) = g(Zt)(x), where Zt is a
process as in Definition 5.16 one obtains
(23)

dr̃t(x) = g′(Zt)(x)a(Zt)dt + g′(Zt)(x)b(Zt) ◦ dWt +
∫

E
g′(Zt)(x)c(Zt, y)µ̄(dt, dy)

−
∑

n∈N

∑

(Tn(ω);Tn(ω)≤t)

∫

E
g′(ZTn(ω))(x)c(ZTn(ω), y)µ̄(Tn(ω), dy)

Moreover we have

dr̃t(x) = α(x) · r̃t(x)dt + β(x) · r̃t(x) ◦ dWt +
∫

E
δ(x, y) · r̃t(x)µ̄(dt, dy)

−
∑

n∈N

∑

(Tn(ω);Tn(ω)≤t)

∫

E
δ(x, y) · r̃Tn(ω)(x)µ̄(Tn(ω), dy).

Comparing this with (16) and equating coefficients produces the two conditions in the
theorem. Since the initial point r0(x), and thus Zs, can be chosen arbitrarily the
conditions hold in full generality.
⇐ Assume that the conditions in the theorem hold. The linear map g′(z) is injective for
each z by Assumption 5.5. Thus there exist unique a(z), b(z) and c(z, y) such that

(24)

g′(z)a(z) = α(x) · r̃t(x)

g′(z)〈b(z), ek〉H = βk(x) · r̃t(x),

g′(z)c(z, y) = δ(x, y) · r̃t(x)−
∑

n∈N

∑

(Tn(ω);Tn(ω)≤t)

δ(x, y) · r̃Tn(ω)(x).
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Since V is finite dimensional, g′(z) has closed range. g′(z)∗g′(z) is invertible since
g′(z) is injective and has closed range. If u = g′(z)x, then H(z)u = x where

H(z) := (g′(z)∗g′(z))−1g′(z)∗.

H(z) is called left inverse of g′(z). Then

a(z) = H(z)α(g(z)),

b(z) = H(z)β(g(z)),

c(z, y) = H(z)δ(g(z), y).

The mapping g′(z) 7→ H(z) is smooth in the operator norm since the mappings

g′(z) 7→ g′(z)∗

and A 7→ A−1 for invertible A are smooth. Hence a, b and c are smooth functions and
thus locally Lipschitz continuous. Define Z as the unique strong solution to equation (22),
and define the infinite dimensional process u by u(t, x) = g(x,Z(t)). Then we obtain

dut = g′(Zt)a(Zt)dt + g′(Zt)b(Zt) ◦ dW (t) +
∫

E
g′(Zt)c(Zt, y)µ̄(dt, dy)

−
∑

n∈N

∑

(Tn(ω);Tn(ω)≤t)

∫

E
g′(ZTn(ω))c(ZTn(ω), y)µ̄(Tn(ω), dy).

Considering equation (24) we see that u solves the infinite dimensional stochastic differ-
ential equation

dr̃t(x) = α(x) · r̃t(x)dt + β(x) · r̃t(x) ◦ dWt +
∫

E
δ(x, y) · r̃t(x)µ̄(dt, dy)

−
∑

n∈N

∑

(Tn(ω);Tn(ω)≤t)

∫

E
δ(x, y) · r̃Tn(ω)(x)µ̄(Tn(ω), dy).

with initial condition u0 = g(z0). For arbitrary r0 ∈ G we may uniquely select z0 ∈ V
such that r0 = r̃s = u0 = g(z0). Thus r̃ and u both solve equation (22) with the
same initial condition. By uniqueness of the strong solution to this forward rate equation,
we obtain that r̃t = ut = g(Zt). Thus we have shown r̃ -invariance, and r̃ -invariance
obviously implies invariance w.r.t. the stochastic differential equation (22) in the sense of
Definition 5.8. 2

Of course the Main Theorem 5.13 does not hold any longer since here the generalized
Heath-Jarrow-Morton drift condition (11) is specifically used. However, in the following
we will not need a corresponding theorem. Within this setting we can describe finite
dimensional realizations in the sense of Definition 5.2 via invariant tangential manifolds
as follows.
Assume that the Lie algebra generated by α(x)r, β(x)r and δ(x, y)r is well defined
and finite dimensional for all r near an initial point r0 ∈ H. In particular, we assume
here that all coefficients are smooth vector fields, otherwise the Lie algebra would not be
well defined. Since we now want to describe finite dimensional realizations for the whole
interest rate curve r defined by the stochastic differential equation (21), with jumps at
the stopping times Tn(ω) defined in the former subsection, we have to take care of the
initial curves r0 for each initial time s with Tn(ω) ≤ s < Tn+1(ω). First of all we
will have to consider a different initial curve. I.e. if we start with an initial curve r0

at an initial time s < T1(ω) we might have a finite dimensional realization up to time
τ(r0, s) > T1(ω) for the interest rate curve r̃ without jumps and thus also for the interest
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rate curve with jumps r up to time T1(ω) − ε for ε > 0 but no longer for the time
T1(ω) itself since there is a jump at this time. At this point we will have to change the
initial curve by adding the jump at the time T1(ω). This new initial curve r1 at time
T1(ω) is given by

r1 = r̃T1(ω)(x) +
∫

E
δ(x, y) · rT1(ω)(x)µ̄(T1(ω), dy).

The obvious question now is how we will have to change our assumption of the Lie algebra
to insure that the there also exist finite dimensional tangential manifolds for

{
α(x)r, (β(x)r)(u), δ(x, y)r; u ∈ U0, x ≥ 0, , r ∈ H near r1

}

containing the initial point r1.
To answer this question we will have to consider different stochastic differential equations
without jumps with different initial curves. The notations are summarized in the following
table.
Initial times si := Ti(ω)
Initial curves ri := Jump at time si

Solutions r̃i for t ≥ si for i ∈ N ∪ {0}.
for i ∈ N ∪ {0}.
Hence r̃n is the solution of the stochastic differential equation

(25)





dr̃n
t (x) = α(x)r̃n

t (x)dt + β(x)r̃n
t (x) ◦ dWt +

∫

E
δ(x, y)r̃n

t (x)µ̄(dt, dy)

−
∑

k∈N

∑

(Tk(ω);Tk(ω)≤t)

∫

E
δ(x, y)r̃Tk(ω)(x)µ̄(Tk(ω), dy)

r̃n
Tn(ω)(x) = rn(x) =

∫

E
δ(x, y)r̃n

Tn(ω)(x)µ̄(Tn(ω), dy),





for n ∈ N ∪ {0} and t ≥ s, where we set r̃n
t (x) ≡ 0 for all t < sn.

Since the stochastic differential equation (21) is linear in the r -variable the solution r is
given by

r =
∞∑

i=0

r̃i

where r̃n(x) := 0 for x < sn. In the sum above only finitely many terms are non
vanishing.

Lemma 5.18 Suppose there exist finite dimensional realizations of the stochastic differ-
ential equations without jumps (25) at initial curves r̃n

t (x) for all times t ≥ 0 for all
n ∈ N, respectively. Then there exists a locally finite dimensional tangential manifold for

{α(x)r, (β(x)r)(u), δ(x, y)r; u ∈ U0, y ∈ E, x ≥ 0, r ∈ H near rt(x)}

containing the initial point rt for all t ≥ 0 where r is given as

r =
∞∑

i=0

r̃i.

Proof. Since we assume that there exist finite dimensional realizations at an initial curve
r̃n
t for all times t ≥ 0 for the interest rate curves r̃n without jumps for all n ∈ N ∪ {0}

there exists in particular a finite dimensional realization for an initial curve rn = r̃n
sn

(x)
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at the initial times sn for the stochastic differential equations (25) for n ∈ N ∪ {0}.
These realizations are determined by mappings gn and finite dimensional processes Zn

as defined in (19) and (20) and gn satisfies the Assumption 5.5, i.e. in a neighborhood
of the initial time s1 we have a mapping

g0 : V0 −→ H

and a finite dimensional process Z0 such that r̃0 = g0(Z0). Hence we can apply Propo-
sition 5.10. Thus there exists a finite dimensional tangential manifold G0 for

{
α(x)r̃0, (β(x)r̃0)(u), δ(x, y)r̃0 : u ∈ U, y ∈ E, |t− s1| small, x ≥ 0, r̃0 ∈ H near r1

}

containing the initial point r1 and G0 is given by G0 = Im[g0], as is shown in the
proof of Proposition 5.10. Moreover there exists a z0 ∈ V0 where V0 is an open finite
dimensional subset of H such that r1 = g0(z0). This means that

α(x)r̃0
t (x) ∈ TG0(r̃

0
t (x))

β(x)r̃0
t (x)(u) ∈ TG0(r̃

0
t (x))

δ(x, y)r̃0
t (x)−

∑

n∈N

∑

(Tn(ω);Tn(ω)≤t)

δ(x, y)r̃0
Tn(ω)(x) ∈ TG0(r̃

0
t (x))

for all r̃0
t (x) near r1.

Similarly we have in a neighborhood of s2 a mapping

g1 : V1 −→ H

defining a manifold G1 = Im[g1] by the above construction and a finite dimensional
process Z1 such that r̃1 = g1(Z1), where V1 is a finite dimensional subset of H. Then
the mapping

g0 + g1 : V0 × V1 → H ; (z0, z1) 7→ g0(z0) + g1(z1)

defines a realization of r̃0 + r̃1 near the initial point rs1 by

g0(Z0) + g1(Z1) = r̃0 + r̃1.

Furthermore the manifold G := Im[g0 + g1] is locally finite dimensional and tangential
for

{α(x)r, (β(x)r)(u), δ(x, y)r : u ∈ U, y ∈ E, |t− s1| small, x ≥ 0, r ∈ H near rs1}

near the initial curve rs1 . Indeed

α(x) · rt(x) = α(x) · (r̃0
t (x) + r̃1

t (x)
)

= α(x) · r̃0
t (x)︸ ︷︷ ︸

∈ TG0
(r̃0

t (x))

+α(x) · r̃1
t (x)︸ ︷︷ ︸

∈ TG1
(r̃1

t (x))

∈ TG(rs1(x))

for all s1 − ε ≤ t < s1(ω) + ε for some ε > 0. Similarly one can show that β(x)rt(x)

and
∫

E
δ(x, y)rt(x)µ̄(·, dx) are in the tangent space of G near rs1 ∈ D(A∞).

Hence the jump at the time s1 = T1(ω) simply means a parallel shift which of course
does not change the fact that G0 is tangential for

{α(x)rt(x), (β(x)rt(x))(u), δ(x, y)rt(x) : u ∈ U0, y ∈ E}
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for rt near rs1 and {T1(ω) − ε < t < T1(ω)} ∩ {T1(ω) < t < T1(ω) + ε}, with ε > 0.
Then we say that G0 is also tangent for

{α(x)rt(x), (β(x)rt(x))(u), δ(x, y)rt(x) : u ∈ U0, y ∈ E}
at time s1. Remark that because of the jump at time s1 = T1(ω) tangency cannot
be defined at this time in the usual way. Thus we have shown that there exists a finite
dimensional tangential manifold G for

{α(x)r, (β(x)r)(u), δ(x, y)r; u ∈ U0, y ∈ E, x ≥ 0, , r ∈ H near rs1(x)}
near the initial curve rs1 . Moreover G contains the initial curve rs1 since

rs1(x) = r̃0
s1

(x)︸ ︷︷ ︸
∈G0

+
∫

E
δ(x, y)r̃1

s1
(x)µ̄(s1, dy)

︸ ︷︷ ︸
∈G1

.

The other jumps can be handled similarly. 2

Theorem 5.19 The following statements are equivalent:

(i) The Lie algebras
{α(x)r̃n

t (x), β(x)r̃n
t (x), δ(x, y)r̃n

t (x)}LA

are finite dimensional near the initial curves r̃n
t for all t ≥ 0 for all n ∈ N∪{0}.

(ii) There exists a finite dimensional realization of the stochastic differential equation
(21) at an initial point rt for all t ≥ 0.

Proof. ⇒ Theorem 5.13 states that if the Lie algebras above are all finite dimensional
then there exist finite dimensional realizations of the stochastic differential equations with-
out jumps (25) at initial curves r̃n

t for all times t ≥ 0 for all n ∈ N, respectively. Ap-
plying Lemma 5.18 yields that there exists a locally finite dimensional tangential manifold
for

{α(x)r, (β(x)r)(u), δ(x, y)r; u ∈ U0, y ∈ E, x ≥ 0, , r ∈ H near rt}
containing the initial point rt for all t ≥ 0 where r is given as

r =
∞∑

i=0

r̃i.

Then a finite dimensional realization of the stochastic differential equation (21) is defined
by the mapping

g :=
∞∑

i=0

gi,

and by the sequence of finite dimensional processes

Z = (Zi)i∈N∪{0},

where gk and Zk are defined as in the proof of the Lemma (5.18). By construction we
have

rt = g(Zt) =
∞∑

i=0

gi(Zi).

The dimension of the finite dimensional realization of the solution rt of (21) equals
the supremum of the dimensions of the finite dimensional realizations of the stochastic
differential equations (25). 2
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5.3 Example for Deterministic Coefficients

Consider the stochastic differential equation

(26)
drt = Artdt + BrtdNt

r0 = a

where a ∈ Rn, a 6= 0, and A,B ∈ Rn×n . Nt is assumed to be a Poisson process
with intensity λ . The solution of the stochastic differential equation (26) is given by the
formula

rt = exp
{

At− 1
2
λB2t + BNt

}
· a

what can be seen easily by Itô’s formula. Thus we have by expanding the exponential
function and using the binomial formula:

rt = exp
{

At− 1
2
λB2t + BNt

}
· a

=
∞∑

k=0

(
At− 1

2
λB2t + BNt

)k 1
k!
· a

=
∞∑

k=0

k∑

j=0

j∑

l=0

(
k
j

)(
j
l

)
AlBk+j−2l · a · tj(−λ

2
)j−l 1

k!
·Nk−j

t .

Since Nk−j
t is a scalar depending on ω , we get the following result. If the dimension

dim
(
span

{
AjBk · a; j, k = 0, . . . ,∞

})
< n

then, according to 5.2 there is a lower dimensional version of (26).

Now consider the stochastic differential equation

(27)
drt = Artdt + bdNt

r0 = a

where A ∈ Rn×n, b ∈ Rn and c ∈ Rn, c 6= 0. Nt is again a Poisson process with
intensity λ. The solution of the stochastic differential equation (27) is given by

rt = eAt · a +
∫ t
0 eA(t−s) · bdNs

=
∞∑

k=0

Aktk

k!
· a +

∫ t

0

∞∑

k=0

Ak(t− s)k

k!
· bdNs

=
∞∑

k=0

Ak

k!
·
(

tk · a + b ·
∫ t

0
(t− s)kdNs

)

If
dim

(
span

{
Ak · a,Ak · b; k = 0, 1, . . . ,∞

})
< n

then there is a lower dimensional version of (27).
If we choose for example

A =
(

1 0
0 0

)
, b =

(
1
0

)
, c =

(
1
0

)

for n = 2 , then the solution of (27) can be written as

rt = et ·A · a +
∫ t

0
et−s ·A · bdNs

=
(

1
0

)
· et +

(
1
0

)
·
(∫ t

0
et−sdNs

)
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and dim(span{Ak · a,Ak · b; k = 0, 1, . . . ,∞}) = dim(span{b}) = 1. Thus r can also be
described by the stochastic differential equation

dRt = rtdt + dNt

r0 = 1.

For general A but such that A · a =
(

0
1

)
and b =

(
1
0

)
it would not be possible to

find such a finite dimensional realization.
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