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Abstract

let f be a function from R to R with f(0) = 0, continuous, increasing
and derivable at zero. Let X = R%(d > 2). For every open set U C X
we set: Hy(U) = {u € C(U) : Au = f(u)in the distributional sense}. We
define regular Evans function associated with f, U and A by the existence
of element of H;(U) tending to infinity at the regular boundary of U. We
then introduce the KO (Keller-Osserman) property for f, by the existence
of a natural number d > 2 such that every ball B C X admits a regular
Evans function. We then give nice and explicit characterisations for the
validity of the KO property and examine the relationship between the KO
condition, the Harnack principle and the Brelot convergence property. We
prove that in the nonlinear case, and in contrast to the linear case, we do
not have the equivalence between Harnack and Brelot . We continue the
investigation of regular Evans functions in the case of uniformly elliptic or
uniformly parabolic operators and where we replace the function f by a
function ¥ from X x R to R, which in contrast to many other authors, is
not supposed to be convex or locally Lipschitzian.

Introduction

Let f be a function from R to R with f(0) = 0, continuous, increasing and
derivable at zero. Let X = R¢(d > 2). For every open set U C X we set:

Hi(U)={ueCU):Au= f(u)

We recall (see [BBM] or [B;]) that H; is the sheaf of harmonic functions for
Bauer space. In the first section we define, for a relatively compact open subset
U, regular Evans functions (associated with f, U and A) as an element of Hj (U)
tending to infinity at the regular boundary of U.
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These smooth functions exploding at the regular part of the boundary were
investigated by many authors, for a sampling of the literature see [K], [O], [D4],
[Ds], [DK], [B;] and the references contained therein. In contrast to many other
authors we do not suppose that f is convex or locally Lipschitzian.

In a first result we prove that every ball B admits a regular Evans function if
and only if we have the following Harnack type inequality (see [By]):

For every domain U in X and every compact subset C'in U, there exists ¢ > 0
such that u(z) < ¢ for every x € C and u € H} (U).

In the next section we define the Keller-Osserman property for the function
f, denoted by KO, by the existence of a natural number d > 2 such that every
ball B C R? admits a regular Evans function associated with f and A. We then

prove that the condition lim @ = 400 is necessary and not sufficient for the
r—+00

KO property. We propose a somewhat modified version of the Keller-Osserman
integrability condition (K OI) and the Keller limit (K¢) condition and then prove
that these conditions are equivalent to the KO condition introduced in this paper.
The KOI and K/ conditions on f are nice explicit characterizations for the
existence of regular Evans functions associated with f, B and A on R?(d > 2) for
every ball B. As a consequence we prove that f,(t) = t(log(1+ |¢t]))* satisfies the
KO condition if and only if o > 2.

In the third section we examine the relationship between the KO condition,
the Harnack principle and the Brelot convergence property. If the nonlinear har-
monic Bauer space (R?, H ) satisfies the generalized Harnack principle introduced

f@)

in [B;], we then show that the KO property is equivalent to lim = 400 and

r—+00
this yields with the previous sections the existence of nonlinear harmonic Bauer

spaces obtained by semilinear perturbation of the Laplace equation, where the
(generalized ) Harnack inequality is not fulfilled and whereas in contrast to the
linear potential theory (see e.g..[M] or [LW] ), the convergence property of Brelot
is valid. Furthermore we prove that for every d > 2,a > e(loge = 1), 5 €]0, 1]
and f54(t) = t[log(a+ [t])]?, (R?, Hy, ) is a harmonic Bauer space satisfying the
convergence property of Brelot but the (generalized) Harnack inequality is not
valid. We then remark that since fs, is negative definite, by e.g. [Fi] (A, f5.4)
is a superprocess and this particular type of Branching processes may have nice
and interesting properties.

In the following paragraph, we consider a second order elliptic differential
operator L on X = R%(d > 2) in the form:

Lu—z i 8 &E +Zb&tz

,j=1

If the coefficients a;;,b;, ¢ are locally bounded, ¢ < 0 and f satisfies the KO
condition, we then prove that for every ball B in X, there exists a function
v € C*(B) such that Lv < f(v) on B and limv = 400 at the boundary of B.



If L is uniformly elliplic and if the coefficients of L are uniformly Holder con-
tinuous and bounded on X, then the previous function v is “H j-hyperharmonic,
where for every U C X

Loy (U) ={uec(U): L(u+/ GV (- y) fu(y))M(dy)) = 0 for every V C V C U}.

LGV is the Green function (see [RMH])associated with V and L. We then consider
¢ an elliptic admissible function ( see Definition 4.3 ) and for ¢ (z,y) = yo(z,y),
we show that the existence of f satisfying the KO condition and ¢ > 0 with
fy) < Y(z,y) = yo(z,y) for every z € X and y € [¢, 00| yields the existence on
every ball B of a regular Evans function for L and 1, i.e. there exists u €% H;Z (B)
such that limu = +oo at the boundary of B,“H,, is defined in the same way as
.

In the fifth paragraph we consider a second order parabolic differential oper-
ator L on X = R? x R(d > 1) in the following form:

C Y alent) axﬁx]( )+;bi(x,t)%(x,t)—i—(cu)(x,t) X ).

i,7=1

If f is a function from R to R satisfying the KO condition and if the coefficients
of L are locally bounded, then on every bounded cylinder V in X we prove
the existence of a function v € C2(V) N CH(V) such that Lv < f(v) on V and
limv = +o00 on the heat boundary of V. As in the previous section we show
that if in addition the coefficients of L are uniformly Holder continuous then v is
hyperharmonic in (X,“H).

For a parabolic admissible function ¢ (see Definition 5.3) such that there exist f
satisfying the KO condition and ¢ > 0 with f(y) < ¢(z,y) = yp(z,y) for every
x € X and y € [c, +00], we prove that every cylinder V' and more generally every
L-resolutive set U admits a regular Evans function associated with ¢ and L i.e.
there exists u € "M (U) such that ;1_)12 u(y) = 4oo for every z € OU regular for

the heat equation.

The Author express sincere thanks to the Mathematics Department of the
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1 Regular Evans functions

Let X = R%(d > 2) and a function f from R to R with f(0) = 0, continuous,
increasing and derivable at zero. For every open set U in X we set: H;(U) =
{u € C(U) : Au = f(u) in the distributional sense}. By [BBM] or [By] H;



is a (nonlinear) sheaf of continuous functions and (X, H) is a harmonic Bauer
space having the same regular sets as the classical harmonic structure given by
the Laplace equation. Further for every open set U and u locally bounded lower
semicontinuous,it is easy to check that w is hyperharmonic in (X, Hy) ( for the
definition, see [BBM] or [B4] ) if and only if Au < f(u) in the distributional sense
(DS) and Analog hypoharmonic functions are given by Au > f(u). For every
relatively compact open set we have a minimum (comparison) principle as in the
linear case.

Let B be a ball with center 2y and radius R and G® be the Green function for
the Laplacian i.e. AGB(-,y) = —¢, in the distributional sense ,then GZ(z,y) =
GB(o(y),o(x)) for every rotation o € SO(n).

For every ¢ > 0, let u € C*(B) such that ¢ = v+ [ GP(-,y)f(u(y))dy. Hence
Au = f(u) in DS, Zl/l_)IIiu(I) = ¢ for every z € 0B and u(z) = u(o(x)) for

every o € SO(n)with o(zg) = zo. Let v(t) = u(z) for t = || — x¢]|; we have
v € C*([0, R]) and v'(0) = 0. Furthermore:
d—1
Au =v"(t) + TU’(t) = f(u(t)) for every t € [0, R].
As in [K] we hence obtain v' > 0 and v"” > 0 on [0, R].
Let now U be an open subset of X.

Definition 1.1. We shall say that u € CT(U) is a regular Evans function asso-
ciated with f,U and A if u € Hy(U) and lim u(x) = +oo for every regular point
z at the boundary of U.

Remark 1.2. 1. If (X, Hy) is linear (i.e. f is linear), then there is no reqular
Evans function on every relatively compact open set. This notion is strongly
related to the nonlinear nature of f as we shall explain in §2.

2. If U s a ball with center xy having a reqular Fvans function associated
with f and A, then it admits a radial reqular Evans function u(henceforth u(x) =
9(||x — xo||) for every x € U ).

3. If U is a starlike domain and f(t) = sgn(t)|t|*, o > 1, then by[D,| or [B],
there exists a unique reqular Evans function associated with f , U and A. Dynkin
calls this function minimal positive solution of a certain problem .

By [By] there exists a unique in the same way defined reqular Evans function
associated with f,U and the heat equation on RxR .

4. In the linear potential theory ( see e.g. [CC| [BH] ), notion of Evans
function related to the irreqular points of the boundary of U is introduced. Such
functions does not exists if U is reqular.

5. At the beginning of this century, G. Bouligand introduced for an open set a
notion of barrier function which characterizes the regular points of the boundary.

In [B;] we introduce a Harnack type inequality as follows: The Harnack inequality
(or principle) is satisfied in (X, Hy) if for every domain U of X and every compact
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subset C' in U, there exists two constants ¢; > 0 and ¢ > 0 such that
u(z) < cru(y) +cp for every z,y € C and u € Hy (U).
We have the following:

Proposition 1.3. (X, H;) satisfies the Harnack inequality with ¢; = 0 if and
only if every ball B admits a reqular Evans function associated with f, B and A.

Proof. Let B be a ball and w, € Hj(B) with u, = n on dB. Then (u,)
is increasing and it easy to check that u := supu, € Hj(B), if and only

if the Harnack inequality is valid on (X,Hy) with ¢; = 0. Further we have
lim inf u(z) > lim inf u,(x) = n for every n € N and hence lim u(z) = 400 for

every z € 0B. O

Remark 1.4. If fis odd,the same proof as in the previous proposition gives the
following inequality :

For every domain U of X and every compact subset C' in U, there exists a
constant ¢ > 0 such that

u(z) <c forevery x€C and ue H;(U).

More generally the inequality is still valid, if every ball admits reqular Evans
functions associated respectively with f and f,where f(x) = —f(—x).

2 Keller-Osserman properties

The investigation of smooth functions exploding at (the regular part of ) the
boundary (as E.B. Dynkin says in [Ds]) was a research subject of many mathe-
maticians of this century, among others we refer to those of J. B. Keller [K| and
R. Osserman [O].

Let f: R — R with the same properties as in the previous section.

Definition 2.1. We shall say that f satisfies the Keller-Osserman property, de-
noted by KO, if there exists a natural number d > 2 such that every ball B C R¢

admits a reqular Evans function associated with f, B and A.
We shall denote by K = {f : R — R satisfying KO}.

Remark 2.2. 1. The definition 2.1 is not the original Keller-Osserman condition
giwen by an integral which we shall use later.

2. 1t is easy to see by the minimum principle that if f,g are in K and M > 0,
then f+ g and M f are in K.

3. The KO property is still valid if we replace in the definition 2.1 for every
ball by the existence of a sequence (R,,) decreasing to zero such that every ball
with radius (Ry,) .



4. As we will see ,the KO property does not depend on d, if it is valid for
a suitable d > 2, then it is valid for every d > 2, but the corresponding reqular
FEvans functions depend on d.

We have the following necessary condition for the validity of the KO property.
Proposition 2.3. If f € K, then hm M = 400.

Proof. Let d > 2, R > 0 and B(zy, R) be the ball with center 7, € R? and radius
R. Let (), C R increasing to infinity and u = u, is the unique u € H; (B)
with u = a,, on 0B, w is then radial and we set u(t) = u(z) for t = ||z — x¢||.
We easily verify that u € C*([0, R]),w'(0) = 0 and u"(t) + /() = f(u(t)) and
therefore (t471u/(t))" = t71 f(u(t)), by integration we obtain

u(t) = /Ot % VO sd_lf(u(s))ds} dr + u(0).

Since u and f are increasing, for t=R we get: «, < f(an)% + u,(0), where
u,(0) = u(0).

The hypothesis yields lim 1, (0) < 400 and then 1 < lim inf £22) _~

n—oo
)

2d , ° Ris positive

and arbitrary we hence obtain lim inf £ (O‘n" = 400. Since (ay,) is arbitrary we

n—oo

get the statement. O

The previous necessary condition is not sufficient as the following example
shows: Let f(t) = tlog(1 + |t|)). An easy calculation shows that f satisfies the

required conditions for this section and tlim @ = +o00.
— 400

Proposition 2.4. The KO property is not satisfied by f.

Proof. Let R > 0 such that & <1, B = B(0,R) and u, =: u € H}(B), with
limu = n at the boundary of B Put v = log(1 4 u), by an easy calculation we

have: )
/
Av — Au [ u < f(u) :ulog(l+u)gv
I+u 1+u 1+u I+u
Therefore (rd Ly < rd 'v. Since v (0) = 0 we hence obtain t4~1v/(t) < v(t)Y
v'(t) < to(t) and fo t)d < f t)dt.Since v is isotone we get v(R) — v(0) <
U(R)];—; and

(1 — %) log(1 4+ n) < log(1 + u,(0)).

g—; < 1 yields that lim un(0) = oco. This implies that B(0, R) cannot have a

regular Evans functlons for every R > 0 w1th < 1 and hence the KO property
is not valid for f. 0



Definition 2.5. We will say that f satisfies the Keller-Osserman integrability
condition, denoted by KOI, if there exists B > 0 such that

/:o UO f(t)dt] o dz < +o00.

By an elementary calculus we have :

Lemma 2.6. If f satisfies KOI, then lim @ = +o00.

T—+00

Definition 2.7. We shall say that f lies the Keller limit condition, denoted by

K¢, if
x ~1/2
/ f(t)dt] dr = 0.

“+oo
lim {
A

The previous limit was used by Keller [K] for the investigation of regular
Evans functions associated with f, Balls and A.

Lemma 2.8. KOI = KV.

Proof. Let B > 0 such that the integral in 2.5 is finite. Let A > B. Put
g(x) = XJFA fo u 4+ A)du. Since f is increasing we get g(z) >

fo u)du and then

o= [Tl e [T [ swal P

KOI implies then lim [, = 0. Furthermore we have

A—-+4o00

Iy = /:O {/Azf(u)du] N
e o] e

it is then enough to prove that

(n = /:A VA f(t)dt] "

tends to zero as A tends to infinity. Indeed we have f(t) > f(A) for t > A and
then

Since

m ~1/2
/ f(t)dt] dz + Lu.

A

Ux f(t)dt] e < (F(A)V2(z — A)112

A
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and hence

y 2A ) A -1/2

la < 12/ 12dx:2(—)

A= IAT 7A)

by Lemma 1, we have lim —m) = +o00 and hence hrf ly=0. O

Theorem 2.9. Let f : R — R, then the following properties are equivalent:

(1) KO

(2) KOI

(8) K¢
Proof. By the previous Lemma 2, we have (2) = (3) . (3) = (2) is easy to
check. The rest of the proof is inspired from [K ,Theorem 1] . Let d > 2, R >

0, B(0, R) C R? the ball with radius R and center 0 and u = u,, € H} (B(0, R))
with lim w(z) = n . We shall prove that lim u,(0) < +oo if and only if f

=[] —R n—00

—1/2
fulfills K¢. Put I, = funn(o) [2 ffn(o) f(z)dz] dz, as in the proof of Theorem 1
of Keller [K] we then have:

(x) I, <R<(Vd)I,

If f satisfies K¢, then necessary lim u,(0) < 400 and therefore we have the
KO property. Conversely let ¢ = lim un(O) < 400, then from the inequality
() and since R > 0, we get lim sup[ < +o00. The inequality f f(z)dz <

n—oo

Jy f(2)dz yields f [ Iy f(z)dz]~ Y2 qu < I, and since u,(0) increases to £, we

get fe [Jo S dz}_ Y2z < 4+00.The KOI condition is equivalent to the K/
condition we hence obtain the statement (1) < (3). O

Remark 2.10. (1) By proposition 2.3, the function f(t) = t(log(1 + |t|) does
not satisfy the KO condition, then without calculation of the integral we have
for every B > 0 : f];roo [ [ tlog(1 + |t\)dt]_1/2 dr = +oo and hence if f,q(t) =
t(log(a + |t])* for a > 1 and o > 0 we have:for every a €]0,1],a > 1 and every
B>0: [T faa(t)dt]? dz = +o0.

(2) By an easy calculation of the integral we have: for every a > 1 fo, € K
if and only if a > 2.

3 KO property, Harnack inequality and Brelot
convergence property

Let f : R — R with the same properties as the previous sections i.e. f continuous,
increasing, derivable at zero and f(0) = 0. Let d > 2 and (R?,H;) be the



(nonlinear) harmonic Bauer space given by f as in the first section. In [B;] we
introduced a convergence type property of Brelot as follows:

For every domain U in X and every monotone sequence (u,,) C H(U) such that
there exists zy € U with 1iy1£n |un(z0)| < 400, we have linLn u, € Hs(U).

In the linear case we have a Harnack inequality (see Section 2) with ¢; = 0 and
it is well known (see e.g.[M] or[LW] )that the Harnack inequality is equivalent to
the convergence property of Brelot, however in the nonlinear case this equivalence
fails to be true as we shall show.

Theorem 3.1. Assume that the Harnack inequality is valid on (R, H;), then f

flz)

lies the Keller-Osserman property if and only if liril = +00.

Proof. By Proposition 2.3 we have only to prove the sufficient condition. Let f
such that lim @ = +00. Let R > 0 and B(0, R) be the ball with center 0

T—-+00

and radius R. Let (u,), C H;(B(0, R)) with | lﬁmRun(x) = n. As in the proof

of Proposition 2.2 we have

U (r) = /01” td% (/Ot sd_1f<un(s)>ds) dt + u,(0).

Therefore u,(r) > f(u,(0)) x ;—Z for r €]0, R[. By the Harnack inequality, for

every r €)0, R| there exists ¢; > 0,co > 0 with u,(r) < cju,(0) + ¢o for every
n € N. It follows then f(u,(0)) x % < c1up(0) + 2 and

f) _, 20, e 2,
u,(0) 72

un(0) r2 " uy(0)
and lim sup £ (u“n"(g;))

hence, since R > 0 is arbitrary, we have f € K. O

< 400, this does imply that necessarily lim u,,(0) < 400 and

Corollary 3.2. Let f,.(t) = t(log(a + |t]))® for o €]0,00] and a > 1. then the
Harnack inequality is not fulfilled in the nonlinear harmonic space defined by fqq
for every o €]0,2] and a > 1.

In the following we will show that, in contrast to the linear potential theory,
the Brelot convergence property is satisfied in harmonic spaces where the Harnack
inequality (principle) is not valid. Let a > e(loge = 1), fo(t) = t(log(a + [t]))*
with a €]0,1] and H, be the nonlinear sheaf corresponding to the nonlinear
perturbation ( see [BBM]or [By]) of the Laplacian by f, in R?(d > 2) i.e H,, = Hy,

Theorem 3.3. (R, H,,) has the Brelot convergence property.

Proof. Since f, is odd and increasing, then for every open set U in R, u €
Ho(U) and A real positive we have (—u) € H,(U) and (u+ ) € H:(U). By [By]
Proposition 3.1, it is then enough to prove the convergence property of Brelot (as

9



in the linear case) in the form of positive increasing sequences: Let U be a domain
in X =R 2y € U and (h,), C HI(U) increasing with sup{ h,(z¢);n € N
} < 4o0. Let v, := [log(a + h,)]*, then :

Vh
o a—1 n
Vo = aflog(a+ hn)]*™ W
and
Vh Vi, \*
. a—1 n _ a=2 n
Av, = allog(a+ hy,)] . + afa — 1)[log(a + hy)] <a T hn)
Vh, \°
B a—1 n
aflogfa-+ b)) (2

Therefore
hp[log(1 + hy,)]®

a+ h,

Since v €]0, 1] and a@ > e we then obtain Av,, < v, and hence v,, is superharmonic
on U. Let R > 0 such that B(xg, R) C U . For r < R, let M (v,) be the mean
value of v,, on the sphere with center zy and radius r, therefore we have

Awv, < aflog(a + h,)]*" x

0 < M (vn) < wvn(w) and hence sup My (v,) < 400

for every r < R. On the other hand since [log(a + t)]* is concave for « €]0, 1]
and M is a probability measure, by the Jensen ’s inequality we have :

M, (v) = M, log(a + )" > [log(a + My, h,)]°

which yields sup M h, < +oo for every r < R. We denote by Hp(,r)hn the
Poisson integral of h, on B(xg,r). Since Ah, = f,(h,) > 0, h, is subharmonic
and hence hy,(z) < Hpgyryha(x) for every x € B(xo, 7). Since Hpyryhn(20) =
M hy , the classical Harnack inequality yields (HB(zg,r)ltn)n locally bounded on
B(xg,r) . Since U is a domain, we can easily prove that ( h,) is locally uniformly
bounded on U, by the convergence property of Bauer in the space (X, H,) (see
[BBM]or [B4] ) we get sup h,, € Ho(U). 0O

Remark 3.4. (1) Let (u,) € HE(U) where U is a domain and (u,,) is increasing.
Assume that {un(x),x € U}nen are running in a competition to attain the infinity,
then the low governed by the H, implies the following interpretation: If for one
x € U, the competitor (u,(x)), is not able to attain the infinity (i.e. sup u,(xr) <

+00) then not all others. However, the non wvalidity of the Keller-Osserman
property together with the non validity of the Harnack inequality give rise to the
following interpretation: there is domain U in X and a sequence (u,) C H}E(U)
tending (running) to the infinity at every x € U butl the distance between two

10



different competitors u,(x) and u,(z") for x # 2’ is not (in contrast to the linear
case) controllable and may be infinite.

(2) The previous theorem is also valid for f(t) = tlog(1l + |t|) with the same
Proof.

(3) Let a €]0,1] and a > e and if o = 1, we take a > 1. Put f,.(t) =
tllog(a + |t])]*. By/Bs] there is a nonlinear semigroup Q; on

By (R 9) satisfying

9Q

AQr = " = faa(@).

It is easy to check that f. . is a negative definite function and by [Fi there is a
superprocess (A, foa). The study of such particular branching processes type may
have nice an interesting properties.

4 The Keller-Osserman condition for elliptic par-
tial differential operators of second order

Let f: R — R satisfying the KO condition (see Section 2). Let X = R%(d > 2)
and L be a second order differential operator with the following form:

N * 6331633] i—1 ! 6331 ’

1,j=1

Theorem 4.1. Assume that the coefficients a;;, b;, c are bounded and ¢ > 0. Then
for every ball B = B(xg, R) with center at xo and radius R > 0, there exists a
positive v € C*(B) such that Lv < f(v) on B and lim v(x) = +oo for every z in
the boundary of B.

Proof. Let s € DT(B) be an infinitely derivable positive function with compact
support in B and s # 0.Let GP be the Green function for the Laplacian on B and
p =[5 GP(-,t)s(t)dt, then p is again infinitely derivable on B and the derivatives
of p at any order are bounded on B. Furthermore p > 0 on B and il_}ﬂi p(z) =0

for z € OB. Let g = FRp’ then g € C3°(B),limg(x) = Rfor 2 € 0B, 0< g < R

on B and all derivatives of g are bounded on B. Let ¢ be a function in C2 ([0, R])
with ¢, " positive. Put v(z) = ¢(g(x)) for every x € B, then v is in C*(B) and
we have:

ov [ 0g 9%v o dg dg , g
9.~ ¥ (g)a—xi, rom ¢ (9) % B, 0n ¢ (g)axjaxi
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hence

d
_ 09 99
= ¢l) Z,;“” dx, 0z, ; " 0x,00, (9@(9%
d

the assumptions on the coefficients of L and the choice of  yield: Lv < M (" (g)+

%gp’ (g)) with is a strictly positive constant M depending on the coefficients of

L, the derivatives of g and R. By Remark 2.1 (2) % satisfies the KO condition,
hence there exists ¢ € C*([0, R[) such that ¢"(t) + &2¢/(t) = & f(¥(t)) and
tlir%zp(t) = +o0 we set ¢ = ¢ and thus v = 1)(g) gives the statement. O

Remark 4.2. The previous theorem is valid for every continuous g, such that
there exists M > 0 and f € K with f = g on [M,+o0[. Indeed, putting u = v+ M
where v is given by the previous theorem, we have Lu < f(v) < f(v+ M) =
g(v+ M) and v+ M satisfies the same conditions as v.

In what follows, we shall assume that L is uniformly elliptic with uniformly
Hélder continuous and bounded coefficients on R?. Then it is well known see
[RMH] that L has the same regular sets as the Laplace operator, in particular balls
are regular. Furthermore every relatively compact (because of the special case d =
2) open set in X admits a Green function GY. Let My (y) = [ GY(y, z)A(dz), A
Lebesgue measure on X. Then M = (My)y is a posmve section of continuous
and real potentials (see [BHH]).

We recall that for a positive section of continuous and real potential in a linear
harmonic Bauer space, a local Kato-class K'Y related to M in the same way as
[AS] in the classical case of the Laplacian was introduced in [BBM] or [BM] as the
set of f € B(R?)such that fe Mis again a positive section of real and continuous
potential,e is the specific order in the cone of the superharmonic functions.

Let ¢ from X x R to R Borel measurable, from [BBM] or [BM] we recall the
following notions :

a) ¢is locally Kato-bounded,if for every ¢ € R’ ,there exists g. € K such
that |p(z,y)| < g.(x) for every z € R? and y € [—c, c].

b) ¢ is Kato-bounded,if there exists g € Kﬁ\‘}f such that |o(z,y)|< g(x) for
every x€ R? and y € R.

¢)pis locally Kato-Lipschitzian if for every ¢ € R® there exists g. € K4 such
that :

p(,y) — (2, y)|< ge(2)y — y'| for every 2 € R? and y € [—c¢, ].

Kato-Lipschitzian ¢ are defined in the same way as Kato-bounded.

Remark 4.3. [t is easy to see that g € K\ does not imply g locally bounded and
hence locally Kato-bounded (resp.Lipschitzian) does not need be locally bounded
(resp.Lipschitzian).
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Definition 4.4. Let o be a function from X xR to R and ¢~ (y, z) = sup(—¢(y, 2),0).
w is called elliptic admissible if it satisfies the following properties:

(1) s locally Kato-bounded

(2) ¢~ is Kato-bounded (e.g. ¢ >0),

(3) for every z € X, p(z,-) is continuous and P (z,y) = yp(z,y) is increasing
in y for fized z € R?.

Let H (resp.H*) be the harmonic (resp. hyperharmonic) sheaf associated with
Lie.

H(U) ={ueC*U): Lu =0} . We then set

Hy(U) = {u € CU) : u+ [GV(-,9)¥(y, u(y))\dy) € H(V) for every V C
V c U} and

H;,(U) = {u locally bounded and lower semicontinuous such that
u+ [ GV (-, 9)0(y, u(y))A(dy) € H*(V) for every V. C V C U}, and similarly for
Hy (U).
We recall the following results from [BBM] or[B;] which is,by a simple proof,
valid in more general settings like the parabolic case which will be investigated
in the next section.

Theorem 4.5. Let ¢ be an elliptic admissible function and ¥(z,y) = yp(x,y).
Then (X, Hy) is a (nonlinear) Bauer space. The Hy-reqular and resolutive sets
are given by the Kato bound of ¢~ i.e. there exist 0 < R < 400 such that
if U is reqular and if diameter of U is smaller than R, then U is Hy-regular
In particular if ¢ > 0 we have R = +4o00. For the regular sets, we have
minimum (comparison ) principle. Moreover if we denote by YHyu the solution
of the Dirichlet problem in (X, Hy), associated with U and w € C(0U). The
H.,-hyperharmonic functions on U(i.e. YHyu < u for V.CV C U in a basis of
reqular sets) are given by H;,(U) and analog for the hypoharmonic functions.

The following theorem is the key to the existence of regular Evans functions
associated with f balls and the operator L

Theorem 4.6. Let f € K and v be a function given by Theorem 4.1 on a Ball
B.Then v is H-hyperharmonic on B (i.e. v € H}(B)).

Proof. Let U be a ball in X with U € U C B, it is then enough to prove

that 'Hyv < v. since inf wv(x) > 0, there exists by the theorem of Stone-
zeU
Weierstrass g, € C®(B) with 0 < g,(z) < v(z) + + for every € U. Let

()
t

[ = sup v.Since t — is continuous on [0, 3 + 1], there exists again by Stone-

T
Weierstrass (p,,) C C*°(B) such that :
[ : [
= < pn(t) and py(t) converges uniformly to == on [0, 3 +1].

We assume first that for all i,j in {1,2,...,d}, a;; € C'(V) with B CBC V.
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By [GT Theorem 15.12] there exists for every n € N, h, € C>%(U) (« is the
Holder exponent of the coefficients of L) such that:

Lhy, = hy|pn(hy)| and h, = g, on OU.

We shall prove the following inequality : (1) h, < v+ %for every n € N.
Since g, < v+ % , if we assume that the inequality (1) does not hold on U, then
there exists xy € U such that iII}f (v+L—h,) = (v+21—hy,)(ze) <0. On the

other hand we have

0

VAN VA
= =
/N
:D@
=T
o 3|
|
>
g
=
o
S~—
IN
—~
=
4
+
L
|
>
s
ks
3
—~
>
g
=
o
S~—

) = h(0) [pn (hn(20))]

mmﬂ%%%Qﬂmmm»

the maximum principle yields 0 < suph,, = supg, < [+ 1. It follows 0 <
U U

IN

h(zo) [% — pn(hn(xo))] < 0 which is absurd and hence h,, < v+% for every

n € N.
By e.g. [RMH], L admits a Green Function “GY on U and since Lh,, = h,p,(h,),

we then obtain

<%%=m+/memmmme.

where Hyg is the solution of the Dirichlet problem for L U and g. By [H],
the family { [ *GY (hnpn(hn))(£)A(dt),n € N.} is equicontinuous on U, then so
{hn,n € N.}. Therefore there exists a subsequence which we denote again by
{hn} converging locally uniformly to u. By the convergence theorem of Lebesgue
and since {p,(t)} converges locally uniformly to @ on [0, 8 + 1] we obtain

Hyv = u+/ EGY f(u(t))M(dt)

and hence by [BM] or [BBM] v = /Hyv and therefore /Hyv < v.

let us now consider a;; € C*(V') .By an appropriate choice of an approximation
of the unity, it is easy to find a sequence (aj;), C C!(V) converging uniformly
to a;; on V and such that |aj;| < |a;|for every n € N,i,j € {1,...,d}and L,, =

d d
'Zl a; az?;xj + 231 b; 8%1- — ¢ is uniformly elliptic on V.The choice of a}; and the
v)= =

proof of theorem 4.1 give that the function v constructed there satisfies even
L,v < f(v) for every n € N . Let "Hyg be the solution of the Dirichlet problem

associated with L, , U and g.Let (u,) CC(U) with

(x) "Hyv=u,+ /L”ngf(un(t)))\(dt)
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where “* GV is the Green Function for L,on U . It follows that u, < vfor
every,n € N.. By [HS], we have " GV —LGY for n — oo and there exists a >

0 such that0 < % < «, againby[HS Corollary5.3] ™Hyv converges to Hyv

uniformly on U . By the convergence theorem of Lebesgue we have [[I"GY —
LGY] f (un(t))N(dt) converges to zero.Since (u,) is bounded, it is easy to see (e.g.
by[Me] or [H]) that the family { [ GV f(u,(t))A(dt) n € N.}is equicontinuous on

U and so (u,). Let (v,)be a subsequence of (u,) converging uniformly to u on

U . the equality (*) yields :

Hyv =u+ [ *GY f(u(t))\(dt) and hence (u,) is uniformly convergent to u on
U and then u = THyv < v. Let

g=v+ [ LGV f(v(t))A(dt) UC B, we have for a ball A CAC U :

Hag = Hav+ Ha([ "G{ f(v(t))A(dL))

— THyo + [ PGRF(Hw ()N + [ HLFGY F(o(®)A(dL)

since fH v < v we get

Hag <o+ [ PGIf(v (0)NdE) + [ Ha"G f(u(t))A(d1))

< v+ [ EGYf(v(t))A(dt) = g, g is then L-hyperharmonic on U for every
U CUC B, by the same proof of the sheaf property for Hjas in [BBM]), we
obtain the required statement v € H}(B). 0O

Theorem 4.7. Assume that ¢ is elliptic admissible and there exists f € K and M >
o such that f(y) < yp(x,y) for every x € X andy € [M,+oo[. Then every ball
B in X admits a reqular Evans function associated with 1, B and L i.e. there
exists u € M (B) with limu = +oc at the boundary of B.

Proof. Let B be a ball and v be a function given by Theorem 4.1 on B

let v = v+ M, we then have Lv = Lv+ LM = Lv—cM < f(v) < f(v+ M) =
f(v). vsatisfies the same conditions as v in Theorem 4.1. By 4.5 vis in H}(B) and
hence in H;,(B) where ¥(z,y) = yo(r,y). By the comparison principle we get
YHp(n) < v and YHp(n)is increasing, by the Bauer convergence property in
(X, H,), sup{¥Hp(n),n € N }is then a regular Evans function associated with
B,vyand L. YHp(n) is the solutions of the Dirichlet problem associated with the
constant n and B in (X, Hy). 0O

5 The Keller-Osserman property for parabolic

differential operators of second order
Let X = R?xR(d > 1). Forevery r > 0 and a < bin R, we denote by V (xq, r, a, b)

the corresponding cylinder i.e. V(zg,7,a,b) = {(z,t) € X : ||z — 20| < r and
a < t < b} and V the set of such cylinders. We will denote by 9,V the heat
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boundary of V' defined by {(z,t) € OV : a <t < b}. Let L be a second order
differential operator on X with the form

ou ou
Zaw “axzax] (x,t) —l—Zb xta%(x t)—l—cu—a

i,7=1

with locally bounded coefficients and ¢ < 0, as in the elliptic case we have the
following;:

Theorem 5.1. Let f € K, then for every V. € V there exists a function u €
C2NC} onV such that Lu < f(u) and limu(y) = +oo for every z € 9,V. C?
y—z

means two times continuously differentiable relative to the space variable x and
C! one time continuously differentiable relative to the time variable t.

Proof. Let V € V. By [F, theorem 7 p127] there exists a strict positive function

p on V such that all derivatives gf , a:? é; ,W i,j € {1,...,d} are uniformly

Holder continuous on V' (Hence bounded) and lim Ply)=0 for every z € OV
Yy—z

p+17
derivatives at the space variables and the first derivative at the time ¢ are bounded
on V. further it is easy to see from remarkl.2 that for every ¢ > 0 there exists
v =, € C*[0,1] with ¢ — 1limv.(¢) = coandsuch that v"(t) + 2v'(t) = cf (v(t)).
As in the elliptic case we have Lv(g) < M[v"(g) + %v’(g)] with M > 0 a constant
depending on the coefficients of L, V' and g¢. for ¢ = M, v="vym and u=vog,
we then obtain the desired statement Lu < f(u). O

Putting g = -, we get lim g(y) = 1 for 2 € 9,V,0 < g < 1 on V and all second
y—z

Remark 5.2. In the Theorem 5.1, the hypothesis ¢ > 0 can be easily replaced by c
locally bounded. Indeed let k > 0 such that c—k < 0 and M = e~ (V is given
byr >0 and a,b € R). Let Lyu = Lu — ku, then Ly satisfies the assumptions of
the previous theorem on'V, hence there exists v € C2NC} such that lim v(y) = +oo

y—z
for every z € O,V and Liv < L f(v). Put o(z,t) = e*""u(z,t) fort €la,b],
we then obtain Lo = "= [Ljv] < M- L f(v) < f(v) < f(9) (sincef is

increasing).

In what follows, we shall assume that the coefficients of L are uniformly Holder
continuous and bounded on R*x R and L is uniformly elliptic. We consider “H
the scheaf of solutions of L i.e. for every open set U in X H(U) = {u €
C2NCl : Lu = 0}. Then by e.g.[Gu] (X,*H) is a harmonic Bauer space in
the sense of [CC|, for every V € V and f € C(V) there exists a unique u €r
H(V') with ;er;u(y) = f(z) for every z € 0,V. By [F] every open set U in

X admits a Green function GY. As in the elliptic case we introduce here the
same Kato notions related to the section of continuous and reel potential defined
by My = fGU y)A(dy), A Lebesgue measure on X. Let ¢ : X x R — R and
Y: X xR—R Wlth U(z,y) = yp(z,y).
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Definition 5.3. We shall say that ¢ is parabolic admissible if ¢ satisfies one of
the following conditions:

(1) ¢ is elliptic admissible (definition 4.3).

(2) ¢ is locally Kato-Lipschitzian, (-,0) € K% and ¢~ is Kato-bounded.

Again by [BBM] we have an analog of Theorem 4.4 given by the following:

Theorem 5.4. let ¢ be a parabolic admissible function then (X, Hy) (defined in
the same way as in the elliptic case) is a (nonlinear) Bauer space. The H-reqular
sets are the same as those for L. There is a minimum (comparison) principle for
reqular sets and the hyperharmonic and hypoharmonic functions are given as in

the Theorem 4.5.

Proposition 5.5. Let f € K,V €V and v € C2(V)NCLH(V) the function deter-
mained in Theorem 5.1, then v is hyperharmonic on V' for the harmonic structure
given by (X, Hy) (i.e. ve H}(V))

Proof. As in the elliptic case we consider U C U C V regular and g, € C*(U)
with 0 < g,(z) < v(z) + = on U. Let 8 = supuv, @ is continuous on [0, 5 + 1],
T

there exists (p,) C P (the set of polynomials on R) such @ < pu(t) and p,(t)
tends to f() as n tends to infinity for every ¢ € [0, 8 + 1]. Let GY be the Green
function associated with U and L, then there exists (h,) C CT(U) such that:

ho + [ GV R (8)|pa(hn(D))A(dE) = L Hyg,."Hyrg is the solution of the Dirichlet
problem associated with L ,U and g .Since h,, is bounded on V', the previous
equality yields h, € C' and hence h,|p,(h,)| is Holder continuous on U and we
have Lh,, = h,(t)|p(h,(t))| .The rest of the proof is the same as in Proposition
4.5 . U

Let ¢ from X x R to R be parabolic admissible.

Theorem 5.6. Assume that there exists f € K and M > 0such that f(y) <
yp(z,y) for every x € X and y € [M,+o0|, then every V € V admits a regular
Buvans Function w i.e. u € H (V) with lim u(y) = +o00 for every z € O,V

Yy—z

Proof. The same as in 4.6. 0

For the notion of resolutiv set the reader is referred to [CC]

Corollary 5.7. For every L - resolutive set U in X there exists u € HQJZ(U)
such that lim u(z) = +oo for every for the heat equation reqular point z of the

r—z

boundary of U.

Proof. Since U is resolutive, we consider the solution “Hy(n) in the sense of
Perron-Wiener-Brelot in (X,“H) and we consider 7Hy;(n) € H(U) given by

Ly (n) ! Hy(n /GU Y Hy (n)(2)dA(2).



’Hy(n) is increasing and since /Hy(n) </ Hy(n) for every V. C V C U with
V €V, we then have 0 < sup/ Hy(n) < +o0 and then 0 < sup YHy(n) < +oo.
For every regular point z in U, we have lim YHy(n)(x) > n for every n € N,

thus u = sup YHy(n) satisfies the desired statement.
n
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