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Abstract

let f be a function from
�

to
�

with f(0) = 0, continuous, increasing
and derivable at zero. Let X =

�d(d ≥ 2). For every open set U ⊂ X

we set: Hf (U) = {u ∈ C(U) : ∆u = f(u) in the distributional sense}. We
define regular Evans function associated with f , U and ∆ by the existence
of element of Hf (U) tending to infinity at the regular boundary of U . We
then introduce the KO (Keller-Osserman) property for f , by the existence
of a natural number d ≥ 2 such that every ball B ⊂ X admits a regular
Evans function. We then give nice and explicit characterisations for the
validity of the KO property and examine the relationship between the KO
condition, the Harnack principle and the Brelot convergence property. We
prove that in the nonlinear case, and in contrast to the linear case, we do
not have the equivalence between Harnack and Brelot . We continue the
investigation of regular Evans functions in the case of uniformly elliptic or
uniformly parabolic operators and where we replace the function f by a
function ψ from X × �

to
�
, which in contrast to many other authors, is

not supposed to be convex or locally Lipschitzian.

Introduction

Let f be a function from � to � with f(0) = 0, continuous, increasing and
derivable at zero. Let X = � d(d ≥ 2). For every open set U ⊂ X we set:

Hf(U) = {u ∈ C(U) : ∆u = f(u)

We recall (see [BBM] or [B1]) that Hf is the sheaf of harmonic functions for
Bauer space. In the first section we define, for a relatively compact open subset
U , regular Evans functions (associated with f, U and ∆) as an element of H+

f (U)
tending to infinity at the regular boundary of U .

∗Research partially supported by a Grant from USAID(Program transfert of Technology)
while the author was visiting the University of California, San Diego (UCSD).
1991 Mathematics Subject Classification:Primary31C45,31D05,Secondary 60J80,35G30.

1



These smooth functions exploding at the regular part of the boundary were
investigated by many authors, for a sampling of the literature see [K], [O], [D1],
[D2], [DK], [B1] and the references contained therein. In contrast to many other
authors we do not suppose that f is convex or locally Lipschitzian.

In a first result we prove that every ball B admits a regular Evans function if
and only if we have the following Harnack type inequality (see [B1]):

For every domain U in X and every compact subset C in U , there exists c ≥ 0
such that u(x) ≤ c for every x ∈ C and u ∈ H+

f (U).
In the next section we define the Keller-Osserman property for the function

f , denoted by KO, by the existence of a natural number d ≥ 2 such that every
ball B ⊂ � d admits a regular Evans function associated with f and ∆. We then
prove that the condition lim

x→+∞

f(x)
x

= +∞ is necessary and not sufficient for the

KO property. We propose a somewhat modified version of the Keller-Osserman
integrability condition (KOI) and the Keller limit (K`) condition and then prove
that these conditions are equivalent to theKO condition introduced in this paper.
The KOI and K` conditions on f are nice explicit characterizations for the
existence of regular Evans functions associated with f, B and ∆ on � d(d ≥ 2) for
every ball B. As a consequence we prove that fα(t) = t(log(1+ |t|))α satisfies the
KO condition if and only if α > 2.

In the third section we examine the relationship between the KO condition,
the Harnack principle and the Brelot convergence property. If the nonlinear har-
monic Bauer space (� d ,Hf) satisfies the generalized Harnack principle introduced

in [B1], we then show that theKO property is equivalent to lim
x→+∞

f(x)
x

= +∞ and

this yields with the previous sections the existence of nonlinear harmonic Bauer
spaces obtained by semilinear perturbation of the Laplace equation, where the
(generalized ) Harnack inequality is not fulfilled and whereas in contrast to the
linear potential theory (see e.g..[M] or [LW] ), the convergence property of Brelot
is valid. Furthermore we prove that for every d ≥ 2, a > e(log e = 1), β ∈]0, 1]
and fβ,a(t) = t[log(a+ |t|)]β, (� d ,Hfβ,a

) is a harmonic Bauer space satisfying the
convergence property of Brelot but the (generalized) Harnack inequality is not
valid. We then remark that since fβ,a is negative definite, by e.g. [Fi] (∆, fβ,a)
is a superprocess and this particular type of Branching processes may have nice
and interesting properties.

In the following paragraph, we consider a second order elliptic differential
operator L on X = � d(d ≥ 2) in the form:

Lu =

d∑

i,j=1

aij
∂2u

∂xi∂xj
+

d∑

i=1

bi
∂u

∂xi
+ cu.

If the coefficients aij , bi, c are locally bounded, c ≤ 0 and f satisfies the KO

condition, we then prove that for every ball B in X, there exists a function
v ∈ C2(B) such that Lv ≤ f(v) on B and lim v = +∞ at the boundary of B.
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If L is uniformly elliplic and if the coefficients of L are uniformly Hölder con-
tinuous and bounded on X, then the previous function v is LHf -hyperharmonic,
where for every U ⊂ X

LHf(U) = {u ∈ C(U) : L(u+

∫
LGV (·, y)f(u(y))λ(dy)) = 0 for every V ⊂ V ⊂ U}.

LGV is the Green function (see [RMH])associated with V and L. We then consider
ϕ an elliptic admissible function ( see Definition 4.3 ) and for ψ(x, y) = yϕ(x, y),
we show that the existence of f satisfying the KO condition and c ≥ 0 with
f(y) ≤ ψ(x, y) = yϕ(x, y) for every x ∈ X and y ∈ [c,+∞[ yields the existence on
every ball B of a regular Evans function for L and ψ, i.e. there exists u ∈LH+

ψ (B)

such that limu = +∞ at the boundary of B,LHψ is defined in the same way as
LHf .

In the fifth paragraph we consider a second order parabolic differential oper-
ator L on X = � d × � (d ≥ 1) in the following form:

Lu(x, t) =
d∑

i,j=1

aij(x, t)
∂2u

∂xi∂xj
(x, t) +

d∑

i=1

bi(x, t)
∂u

∂xi
(x, t) + (cu)(x, t) − ∂u

∂t
(x, t).

If f is a function from � to � satisfying the KO condition and if the coefficients
of L are locally bounded, then on every bounded cylinder V in X we prove
the existence of a function v ∈ C2

x(V ) ∩ C1
t (V ) such that Lv ≤ f(v) on V and

lim v = +∞ on the heat boundary of V . As in the previous section we show
that if in addition the coefficients of L are uniformly Hölder continuous then v is
hyperharmonic in (X,LHf).
For a parabolic admissible function ϕ (see Definition 5.3) such that there exist f
satisfying the KO condition and c ≥ 0 with f(y) ≤ ψ(x, y) = yϕ(x, y) for every
x ∈ X and y ∈ [c,+∞[, we prove that every cylinder V and more generally every
L-resolutive set U admits a regular Evans function associated with ψ and L i.e.
there exists u ∈ LH+

ψ (U) such that lim
y→z

u(y) = +∞ for every z ∈ ∂U regular for

the heat equation.
The Author express sincere thanks to the Mathematics Department of the

University of California, San Diego (UCSD) for the pleasant working condi-
tions,especially to Professors Ronald Getoor and Patrick Fitzsimmons for their
support.

1 Regular Evans functions

Let X = � d(d ≥ 2) and a function f from � to � with f(0) = 0, continuous,
increasing and derivable at zero. For every open set U in X we set: Hf (U) =
{u ∈ C(U) : ∆u = f(u) in the distributional sense}. By [BBM] or [B1] Hf
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is a (nonlinear) sheaf of continuous functions and (X,Hf ) is a harmonic Bauer
space having the same regular sets as the classical harmonic structure given by
the Laplace equation. Further for every open set U and u locally bounded lower
semicontinuous,it is easy to check that u is hyperharmonic in (X,Hf) ( for the
definition, see [BBM] or [B1] ) if and only if ∆u ≤ f(u) in the distributional sense
(DS) and Analog hypoharmonic functions are given by ∆u ≥ f(u). For every
relatively compact open set we have a minimum (comparison) principle as in the
linear case.
Let B be a ball with center x0 and radius R and GB be the Green function for
the Laplacian i.e. ∆GB(·, y) = −εy in the distributional sense ,then GB(x, y) =
GB(σ(y), σ(x)) for every rotation σ ∈ S0(n).
For every c > 0, let u ∈ C+(B) such that c = u +

∫
GB(·, y)f(u(y))dy. Hence

∆u = f(u) in DS, lim
y→z

u(x) = c for every z ∈ ∂B and u(x) = u(σ(x)) for

every σ ∈ SO(n) with σ(x0) = x0. Let v(t) = u(x) for t = ‖x − x0‖; we have
v ∈ C2([0, R]) and v′(0) = 0. Furthermore:

∆u = v′′(t) +
d− 1

t
v′(t) = f(u(t)) for every t ∈ [0, R].

As in [K] we hence obtain v′ ≥ 0 and v′′ ≥ 0 on [0, R].
Let now U be an open subset of X.

Definition 1.1. We shall say that u ∈ C+(U) is a regular Evans function asso-
ciated with f, U and ∆ if u ∈ H+

f (U) and lim
x→z

u(x) = +∞ for every regular point

z at the boundary of U .

Remark 1.2. 1. If (X,Hf ) is linear ( i.e. f is linear), then there is no regular
Evans function on every relatively compact open set. This notion is strongly
related to the nonlinear nature of f as we shall explain in §2.

2. If U is a ball with center x0 having a regular Evans function associated
with f and ∆, then it admits a radial regular Evans function u(henceforth u(x) =
g(||x− x0||) for every x ∈ U ).

3. If U is a starlike domain and f(t) = sgn(t)|t|α, α > 1, then by[D1] or [B1],
there exists a unique regular Evans function associated with f , U and ∆. Dynkin
calls this function minimal positive solution of a certain problem .
By [B1] there exists a unique in the same way defined regular Evans function
associated with f ,U and the heat equation on � d×R .

4. In the linear potential theory ( see e.g. [CC] [BH] ), notion of Evans
function related to the irregular points of the boundary of U is introduced. Such
functions does not exists if U is regular.

5. At the beginning of this century, G. Bouligand introduced for an open set a
notion of barrier function which characterizes the regular points of the boundary.

In [B1] we introduce a Harnack type inequality as follows: The Harnack inequality
(or principle) is satisfied in (X,Hf ) if for every domain U of X and every compact
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subset C in U , there exists two constants c1 ≥ 0 and c2 ≥ 0 such that

u(x) ≤ c1u(y) + c2 for every x, y ∈ C and u ∈ H+
f (U).

We have the following:

Proposition 1.3. (X,Hf ) satisfies the Harnack inequality with c1 = 0 if and
only if every ball B admits a regular Evans function associated with f, B and ∆.

Proof. Let B be a ball and un ∈ H+
f (B) with un = n on ∂B. Then (un)

is increasing and it easy to check that u := sup
n
un ∈ H+

f (B), if and only

if the Harnack inequality is valid on (X,Hf ) with c1 = 0. Further we have
lim
x→z

inf u(x) ≥ lim
x→z

inf un(x) = n for every n ∈ � and hence lim
x→z

u(x) = +∞ for

every z ∈ ∂B.

Remark 1.4. If f is odd,the same proof as in the previous proposition gives the
following inequality :

For every domain U of X and every compact subset C in U , there exists a
constant c > 0 such that

u(x) ≤ c for every x ∈ C and u ∈ H+
f (U).

More generally the inequality is still valid, if every ball admits regular Evans
functions associated respectively with f and f̃ ,where f̃(x) = −f(−x).

2 Keller-Osserman properties

The investigation of smooth functions exploding at (the regular part of ) the
boundary (as E.B. Dynkin says in [D2]) was a research subject of many mathe-
maticians of this century, among others we refer to those of J. B. Keller [K] and
R. Osserman [O].
Let f : � → R with the same properties as in the previous section.

Definition 2.1. We shall say that f satisfies the Keller-Osserman property, de-
noted by KO, if there exists a natural number d ≥ 2 such that every ball B ⊂ � d
admits a regular Evans function associated with f, B and ∆.
We shall denote by K = {f : � → R satisfying KO}.
Remark 2.2. 1. The definition 2.1 is not the original Keller-Osserman condition
given by an integral which we shall use later.

2. It is easy to see by the minimum principle that if f, g are in K and M > 0,
then f + g and Mf are in K.

3. The KO property is still valid if we replace in the definition 2.1 for every
ball by the existence of a sequence (Rn) decreasing to zero such that every ball
with radius (Rn) .
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4. As we will see ,the KO property does not depend on d, if it is valid for
a suitable d ≥ 2, then it is valid for every d ≥ 2, but the corresponding regular
Evans functions depend on d.

We have the following necessary condition for the validity of the KO property.

Proposition 2.3. If f ∈ K, then lim
x→+∞

f(x)
x

= +∞.

Proof. Let d ≥ 2, R > 0 and B(x0, R) be the ball with center x0 ∈ � d and radius
R. Let (αn)n ⊂ � increasing to infinity and u = un is the unique u ∈ H+

f (B)
with u = αn on ∂B, u is then radial and we set u(t) = u(x) for t = ‖x − x0‖.
We easily verify that u ∈ C2([0, R]), u′(0) = 0 and u′′(t) + d−1

t
u′(t) = f(u(t)) and

therefore (td−1u′(t))′ = td−1f(u(t)), by integration we obtain

u(t) =

∫ t

0

1

rd−1

[∫ r

0

sd−1f(u(s))ds

]
dr + u(0).

Since u and f are increasing, for t=R we get: αn ≤ f(αn)
R2

2d
+ un(0), where

un(0) = u(0).

The hypothesis yields lim
n
un(0) < +∞ and then 1 ≤ lim

n→∞
inf f(αn)

αn

R2

2d
, R is positive

and arbitrary we hence obtain lim
n→∞

inf f(αn)
αn

= +∞. Since (αn) is arbitrary we

get the statement.

The previous necessary condition is not sufficient as the following example
shows: Let f(t) = t log(1 + |t|)). An easy calculation shows that f satisfies the

required conditions for this section and lim
t→+∞

f(t)
t

= +∞.

Proposition 2.4. The KO property is not satisfied by f .

Proof. Let R > 0 such that R2

2d
< 1, B = B(0, R) and un =: u ∈ H+

f (B), with
lim u = n at the boundary of B. Put v = log(1 + u), by an easy calculation we
have:

∆v =
∆u

1 + u
−

(
u′

1 + u

)2

≤ f(u)

1 + u
=
u log(1 + u)

1 + u
≤ v.

Therefore (rd−1v′)′ ≤ rd−1v. Since v′(0) = 0 we hence obtain td−1v′(t) ≤ v(t) t
d

d

,v′(t) ≤ t
d
v(t) and

∫ R

0
v′(t)d ≤

∫ R

0
t
d
v(t)dt.Since v is isotone we get v(R)− v(0) ≤

v(R)R
2

2d
and (

1 − R2

2d

)
log(1 + n) ≤ log(1 + un(0)).

R2

2d
< 1 yields that lim

n→∞
un(0) = ∞. This implies that B(0, R) cannot have a

regular Evans functions for every R > 0 with R2

2d
< 1 and hence the KO property

is not valid for f .
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Definition 2.5. We will say that f satisfies the Keller-Osserman integrability
condition, denoted by KOI, if there exists B > 0 such that

∫ +∞

B

[∫ x

0

f(t)dt

]−1/2

dx < +∞.

By an elementary calculus we have :

Lemma 2.6. If f satisfies KOI, then lim
x→+∞

f(x)
x

= +∞.

Definition 2.7. We shall say that f lies the Keller limit condition, denoted by
K`, if

lim
A→+∞

∫ +∞

A

[∫ x

A

f(t)dt

]−1/2

dx = 0.

The previous limit was used by Keller [K] for the investigation of regular
Evans functions associated with f , Balls and ∆.

Lemma 2.8. KOI ⇒ K`.

Proof. Let B > 0 such that the integral in 2.5 is finite. Let A > B. Put
g(x) =

∫ x+A

A
f(t)dt =

∫ x

0
f(u + A)du. Since f is increasing we get g(x) ≥∫ x

0
f(u)du and then

IA :=

∫ +∞

A

[g(x)]−1/2dx ≤
∫ +∞

A

[∫ x

0

f(u)du

]−1/2

dx.

KOI implies then lim
A→+∞

IA = 0. Furthermore we have

IA =

∫ +∞

2A

[∫ x

A

f(u)du

]−1/2

dx.

Since

JA :=

∫ +∞

A

[∫ x

A

f(u)du

]−1/2

dx =

∫ 2A

A

[∫ x

A

f(t)dt

]−1/2

dx+ IA.

it is then enough to prove that

`A =

∫ 2A

A

[∫ x

A

f(t)dt

]−1/2

dx

tends to zero as A tends to infinity. Indeed we have f(t) ≥ f(A) for t > A and
then [∫ x

A

f(t)dt

]−1/2

≤ (f(A)−1/2(x−A)−1/2
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and hence

`A ≤ f(A)−1/2

∫ 2A

A

(x− A)−1/2dx = 2

(
A

f(A)

)−1/2

by Lemma 1, we have lim
x→∞

f(x)
x

= +∞ and hence lim
A→+∞

`A = 0.

Theorem 2.9. Let f : � → R, then the following properties are equivalent:
(1) KO
(2) KOI
(3) K`

Proof. By the previous Lemma 2, we have (2) ⇒ (3) . (3) ⇒ (2) is easy to
check. The rest of the proof is inspired from [K ,Theorem 1 ] . Let d ≥ 2, R >

0 , B(0, R) ⊂ � d the ball with radius R and center 0 and u = un ∈ H+
f (B(0, R))

with lim
‖x‖→R

u(x) = n . We shall prove that lim
n→∞

un(0) < +∞ if and only if f

fulfills K`. Put In =
∫ n

un(0)

[
2
∫ x

un(0)
f(z)dz

]−1/2

dx, as in the proof of Theorem 1

of Keller [K] we then have:

(∗) In ≤ R ≤ (
√
d)In

.

If f satisfies K`, then necessary lim
n→∞

un(0) < +∞ and therefore we have the

K0 property. Conversely let ` = lim
n→∞

un(0) < +∞, then from the inequality

(∗) and since R > 0, we get lim
n→∞

sup In < +∞. The inequality
∫ x

un(0)
f(z)dz ≤

∫ x

0
f(z)dz yields

∫ +∞

un(0)

[∫ x

0
f(z)dz

]−1/2
dx ≤ In and since un(0) increases to ` , we

get
∫ +∞

`

[∫ x

0
f(z)dz

]−1/2
dx < +∞.The K0I condition is equivalent to the K`

condition we hence obtain the statement (1) ⇔ (3).

Remark 2.10. (1) By proposition 2.3, the function f(t) = t(log(1 + |t|) does
not satisfy the KO condition, then without calculation of the integral we have

for every B > 0 :
∫ +∞

B

[∫ x

0
t log(1 + |t|)dt

]−1/2
dx = +∞ and hence if fα,a(t) =

t(log(a + |t|))α for a ≥ 1 and α > 0 we have:for every α ∈]0, 1], a ≥ 1 and every

B > 0 :
∫ +∞

B

[∫ x

0
fα,a(t)dt

]−1/2
dx = +∞.

(2) By an easy calculation of the integral we have: for every a ≥ 1 fα,a ∈ K

if and only if α > 2.

3 KO property, Harnack inequality and Brelot

convergence property

Let f : � → R with the same properties as the previous sections i.e. f continuous,
increasing, derivable at zero and f(0) = 0. Let d ≥ 2 and (� d ,Hf) be the
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(nonlinear) harmonic Bauer space given by f as in the first section. In [B1] we
introduced a convergence type property of Brelot as follows:
For every domain U in X and every monotone sequence (un) ⊂ Hf (U) such that
there exists x0 ∈ U with lim

n
|un(x0)| < +∞, we have lim

n
un ∈ Hf(U).

In the linear case we have a Harnack inequality (see Section 2) with c2 = 0 and
it is well known (see e.g.[M] or[LW] )that the Harnack inequality is equivalent to
the convergence property of Brelot, however in the nonlinear case this equivalence
fails to be true as we shall show.

Theorem 3.1. Assume that the Harnack inequality is valid on (� d ,Hf), then f

lies the Keller-Osserman property if and only if lim
x→+∞

f(x)
x

= +∞.

Proof. By Proposition 2.3 we have only to prove the sufficient condition. Let f
such that lim

x→+∞

f(x)
x

= +∞. Let R > 0 and B(0, R) be the ball with center 0

and radius R. Let (un)n ⊂ H+
f (B(0, R)) with lim

‖x‖→R
un(x) = n. As in the proof

of Proposition 2.2 we have

un(r) =

∫ r

0

1

td−1

(∫ t

0

sd−1f
(
un(s)

)
ds

)
dt+ un(0).

Therefore un(r) ≥ f(un(0)) × r2

2d
for r ∈]0, R[. By the Harnack inequality, for

every r ∈]0, R[ there exists c1 ≥ 0, c2 ≥ 0 with un(r) ≤ c1un(0) + c2 for every
n ∈ � . It follows then f(un(0)) × r2

2d
≤ c1un(0) + c2 and

f(un(0))

un(0)
≤ c1 ×

2d

r2
+

c2

un(0)
≤ c1 ×

2d

r2
+

c2

u1(0)

and lim
n→∞

sup f(un(0))
un(0)

< +∞, this does imply that necessarily lim
n
un(0) < +∞ and

hence, since R > 0 is arbitrary, we have f ∈ K.

Corollary 3.2. Let fα,a(t) = t(log(a + |t|))α for α ∈]0,∞[ and a ≥ 1. then the
Harnack inequality is not fulfilled in the nonlinear harmonic space defined by fα,a
for every α ∈]0, 2] and a ≥ 1.

In the following we will show that, in contrast to the linear potential theory,
the Brelot convergence property is satisfied in harmonic spaces where the Harnack
inequality (principle) is not valid. Let a ≥ e(log e = 1), fα(t) = t(log(a + |t|))α
with α ∈]0, 1] and Hα be the nonlinear sheaf corresponding to the nonlinear
perturbation ( see [BBM]or [B1]) of the Laplacian by fα in � d(d ≥ 2) i.e Hα = Hfα

Theorem 3.3. (� d ,Hα) has the Brelot convergence property.

Proof. Since fα is odd and increasing, then for every open set U in � d , u ∈
Hα(U) and λ real positive we have (−u) ∈ Hα(U) and (u+ λ) ∈ H∗

α(U). By [B1]
Proposition 3.1, it is then enough to prove the convergence property of Brelot (as
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in the linear case) in the form of positive increasing sequences: Let U be a domain
in X = � d , x0 ∈ U and (hn)n ⊂ H+

α (U) increasing with sup{ hn(x0);n ∈ �
} < +∞. Let vn := [log(a+ hn)]

α, then :

∇vn = α[log(a + hn)]
α−1 ∇hn

a + hn

and

∆vn = α[log(a+ hn)]
α−1 ∇hn

a+ hn
+ α(α− 1)[log(a + hn)]

α−2

( ∇hn
a + hn

)2

−α[log(a+ hn)]
α−1

( ∇hn
a+ hn

)2

.

Therefore

∆vn ≤ α[log(a+ hn)]
α−1 × hn[log(1 + hn)]

α

a+ hn
.

Since α ∈]0, 1] and a ≥ e we then obtain ∆vn ≤ vn and hence vn is superharmonic
on U . Let R > 0 such that B(x0, R) ⊂ U . For r < R, let M r

x0
(vn) be the mean

value of vn on the sphere with center x0 and radius r, therefore we have

0 ≤M r
x0

(vn) ≤ vn(x0) and hence supM r
x0

(vn) < +∞

for every r < R. On the other hand since [log(a + t)]α is concave for α ∈]0, 1]
and M r

x0
is a probability measure, by the Jensen ’s inequality we have :

M r
x0

(vn) = M r
x0

[log(a+ hn)]
α ≥ [log(a+M r

x0
hn)]

α

which yields supM r
x0
hn < +∞ for every r < R. We denote by HB(x0,r)hn the

Poisson integral of hn on B(x0, r). Since ∆hn = fα(hn) ≥ 0 , hn is subharmonic
and hence hn(x) ≤ HB(x0,r)hn(x) for every x ∈ B(x0, r). Since HB(x0,r)hn(x0) =
M r

x0
hn , the classical Harnack inequality yields (HB(x0,r)hn)n locally bounded on

B(x0, r) . Since U is a domain, we can easily prove that ( hn) is locally uniformly
bounded on U , by the convergence property of Bauer in the space (X,Hα) (see
[BBM]or [B1] ) we get sup

n
hn ∈ Hα(U).

Remark 3.4. (1) Let (un) ∈ H+
α (U) where U is a domain and (un) is increasing.

Assume that {un(x), x ∈ U}n∈� are running in a competition to attain the infinity,
then the low governed by the Hα implies the following interpretation: If for one
x ∈ U , the competitor (un(x))n is not able to attain the infinity (i.e. sup

n
un(x) <

+∞) then not all others. However, the non validity of the Keller-Osserman
property together with the non validity of the Harnack inequality give rise to the
following interpretation: there is domain U in X and a sequence (un) ⊂ H+

α (U)
tending (running) to the infinity at every x ∈ U but the distance between two
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different competitors un(x) and un(x
′) for x 6= x′ is not (in contrast to the linear

case) controllable and may be infinite.
(2) The previous theorem is also valid for f(t) = t log(1 + |t|) with the same

proof.
(3) Let α ∈]0, 1[ and a ≥ e and if α = 1, we take a ≥ 1. Put fα,a(t) =

t[log(a + |t|)]α. By[B2] there is a nonlinear semigroup Qt on
Bb(� d) satisfying

∆Qt −
∂Qt

∂t
= fα,a(Qt).

It is easy to check that fα,a is a negative definite function and by [Fi] there is a
superprocess (∆, fα,a). The study of such particular branching processes type may
have nice an interesting properties.

4 The Keller-Osserman condition for elliptic par-

tial differential operators of second order

Let f : � → R satisfying the KO condition (see Section 2). Let X = � d(d ≥ 2)
and L be a second order differential operator with the following form:

Lu =

d∑

i,j=1

aij
∂2u

∂xi∂xj
+

d∑

i=1

bi
∂u

∂xi
− cu.

Theorem 4.1. Assume that the coefficients aij , bi, c are bounded and c ≥ 0. Then
for every ball B = B(x0, R) with center at x0 and radius R > 0, there exists a
positive v ∈ C2(B) such that Lv ≤ f(v) on B and lim

x→z
v(x) = +∞ for every z in

the boundary of B.

Proof. Let s ∈ D+(B) be an infinitely derivable positive function with compact
support in B and s 6= 0.Let GB be the Green function for the Laplacian on B and
p =

∫
B
GB(·, t)s(t)dt, then p is again infinitely derivable on B and the derivatives

of p at any order are bounded on B. Furthermore p > 0 on B and lim
x→z

p(x) = 0

for z ∈ ∂B. Let g = R
1+p

, then g ∈ C∞
+ (B), lim

x→z
g(x) = R for z ∈ ∂B, 0 < g < R

on B and all derivatives of g are bounded on B. Let ϕ be a function in C2
+([0, R[)

with ϕ′, ϕ′′ positive. Put v(x) = ϕ(g(x)) for every x ∈ B, then v is in C2(B) and
we have:

∂v

∂xi
= ϕ′(g)

∂g

∂xi
,
∂2v

∂xj∂xi
= ϕ′′(g) × ∂g

∂xj

∂g

∂xi
+ ϕ′(g)

∂2g

∂xj∂xi

11



hence

Lv = ϕ′′(g)
d∑

i,j=1

aij
∂g

∂xj

∂g

∂xi
+ ϕ′(g)

d∑

i,j=1

aij
∂2g

∂xi∂xj

+ϕ′(g)
d∑

i=1

bi
∂g

∂xi
− cv,

the assumptions on the coefficients of L and the choice of ϕ yield: Lv ≤M(ϕ′′(g)+
d−1
g
ϕ′(g)) with is a strictly positive constant M depending on the coefficients of

L, the derivatives of g and R. By Remark 2.1 (2) f
M

satisfies the KO condition,
hence there exists ψ ∈ C2([0, R[) such that ψ′′(t) + d−1

t
ψ′(t) = 1

M
f(ψ(t)) and

lim
t→R

ψ(t) = +∞ we set ϕ = ψ and thus v = ψ(g) gives the statement.

Remark 4.2. The previous theorem is valid for every continuous g, such that
there exists M > 0 and f ∈ K with f = g on [M,+∞[. Indeed, putting u = v+M
where v is given by the previous theorem, we have Lu ≤ f(v) ≤ f(v + M) =
g(v +M) and v +M satisfies the same conditions as v.

In what follows, we shall assume thatL is uniformly elliptic with uniformly
Hölder continuous and bounded coefficients on � d . Then it is well known see
[RMH] that L has the same regular sets as the Laplace operator, in particular balls
are regular. Furthermore every relatively compact (because of the special case d =
2) open set in X admits a Green function GU . Let MU(y) =

∫
GU(y, z)λ(dz), λ

Lebesgue measure on X. Then M = (MU )U is a positive section of continuous
and real potentials (see [BHH]).

We recall that for a positive section of continuous and real potential in a linear
harmonic Bauer space, a local Kato-class K loc

M related to M in the same way as
[AS] in the classical case of the Laplacian was introduced in [BBM] or [BM] as the
set of f ∈ B(� d) such that f •M is again a positive section of real and continuous
potential,• is the specific order in the cone of the superharmonic functions.
Let ϕ from X × � to � Borel measurable, from [BBM] or [BM] we recall the
following notions :

a) ϕ is locally Kato-bounded,if for every c ∈ � ∗
+ ,there exists gc ∈ K loc

M such
that |ϕ(x, y)| ≤ gc(x) for every x ∈ � d and y ∈ [−c, c].

b) ϕ is Kato-bounded,if there exists g ∈ K loc
M such that |ϕ(x, y)|≤ g(x) for

every x∈ � d and y ∈ � .
c)ϕ is locally Kato-Lipschitzian if for every c ∈ � ∗

+ ,there exists gc ∈ K loc
M such

that :
|ϕ(x, y) − ϕ(x, y′)|≤ gc(x)|y − y′| for every x ∈ � d and y ∈ [−c, c].
Kato-Lipschitzian ϕ are defined in the same way as Kato-bounded.

Remark 4.3. It is easy to see that g ∈ K loc
M does not imply g locally bounded and

hence locally Kato-bounded (resp.Lipschitzian) does not need be locally bounded
(resp.Lipschitzian).
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Definition 4.4. Let ϕ be a function from X×� to � and ϕ−(y, z) = sup(−ϕ(y, z), 0).
ϕ is called elliptic admissible if it satisfies the following properties:

(1) ϕ is locally Kato-bounded
(2) ϕ− is Kato-bounded (e.g. ϕ ≥ 0),
(3) for every z ∈ X, ϕ(z, ·) is continuous and ψ(z, y) = yϕ(z, y) is increasing

in y for fixed z ∈ � d .
Let H (resp.H∗) be the harmonic (resp. hyperharmonic) sheaf associated with

L i.e.
H(U) = {u ∈ C2(U) : Lu = 0} . We then set
Hψ(U) = {u ∈ C(U) : u +

∫
GV (·, y)ψ(y, u(y))λ(dy) ∈ H(V ) for every V ⊂

V ⊂ U} and
H∗
ψ(U) = {u locally bounded and lower semicontinuous such that

u+
∫
GV (·, y)ψ(y, u(y))λ(dy) ∈ H∗(V ) for every V ⊂ V ⊂ U}, and similarly for

Hψ∗(U).
We recall the following results from [BBM] or[B1] which is,by a simple proof,
valid in more general settings like the parabolic case which will be investigated
in the next section.

Theorem 4.5. Let ϕ be an elliptic admissible function and ψ(x, y) = yϕ(x, y).
Then (X,Hψ) is a (nonlinear) Bauer space. The Hψ-regular and resolutive sets
are given by the Kato bound of ϕ− i.e. there exist 0 < R ≤ +∞ such that
if U is regular and if diameter of U is smaller than R, then U is Hψ-regular
. In particular if ϕ ≥ 0 we have R = +∞. For the regular sets, we have
minimum (comparison ) principle. Moreover if we denote by ψHUu the solution
of the Dirichlet problem in (X,Hψ), associated with U and u ∈ C(∂U). The
Hψ-hyperharmonic functions on U(i.e. ψHV u ≤ u for V ⊂ V ⊂ U in a basis of
regular sets) are given by H∗

ψ(U) and analog for the hypoharmonic functions.

The following theorem is the key to the existence of regular Evans functions
associated with f ,balls and the operator L

Theorem 4.6. Let f ∈ K and v be a function given by Theorem 4.1 on a Ball
B.Then v is Hf -hyperharmonic on B (i.e. v ∈ H∗

f (B)).

Proof. Let U be a ball in X with U ⊂ U ⊂ B, it is then enough to prove
that fHUv ≤ v. since inf

x∈U
v(x) > 0, there exists by the theorem of Stone-

Weierstrass gn ∈ C∞(B) with 0 ≤ gn(x) ≤ v(x) + 1
n

for every x ∈ U . Let

β = sup
U

v.Since t → f(t)
t

is continuous on [0, β + 1], there exists again by Stone-

Weierstrass (pn) ⊂ C∞(B) such that :
f(t)
t
< pn(t) and pn(t) converges uniformly to f(t)

t
on [0, β + 1] .

We assume first that for all i,j in {1,2,...,d}, aij ∈ C1(V ) with B ⊂B⊂ V .

13



By [GT Theorem 15.12] there exists for every n ∈ � , hn ∈ C2,α(U) (α is the
Hölder exponent of the coefficients of L) such that:

Lhn = hn|pn(hn)| and hn = gn on ∂U.

We shall prove the following inequality : (1) hn ≤ v + 1
n

for every n ∈ � .
Since gn ≤ v + 1

n
, if we assume that the inequality (1) does not hold on U , then

there exists x0 ∈ U such that inf
U

(
v + 1

n
− hn

)
=

(
v + 1

n
− hn

)
(x0) < 0. On the

other hand we have

0 ≤ L(v +
1

n
− hn)(x0) ≤ (f(v +

1

n
) − hn|pn(hn)|)(x0)

≤ f(hn(x0)) − hn(x0)|pn(hn(x0))|

≤ hn(x0)

[
f(hn(x0))

hn(x0)
− pn(hn(x0))

]

the maximum principle yields 0 ≤ sup
U
hn = sup

∂U
gn ≤ β + 1. It follows 0 ≤

h(x0)
[
f(hn(x0))
hn(x0)

− pn(hn(x0))
]
< 0 which is absurd and hence hn ≤ v+ 1

n
for every

n ∈ � .
By e.g. [RMH], L admits a Green Function LGU on U and since Lhn = hnpn(hn),
we then obtain

HBgn = hn +

∫
LGU

t (hnpn(hn))(t)λ(dt).

where HUg is the solution of the Dirichlet problem for L ,U and g. By [H],
the family {

∫
LGU

t (hnpn(hn))(t)λ(dt), n ∈ � .} is equicontinuous on U , then so
{hn, n ∈ � .}. Therefore there exists a subsequence which we denote again by
{hn} converging locally uniformly to u. By the convergence theorem of Lebesgue

and since {pn(t)} converges locally uniformly to f(t)
t

on [0, β + 1] we obtain

HUv = u+

∫
LGU

t f(u(t))λ(dt)

and hence by [BM] or [BBM] u = fHUv and therefore fHUv ≤ v.
let us now consider aij ∈ Cα(V ) .By an appropriate choice of an approximation
of the unity, it is easy to find a sequence (anij)n ⊂ C1(V ) converging uniformly
to aij on V and such that |anij | ≤ |aij | for every n ∈ � , i, j ∈ {1, ..., d} andLn =
d∑

i,j=1

anij
∂2

∂xi∂xj
+

d∑
i=1

bi
∂
∂xi

− c is uniformly elliptic on V.The choice of anij and the

proof of theorem 4.1 give that the function v constructed there satisfies even
Lnv ≤ f(v) for every n ∈ � . Let nHUg be the solution of the Dirichlet problem

associated with Ln , U and g .Let (un) ⊂C(U) with

(∗) nHUv = un +

∫
LnGU

t f(un(t))λ(dt)

14



where LnGU is the Green Function forLn on U . It follows that un ≤ v for
every, n ∈ � . . By [HS], we have LnGU

t −→LGU
t for n −→ ∞ and there exists α >

0 such that 0 ≤ LnGU

LGU ≤ α, again by[HS Corollary5.3] nHUv converges toHUv

uniformly on U . By the convergence theorem of Lebesgue we have
∫

[LnGU
t −

LGU
t ]f(un(t))λ(dt) converges to zero.Since (un) is bounded, it is easy to see (e.g.

by[Me] or [H]) that the family {
∫ L

GU
t f(un(t))λ(dt) n ∈ � .}is equicontinuous on

U and so (un). Let (vn) be a subsequence of (un) converging uniformly to u on

U . the equality (*) yields :
HUv = u+

∫
LGU

t f(u(t))λ(dt) and hence (un) is uniformly convergent to u on

U and then u = fHUv ≤ v. Let

g = v +
∫

LGU
t f(v(t))λ(dt) U⊂ B, we have for a ball A ⊂A⊂ U :

HAg = HAv +HA(
∫

LGU
t f(v(t))λ(dt))

= fHAv +
∫

LGA
t f(fHAv (t))λ(dt) +

∫
HA

LGU
t f(v(t))λ(dt))

since fHAv ≤ v we get
HAg ≤ v +

∫
LGA

t f(v (t))λ(dt) +
∫
HA

LGU
t f(v(t))λ(dt))

≤ v +
∫

LGU
t f(v (t))λ(dt) = g, g is then L-hyperharmonic on U for every

U ⊂U⊂ B, by the same proof of the sheaf property for H∗
f as in [BBM]), we

obtain the required statement v ∈ H∗
f(B).

Theorem 4.7. Assume that ϕ is elliptic admissible and there exists f ∈ K and M ≥
o such that f(y) ≤ yϕ(x, y) for every x ∈ X and y ∈ [M,+∞[. Then every ball
B in X admits a regular Evans function associated with ψ,B and L i.e. there
exists u ∈ H+

ψ (B) with lim u = +∞ at the boundary of B.

Proof. Let B be a ball and v be a function given by Theorem 4.1 on B
let ṽ = v+M , we then have Lṽ = Lv+LM = Lv−cM ≤ f(v) ≤ f(v+M) =

f(ṽ). ṽ satisfies the same conditions as v in Theorem 4.1. By 4.5 ṽ is in H∗
f(B) and

hence in H∗
ψ(B) where ψ(x, y) = yϕ(x, y). By the comparison principle we get

ψHB(n) ≤ ṽ and ψHB(n) is increasing, by the Bauer convergence property in
(X,Hψ), sup{ψHB(n), n ∈ � }is then a regular Evans function associated with

B,ψ andL. ψHB(n) is the solutions of the Dirichlet problem associated with the
constant n and B in (X,Hψ).

5 The Keller-Osserman property for parabolic

differential operators of second order

LetX = � d×� (d ≥ 1). For every r > 0 and a < b in � , we denote by V (x0, r, a, b)
the corresponding cylinder i.e. V (x0, r, a, b) = {(x, t) ∈ X : ‖x − x0‖ < r and
a < t < b} and V the set of such cylinders. We will denote by ∂hV the heat
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boundary of V defined by {(x, t) ∈ ∂V : a ≤ t < b}. Let L be a second order
differential operator on X with the form

Lu(x, t) =
d∑

i,j=1

aij(x, t)
∂2u

∂xi∂xj
(x, t) +

d∑

i=1

bi(x, t)
∂u

∂xi
(x, t) + cu− ∂u

∂t

with locally bounded coefficients and c ≤ 0, as in the elliptic case we have the
following:

Theorem 5.1. Let f ∈ K, then for every V ∈ V there exists a function u ∈
C2
x ∩ C1

t on V such that Lu ≤ f(u) and lim
y→z

u(y) = +∞ for every z ∈ ∂hV . C2
x

means two times continuously differentiable relative to the space variable x and
C1
t one time continuously differentiable relative to the time variable t.

Proof. Let V ∈ V. By [F, theorem 7 p127], there exists a strict positive function
p on V such that all derivatives ∂P

∂xi
, ∂2P
∂xi∂xj

, ∂P
∂t

i, j ∈ {1, . . . , d} are uniformly

Hölder continuous on V (Hence bounded) and lim
y→z

P (y) = 0 for every z ∈ ∂hV .

Putting g = 1
p+1

, we get lim
y→z

g(y) = 1 for z ∈ ∂hV, 0 < g < 1 on V and all second

derivatives at the space variables and the first derivative at the time t are bounded
on V . further it is easy to see from remark1.2 that for every c > 0 there exists
v = vc ∈ C2[0, 1[ with t→ 1limvc(t) = ∞ and such that v′′(t) + 2

t
v′(t) = cf(v(t)).

As in the elliptic case we have Lv(g) ≤ M [v′′(g)+ 2
g
v′(g)] with M > 0 a constant

depending on the coefficients of L, V and g. for c = 1
M

, v = v1/M and u = v ◦ g,
we then obtain the desired statement Lu ≤ f(u).

Remark 5.2. In the Theorem 5.1, the hypothesis c ≥ 0 can be easily replaced by c
locally bounded. Indeed let k > 0 such that c−k ≤ 0 and M = ek(b−a) (V is given
by r > 0 and a, b ∈ � ). Let L1u = Lu− ku, then L1 satisfies the assumptions of
the previous theorem on V , hence there exists v ∈ C2

x∩C1
t such that lim

y→z
v(y) = +∞

for every z ∈ ∂hV and L1v ≤ 1
M
f(v). Put ṽ(x, t) = ek(t−a)v(x, t) for t ∈]a, b[,

we then obtain Lṽ = ek(t−a)[L1v] ≤ ek(t−a) 1
M
f(v) ≤ f(v) ≤ f(ṽ) (sincef is

increasing).

In what follows, we shall assume that the coefficients of L are uniformly Hölder
continuous and bounded on � d×R and L is uniformly elliptic. We consider LH
the scheaf of solutions of L i.e. for every open set U in X ,LH(U) = {u ∈
C2
x ∩ C1

t : Lu = 0}. Then by e.g.[Gu] (X,LH) is a harmonic Bauer space in
the sense of [CC], for every V ∈ V and f ∈ C(V ) there exists a unique u ∈L
H(V ) with lim

y→z
u(y) = f(z) for every z ∈ ∂hV . By [F] every open set U in

X admits a Green function GU . As in the elliptic case we introduce here the
same Kato notions related to the section of continuous and reel potential defined
by MU =

∫
GU(·, y)λ(dy), λ Lebesgue measure on X. Let ϕ : X × � → R and

ψ : X × � → R with ψ(x, y) = yϕ(x, y).
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Definition 5.3. We shall say that ϕ is parabolic admissible if ϕ satisfies one of
the following conditions:

(1) ϕ is elliptic admissible (definition 4.3).
(2) ϕ is locally Kato-Lipschitzian, ϕ(·, 0) ∈ K loc

M and ϕ− is Kato-bounded.

Again by [BBM] we have an analog of Theorem 4.4 given by the following:

Theorem 5.4. let ϕ be a parabolic admissible function then (X,Hψ) (defined in
the same way as in the elliptic case) is a (nonlinear) Bauer space. The Hψ-regular
sets are the same as those for L. There is a minimum (comparison) principle for
regular sets and the hyperharmonic and hypoharmonic functions are given as in
the Theorem 4.5.

Proposition 5.5. Let f ∈ K, V ∈ V and v ∈ C2
x(V ) ∩ C1

t (V ) the function deter-
mined in Theorem 5.1, then v is hyperharmonic on V for the harmonic structure
given by (X,Hf ) (i.e. v ∈ H∗

f (V ))

Proof. As in the elliptic case we consider U ⊂ U ⊂ V regular and gn ∈ C∞(U)

with 0 ≤ gn(x) ≤ v(x) + 1
n

on U . Let β = sup
U

v,
f(t)
t

is continuous on [0, β + 1],

there exists (pn) ⊂ P (the set of polynomials on � ) such f(t)
t
< pn(t) and pn(t)

tends to f(t)
t

as n tends to infinity for every t ∈ [0, β + 1]. Let GU be the Green
function associated with U and L, then there exists (hn) ⊂ C+(U) such that:
hn +

∫
GU
t hn(t)|pn(hn(t)|)λ(dt) =L HUgn.

LHUg is the solution of the Dirichlet
problem associated with L ,U and g .Since hn is bounded on V , the previous
equality yields hn ∈ C1 and hence hn|pn(hn)| is Hölder continuous on U and we
have Lhn = hn(t)|p(hn(t))| .The rest of the proof is the same as in Proposition
4.5 .

Let ϕ from X × � to � be parabolic admissible.

Theorem 5.6. Assume that there exists f ∈ K and M ≥ 0 such that f(y) ≤
yϕ(x, y) for every x ∈ X and y ∈ [M,+∞[, then every V ∈ V admits a regular
Evans Function u i.e. u ∈ H+

ψ (V ) with lim
y→z

u(y) = +∞ for every z ∈ ∂hV .

Proof. The same as in 4.6.

For the notion of resolutiv set the reader is referred to [CC]

Corollary 5.7. For every L - resolutive set U in X there exists u ∈ H+
ψ (U)

such that lim
x→z

u(x) = +∞ for every for the heat equation regular point z of the

boundary of U.

Proof. Since U is resolutive, we consider the solution LHU(n) in the sense of
Perron-Wiener-Brelot in (X,LH) and we consider fHU(n) ∈ Hf(U) given by

LHU(n) =fHU(n) +

∫
GU(·, z)fHU(n)(z)dλ(z).
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fHU(n) is increasing and since fHU(n) ≤f HV (n) for every V ⊂ V ⊂ U with
V ∈ V, we then have 0 ≤ supfHU(n) < +∞ and then 0 ≤ sup

n

ψHU(n) < +∞.

For every regular point z in ∂U , we have lim
x→z

ψHU(n)(x) ≥ n for every n ∈ � ,

thus u = sup
n

ψHU(n) satisfies the desired statement.
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[M] G. Mokobodzki, Cône Normaux et Espaces Nucleaires, Cône Semicomplets,
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