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Abstract

For a topological space E and a measurable submarkov semigroup
�
, we

consider the restriction on E×�+ of the kernel associated with the space time
semigroup

�
⊗ � . A local Kato-class Kt

Loc related to V and for functions ϕ

from E × �+ × � to � , notions of locally Kato-bounded, continuous locally
Kato-bounded, locally Kato-Lipschitzian and Kato-Lipschitzian, which are
not necessarily (locally) bounded and (locally ) Lipschitzian, are introduced.
Nonlinear monotone semigroups (ϕQt)t>0, defined not only for positive but
for bounded Borel measurable functions and their monotone limits, are con-
structed. In contrast to many earlier works, our construction method does
not rely on Picard iteration .

Introduction

Let E be a topological space and Bb the set of bounded and Borel measurable
functions on E. Let � = (Pt)t≥0 be a measurable submarkov semigroup of linear
operators on Bb. Let us consider the kernel V defined on E × �+ by

V f(x, s) =

∫ s

0

Pt(fs−t)(x) dt, where fs(x) = f(x, s)

for (x, s) ∈ E × �+ and f is a bounded measurable function from E × �+ to � .
We then define the local Kato-class Kt

Loc related to V (the locality is considered
only relative to time) as follows: A Borel measurable function g from E × � to �
belongs to Kt

Loc if, for every R > 0,

lim
ε↓0

[
sup
t0<R

sup
(x,t)∈E×�+

V
(
1[t0,t0+ε[|g|

)
(x, t)

]
= 0.

For functions ϕ from E×�+×� to � we define notions of locally Kato-bounded, con-
tinuous locally Kato-bounded, Kato-bounded, locally Kato-Lipschitzian and Kato-
Lipschitzian (§1).

A function ϕ satisfying these properties need not be locally bounded or lo-
cally Lipschitzian. By means of these notions and nonlinear perturbations we
construct for an admissible function ϕ from E × � to � a nonlinear monotone
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semigroups (ϕQt)t>0 defined not only for positive functions but for bounded Borel
measurable functions and their monotone limits.

Our methods does not rely on Picard iteration in contrast to most earlier work.
One motivation for this work is our paper [BS] where we investigate nonlinear

semigroups, occurring in physical and biological sciences, with evolutionary law
governed by an autonomous system of partial differential equation of parabolic type.
Another motivation (see e.g. [Fi]) is the study of superprocesses which are measure-
valued Markov branching processes associated with a branching mechanism given by
a function ψ (here ψ(x, y) = yϕ(x, y) for (x, y) ∈ E × � ) satisfying ψ(x, ·) negative
definite on (�+).

In the next section we do not assume any topological structure on E. We consider
g ∈ Kt

Loc, T > 0 and the kernel KT defined by KT (f) = V (1[0,T ]fg) for f ∈ Bb(E ×
�+). Using an idea of G. Ritter [R] from parabolic potential theory, we prove among
other results, the invertibility of (I + αKT ) for every α ∈ � .

In the third section we assume that E is a topological space possessing a covering
by an increasing sequence of compact subsets and that V has the following property:

(*) For every u ∈ B(E × �+) such that V (|u|) ∈ C(E × �+), the set
{V (f), f ∈ B(E × �+) with |f | ≤ |u|} is equicontinuous on E × � + .

These conditions are satisfied if the space time semigroup yields a balayage space;
see Hansen [H]. More generally, if E is a locally compact second countable metric
space and V fulfills the hypothesis of absolute continuity (hypothesis L of P.A.
Meyer) then V satisfies the property (*) by Mokobodzki [Me]. We then consider a
continuous locally Kato-bounded function ϕ from E× �+ × � to � such that ϕ− =
sup(0,−ϕ) is Kato bounded and ϕ(z, ·) is continuous on � for every z ∈ E × �+ .
If ψ(z, y) = yϕ(z, y) is admissible (see Definition 3.2), we prove the following: For
every function f ∈ Bb(E), there exists a unique locally bounded function u with
f = u+ V (ψ(·, u)).

In the fourth section we prove the existence and uniqueness of a nonlinear semi-
group satisfying

Ptf(x) = Qtf(x) +

∫ t

0

Ps(x, ψ(·, Qt−sf))ds

for every x ∈ E, t > 0 and f ∈ Bb(E). Here ψ(x, y) = yϕ(x, y) and ϕ is a function
from E × � to � which verifies the same conditions as in the previous section. The
function Qf is bounded on E× [0, T ] for every T > 0 and f ∈ Bb(E) and monotone
(see Definition 4.3). We give applications to elliptic-parabolic partial differential
operators of second order.

In the last section, we study the corresponding excessive functions.

The author is in indebted to the Mathematics Department of the University of
California, San Diego (UCSD) for pleasant working conditions. Especially the author
expresses his warmest thanks to Professors Ronald Getoor and Patrick Fitzsimmons
for their support.
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1 Space time Kato class conditions and related

properties

Let E be a topological space and Bb denote the set of bounded Borel measurable
functions on E. We consider a submarkov semigroup � of kernels on E, i.e., a family
(Pt)t>0 such that Pt+s = PtPs for all s, t > 0 and Pt1 ≤ 1 for every t > 0. We will
suppose that � is measurable, i.e, such that for every f ∈ Bb, the mapping from
E×� ∗

+ in �+ which to (x, t) associates Ptf(x) is measurable, where � ∗
+ := �+\{0}.

For every bounded measurable f ∈ Bb(E × � ) we define ft ∈ Bb by ft(x) = f(x, t)

for (x, t) in E× � .We then consider �̃ = �⊗ � , the space time semigroup on E× �
given by �̃ tf(x, s) = Pt(fs−t)(x), where � is the translation semigroup on � .

The potential kernel Ṽ of �̃ is then given by:

Ṽ f(x, s) =

∫ +∞

0

Pt(f(x, x− t)) dt =

∫ ∞

0

Pt(f(s−t))(x) dt.

We set g(s) = 1[0,+∞[(s) and consider the kernel V defined by

V (f)(x, s) = Ṽ (gf)(x, s) =
∫ +∞

0
Pt(1[0,+∞[(s− t)fs−t) dt

=
∫ s

0
Pt(fs−t)(x) dt for s ≥ 0.

and V (f)(x, s) = 0 for s ≤ 0. Furthermore we have V (1)(x, s) ≤ s for every x ∈ E

and s ≥ 0.
In the sequel, we consider V restricted to E × �+ . It is then easy to see (by e.g.

[BH, p.76]) that V satisfies on E × �+ , the complete maximum principle and every

�̃ -excessive function (and hence �-excessive) is V -dominant.
We now introduce the following Kato notions:

Definition 1.1. A function g in B(E × �+) is in the local Kato-class relative to
time and uniformly in x, denoted by Kt

Loc(E×�+) or Kt
Loc , if and only if for every

R > 0,d we have:

lim
ε↓0

[
sup
t0<R

sup
(x,t)∈E×�+

V
(
1[t0,t0+ε[|g|

)
(x, t)

]
= 0.

Example 1.2. (i) If g ∈ Bb(E × �+), then g ∈ Kt
Loc.

(ii) If g ∈ B(E×� ) satisfies supt≤T supx∈E,s≤t Pt|gt−s|(x) < +∞ for every T > 0,
then g ∈ Kt

Loc.

Let � =(Pt)t>0 be the Brownian semigroup on � d (d ≥ 1) and g ∈ B+(E), i.e.,

Pt(g)(x) =

∫

�d

p(t, x, y)g(y)dy, where p(t, x, y) = (2πt)−d/2 exp[−
|x− y|2

4t
].

From [AS], we recall the following definition: g is in the Kato-class Kd if and only

if lim
α↓0

sup
x∈�d

∫
|x−y|≤α

g(y) dy
|x−y|d−2 = 0. We have the following characterization:

Theorem 1.3. g ∈ Kt
Loc if and only if g ∈ Kd .
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Proof. By [AS, Thm. 4.5], it is enough to prove that g ∈ Kt
Loc if and only if

lim
s↓0

sup
x∈�d

∫ s

0

(∫ d

�
p(t, x, y)g(y) dy

)
ds = 0.

From the definition of the kernel V, we have for all 0 < s < ε

∫ s

0

(

∫

�d

p(t, x, y)g(y)dy)ds =

∫ s

0

ptg(y) dt =

∫ s

0

ptg(y)1[0,s[(s− t) dt ≤ sup
(x,s)∈E×�+

V (1[t0,t0+ε[g)(x, s).

We then obtain
∫ s

0

ptg(y) dt ≤ sup
t0<R

sup
(x,s)∈E×�+

V (1[t0,t0+ε[g)(x, s)).

Hence g ∈ Kd. Conversely let g ∈ Kd. Choose δ > 0 small enough such that:
sup
x∈�d

∫
|x−y|≤δ

g(y)dy
|x−y|d−2 ≤ 1 holds . Then

sup
x∈�d

∫
!x−y!≤δ

g(y)dy ≤ sup
x∈�d

∫
|x−y|≤δ

δd−2 g(y)dy
|x−y|d−2 ≤ δd−2, therefore

M = sup
x∈�d

∫
�d exp[− |x−y|2

4
]g(y)dy <∞ . For fixed α > 0, we remark that

sup
x∈�d

∫
|y−x|>α

p(t, x, y)g(y)dy ≤ (2πt)−
d

2 exp[−α2

4t
]
∫
�d exp[− |x−y|2

4
]g(y)dy .

Let R > 0 , o ≤ t0 < R ,ε > 0 and
I = V (1[t0,t0+ε[g)(x, s)) =

∫ s

0
ptg(y)1[t0,t0+ε[(s− t) dt

=
∫ s

0
p(s−t)g(y)1[t0,t0+ε[(t) dt =

∫ s

0
(
∫
�d p(s− t, x, y)dy)1[t0,t0+ε[(t) dt .

Let I1 =
∫ s

0
(
∫
|y−x|>α

p(s− t, x, y)dy)1[t0,t0+ε[(t) dt and I2 = I − I1 .

I1 ≤ M

∫ s

0

[(2π(s− t))−
d

2 exp(−
α2

4(t− s)
)]1[t0,t0+ε[(t) dt.

≤M

∫ s

0

[(2π(t))−
d

2 exp(−
α2

4t
)]1[t0,t0+ε[(s− t) dt.

The uniform integrability of fα(t) = (2π(t))−
d

2 exp(−α2

4t
) on ]0,+∞[ gives the

following:
For every α > 0 and ε1 > 0,there exists ε > 0 such that I1 ≤

ε1

2
for every

(x, s) ∈ E × � +.On the other hand we have
I2 =

∫ s

0
(
∫
|y−x|≤α

p(s− t, x, y)g(y)dy)1[t0,t0+ε[(t) dt

=
∫ s

0
(
∫
|y−x|≤α

p(t, x, y)g(y)dy)1[t0,t0+ε[(s− t) dt

≤
∫ ∞

0
(
∫
|y−x|≤α

p(t, x, y)g(y)dy) dt≤ C|x−y|≤α
g(y)dy

|x−y|d−2 ,

where C is the constant giving the relation between the Newtonian kernel and
the Brownian semigroup. The hypothesis gives the existence of α0 > 0 such that
I2 ≤

ε1

2
for every (x, s) ∈ E × � +, this yields the required statement.
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Corollary 1.4. Let g ∈ K loc
d (the local Kato-class introduced in [AS] ), then for

every relatively compact subset A ∈ � d , g1 = g1A is in Kt
Loc.

Let ϕ be a function from (E × �+) × � to � Borel measurable. As in [BBM],
we introduce the following:

Definition 1.5. (1) We shall say that ϕ is locally Kato bounded , if for every c ∈ � ∗
+ ,

there exists gc ∈ Kt
Loc such that |ϕ(z, y)| ≤ gc(z) for every z ∈ E×�+ and y ∈

[−c, c].

(2) ϕ is called continuous locally Kato-bounded if it is locally Kato bounded
and if for every c ∈ � ∗

+ , V (gc) is continuous in x for every t ∈ �+ .

(3) ϕ is called Kato-bounded (resp. continuous Kato bounded) if there exist
g ∈ Kt

Loc (resp. g ∈ Kt
Locand V (g) continuous in x for every t ∈ �+ ) such

that
|ϕ(z, y)| ≤ g(z) for every z ∈ E × �+ and y ∈ �+ .

Example 1.6. Let ϕ(z, y) = g(z)P (y) or ϕ(z, y) = g(z)f(y) where g ∈ Kt
Loc , P

is a polynomial and f is locally bounded on � . Then ϕ is locally-Kato bounded. If
moreover V (g) is continuous in x, then ϕ is continuous locally Kato bounded.

Definition 1.7. We shall say that ϕ is locally Kato-Lipschitzian if for every c ∈ � ∗
+ ,

there exists gc ∈ Kt
Loc such that:

|ϕ(z, y) − ϕ(z, y′)| ≤ gc(z)|y − y′| for every z ∈ E × �+ and y, y′ in[−c, c].

Kato -Lipschitzian functions ϕ are defined in the same way as Kato bounded, the
function gc in (1.5) does not depend on c.

Example 1.8. ϕ(z, y) = g(z)f(y) with f locally Lipschitzian on � and g ∈ Kt
Loc.

Kato -Lipschitzian functions ϕ are defined in the same way as Kato bounded, the
function gc in (1.5) does not depend on c.

Remark 1.9. It is easy to see by the corollary 1.5 that g ∈ Kt
Loc does not yield g

locally bounded. We hence obtain by the previous Examples (1.4) and (1.6) that a
function ϕ which is locally Kato-bounded or locally Kato-Lipschitzian need not be
locally bounded and locally-Lipschitzian.

2 Invertibility of Kernels

In this section we do not assume any topological structure on E. We consider
a measurable space (E,B) and will denote also by B the set of real measurable
functions. We consider a measurable submarkov semigroup and the same kernel V
as in the previous section. The following simple lemma is important in the sequel.
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Lemma 2.1. Let f ∈ Bb(E × �+) and T > 0. Then for every s < T we have:

V f(x, s) = V (1[0,T ]f)(x, s)

where
(1[0,T [f)(x, t) = 1[0,T ](t)f(x, t).

The following result will be the key to the perturbation of semigroups which will be
investigated in the next section (3). Let g ∈ Kt

Loc , T > 0 and K = KT the kernel
on E ×R+ defined by K(f) = V (1[0,T ]fg) for f ∈ Bb(E × �+).

Proposition 2.2. For every s > 0, there exists a natural number N > 0 such that:

∣∣K(n)1
∣∣ ≤

(
n

n+N

)
sn for every n ∈ � .

where K(n) = KoKo . . . oK (n times) and
(

k
p

)
= p!

k!(p−k)!
for natural numbers p ≥ k.

Proof. We shall use an idea of G. Ritter [Ri].let s > 0. By the definition of Kt
Loc,

there exists t1, . . . , tN−1 ∈ [0, T ] such that 0 < t1 < t2 < · · · < TN−1 < T and :

V (|g|1Ai
) < s on E × �+ for every i ∈ {1, . . . , N − 1},where Ai = E × [ti−1, ti[,

we set t0 = 0, TN = T , AN = [TN−1, T ], B` =
⋃̀
i=1

Ai and K` the kernel on E × �+

defined by K`(f) := V (f |g|1B`
). We shall prove the required inequality by induction

over n ≥ 0 and ` (1 ≤ ` ≤ N − 1). For ` = 1 and n ∈ � we have:

K
(n)
1 (1) = V (|g|1A1

V (|g|1A1
. . . V (|g|1A1

))) ≤ sn ≤

(
1

n + 1

)
s.

Let ` ≥ 1. For n = 0, we have K
(0)
` (1) = 1 ≤

(
`

`+ 0

)
s0 = 1. We now assume

that the inequality K
(n)
j (1) ≤

(
j

n + j

)
sn is true for n and j ∈ {1, . . . `}. We have

by Lemma1 in section 2.

K
(n+1)
` (1) = V (1A`

|g|V (1A`
|g| . . . V (1A`

|g|))
= V (1A1

|g|V (1A1
|g| . . . V (1A1

|g|) + V (1A2
|g|(V (n)1B2

|g|)

+V (1A3
|g|V (n)(1B3

|g|) + · · ·+ V (1A`
|g|V (n)(1B`

|g|).

We hence obtain by the induction hypothesis that:

K
(n+1)
` (1) ≤ sn+1 +

(
2

n+ 2

)
sn+1 + · · ·+

(
`

n+ `

)
sn+1

≤
∑̀
i=1

(
i

n + i

)
sn+1 ≤

∑̀
i=0

(
i

n+ i

)
sn+1

=

(
`

n+ 1 + `

)
sn+1.
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Let us now suppose that the inequality is true for 1 ≤ ` ≤ N − 1 and every n ∈ N .
We consider the kernel L` on E × �+ defined by L`(f) = V (1A`+1

f |g|). we then
have:

K
(n)
`+1 = L

(n)
` 1 + L

(n−1)
` (K1

` ) + L
(n−1)
` (K

(2)
` (1)) + · · · + L1

`(K
(n−1)
` 1) +K

(n)
` 1,

by the previous assumptions we get:

K
(n)
`+11 ≤ sn +

(
1

`+ 1

)
sn +

(
2

`+ 2

)
+ · · ·+

(
`

n+ `

)
sn

=
n∑

i=0

(
i

`+ i

)
sn =

(
n

`+ 1 + n

)
sn.

and therefore K
(n)
` 1 ≤

(
n

`+ n

)
sn for every n ≥ 0 and ` ≤ N . Since |K(n)1| ≤

K
(n)
N 1, we hence obtain

|K(n)1| ≤

(
n

N + n

)
sn

for every n ∈ � which yields the requested inequality.

Corollary 2.3. For every T > 0 and every α ∈ � , the operator (I + αKT ) is
invertible from Bb(E × �+) into Bb(E × �+); in particular (I −KT ) and (I +KT )
are invertible.

Proof. By the previous theorem, for every s > 0, there exists N ∈ IN such that

|K
(n)
T 1| ≤

(
N

N + n

)
sn for every n ∈ IN and hence |α|nK

(n)
T 1 ≤

(
N

N + n

)
(|α|s)n.

We then choose s > 0 such that |α|s < 1, the series αn :=

(
N

N + n

)
(|α|s)n is

convergent and we have the statement.

3 Nonlinear perturbation of semigroups

In the following we consider a topological space E and a Kernel V defined on E×�+

in the same way as in the first section. We assume that E and V satisfy the following
properties:

(1) There exists an increasing sequence (Un) of compact subsets of E
such that E =

⋃
n∈IN

Un.

(2) For every g ∈ B(E × �+) such that V (|g|) ∈ C(E × �+) the set
{V (f), f ∈ B(E × �+) with |f | ≤ |g|} is equicontinuous on E × � .

These two properties on E and V are satisfied if (E × � , E��) is a balayage space
in the sense of [BH] (see [H]). E�� is the set of excessive functions for the space
time semigroup corresponding to the semigroup � which defines the kernel V . More
generally if E is a locally compact second countable metric space and V satisfies the
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hypothesis of absolute continuity (hypothesis L of P. A. Meyer), we have (by [Me])
the property (2) (the property 1 is trivial).

Fix a function ϕ from (E × �+) × � to � with the following properties:

(a) ϕ is continuous locally Kato bounded and ϕ− = sup(−ϕ, 0) is Kato
bounded.

(b) For every z ∈ E × �+ , ϕ(z, ·) is continuous.

We shall prove an existence theorem for the nonlinear perturbation by V ψ where
ψ is the function from (E × �+) × � to � with ψ(z, y) = yϕ(z, y).

Theorem 3.1. For every f ∈ Bb(E × �+) and every T > 0, there exists a function
u ∈ Bb(E × �+) such that

f = u+ V (ψ(·, u)1[0,T ]).

Proof. Let f ∈ Bb(E × �+) . Let ϕ+(x, y) = sup(ϕ(x, y), 0) and ϕ−(x, y) =
sup(−ϕ(x, y), 0), then ϕ = ϕ+ − ϕ−. Let T > 0 and v ∈ Bb(E × �+) .We con-
sider the kernels K+and K− defined by

K+(h) = V (1[0,T ]ϕ
+(·, v)h) andK−(h) = V (1[0,T ]ϕ

−(·, v)h) for every h ∈ Bb(E×
�+) , where 1[0,T ] := 1E×[0,T ]. All these kernels depend on v, but for typographically
reason we do not mention it . By the domination principle related to V , we have (I+
K+)−11 ≥ 0 and since (I +K+)−1 = I − (I +K+)−1K+ we hence obtain

|(I+K+)−1f | ≤ 2‖f‖∞.Again the domination principle related to V yields

|((I +K+)−1K−)(n)h| ≤ (K−)(n)|h| for every h ∈ Bb(E × � )

thus

|((I +K+)−1K−)(n)(I +K+)−1f | ≤ (K−)(n)(2‖f‖∞) = 2‖f‖∞(K−)(n)1.

By the proposition 2.1, the series
∞∑

n=0

(K−)((n)1 is convergent. Let

S(v) =
∑

n≥0

((I +K+)−1K−)(n)(I +K+)−f.

Since ϕ− is Kato bounded, then there exists g ∈ Kt
Loc such that

(K−)(n)1 ≤ K
(n)
g 1 with Kg(h) = V (1[0,T ]gh) and also

∞∑
n=0

K
(n)
g 1 is again by the

proposition 2.1 convergent and bounded on E × �+ , let M1 be its upper bound
and M = 2‖f‖∞M1. We set

A = {v ∈ Bb(E × �+) : ‖v‖∞ ≤M},

we then have ‖S(v)‖∞ ≤M and hence S(v) ∈ A. Moreover we can easily see that

f = S(v) + V (S(v)ϕ(·, v)1[0,T ]).
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Let v ∈ A and (vn)n ⊂ A such that (vn) converges uniformly to v on E × �+ .
Since S is bounded on A and ϕ is continuous locally Kato bounded, by the property
2 on V , the family {V (S(v)ϕ(·, v)1[0,T ], v ∈ A} is equicontinuous on E × �+ and
hence relatively compact for the local uniform convergence and so is (S(vn))n. By
the property 1 on E and a diagonal procedure, there exists a subsequence (ρn)
of (S(vn)) which is locally uniformly convergent. By the convergence theorem of
Lebesgue, we then obtain

f = lim ρn + V (lim ρnϕ(·(v)1[0,T ]) = S(v) + V (S(v)ϕ(·, v)1[0,T ]).

corollary 2.2 yields lim ρn = S(v) and S(vn) is then locally uniformly convergent
to S(v). Let (Un) ⊂ E × �+ be an increasing sequence of compact subsets with
E × �+ =

⋃
n

Un. Let An = {v ∈ Bb(Un) : ‖v‖∞ ≤ M} and for every v ∈ An we set

Sn(v) = S(ṽ) where ṽ = v on Un and 0 outside. Let Tn(v) = Sn(v)|Un
and fix n ∈ � ..

We have Tn(An) ⊂ An, Tn is completely continuous on An and, by property 2 of V ,
is compact. By the fixed point theorem of Schauder, there exists then vn ∈ An such
that Tn(vn) = vn. We hence obtain

f = S(ṽn) + V (vnϕ(·, vn)1[0,T ]1Un
) + V (S(ṽn)ϕ(·, ṽn)1[0,T ]1CUn

).

By the convergence theorem of Lebesgue we have

limV (S(ṽn)ϕ(·, ṽn)1[0,T ]1CUn
) = 0.

by a diagonal procedure, there exist a subsequence (nk) of (n) such that S(ṽnk
)

converges locally uniformly and let v be its limit . Since S(ṽnk
)|Unk

= vnk
, we hence

obtain by the Lebesgue convergence theorem that:

f = v + V (vϕ(·, v)1[0,T ]).

In order to ensure a global existence and uniqueness theorem, we introduce the
following definition:

Definition 3.2. A locally Kato bounded function ψ from (E× �+)× � to � will be
called admissible if one of the following properties is satisfied:

(I)ψ is increasing relatively to the last variable i.e. for every z ∈ E× �+ , ψ(z, ·)
is an increasing function from � to � .

(II) ψ is locally Kato-Lipschitzian.

We remark that the properties I and II are independent and if ψ(x, y) = yϕ(x, y),
they are sufficient for the global uniqueness.

Proposition 3.3. Let ψ be an admissible function, then the function A(u) = u +
V (ψ(·, u)) is injective from Bb(E × �+) into Bb(E × �+).

Proof. We assume first that ψ is increasing relatively to the last variable. Let u, v
in Bb(E × �+) such that u+ V (ψ(·, u)) = v + V (ψ(·, v)). We have

V ((ψ(·, u) − ψ(·, v))+) ≤ V ((ψ(·, u) − ψ(·, v))
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on {u− v ≥ 0}, the assumption on ψ yields

{(ψ(·, v) − ψ(·, v))+ > 0} ⊂ {u− v ≥ 0},

the domination principle or the complete maximum principle implies then V (ψ(·, u)−
ψ(·, v)) ≤ 0 and u ≥ v . The same proof gives the other inequality. Thus u = v.
We assume now that ψ is locally Kato-Lipschitzian. Let u, v ∈ Bb(E × �+) with
u + V (ψ(·, u)) = v + V (ψ(·, v)). Let c = max{‖u‖∞, ‖v‖∞}, then there exists gc ∈
Kt

Loc such that |ψ(·, u)− ψ(·, v)| ≤ |u− v|gc , we then have:

|u− v| ≤ V (|ψ(·, u)− ψ(·, v)|) ≤ V (|u− v|gc).

and for every T > 0 we obtain by Lemma 2.1.

|u− v|1[0,T ] ≤ V (|u− v|gc1[0,T ])|[0,T ].

Let Kc be the kernel on Bb(E×�+) defined by Kch = V (gch1[0,T ]), lemma 2.1 yields

|u−v|1[0,T ] ≤ 2c(K
(n)
c 1)1[0,T ]. By the proposition 2.1, we have lim

n 7→+∞
K

(n)
c 1 = 0. Thus

u− v = 0 on [0, T ], T being arbitrary on �+ , we hence obtain u = v.

Remark 3.4. In the proof of 3.3 and when ψ is increasing, we did not use that A is
an application from Bb to Bb. The first part of the proof of the previous proposition is
also valid for u ∈ B(E× [0, T ]) with V (ψ(·, u)(x, t) ∈ � for every (x, t) ∈ E× [0, T ].

Theorem 3.5. Let ψ defined by ψ(x, y) = yϕ(x, y) for x ∈ E and y ∈ � . If ψ is
admissible, Then for every f ∈ Bb(E × �+), there exists a unique locally bounded
function u ∈ Bb(E × �+) such that

f = u+ V (ψ(·, u)).

Proof. By Theorem 3.1 and Proposition 3.3, there exists for every T > 0 a unique
bounded function uT on E × �+ such that

f = uT + V (ψ(·, uT )1[0,T ]).

Let T ′ < T . We then have by Lemma 2.1

f1[0,T ] = uT 1[0,T ′] + V (ψ(·, uT )1[0,T ])1[0,T ′]

= uT ′1[0,T ′] + V (ψ(·, uT ′1[0,T ′])1[0,T ′]

hence
|uT − uT ′|1[0,T ′] ≤ V (|ψ(·, uT ) − ψ(·, uT ′)|1[0,T ′])1[0,T ′]

We assume first that ψ is locally Kato-Lipschitzian. Let c = max(‖uT‖∞, ‖uT ′‖∞)
and gc ∈ Kt

Loc such that

|ψ(·, uT ) − ψ(·, uT ′)| ≤ |uT − uT ′|gc ≤ 2cgc.

Let Kch = V (gch1[0,T ′]), we then obtain again by Lemma 2.1

|uT − uT ′|1[0,T ′] ≤ 2cK(n)
c 1,

by Proposition 2.1 we get uT = uT ′ on E × [0, T ′]; (uT )T>0 is then locally constant.
If ψ is increasing the proof of uT = uT ′ on E × [0, T ′] follows from the dominations
principle and Remark 3.4. Let u = lim

T 7→+∞
uT . It is easy to see that u1[0,T ] = uT1[0,T ]

for every T > 0. The uniqueness of u follows from Proposition 3.3 .
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Remark 3.6. The function u in the previous theorem is in general not bounded, as
the following example shows: Let Pt be the Brownian semigroup on � d , f = 1 and
ϕ : � d × �+ × � → � with ϕ(z, y) = −1, then it is easy to see that u = et.

4 Nonlinear semigroups

We consider the same assumptions as in the previous section (§3) for the space E
and the kernel V . We consider a function ϕ from E × � to IR with the following
properties:

(1) ϕ is continuous locally Kato bounded and ϕ− is Kato bounded.
(2) For every x ∈ E ϕ(x, ·) is continuous .
(3) ψ is an admissible function. , where ψ(x, y) = yϕ(x, y).

Theorem 4.1. There exists a unique nonlinear semigroup Qt such that for every
f ∈ Bb(E),

Ptf(x) = Qtf(x) +

∫ t

0

Ps(x, ψ(·, Qt−sf))ds.

Furthermore Qf is bounded on E × [0, T ] for every T > 0.

Proof. Let f ∈ Bb(E) and v(x, t) = Ptf(x) . Since the semigroup P is submarkov,
v is bounded and by the Theorem 3.5, there exists a unique function Qf, bounded
on E × [o, T ] for every T > 0 such that:

Ptf = Qtf +

∫ t

0

Ps(·, ψ(·, Qt−sf))ds.

We now have to prove the semigroup property. Fix t′ > 0 then:

Pt+t′f(x) = Qt+t′f(x) +

∫ t+t′

0

Ps(x, ψ(·, Qt+t′−sf))ds.

and

Pt′(Ptf)(x) = Pt′(Qtf)(x) +

∫ t

0

Pt′+s(x, ψ(·, Qt−sf)ds.

Further

Pt′(Qtf) = Qt′(Qtf)(x) +

∫ t′

0

Ps(x, ψ(·, Qt′−s(Qtf))ds

we hence obtain

Qt′+tf(x) +
∫ t+t′

0
Ps(x, ψ(·, Qt+t′−sf)ds

= Qt′Qtf +
∫ t′

0
Ps(x, ψ(·, Qt′−sQtf)ds+

∫ t

0
Pt′+s(x, ψ(·, Qt−sf)ds.

Putting u = t′ + s we obtain

∫ t

0
Pt′+s(x, ψ(·, Qt−sf)) dt =

∫ t+t′

t′
Pu(x, ψ(·, Qt+t′−uf)du

=
∫ t+t′

0
Ps(x, ψ(·, Qt+t′−sf)ds−

∫ t′

0
Ps(x, ψ(·, Qt+t′−sf))ds.
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Henceforth we get

Qt+t′f(x) +
∫ t′

0
Ps(x, ψ(·, Qt+t′−sf)ds

= Qt′Qtf +
∫ t′

0
Ps(x, ψ(·, Qt′−sQtf)ds

since ψ is admissible, by Proposition 3.3 we get

Qt′+tf = Qt′Qtf = QtQt′f.

Example 4.2. a) Let L be a linear differential operator on � d admitting a lin-
ear semigroup such that V satisfies (*). Let p be a polynomial on � such that

lim
|x|→+∞

p(x) = +∞. Then there exists a nonlinear semigroup Qt such that for every

bounded f ∈ Bb(� d) we have (formally)

LQtf −
∂Qtf

∂t
−QtfP (Qtf) = 0.

Moreover if β = inf{p(x), x ∈ �}, we have from the proof of Theorem 3.1:
|Qtf(x)| ≤ e−βt‖f‖∞ for every t > 0 and x ∈ E. Hence if β ≥ 0 we have‖Qtf‖∞ ≤
‖f‖∞ for every f ∈ Bb(� d).

b)Let L = ∆ and ϕ : � → � locally Lipschitzian (e.g. C1) and g ∈ Kn
loc(� d) (see

[AS] ) . Let c = g1A, where A is a measurable relatively compact set in � d . Then
there exists a nonlinear semigroup Qt such that ∆Qtf −

∂Qtf
∂t

= c(x)Qtf |ϕ(Qtf)| in
the distributional sense for every f ∈ Bb(E). Moreover we have ‖Qtf‖∞ ≤ ‖f‖∞
and if f ≤ g we have Qtf ≤ Qtg .

We recall that c can be chosen as follow: Let a1, . . . , an be a finite sequence in

� d , αi ∈ [−∞, 2[ for every i ∈ {1, . . . , n}, and c(x) =
n∑

i=1

1
‖x−ai‖αi

1B(ai,1), for every

x ∈ � d .

Let (E,B) be a measurable space and Q = (Qt)t>0 be a family of applications
from Bb(E) to B(E). We will call Q measurable iff for every f ∈ Bb(E) the mapping
(x, t) → Qtf(x) from E × � ∗

+ to � is measurable.

Definition 4.3. We shall say that the family Q is a monotone (nonlinear) semi-
group, if the following properties are satisfied:

(1) Q is measurable.

(2) Qt(Qsf) = Qt+sf for every t, s > 0 and f ∈ Bb(E). (semigroup
property)

(3) for every t > 0, Qt is increasingly continuous i.e. for every monotone
sequence (fp) ⊂ Bb(E) which is convergent to a bounded measurable
function f, (Qtfp)p is monotone in the same sense as fp and converges
to Qtf .

Remark 4.4. The property (3) implies that Qt is increasing.
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Lemma 4.5. Let Q be a monotone semigroup and (fn) and (gn) two sequences in
Bb(E) which are monotone in the same sense and lim

n
fn = lim

n
gn then limQtfn =

lim
n
Qtgn for every t > 0.

Proof. Assume that (fn) is increasing. Let p ∈ IN and un = inf(fn, gp), then
un is monotone and converge to gp and the property 3 of (4.3) yields lim

n
Qtun :=

Qtgp ≤ limQtfn for every p ∈ IN . Therefore limQtgn ≤ limQtfn and we obtain the
statement.
We can also extend Qt to every lower bounded or every upper bounded f by setting
Qtf := lim

P
Qtfp for (fp) ⊂ Bb monotone and convergent to f .

Proposition 4.6. Let Q be any (nonlinear) semigroup constructed in the previous
section, then Q is a monotone semigroup in the sense of (4.3).

Proof. The measurability follow from the measurability of � and the construction of
Q (theorem4.1). It is then enough to prove the property (3) of (4.3). let f, g ∈ Bb(E)
with f ≤ g. We have:

Pt(g − f) = Qtg −Qtf +

∫ t

0

Ps(x, ψ(Qt−sg) − ψ(Qt−sf))ds.

If ψ is locally Kato-Lipschitzian, there exists c ∈ Kt
Loc such thatψ(Qt−sg) −

ψ(Qt−sf)) = c(Qt−sg −Qt−sf).and the same proof as Theorem 3.1 yields the state-
ment since Pt(g − f) ≥ 0 and is V -dominant.If ψ is increasing the property (3) in
(4,3) follows from the domination principle.

5 Excessive functions

Let (E,B) be a measurable space and Q be a monotone semigroup in the sense of
the definition 4.3. let u ∈ B+(E). As in the linear case, u will be called Q excessive
if and only if sup

t>0
Qtu = u. We shall denote by EQ these functions.

In the sequel, we consider the same conditions as in the previous section (§4) and
we assume that ϕ(x, y) ≥ 0 for every x ∈ E and y ∈ � . Let Q be the semigroup
given by ϕ as in §4.

Proposition 5.1. Let u ∈ E�, then u ∈ EQ.

Proof. For every p ∈ � , let up = inf(u, p). Then up ∈ B+
b (E) and Ptup = Qtup +∫ t

0
Ps(x, ψ(·, Qt−sup))ds and hence Qtup ≤ up. Since Q is a monotone semigoup, we

obtain that (Qtup)t is decreasing. Hence sup
t>0

Qtup ≤ up. It is easy to see, since ϕ is

continuous locally Kato bounded, that

lim
t↓0

∫ t

0

Ps(x, ψ(·, Qt−sup))ds = 0.

Thus
up = sup

t>0
Ptup = sup

t>0
Qtup
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and

inf(u, p) ≤ sup
t>0

Qtu ≤ u.

Passing p to infinity, we obtain the statement.

For every u ∈ B+(E) we set Ku =
∫ ∞

0
Ps(·, ψ(·, u))ds. For the converse of 5.1

we then have the following:

Proposition 5.2. let u ∈ EQ such that Ku is finite on E, then v = u + Ku is in
E�.

Proof. Let v = u+Ku. Then

Ptv = Ptu+ PtKu = Ptu+
∫ ∞

t
Ps(·, ψ(·, u))ds

= Qtu+
∫ t

0
Ps(·, ψ(·, Qt−su))

tds+
∫ ∞

t
Ps(·, ψ(·, u)ds

≤ v.

On the other hand we have:

Ptv ≥ Qtu+

∫ ∞

t

Ps(·, ψ(·, u))ds.

The assumptions on u and K yields

lim
t↓0

Ptv = sup
t>0

Ptv ≥ u+

∫ ∞

0

)Ps(·, ψ(·, u))ds = v.

Thus sup
t>0

Ptv = v.
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