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Let us consider a solution ξ(t, ω, x) of the stochastic differential equation

dξ(t, ω, x) = σ(t, ω)dwt + b(ξ(t, ω, x))dt, ξ(0, ω, x) = x.

on the space Rn. It is well known (see [1]) that under the broad assumptions, the transformations Ut on
the space Rn defined by the formula x 7→ ξ(t, ω, x), for almost all ω, transport any finite measure with
a positive density into an equivalent one. In the recent work [2] an infinite-dimensional generalization
of this fact has been obtained. In the cited work, the coefficients σ and b are supposed to possess high
regularity, in particular, b must have two bounded derivatives. In our work, an analogous result is proved
by a simpler method for a constant coefficient σ and under the only assumption that the drift and its
derivative are bounded (the exact formulation is given below). In a more special case, this result has
been obtained in the diploma work of the second author.

Let γ be the Gaussian measure on X = R∞ that is the direct product of the standard one-dimensional

Gaussian measures, let H = l2 be its Cameron–Martin space with the norm |h|H =
( ∞∑
n=1

h2
n

)1/2, h = (hn),

and let wt be a Wiener process on H of the type

wt = {cnw
(n)
t }∞n=1,

∞∑
n=1

c2
n ≤ K0 < ∞,

where the w
(n)
t ’s are independent one-dimensional Wiener processes, and K with a lower index stands

for a nonnegative constant. From now on let σ = 1.
Let a mapping B : X → H be Lipschitzian along H, i.e., |B(x + h)−B(x)|H ≤ C|h|H for all h in H.

This ensures (see [3]) that the Gâteaux derivative DHB(x) along H exists γ a.e. and its operator norm
‖DHB(x)‖L(H) is estimated by C. We need a stronger condition that B be bounded together with the
Hilbert–Schmidt norm of its derivative along H: |B(x)|H ≤ K1 and ‖DHB(x)‖H ≤ K2.

Let us recall that a function δB ∈ L1(γ) is called the divergence of B with respect to γ if∫
X

∂Bf(x) γ(dx) = −
∫

X

f(x) δB(x) γ(dx),

for all smooth real functions f depending on finitely many variables.
In finite dimensions, we have δB(x) = divB(x) + (B(x), x), in the general case the function δB(x) is

obtained as an L2(γ)-limit of appropriate finite-dimensional approximations.
It follows from [3, p. 203] that under the above assumptions, the divergence δB is defined and belongs

to L2(γ).
According to [4, p. 288], in our case the divergence satisfies the condition∫

X

eε0|δB(x)|γ(dx) ≤ M for some positive ε0 and M.

Let us consider the mapping Ust(·, ω) : R∞ → R∞ specified by the equation

Ust(x, ω) = x + wt(ω)− ws(ω) +

t∫
s

B(Usr(x, ω))dr,

and show that it transports the Gaussian measure γ into an equivalent one. Since B is Lipschitzian along
H, this equation has a unique solution for any x.

For every natural number N , we consider the auxiliary transformations

ŨN
st (x, ω) = x + w̃N

t (ω)− w̃N
s (ω) +

t∫
s

B̃N (ŨN
sr (x, ω))dr,
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Ṽ N
st (x, ω) = x− w̃N

t (ω) + w̃N
s (ω)−

t∫
s

B̃N (Ṽ N
rt (x, ω))dr,

where w̃N
t = {c1w

(1)
t , . . . , cnw

(N)
t , 0, 0, . . . } and B̃N = {B(1), . . . , B(N), 0, 0, . . . }.

The solutions Ṽ N
st and ŨN

st generate mappings from RN into RN , for which according to [4] we have

γ ◦ (ŨN
st )−1 = F̃N

st · γ, γ ◦ (Ṽ N
st )−1 = G̃N

st · γ,

with the following well-known formulas for the densities:

F̃N
st = exp

( t∫
s

δB̃N
(
Ṽ N

rt (x, ω)
)
dr −

N∑
n=1

t∫
s

cn(Ṽ N
rt )(n) ◦ dw(n)

r

)
,

G̃N
st = exp

(
−

t∫
s

δB̃N
(
ŨN

sr (x, ω)
)
dr +

N∑
n=1

t∫
s

cn(ŨN
sr )(n) ◦ dw(n)

r

)
.

Note that in these formulas we use the Stratonovich stochastic integral, in which, unlike the Ito integral
case, the symbol ◦ is used in front of the differential sign.

For the proof we need the following two lemmas.

Lemma 1. Suppose that for every N ∈ N, PN
st is a continuous function of the variables s and t from

Mεo
≡ {(s, t) ∈ R2 : 0 ≤ s ≤ t ≤ T, t− s ≤ εo} to R. Let εo, C1, C2 be positive constants such that

PN
st ≤ C1 + C2

t∫
s

t∫
r

PN
rzdzdr

for all N, s and t, where (s, t) ∈ Mεo
. Then there exist positive constants ε ≤ εo and C such that the

functions PN
st are uniformly bounded by the constant C on Mε.

Proof. Let ε = min
{
ε0,
√

1/C2

}
. Let us fix N = N0. Since PN0

st is continuous on the compact set Mε,
there exist t0 and s0 such that PN0

st ≤ PN0
s0t0 on Mε and

PN0
s0t0 ≤ C1 + C2

t0∫
s0

t0∫
r

PN0
rz dzdr ≤ C1 + C2

(t0 − s0)2

2
PN0

s0t0 ≤ C1 + C2
ε2

2
PN0

s0t0 ≤

≤ C1 +
1
2
PN0

s0t0 .

Therefore, PN0
s0t0 ≤ 2C1, and since N0 is arbitrary, then, for all t, s and N from the hypotheses of the

lemma, we have PN
st ≤ 2C1. �

Lemma 2. Let F̃N
st be as defined above. Then there exists ε > 0 such that, for every s and t with

0 ≤ s ≤ t ≤ T, t− s ≤ ε, the family of functions {F̃N
st (x, ω)}, where N ∈ N, is uniformly integrable with

respect to the measure γ for almost all ω.

Proof. Let us fix

ε1 = min
{

ε0/8 ,
(
25 e

√
K0 + K1

)−1

, min
n

{ 1
2 (12cn)2

}}
,

where min
n

{
1

2 (12cn)2

}
exists, since cn → 0 as n →∞. For the proof of the lemma it suffices to show that

IN =
∫∫

Ω×X

(F̃N
st (x, ω))2γ(dx)P (dω) ≤ C, where C is independent of N .
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In the subsequent expressions the upper index N and the sign ˜ are omitted. We have

I =
∫∫

exp
(

2

t∫
s

δB(Vrt(x, ω)) dr − 2
∑

n

t∫
s

cnV
(n)
rt ◦ dw(n)

r

)
γ(dx)P (dω)

≤
∫∫

exp
(

4

t∫
s

δB(Vrt(x, ω)) dr

)
γ(dx)P (dω)

+
∫∫

exp
(
−4
∑

n

t∫
s

cnV
(n)
rt ◦ dw(n)

r

)
γ(dx)P (dω) ≡ I1 + I2

Let us estimate I1. We observe that exp
( t∫

s

δB(Vrt(x, ω))dr
)

= exp
( t∫

s

ε1δB(Vrt(x, ω))dr
ε1

)
, which by the

Jensen inequality does not exceed
t∫
s

exp
(
ε1δB

(
Vrt(x, ω)

))
dr
ε1

. Let us observe that∫
exp (4ε1δB(Vrt(x, ω))) γ(dx) =

∫
exp (4ε1δB(y))Grt(y, ω)γ(dy), (1)

because Urt is the inverse transformation for Vrt and γ ◦ U−1
st = Fst · γ and γ ◦ V −1

st = Gst · γ.
The Cauchy–Buniakovsky inequality enables one to estimate (1) from above by the expression√∫

e8ε1δB(y)γ(dy)
∫

G2
rt(y, ω)γ(dy) .

By choosing ε1 such that
∫

e8ε1δB(y)γ(dy) ≤
∫

e8ε1|δB(y)|γ(dy) < M , and applying the inequality
√

Q ≤
1
2 (1 + Q), we have the following estimate for (1):

√
M

2

(
1 +

∫
G2

rt(y, ω)γ(dy)
)

.

Thus, the final estimate for I1 is this:

I1 =
∫∫

exp
(

4

t∫
s

δB(Vrt(x, ω))dr

)
γ(dx)P (dω) ≤

∫∫ t∫
s

exp (4ε1δB(Vrt(x, ω)))
dr

ε1
γ(dx)P (dω)

≤
√

M

2
+
√

M

2ε1

t∫
s

∫∫
G2

rt(y, ω) γ(dy)P (dω) dr.

Let us proceed to estimating

I2 =
∫∫

exp
(
−4

∞∑
n=1

( t∫
s

(cnVrt(x, ω) ◦ dw(n)
r )

)
γ(dx)

)
P (dω).

Plugging cnVrt(x, ω) = cnxn−c2
n(w(n)

t −w
(n)
r )−cn

t∫
r

B(n)(Vzt(x, ω)) dz in the preceding formula we obtain

I2 ≤
∫∫

exp
(
−12

∞∑
n=1

cnxn(w(n)
t − w(n)

s )
)

γ(dx)P (dω)

+
∫∫

exp
(
6
∞∑

n=1

c2
n

(
w

(n)
t − w(n)

s

)2)
γ(dx)P (dω)

+
∫∫

exp
(

12
∞∑

n=1

cn

t∫
s

t∫
r

B(n)
(
Vzt(x, ω)

)
dz ◦ dw(n)

r

)
γ(dx)P (dω).



4

Let us denote these integrals by I2,1, I2,2 and I2,3 respectively and estimate I2,3, passing from the
Stratonovich integral to the Ito integral. We obtain

I2,3 ≤
∫∫

exp
(

24
∑

n

(
cn

t∫
s

t∫
r

B(n)(Vzt) dz dw(n)
r

))
γ(dx)P (dω)

+
∫∫

exp
(
−12

∑
n

(
cn

t∫
s

t∫
r

∂B(n)(Vzt)
∂xn

dz dr

))
γ(dx)P (dω)

≡ I2,3,1 + I2,3,2.

For I2,3,1 we have

I2,3,1 =
∫∫ ∞∑

k=0

(
1
k!

(
24
∑

n

(
cn

t∫
s

t∫
r

B(n)(Vzt) dz dw(n)
r

))k
)

P (dω)γ(dx).

Let us use the following inequality for the moments of the Ito stochastic integral [5, p. 113]:

E
( t∫

s

θdwr

)2p

≤ 2p (2p− 1)p (t− s)p−1

t∫
s

E|θ|pdr.

By the Cauchy–Buniakovsky inequality one has

E
( t∫

s

θdwr

)2p+1

≤

(
E
( t∫

s

θdwr

)4p+2
) 1

2

≤

(
Cp · (t− s)2p

t∫
s

E|θ|2p+1dr

) 1
2

, where Cp = (2(4p + 1))2p+1.

For the first part of I2,3 we have

I2,3,1 ≤ 1 +
∫ ∞∑

k=1

(
242k

(2k)!
2k (2k − 1)k (t− s)k−1

t∫
s

E

(∑
n

cn

t∫
r

B(n)(Vzt) dz

)k

dr

)
γ(dx)

+
∫ ∞∑

k=0

(
242k+1

(2k + 1)!

(
Ck · (t− s)2k

t∫
s

E

(∑
n

cn

t∫
r

B(n)(Vzt) dz

)2k+1

dr

) 1
2
)

γ(dx).

Now let us estimate the common part of the last summands:
∣∣∣∣ t∫
r

∑
n

cnB(n)(Vzt) ds

∣∣∣∣. By the assumption,∑
n

c2
n ≤ K0 and

∑
n

(
B(n)(y)

)2 ≤ K1, hence∣∣∣∣∣∣
t∫

r

∑
n

cnB(n)(Vzt) ds

∣∣∣∣∣∣ ≤
t∫

r

∑
n

(
c2
n + (B(n)(Vzt))2

)
dz ≤ (t− s)C.

Let us return to estimating I2,3,1:

I2,3,1 ≤ 1 +
∞∑

k=1

Ck 242k

(2k)!
2k (2k − 1)k(t− s)2k +

∞∑
k=0

242k+1

(2k + 1)!

(
C2k+1Ck · (t− s)4k+2

) 1
2

≤ 1 +
∞∑

k=1

Ck

2k

242k 2k

(2k − 1)!
(2k − 1)kε2k

1 +
∞∑

k=0

Ck+1 242k+1

(2k + 1)!
22k+1 (2k + 1)

2k+1
2 ε2k+1

1 .

It remains to estimate the sum by using the inequality k! ≥ (k
e )

k
. We obtain

I2,3,1 ≤ 1 +
1
2e

∞∑
k=1

(24 e ε1)2k (2C)k

k (2k − 1)k−1
+
√

C
∞∑

k=0

(48 e ε1

√
C)2k+1

(2k + 1)
2k+1

2

≤ C2,3,1 .
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Let us proceed to the second part of I2,3. Since ‖DB‖H ≤ K2, then
∑
n

(
∂B(n)(Vzt)

∂xn

)2

≤ q and

∣∣∣∑
n

cn
∂B(n)(Vzt)

∂xn

∣∣∣ ≤∑
n

c2
n ×

∑
n

(
∂B(n)(Vzt)

∂xn

)2

≤ q K0 < ∞,

I2,3,2 =
∫∫

exp
(
−12

∑
n

(
cn

t∫
s

t∫
r

∂B(n)(Vzt)
∂xn

dz dr
))

γ(dx)P (dω)

≤ 1
2

∫∫
exp

(
12 q K0 t2

)
γ(dx)P (dω) ≤ C2,3,2.

Now let us estimate I2,1 as follows:

I2,1 =
∫∫

exp
( ∞∑

n=1

−12cnxn(w(n)
t − w(n)

s )
)
P (dω)γ(dx)

=
∫∫ ∏

n

exp
(
−12cnxn(w(n)

t − w(n)
s )

)
P (dω)γ(dx).

Since the processes w
(n)
t − w

(n)
s are independent, we obtain

I2,1 =
∫ ∏

n

∫
exp

(
−12cnxn(w(n)

t − w(n)
s )

)
P (dω)γ(dx).

If ξ ∼ N(0, 1) and 0 < b < 1, then Eeaξ = e
a2
2 , Ee

bξ2

2 = (1− b)−
1
2 . Hence

I2,1 =
∫ ∏

n

E exp
(
−12cnxn

√
t− s ξ

)
γ(dx) =

∏
n

∫
exp
( (12cn)2(t− s) x2

n

2

)
γ(dx)

=
∏
n

E exp
( (t− s)(12cn)2ξ2

2

)
=
∏
n

(
1− (t− s)(12cn)2

)− 1
2 .

Since (t− s)(12cn)2 ≤ 2ε1(12cn)2 < 1 and cn → 0 as n →∞, then∏
n

(
1− (t− s)(12cn)2

)− 1
2 ∼

∏
n

(
1 +

(t− s)(12cn)2

2

)
∼ (t− s) K

∑
n

c2
n < ∞.

Hence I2,1 ≤ (t− s) C2,1. Now let us estimate I2,2. We obtain

I2,2 =
∫∫

exp
(
6
∞∑

n=1

24c2
n

(
w

(n)
t − w(n)

s

)2)
γ(dx)P (dω)

=
∫

exp
(
6
∞∑

n=1

24c2
n

(
w

(n)
t − w(n)

s

)2)
P (dω).

Similarly to the estimate for I2,1, by using independence of the sequence w
(n)
t − w

(n)
s we obtain

I2,2 ≤
∏
n

E exp
(2(t− s)(12cn)2ξ2

2

)
=
∏
n

(
1− 2(t− s)(12cn)2

)− 1
2 ≤ (t− s) C2,2.

Thus,

I =
∫∫

F 2
st(x, ω)γ(dx)P (dω) ≤ C +

√
M

2ε1

t∫
s

∫∫
G2

rt(y, ω)γ(dy)P (dω) dr.

By exactly the same calculations one can estimate

J =
∫∫

G2
st(x, ω)γ(dx)P (dω) ≤ C +

√
M

2ε1

t∫
s

∫∫
F 2

sr(y, ω)γ(dy)P (dω) dr,

which yields the inequality

I =
∫∫

F 2
st(x, ω)γ(dx)P (dω) ≤ C̃ +

M

4ε2
1

t∫
s

t∫
r

∫∫
F 2

rz(y, ω)γ(dy)P (dω) dz dr.
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It remains to apply Lemma 1 for Pst =
∫∫

F 2
st(x, ω)γ(dx)P (dω), which completes the proof of Lemma 2.

�

Theorem 1. Under the indicated hypotheses, every mapping Ust transports the Gaussian measure γ into
an equivalent one.

Proof. Let us apply Lemma 2 and choose ε > 0 such that, for every s, t with 0 ≤ s ≤ t ≤ T, t − s ≤ ε,
the family of functions {F̃N

st (x, ω)} is uniformly integrable with respect to the measure γ for almost all
ω. The sequence of functions F̃N

st (x, ω) converges a.e. to the function

Fst = exp
( t∫

s

δB
(
Vrt(x, ω)

)
dr −

∑
n

t∫
s

cnV
(n)
rt ◦ dw(n)

r

)
(2)

N → ∞. Therefore, as N → ∞, the integrals
∫∫

Ω×X
(F̃N

st (x, ω))γ(dx)P (dω) converge to the integral∫∫
Ω×X

(Fst(x, ω))γ(dx)P (dω). From this and pointwise convergence of ŨN
st (x, ω) to Ust(x, ω) we obtain

that for all s, t satisfying the conditions 0 ≤ s ≤ t ≤ T, t− s ≤ ε, there holds the equality

γ ◦ U−1
st = Fst · γ.

It remains to get rid of the restriction t − s ≤ ε. Let us use the semigroup property Ust: since for all
t1, t2 and t3 of the form 0 ≤ t1 < t2 < t3 ≤ T , we have

Ut1t3(x, ω) = Ut2t3(Ut1t2(x, ω), ω),

then Ust can be represented as a composition of at most [T
ε ]+1 transformations, each of which transports

γ into an equivalent measure. Hence Ust also transports the measure γ into an equivalent one, which
completes the proof. �

Remark. As it has been shown, for small |t − s|, formula (2) expresses the density of the measure
transported by the flow with respect to the initial measure. For large |t − s| it may make no sense,
although the equivalence of the measures holds.
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