TRANSFORMATIONS OF GAUSSIAN MEASURES BY STOCHASTIC FLOWS

N.A. Tolmachev, F.A. Khitruk

Let us consider a solution $\xi(t, \omega, x)$ of the stochastic differential equation

$$d\xi(t,\omega,x) = \sigma(t,\omega)dw_t + b(\xi(t,\omega,x))dt, \quad \xi(0,\omega,x) = x$$

on the space \mathbb{R}^n . It is well known (see [1]) that under the broad assumptions, the transformations U_t on the space \mathbb{R}^n defined by the formula $x \mapsto \xi(t, \omega, x)$, for almost all ω , transport any finite measure with a positive density into an equivalent one. In the recent work [2] an infinite-dimensional generalization of this fact has been obtained. In the cited work, the coefficients σ and b are supposed to possess high regularity, in particular, b must have two bounded derivatives. In our work, an analogous result is proved by a simpler method for a constant coefficient σ and under the only assumption that the drift and its derivative are bounded (the exact formulation is given below). In a more special case, this result has been obtained in the diploma work of the second author.

Let γ be the Gaussian measure on $X = \mathbb{R}^{\infty}$ that is the direct product of the standard one-dimensional Gaussian measures, let $H = l^2$ be its Cameron–Martin space with the norm $|h|_H = \left(\sum_{n=1}^{\infty} h_n^2\right)^{1/2}$, $h = (h_n)$, and let w_t be a Wiener process on H of the type

$$w_t = \{c_n w_t^{(n)}\}_{n=1}^{\infty}, \quad \sum_{n=1}^{\infty} c_n^2 \le K_0 < \infty,$$

where the $w_t^{(n)}$'s are independent one-dimensional Wiener processes, and K with a lower index stands for a nonnegative constant. From now on let $\sigma = 1$.

Let a mapping $B: X \to H$ be Lipschitzian along H, i.e., $|B(x+h) - B(x)|_H \leq C|h|_H$ for all h in H. This ensures (see [3]) that the Gâteaux derivative $D_H B(x)$ along H exists γ a.e. and its operator norm $||D_H B(x)||_{L(H)}$ is estimated by C. We need a stronger condition that B be bounded together with the Hilbert–Schmidt norm of its derivative along $H: |B(x)|_H \leq K_1$ and $||D_H B(x)||_{\mathcal{H}} \leq K_2$.

Let us recall that a function $\delta B \in L^1(\gamma)$ is called the divergence of B with respect to γ if

$$\int_X \partial_B f(x) \, \gamma(dx) = -\int_X f(x) \, \delta B(x) \, \gamma(dx)$$

for all smooth real functions f depending on finitely many variables.

In finite dimensions, we have $\delta B(x) = \operatorname{div} B(x) + (B(x), x)$, in the general case the function $\delta B(x)$ is obtained as an $L^2(\gamma)$ -limit of appropriate finite-dimensional approximations.

It follows from [3, p. 203] that under the above assumptions, the divergence δB is defined and belongs to $L^2(\gamma)$.

According to [4, p. 288], in our case the divergence satisfies the condition

$$\int_X e^{\varepsilon_0 |\delta B(x)|} \gamma(dx) \le M \quad \text{ for some positive } \varepsilon_0 \text{ and } M.$$

Let us consider the mapping $U_{st}(\cdot,\omega)$: $\mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ specified by the equation

$$U_{st}(x,\omega) = x + w_t(\omega) - w_s(\omega) + \int_s^t B(U_{sr}(x,\omega))dr,$$

and show that it transports the Gaussian measure γ into an equivalent one. Since B is Lipschitzian along H, this equation has a unique solution for any x.

For every natural number N, we consider the auxiliary transformations

$$\widetilde{U}_{st}^N(x,\omega) = x + \widetilde{w}_t^N(\omega) - \widetilde{w}_s^N(\omega) + \int_s^\iota \widetilde{B}^N(\widetilde{U}_{sr}^N(x,\omega))dr,$$

This work has been supported in part by the RFBR project 04-01-00748 and the DFG Grant 436 RUS 113/343/0(R).

$$\widetilde{V}_{st}^N(x,\omega) = x - \widetilde{w}_t^N(\omega) + \widetilde{w}_s^N(\omega) - \int_s^t \widetilde{B}^N(\widetilde{V}_{rt}^N(x,\omega))dr$$

where $\widetilde{w}_t^N = \{c_1 w_t^{(1)}, \dots, c_n w_t^{(N)}, 0, 0, \dots\}$ and $\widetilde{B}^N = \{B^{(1)}, \dots, B^{(N)}, 0, 0, \dots\}$. The solutions \widetilde{V}_{st}^N and \widetilde{U}_{st}^N generate mappings from \mathbb{R}^N into \mathbb{R}^N , for which according to [4] we have

$$\gamma \circ (\widetilde{U}_{st}^N)^{-1} = \widetilde{F}_{st}^N \cdot \gamma, \qquad \gamma \circ (\widetilde{V}_{st}^N)^{-1} = \widetilde{G}_{st}^N \cdot \gamma,$$

with the following well-known formulas for the densities:

$$\widetilde{F}_{st}^{N} = \exp\Big(\int_{s}^{t} \delta \widetilde{B}^{N} \big(\widetilde{V}_{rt}^{N}(x,\omega)\big) dr - \sum_{n=1}^{N} \int_{s}^{t} c_{n} (\widetilde{V}_{rt}^{N})^{(n)} \circ dw_{r}^{(n)}\Big),$$
$$\widetilde{G}_{st}^{N} = \exp\Big(-\int_{s}^{t} \delta \widetilde{B}^{N} \big(\widetilde{U}_{sr}^{N}(x,\omega)\big) dr + \sum_{n=1}^{N} \int_{s}^{t} c_{n} (\widetilde{U}_{sr}^{N})^{(n)} \circ dw_{r}^{(n)}\Big).$$

Note that in these formulas we use the Stratonovich stochastic integral, in which, unlike the Ito integral case, the symbol \circ is used in front of the differential sign.

For the proof we need the following two lemmas.

Lemma 1. Suppose that for every $N \in \mathbb{N}$, P_{st}^N is a continuous function of the variables s and t from $M_{\varepsilon_o} \equiv \{(s,t) \in \mathbb{R}^2 : 0 \le s \le t \le T, t-s \le \varepsilon_o\}$ to \mathbb{R} . Let ε_o, C_1, C_2 be positive constants such that

$$P_{st}^N \le C_1 + C_2 \int_s^t \int_r^t P_{rz}^N dz dr$$

for all N, s and t, where $(s,t) \in M_{\varepsilon_o}$. Then there exist positive constants $\varepsilon \leq \varepsilon_o$ and C such that the functions P_{st}^N are uniformly bounded by the constant C on M_{ε} .

Proof. Let $\varepsilon = \min \{\varepsilon_0, \sqrt{1/C_2}\}$. Let us fix $N = N_0$. Since $P_{st}^{N_0}$ is continuous on the compact set M_{ε} , there exist t_0 and s_0 such that $P_{st}^{N_0} \leq P_{s_0t_0}^{N_0}$ on M_{ε} and

$$\begin{split} P_{s_0t_0}^{N_0} &\leq C_1 + C_2 \int\limits_{s_0}^{t_0} \int\limits_{r}^{t_0} P_{rz}^{N_0} dz dr \leq C_1 + C_2 \frac{(t_0 - s_0)^2}{2} P_{s_0t_0}^{N_0} \leq C_1 + C_2 \frac{\varepsilon^2}{2} P_{s_0t_0}^{N_0} \leq C_1 + C_2 \frac{\varepsilon^2}{2} P_{s_0t_0}^{N_0} \leq C_1 + \frac{1}{2} P_{s_0t_0}^{N_0}. \end{split}$$

Therefore, $P_{s_0t_0}^{N_0} \leq 2C_1$, and since N_0 is arbitrary, then, for all t, s and N from the hypotheses of the lemma, we have $P_{st}^N \leq 2C_1$.

Lemma 2. Let \widetilde{F}_{st}^N be as defined above. Then there exists $\varepsilon > 0$ such that, for every s and t with $0 \leq s \leq t \leq T, t-s \leq \varepsilon$, the family of functions $\{\widetilde{F}_{st}^N(x,\omega)\}$, where $N \in \mathbb{N}$, is uniformly integrable with respect to the measure γ for almost all ω .

Proof. Let us fix

$$\varepsilon_1 = \min\left\{\varepsilon_0/8, \left(25 e \sqrt{K_0 + K_1}\right)^{-1}, \min_n\left\{\frac{1}{2(12c_n)^2}\right\}\right\},\$$

where $\min_{n} \left\{ \frac{1}{2(12c_n)^2} \right\}$ exists, since $c_n \to 0$ as $n \to \infty$. For the proof of the lemma it suffices to show that

$$I_N = \iint_{\Omega \times X} (\widetilde{F}^N_{st}(x,\omega))^2 \gamma(dx) P(d\omega) \le C, \quad \text{where } C \text{ is independent of } N.$$

In the subsequent expressions the upper index N and the sign \sim are omitted. We have

$$I = \iint \exp\left(2\int_{s}^{t} \delta B(V_{rt}(x,\omega)) \, dr - 2\sum_{n} \int_{s}^{t} c_{n} V_{rt}^{(n)} \circ dw_{r}^{(n)}\right) \gamma(dx) P(d\omega)$$
$$\leq \iint \exp\left(4\int_{s}^{t} \delta B(V_{rt}(x,\omega)) \, dr\right) \gamma(dx) P(d\omega)$$
$$+ \iint \exp\left(-4\sum_{n} \int_{s}^{t} c_{n} V_{rt}^{(n)} \circ dw_{r}^{(n)}\right) \gamma(dx) P(d\omega) \equiv I_{1} + I_{2}$$

Let us estimate I_1 . We observe that $\exp\left(\int\limits_s^t \delta B(V_{rt}(x,\omega))dr\right) = \exp\left(\int\limits_s^t \varepsilon_1 \delta B(V_{rt}(x,\omega))\frac{dr}{\varepsilon_1}\right)$, which by the Jensen inequality does not exceed $\int_{s}^{t} \exp\left(\varepsilon_1 \delta B(V_{rt}(x,\omega))\right) \frac{dr}{\varepsilon_1}$. Let us observe that

$$\int \exp\left(4\varepsilon_1 \delta B(V_{rt}(x,\omega))\right) \gamma(dx) = \int \exp\left(4\varepsilon_1 \delta B(y)\right) G_{rt}(y,\omega) \gamma(dy),\tag{1}$$

because U_{rt} is the inverse transformation for V_{rt} and $\gamma \circ U_{st}^{-1} = F_{st} \cdot \gamma$ and $\gamma \circ V_{st}^{-1} = G_{st} \cdot \gamma$. The Cauchy–Buniakovsky inequality enables one to estimate (1) from above by the expression

$$\sqrt{\int e^{8\varepsilon_1 \delta B(y)} \gamma(dy) \int G_{rt}^2(y,\omega) \gamma(dy)} \,.$$

By choosing ε_1 such that $\int e^{8\varepsilon_1 \delta B(y)} \gamma(dy) \leq \int e^{8\varepsilon_1 |\delta B(y)|} \gamma(dy) < M$, and applying the inequality $\sqrt{Q} \leq \frac{1}{2}(1+Q)$, we have the following estimate for (1):

$$\frac{\sqrt{M}}{2} \left(1 + \int G_{rt}^2(y,\omega) \gamma(dy) \right).$$

Thus, the final estimate for I_1 is this:

$$I_{1} = \iint \exp\left(4\int_{s}^{t} \delta B(V_{rt}(x,\omega))dr\right)\gamma(dx)P(d\omega) \leq \\ \iint \int_{s}^{t} \exp\left(4\varepsilon_{1}\delta B(V_{rt}(x,\omega))\right)\frac{dr}{\varepsilon_{1}}\gamma(dx)P(d\omega) \\ \leq \frac{\sqrt{M}}{2} + \frac{\sqrt{M}}{2\varepsilon_{1}}\int_{s}^{t} \iint G_{rt}^{2}(y,\omega)\gamma(dy)P(d\omega)\,dr.$$

Let us proceed to estimating

$$I_2 = \iint \exp\left(-4\sum_{n=1}^{\infty} \left(\int_{s}^{t} (c_n V_{rt}(x,\omega) \circ dw_r^{(n)})\right) \gamma(dx)\right) P(d\omega).$$

Plugging $c_n V_{rt}(x,\omega) = c_n x_n - c_n^2 (w_t^{(n)} - w_r^{(n)}) - c_n \int_r^t B^{(n)}(V_{zt}(x,\omega)) dz$ in the preceding formula we obtain

$$I_{2} \leq \iint \exp\left(-12\sum_{n=1}^{\infty} c_{n}x_{n}(w_{t}^{(n)} - w_{s}^{(n)})\right)\gamma(dx)P(d\omega)$$
$$+ \iint \exp\left(6\sum_{n=1}^{\infty} c_{n}^{2}\left(w_{t}^{(n)} - w_{s}^{(n)}\right)^{2}\right)\gamma(dx)P(d\omega)$$
$$+ \iint \exp\left(12\sum_{n=1}^{\infty} c_{n}\int_{s}^{t}\int_{r}^{t} B^{(n)}\left(V_{zt}(x,\omega)\right)dz \circ dw_{r}^{(n)}\right)\gamma(dx)P(d\omega).$$

Let us denote these integrals by $I_{2,1}$, $I_{2,2}$ and $I_{2,3}$ respectively and estimate $I_{2,3}$, passing from the Stratonovich integral to the Ito integral. We obtain

$$I_{2,3} \leq \iint \exp\left(24\sum_{n} \left(c_n \int_{s}^{t} \int_{r}^{t} B^{(n)}(V_{zt}) \, dz \, dw_r^{(n)}\right)\right) \gamma(dx) P(d\omega)$$
$$+ \iint \exp\left(-12\sum_{n} \left(c_n \int_{s}^{t} \int_{r}^{t} \frac{\partial B^{(n)}(V_{zt})}{\partial x_n} \, dz \, dr\right)\right) \gamma(dx) P(d\omega)$$
$$\equiv I_{2,3,1} + I_{2,3,2}.$$

For $I_{2,3,1}$ we have

$$I_{2,3,1} = \iint \sum_{k=0}^{\infty} \left(\frac{1}{k!} \left(24 \sum_{n} \left(c_n \int_{s}^{t} \int_{r}^{t} B^{(n)}(V_{zt}) \, dz \, dw_r^{(n)} \right) \right)^k \right) P(d\omega) \gamma(dx)$$

Let us use the following inequality for the moments of the Ito stochastic integral [5, p. 113]:

$$\mathbb{E}\left(\int\limits_{s}^{t} \theta dw_{r}\right)^{2p} \leq 2^{p} \left(2p-1\right)^{p} \left(t-s\right)^{p-1} \int\limits_{s}^{t} \mathbb{E}|\theta|^{p} dr.$$

By the Cauchy–Buniakovsky inequality one has

$$\mathbb{E}\left(\int_{s}^{t} \theta dw_{r}\right)^{2p+1} \leq \left(\mathbb{E}\left(\int_{s}^{t} \theta dw_{r}\right)^{4p+2}\right)^{\frac{1}{2}} \leq \left(C_{p} \cdot (t-s)^{2p} \int_{s}^{t} \mathbb{E}|\theta|^{2p+1} dr\right)^{\frac{1}{2}}, \text{ where } C_{p} = (2(4p+1))^{2p+1}$$

For the first part of $I_{2,3}$ we have

$$I_{2,3,1} \leq 1 + \int \sum_{k=1}^{\infty} \left(\frac{24^{2k}}{(2k)!} 2^k (2k-1)^k (t-s)^{k-1} \int_s^t E\left(\sum_n c_n \int_r^t B^{(n)}(V_{zt}) dz\right)^k dr \right) \gamma(dx) + \int \sum_{k=0}^{\infty} \left(\frac{24^{2k+1}}{(2k+1)!} \left(C_k \cdot (t-s)^{2k} \int_s^t E\left(\sum_n c_n \int_r^t B^{(n)}(V_{zt}) dz\right)^{2k+1} dr \right)^{\frac{1}{2}} \right) \gamma(dx).$$

Now let us estimate the common part of the last summands: $\left| \int_{r}^{L} \sum_{n} c_{n} B^{(n)}(V_{zt}) ds \right|$. By the assumption, $\sum_{n} c_{n}^{2} \leq K_{0}$ and $\sum_{n} \left(B^{(n)}(y) \right)^{2} \leq K_{1}$, hence

$$\left| \int_{r}^{t} \sum_{n} c_{n} B^{(n)}(V_{zt}) \, ds \right| \leq \int_{r}^{t} \sum_{n} \left(c_{n}^{2} + (B^{(n)}(V_{zt}))^{2} \right) dz \leq (t-s)C.$$

Let us return to estimating $I_{2,3,1}$:

$$I_{2,3,1} \leq 1 + \sum_{k=1}^{\infty} C^k \frac{24^{2k}}{(2k)!} 2^k (2k-1)^k (t-s)^{2k} + \sum_{k=0}^{\infty} \frac{24^{2k+1}}{(2k+1)!} \left(C^{2k+1} C_k \cdot (t-s)^{4k+2} \right)^{\frac{1}{2}}$$

$$\leq 1 + \sum_{k=1}^{\infty} \frac{C^k}{2k} \frac{24^{2k} 2^k}{(2k-1)!} (2k-1)^k \varepsilon_1^{2k} + \sum_{k=0}^{\infty} C^{k+1} \frac{24^{2k+1}}{(2k+1)!} 2^{2k+1} (2k+1)^{\frac{2k+1}{2}} \varepsilon_1^{2k+1}.$$

It remains to estimate the sum by using the inequality $k! \ge \left(\frac{k}{e}\right)^k$. We obtain

$$I_{2,3,1} \le 1 + \frac{1}{2e} \sum_{k=1}^{\infty} \frac{(24 \, e \, \varepsilon_1)^{2k} \, (2C)^k}{k \, (2k-1)^{k-1}} + \sqrt{C} \sum_{k=0}^{\infty} \frac{(48 \, e \, \varepsilon_1 \, \sqrt{C})^{2k+1}}{(2k+1)^{\frac{2k+1}{2}}} \le C_{2,3,1} \, .$$

Let us proceed to the second part of $I_{2,3}$. Since $||DB||_{\mathcal{H}} \leq K_2$, then $\sum_{n} \left(\frac{\partial B^{(n)}(V_{zt})}{\partial x_n}\right)^2 \leq q$ and

$$\left|\sum_{n} c_{n} \frac{\partial B^{(n)}(V_{zt})}{\partial x_{n}}\right| \leq \sum_{n} c_{n}^{2} \times \sum_{n} \left(\frac{\partial B^{(n)}(V_{zt})}{\partial x_{n}}\right)^{2} \leq q K_{0} < \infty,$$

$$I_{2,3,2} = \iint \exp\left(-12\sum_{n} \left(c_{n} \int_{s}^{t} \int_{r}^{t} \frac{\partial B^{(n)}(V_{zt})}{\partial x_{n}} \, dz \, dr\right)\right) \gamma(dx) P(d\omega)$$

$$\leq \frac{1}{2} \iint \exp\left(12 \, q \, K_{0} \, t^{2}\right) \gamma(dx) P(d\omega) \leq C_{2,3,2}.$$

Now let us estimate $I_{2,1}$ as follows:

$$I_{2,1} = \iint \exp\left(\sum_{n=1}^{\infty} -12c_n x_n (w_t^{(n)} - w_s^{(n)})\right) P(d\omega)\gamma(dx)$$
$$= \iint \prod_n \exp\left(-12c_n x_n (w_t^{(n)} - w_s^{(n)})\right) P(d\omega)\gamma(dx).$$

Since the processes $w_t^{(n)} - w_s^{(n)}$ are independent, we obtain

$$I_{2,1} = \int \prod_{n} \int \exp\left(-12c_n x_n (w_t^{(n)} - w_s^{(n)})\right) P(d\omega)\gamma(dx).$$

If $\xi \sim N(0,1)$ and 0 < b < 1, then $\mathbb{E}e^{a\xi} = e^{\frac{a^2}{2}}$, $\mathbb{E}e^{\frac{b\xi^2}{2}} = (1-b)^{-\frac{1}{2}}$. Hence

$$I_{2,1} = \int \prod_{n} \mathbb{E} \exp\left(-12c_{n}x_{n}\sqrt{t-s}\,\xi\right)\gamma(dx) = \prod_{n} \int \exp\left(\frac{(12c_{n})^{2}(t-s)\,x_{n}^{2}}{2}\right)\gamma(dx)$$
$$= \prod_{n} \mathbb{E} \exp\left(\frac{(t-s)(12c_{n})^{2}\xi^{2}}{2}\right) = \prod_{n} \left(1-(t-s)(12c_{n})^{2}\right)^{-\frac{1}{2}}.$$

Since $(t-s)(12c_n)^2 \le 2\varepsilon_1(12c_n)^2 < 1$ and $c_n \to 0$ as $n \to \infty$, then

$$\prod_{n} \left(1 - (t-s)(12c_n)^2 \right)^{-\frac{1}{2}} \sim \prod_{n} \left(1 + \frac{(t-s)(12c_n)^2}{2} \right) \sim (t-s) K \sum_{n} c_n^2 < \infty.$$

Hence $I_{2,1} \leq (t-s) C_{2,1}$. Now let us estimate $I_{2,2}$. We obtain

$$I_{2,2} = \iint \exp\left(6\sum_{n=1}^{\infty} 24c_n^2 \left(w_t^{(n)} - w_s^{(n)}\right)^2\right) \gamma(dx) P(d\omega)$$
$$= \int \exp\left(6\sum_{n=1}^{\infty} 24c_n^2 \left(w_t^{(n)} - w_s^{(n)}\right)^2\right) P(d\omega).$$

Similarly to the estimate for $I_{2,1}$, by using independence of the sequence $w_t^{(n)} - w_s^{(n)}$ we obtain

$$I_{2,2} \le \prod_{n} \mathbb{E} \exp\left(\frac{2(t-s)(12c_{n})^{2}\xi^{2}}{2}\right) = \prod_{n} \left(1 - 2(t-s)(12c_{n})^{2}\right)^{-\frac{1}{2}} \le (t-s) C_{2,2}.$$

Thus,

$$I = \iint F_{st}^2(x,\omega)\gamma(dx)P(d\omega) \le C + \frac{\sqrt{M}}{2\varepsilon_1} \int_s^t \iint G_{rt}^2(y,\omega)\gamma(dy)P(d\omega) dr$$

By exactly the same calculations one can estimate

$$J = \iint G_{st}^2(x,\omega)\gamma(dx)P(d\omega) \le C + \frac{\sqrt{M}}{2\varepsilon_1} \int_s^t \iint F_{sr}^2(y,\omega)\gamma(dy)P(d\omega) \, dr,$$

which yields the inequality

$$I = \iint F_{st}^2(x,\omega)\gamma(dx)P(d\omega) \le \widetilde{C} + \frac{M}{4\varepsilon_1^2} \int_s^t \int_r^t \iint F_{rz}^2(y,\omega)\gamma(dy)P(d\omega) \, dz \, dr.$$

It remains to apply Lemma 1 for $P_{st} = \iint F_{st}^2(x,\omega)\gamma(dx)P(d\omega)$, which completes the proof of Lemma 2.

Theorem 1. Under the indicated hypotheses, every mapping U_{st} transports the Gaussian measure γ into an equivalent one.

Proof. Let us apply Lemma 2 and choose $\varepsilon > 0$ such that, for every s, t with $0 \le s \le t \le T, t - s \le \varepsilon$, the family of functions $\{\widetilde{F}_{st}^N(x,\omega)\}$ is uniformly integrable with respect to the measure γ for almost all ω . The sequence of functions $\widetilde{F}_{st}^N(x,\omega)$ converges a.e. to the function

$$F_{st} = \exp\left(\int_{s}^{t} \delta B\left(V_{rt}(x,\omega)\right) dr - \sum_{n} \int_{s}^{t} c_n V_{rt}^{(n)} \circ dw_r^{(n)}\right)$$
(2)

 $N \to \infty$. Therefore, as $N \to \infty$, the integrals $\iint_{\Omega \times X} (\widetilde{F}_{st}^N(x,\omega))\gamma(dx)P(d\omega)$ converge to the integral $\iint_{\Omega \times X} (F_{st}(x,\omega))\gamma(dx)P(d\omega)$. From this and pointwise convergence of $\widetilde{U}_{st}^N(x,\omega)$ to $U_{st}(x,\omega)$ we obtain that for all s, t satisfying the conditions $0 \le s \le t \le T, t-s \le \varepsilon$, there holds the equality

$$\gamma \circ U_{st}^{-1} = F_{st} \cdot \gamma.$$

It remains to get rid of the restriction $t - s \leq \varepsilon$. Let us use the semigroup property U_{st} : since for all t_1, t_2 and t_3 of the form $0 \leq t_1 < t_2 < t_3 \leq T$, we have

$$U_{t_1t_3}(x,\omega) = U_{t_2t_3}(U_{t_1t_2}(x,\omega),\omega),$$

then U_{st} can be represented as a composition of at most $\left[\frac{T}{\varepsilon}\right] + 1$ transformations, each of which transports γ into an equivalent measure. Hence U_{st} also transports the measure γ into an equivalent one, which completes the proof.

Remark. As it has been shown, for small |t - s|, formula (2) expresses the density of the measure transported by the flow with respect to the initial measure. For large |t - s| it may make no sense, although the equivalence of the measures holds.

The authors thank V.I. Bogachev for constant attention and support.

References

- [1] Kunita H. Stochastic flows of diffeomorphisms. Cambridge University Press, 1984.
- [2] Pilipenko A.Yu. Transformations of measures in infinite-dimensional spaces by the flow generated by a stochastic differential equation. Sbornik Math. 2003. V. 194, N 4. P. 85-106.
- [3] Bogachev V.I. Gaussian measures. Amer. Math. Soc., Providence, 1998.
- [4] Ustunel A.S., Zakai M. Transformation of Measure on Wiener Space. Springer-Verlag, Berlin, 2000.

[5] Krylov N.V. Controlled diffusion processes. Springer, 1977.

DEPARTMENT OF MECHANICS AND MATHEMATICS OF MOSCOW STATE LOMONOSOV UNIVERSITY, 119992 MOSCOW, RUSSIA