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Abstract. We give a complete proof of Morrey’s estimate for W 1,p-norms of solutions
of second order elliptic equations on a domain in terms of their L1-norms. In addition,
we investigate dependence of the constants in this estimate on the coefficients of the
equation.

The purpose of this work is to provide a complete proof of an important result of Morrey
announced in his book [1] only with a brief hint and giving an estimate of the W 1,p-norm
of a solution of a second order elliptic equation on a domain in terms of the coefficients of
the equation and the L1-norm of the solution. In addition, we investigate dependence of
the constants in this estimate on the coefficients of the equation. The precise formulations
are given in the theorem below and its corollary (see also the concluding remark). It states
that if a function u in the Sobolev class W 1,q(G) satisfies the elliptic equation

∂xi
(aij∂xj

u+ biu)− ci∂xi
u− du = f − ∂xi

ei

in the weak sense (in the form of the integral identity below), where the usual summation
rule is used, the matrix-valued mapping (aij)i,j≤n is continuous, uniformly bounded and
uniformly nondegenerate, the vector-valued mappings (bi), (ei), (ci), and scalar functions
d and f are integrable in suitable degrees, then one has

‖u‖W 1,q(G) ≤ C
(
‖e‖Lq(G) + ‖f‖Lp(G) + ‖u‖L1(G)

)
.

This result has found interesting applications in the study of weak elliptic equations for
measures undertaken in [2], [3], and therefore it is important to have a complete proof.
The main feature of this estimate, as compared to many related estimates found in the
extensive literature on the subject (see, e.g., [4], [5], [6], [7]), is that it estimates the
W 1,q(G)-norm of u via the L1(G)-norm of u on the same domain. It is much easier to
estimate the W 1,q(G)-norm of u via the Lq(G)-norm or to estimate the W 1,q(G′)-norm
of u on a subdomain G′ ⊂ G with compact closure via the L1(G)-norm on the larger
domain G. In addition, we investigate dependence of the constants in these estimates on
the coefficients of the equation.

We retain the notation of [1], according to whichW 1,q(G) is the Sobolev class of all func-
tions on a domain G that belong to Lq(G) together with their weak first order derivatives.
Let B(x, r) denote the open ball of radius r centered at x. Throughout we use the symbols
‖f‖0

q,r, ‖f‖0
q,D, ‖f‖1

q,r and ‖f‖1
q,D to denote the norms in Lq

(
B(0, r)

)
, Lq(D), W 1,q

(
B(0, r)

)
and W 1,q(D), respectively, where D is a domain in Rn. The standard symbols like C(D)
and C1(D) are employed to denote the classes of continuous and continuously differen-
tiable functions. The subindex 0 in the notation like C0(D) means compact support. Let
uxi

:= ∂xi
u stand for the partial derivative (possibly, in the Sobolev sense) with respect
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to the variable xi. Set

G(0, r) = B(0, r) ∩ {(x1, x2, . . . , xn) : xn ≥ 0}.

Let G be a bounded domain of class C1 in Rn. Let a function u ∈ W 1,q(G), where
q > 1, satisfy the integral identity∫

G

vxi
(aijuxj

+ biu+ ei) + v(ciuxi
+ du+ f) dx = 0 (1)

for all v ∈ C1
0(G), where the coefficients aij are such that, for positive constants m,M ,

one has m|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ M |ξ|2 for all x ∈ Ḡ, ξ ∈ Rn. The assumptions on the

functions bi, ci, ei, d, and f will be specified below, but in any case they are supposed to
be measurable and integrable enough in order the above identity could make sense.

Definition 1. We say that the coefficients a, b, c, and d satisfy the H1
q -condition on a

domain Γ if aij ∈ C(Γ), and bi, ci, and d are measurable and
(a) if n

n−1
< q < n, then bi, ci ∈ Ln(Γ), d ∈ Ln

2
(Γ),

(b) if q = n ≥ 2, then

∫
Γ∩B(x,r)

(|b|n + |c|n + |d|
n
2 ) dx ≤ Ln

1r
nµ1 for some µ1 > 0 and all

B(x, r),
(c) if q > n, then bi ∈ Lq(Γ), ci ∈ Ln(Γ), d ∈ Lp(Γ), p = nq

n+q
.

We set

Qr(e)(y) =
n∑

i=1

∫
B(0,r)

Kxi
(x− y)ei(x) dx,

Pr(f)(y) =

∫
B(0,r)

K(x− y)f(x) dx,

where

K(y) =


−1

n(n− 2)α(n)|y|n−2 , n > 2

1
2π ln |y|, n = 2.

Lemma 1. The functions Pr(f) and Qr(e) have the following properties:

(a) If n = 2, q = 2, then

‖Pr(f)‖0
2,r ≤ C(µ)L(2r)µ+1(1 + ln 1

2r
)

whenever

∫
B(0,r)∩B(x,ρ)

|f(y)| dy ≤ Lρµ for some µ > 0 and all B(x, ρ), 0 < r < 1
2
;

if n = 2, q > 2, then

‖Pr(f)‖0
q,r ≤ C(n, q)‖f‖0

q,rr
2(1 + ln( 1

2r
)) for all f ∈ Lq

(
B(0, r)

)
, 0 < r < 1

2
;

if n ≥ 2, 1 ≤ q < n, then

‖Pr(f)‖0
nq

n−q
,r ≤ C(A, n, q)r‖f‖0

q,r for all f ∈ Lq

(
B(0, r)

)
and 0 < r < A < 1

2
;

If n > 2, q ≥ 1, then



3

‖Pr(f)‖0
q,r ≤ C(n, q)r2‖f‖0

q,r for all f ∈ Lq

(
B(0, r)

)
;

(b) If n = 2, q = 2, then

‖∇Pr(f)‖0
2,r ≤ C(µ)L(2r)µ

provided that

∫
B(0,r)∩B(x,ρ)

|f(y)| dy ≤ Lρµ for some µ > 0 and all B(x, ρ);

if n ≥ 2, q ≥ 1, then

‖∇Pr(f)‖0
q,r ≤ C(n, q)r‖f‖0

q,r for all f ∈ Lq

(
B(0, r)

)
;

if n ≥ 2, 1 < q < n, then

‖∇Pr(f)‖0
nq

n−q
,r ≤ C(n, q, A)‖f‖0

q,r for all f ∈ Lq

(
B(0, r)

)
and 0 < r < A.

(c) If n ≥ 2, q ≥ 1, then

‖Qr(e)‖0
q,r ≤ C(n, q)r‖e‖0

q,r for all e ∈ Lq

(
B(0, r)

)
;

if n ≥ 2, q > 1, then

‖∇Qr(e)‖0
q,r ≤ C(n, q)‖e‖0

q,r for all e ∈ Lq

(
B(0, r)

)
.

Proof. 1. The fourth inequality in (a), the second inequality in (b) and the first
inequality in (c) can be deduced from the following assertion [4, p. 157]:

if 1 ≤ q ≤ ∞ and f(x) ∈ Lp(Ω), 0 ≤ δ = 1
p
− 1

q
< λ, and

Vλ(f) =

∫
Ω

|x− y|n(1−λ)f(y) dy,

then one has

‖Vλ(f)‖Lq(Ω) ≤
(1− δ

λ− δ

)(1−δ)

α(n)(1−λ)|Ω|λ−δ‖f‖Lq(Ω).

In order to deduce the desired inequalities from this result, we note that, if n > 2, then
|K(x− y)| ≤ C(n)|x− y|2−n; if n ≥ 2, then |Kxi

(x− y)| ≤ C(n)|x− y|1−n. We set in the
above assertion Ω = B(0, r), λ = 2

n
, δ = 0 in the fourth inequality from (a), λ = 1

n
, δ = 0

in the second inequality from (b) and the first enequality from (c).

2. Let us prove the first inequality from (a). Let us continue the function f by zero
outside of B(0, r) and set ϕ(ρ) =

∫
B(x,ρ)

|f(y)| dy. Then

∫
B(0,r)

∣∣ln |x− y|
∣∣ |f(y)| dy =

2r∫
0

| ln ρ|ϕ′(ρ) dρ ≤ ln(
1

2r
)ϕ(2r) +

2r∫
0

ρ−1ϕ(ρ) dρ

≤ L(2r)µ ln(
1

2r
) + µ−1L(2r)µ.

Integrating with respect to x we obtain the required estimate.

Let us prove the second inequality from (a). Note that if f ∈ Lq(B(0, r)), n = 2, q > 2,
then
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B(0,r)∩B(x,ρ)

|f(y)| dy ≤ c(n)‖f‖0
q,rρ

2− 2
q for all B(x, ρ).

Repeating the proof of the first inequality from (a) with L = c(n)‖f‖0
q,r and µ = 2 − 2

q

we obtain∫
B(0,r)

∣∣ln |x− y|
∣∣ |f(y)| dy ≤ c(n)‖f‖0

q,r(2r)
2− 2

q ln(
1

2r
) + (2− 2

q
)−1‖f‖0

q,r(2r)
2− 2

q .

Integrating with respect to x we obtain the required estimate.

3. Let us prove the first inequality from (b). One has( ∫
B(0,r)

|x− y|−1|f(y)| dy
)2

≤
∫

B(0,r)

|x− y|−2σ|f(y)| dy
∫

B(0,r)

|x− y|2(σ−1)|f(y)| dy,

where σ ∈ (0, µ/2). In order to estimate the first multiplier, we continue f by zero outside
B(0, r) and define ϕ(ρ) as above. Then

∫
B(0,r)

|x− y|−2σ|f(y)| dy =

2r∫
0

ρ−2σϕ′(ρ) dρ

= (2r)−2σϕ(2r) + 2σ

2r∫
0

ρ−2σ−1ϕ(ρ) dρ ≤ L(2r)(µ−2σ) + 2σ(µ− 2σ)−1L(2r)µ−2σ.

Therefore,( ∫
B(0,r)

( ∫
B(0,r)

|x− y|−1|f(y)| dy
)2

dx

) 1
2

≤
( ∫

B(0,r)

( ∫
B(0,r)

|x− y|−2σ|f(y)| dy
)( ∫

B(0,r)

|x− y|2(σ−1)|f(y)| dy
)
dx

) 1
2

≤ C(µ, σ)L
1
2 (2r)( 1

2
µ−σ)

( ∫
B(0,r)

∫
B(0,r)

|x− y|2(σ−1)|f(y)| dy dx
) 1

2

≤ C(µ, σ)L(2r)µ−σ
( ∫
B(0,r)

|x− y|2(σ−1) dx
) 1

2 ≤ C(µ, σ)L(2r)µ.

4. Let us prove the third enequality from (b). Let us extend the function f by zero
outside of B(0, r). Then Pr(f)(x) = PA(f)(x), ‖f‖0

q,r = ‖f‖0
q,A. Using the fact that has

already been proved in Steps 1,2,3 the estimate ‖∇2PA(f)‖0
q,A ≤ C(n, q)‖f‖0

q,A (see [4,
p. 217]), and Sobolev’s inequality for q < n, we have

‖∇Pr(f)‖0
nq

n−q
,r ≤ ‖∇PA(f)‖0

nq
n−q

,A ≤ C1(B(0, A), q, n)‖∇PA(f)‖1
q,A

≤ C(B(0, A), q, n)‖f‖0
q,A = C(B(0, A), q, n)‖f‖0

q,r.

We conclude that the third inequality from (b) is proved.
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In order to prove the second inequality from (c) using again that if f ∈ Lq, q > 1, then
PA(f) ∈ W 2,q

(
B(0, A)

)
and

‖∇2PA(f)‖0
q,A ≤ C(n, q)‖f‖0

q,A,

which is proved in [4, p. 217]. Noting that Qr(e)(y) =
n∑

i=1

−∂yi
Pr(e

i)(y), we obtain the

second inequality in (c).

5. Applying Sobolev’s inequality for q < n and the second inequality from (b) we obtain
the third inequality from (a). This completes the proof of Lemma 1.

Lemma 2. Suppose the coefficients of integral identity (1) satisfy the H1
q -condition on

B(0, A), 0 < A < 1
2

with q ≥ n
n−1

where an equality holds only if q=n=2. There is r ∈
(0, A) such that if u ∈ W 1,q

(
B(0, r)

)
satisfies equation (1) on B(0, r), suppu ∈ B(0, r),

Pr(f) ∈ W 1,q
(
B(0, r)

)
, e ∈ Lq

(
B(0, r)

)
, supp f ∈ B(0, r), supp e ∈ B(0, r), aij(0) = δij,

then

‖u‖W 1,q(B(0,r)) ≤ C(‖e‖Lq(B(0,r)) + ‖Pr(f)‖W 1,q(B(0,r))),

where C = C
(
a, b, c, d, B(0, A

)
, r, q, n).

Proof. 1. Let u satisfy integral identity (1). If u is fixed, then identity (1) with
G = B(0, r) holds for all v ∈ C1

0

(
B(0, r)

)
. Since u, e, f have compact support in B(0, r),

identity (1) holds for all v ∈ C1
(
B(0, r)

)
. Let us consider the convolution ψ of the

functions ϕ ∈ C1
0 and K given by ψ(x) =

∫
B(0,r)

K(x− y)ϕ(y) dy. Clearly, ψ is a C1-

function, moreover ψxi
(x) =

∫
B(0,r)

Kxi
(x− y)ϕ(y) dy. Substituting ψ in place of v in (1)

we have

∫
B(0,r)

∫
B(0,r)

(
Kxi

(x− y)ϕ(y)[aij(x)uxj
(x) + bi(x)u(x) + ei(x)]

+K(x− y)ϕ(y)[ci(x)uxi
(x) + d(x)u(x) + f(x)]

)
dy dx = 0.

According to Fubini’s theorem we obtain∫
B(0,r)

ϕ(y)

∫
B(0,r)

(
Kxi

(x− y)[aijuxj
+ biu+ ei] +K(x− y)[ciuxi

+ du+ f ]
)
dx dy = 0.

Since this equality holds for all ϕ ∈ C1
0

(
B(0, r)

)
, we have for almost every y ∈ B(0, r)∫

B(0,r)

(
Kxi

(x− y)[aijuxj
+ biu+ ei] +K(x− y)[ciuxi

+ du+ f ]
)
dx = 0. (2)
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Since u ∈ W 1,q
0

(
B(0, r)

)
, according to [4, p. 158] we obtain

u(y) =
n∑

i=1

1

nα(n)

∫
B(0,r)

(yi − xi)uxi
(x)

|x− y|n
dx.

By using the function K, one can represent u as

u(y) =

∫
B(0,r)

−Kxi
(x− y)δijuxi

(x) dx. (3)

Summing (2) and (3) we obtain

u(y) =

∫
B(0,r)

Kxi
(x−y)[(aij− δij)uxj

+ biu+ ei] dy+

∫
B(0,r)

K(x−y)[ciuxi
+du+f ] dx. (4)

According to the definition of the functions Qr(e) and Pr(f), identity (4) can be repre-
sented in the following way:

u(x) = Qr((a− δ)∇u+ bu+ e) + Pr(c∇u+ du+ f). (5)

2.A. Let n
n−1

< q < n, then p = nq
n+q

> 1. Let us note that p = nq
n+q

< n. By Lemma 1

and (5) we obtain

‖u‖0
q,r ≤ ‖Qr((a− δ)∇u+ bu+ e)‖0

q,r + ‖Pr(c ∇u+ du)‖0
np

n−p
,r + ‖Pr(f)‖0

q,r

≤ C(n, q, A)r
(

max
x∈B(0,r)

|a(x)− δ|‖∇u‖0
q,r + ‖bu‖0

q,r + ‖e‖0
q,r + ‖c ∇u‖0

p,r + ‖du‖0
p,r

)
+‖Pr(f)‖0

q,r (6)

and

‖∇u‖0
q,r ≤ ‖∇Qr((a− δ)∇u+ bu+ e)‖0

q,r + ‖∇Pr(c ∇u+ du)‖0
np

n−p
,r + ‖∇Pr(f)‖0

q,r

≤ C(n, q, A)
(

max
x∈B(0,r)

|a(x)− δ|‖∇u‖0
q,r + ‖bu‖0

q,r + ‖e‖0
q,r + ‖c ∇u‖0

p,r + ‖du‖0
p,r

)
+‖∇Pr(f)‖0

q,r. (7)

Let us estimate separately the right-hand sides in these inequalities.

(a) By virtue of Hölder’s inequality and the imbedding theorem for Sobolev spaces, we
obtain

‖bu‖0
q,r =

( ∫
B(0,r)

|b(x)|q|u(x)|q dx
) 1

q

≤
( ∫
B(0,r)

|b(x)|n dx
) 1

n
( ∫
B(0,r)

|u(x)|
nq

n−q dx
)n−q

nq ≤ C(n, q)‖b‖0
n,r‖u‖1

q,r.

(b) According to Hölder’s inequality with the indices n+q
q

and n+q
n

we have
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‖c ∇u‖0
p,r =

( ∫
B(0,r)

|c(x)|
nq

n+q |∇u(x)|
nq

n+q dx
)n+q

nq

≤
( ∫
B(0,r)

|c(x)|n dx
) 1

n
( ∫
B(0,r)

|∇u(x)|q dx
) 1

q ≤ ‖c‖0
n,r‖u‖1

q,r.

(c) According to Hölder’s inequality with the indices n+q
n−q

and n+q
2q

and the imbedding

theorem, we obtain

‖du‖0
p,r =

( ∫
B(0,r)

|d(x)|
nq

n+q |u(x)|
nq

n+q dx
)n+q

nq

≤
( ∫
B(0,r)

|d(x)|
n
2 dx

) 2
n
( ∫
B(0,r)

|u(x)|
nq

n−q dx
)n−q

nq ≤ C(n, q)‖d‖0
n
2

,r‖u‖1
q,r.

By using these estimates and summing (6) and (7), we obtain

‖u‖1
q,r ≤ C(n, q, A)(r+ 1)

[(
max

x∈B(0,r)
|a(x)− δ|+ ‖b‖0

n,r + ‖c‖0
n,r + ‖d‖0

n
2

,r

)
‖u‖1

q,r + ‖e‖0
q,r

]
+ ‖Pr(f)‖1

q,r,

‖u‖1
q,r

(
1− C(n, q, A)(r + 1)

[
max

x∈B(0,r)
|a(x)− δ|+ ‖b‖0

n,r + ‖c‖0
n,r + ‖d‖0

n
2

,r

])
≤ C(n, q, A)(r + 1)(‖e‖0

q,r + ‖Pr(f)‖1
q,r).

By using the continuity of a and the absolute continuity of the Lebesgue integral, we
choose 0 < r < A such that

C1(r) = 1− C(n, q, A)(r + 1)
[

max
x∈B(0,r)

|a(x)− δ|+ ‖b‖0
n,r + ‖c‖0

n,r + ‖d‖0
n
2

,r

]
> 0.

Then

‖u‖1
q,r ≤

C(n, q, A)(r + 1)

C1(r)
(‖e‖0

q,r + ‖Pr(f)‖1
q,r).

2.B. Let q > n. In this case inequalities (6) and (7) hold true. Let us obtain some
additional estimates.

(a) By the imbedding theorem for q > n (see [4, p. 154]) we have

‖bu‖0
q,r ≤ C(n, q)r

q−n
q ‖b‖0

q,r‖u‖1
q,r.

(b) In a similar way we get the estimate

‖du‖0
p,r ≤ C(n, q)r

q−n
q ‖d‖0

p,r‖u‖1
q,r.

(c) In the same way as in part 2.A. (b) we obtain the estimate

‖c ∇u‖0
p,r ≤ ‖c‖0

n,r‖u‖1
q,r.
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By using this estimates and summing (6) and (7), we find

‖u‖1
q,r ≤ C(n, q, A)(r + 1)

[(
max

x∈B(0,r)
|a(x)− δ|+ r

q−n
q ‖b‖0

q,r + ‖c‖0
n,r

+r
q−n

q ‖d‖0
p,r

)
‖u‖1

q,r + ‖e‖0
q,r

]
+ ‖Pr(f)‖1

q,r,

‖u‖1
q,r

(
1− C(n, q, A)(r + 1)

[
max

x∈B(0,r)
|a(x)− δ|+ r

q−n
q ‖b‖0

q,r + ‖c‖0
n,r + r

q−n
q ‖d‖0

p,r

])

≤ C(n, q, A)(r + 1)
(
‖e‖0

q,r + ‖Pr(f)‖1
q,r

)
.

In the same way as in part 2.A with the corresponding constant C1(r), we obtain the
required estimate.

2.C. Let q = n > 2. In this case inequalities (6) and (7) hold. Let us obtain some
additional estimates.

(a) In order to estimate ‖bu‖0
n,r we consider (‖bu‖0

n,r)
n.We use the well-known inequality

|u(x)| ≤ C(n)

∫
B(0,r)

|x− y|1−n|∇u(y)| dy,

which follows from (3). Then∫
B(0,r)

|b(x)|n|u(x)|n dx =

∫
B(0,r)

|b(x)|n|u(x)|n−1|u(x)| dx

≤ C(n)

∫
B(0,r)

|b(x)|n|u(x)|n−1

∫
B(0,r)

|x− y|1−n|∇u(y)| dy dx

= C(n)

∫
B(0,r)

∫
B(0,r)

|b(x)|n|u(x)|n−1|x− y|1−n|∇u(y)| dy dx

= C(n)

∫
B(0,r)

∫
B(0,r)

(
|b(x)|n−1|u(x)|n−1|x−y|(1−σ)(1−n)

)(
|∇u(y)||b(x)||x−y|σ(1−n)

)
dy dx.

According to Hölder’s inequality the right-hand side is estimated by

C(n)
( ∫
B(0,r)

∫
B(0,r)

|b(x)|n|u(x)|n|x− y|−n(1−σ) dy dx
)n−1

n ×

×
( ∫
B(0,r)

∫
B(0,r)

|b(x)|n|∇u(y)|n|x− y|nσ(1−n) dy dx
) 1

n
.
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Let us estimate every multiplier separately. For the first multiplier we have

( ∫
B(0,r)

∫
B(0,r)

|b(x)|n|u(x)|n|x− y|−n(1−σ) dy dx
)n−1

n

≤
( ∫

B(0,r)

|b(x)|n|u(x)|n
( ∫
B(0,r)

|x− y|−n(1−σ) dy
)
dx

)n−1
n

≤ C(σ, n)r(n−1)σ
( ∫
B(0,r)

|b(x)|n|u(x)|n dx
)n−1

n
.

In order to estimate the second multiplier, we first estimate the following integral. Let

ϕ(ρ) =

∫
B(y,ρ)

|b(x)|n dx

and let b be continued by zero outside B(0, r). Then we obtain

∫
B(0,r)

|b(x)|n|x− y|nσ(1−n) dx =

2r∫
0

ρnσ(1−n)ϕ′(ρ) dρ

= (2r)nσ(1−n)ϕ(2r) + n(n− 1)σ

2r∫
0

ρn(1−n)σ−1ϕ(ρ) dρ

≤ Ln
1 (2r)n(µ1−(n−1)σ)

(
1 + (n− 1)σ(µ1 − (n− 1)σ)−1

)
≤ C(n, µ1, σ)Ln

1 (2r)n(µ1−(n−1)σ),

where 0 < σ < µ1/(n− 1). Now the second multiplier is estimated in the following way:

( ∫
B(0,r)

∫
B(0,r)

|b(x)|n|∇u(y)|n|x− y|nσ(1−n) dy dx
) 1

n ≤ C(n, µ1, σ)L1(2r)
µ1−(n−1)σ‖u‖1

n,r.

These estimates yield that

‖bu‖0
n,r ≤ C(n, µ1)L1(2r)

µ1‖u‖1
n,r.

(b) The estimate ‖c ∇u‖0
n
2

,r ≤ ‖c‖0
n,r‖u‖1

n,r is obtained in the same way as in 2.A.
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(c) Let us estimate ‖du‖0
n
2

,r. By using the same inequality as in (a) we find∫
B(0,r)

|d(x)|
n
2 |u(x)|

n
2 dx =

∫
B(0,r)

|d(x)|
n
2 |u(x)|

n−2
2 |u(x)| dx

≤ C(n)

∫
B(0,r)

|d(x)|
n
2 |u(x)|

n−2
2

∫
B(0,r)

|x− y|1−n|∇u(y)| dy dx

= C(n)

∫
B(0,r)

∫
B(0,r)

|d(x)|
n
2 |u(x)|

n−2
2 |x− y|1−n|∇u(y)| dy dx

= C(n)

∫
B(0,r)

∫
B(0,r)

(
|d(x)|

n−2
2 |u(x)|

n−2
2 |x− y|(1−n)(1−σ)

)(
|d(x)|

1
2 |x− y|(1−n)σ+δ

)
(
|∇u(y)||d(x)|

1
2 |x− y|−δ

)
dy dx

≤ C(n)
( ∫
B(0,r)

∫
B(0,r)

|d(x)|
n
2 |u(x)|

n
2 |x− y|+

n(1−n)(1−σ)
n−2 dy dx

)n−2
n

( ∫
B(0,r)

∫
B(0,r)

|d(x)|
n
2 |x−y|n(1−n)σ+nδ dy dx

) 1
n
( ∫
B(0,r)

∫
B(0,r)

|d(x)|
n
2 |∇u(y)|n|x−y|−nδ dy dx

) 1
n

Let us estimate every multiplier. The first multiplier is estimated as follows:(∫ ∫
|d(x)|

n
2 |u(x)|

n
2 |x− y|

n(1−n)(1−σ)
n−2 dy dx

)n−2
n

≤ C(σ, n)r(n−1)σ−1
( ∫
B(0,r)

|d(x)|
n
2 |u(x)|

n
2 dx

)n−2
n
.

Now let us estimate the second multiplier. We have(∫ ∫
|x− y|n(1−n)σ+nδ|d(x)|

n
2 dy dx

) 1
n

≤
(∫ (∫

|x− y|n(1−n)σ+nδ dy
)
|d(x)|

n
2 dx

) 1
n

≤ C(n, µ1, σ)L1r
(1−n)σ+δ+1rµ1 = C(n, µ1, σ)L1r

(1−n)σ+δ+1+µ1 .

Now let us estimate the third multiplier. We have(∫ ∫
|d(x)|

n
2 |∇u(y)|n|x− y|−nδ dy dx

) 1
n

≤
(∫

|∇u(y)|n
(∫

|d(x)|
n
2 |x− y|−nδ dx

)
dy

) 1
n

≤ ‖u‖1
n,rC(n, µ1, δ)L1r

µ1−δ.

Let 0 < δ < µ1,
1

n−1
< σ < δ+1

n−1
. Applying the obtained estimates we find

‖du‖0
n
2

,r ≤ C(n, µ1)L
2
1(r)

2µ1‖u‖1
n,r.
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Summing (6) and (7), we have

‖u‖1
q,r ≤ C(n, q, A, µ1)(r + 1)

[(
max

x∈B(0,r)
|a(x)− δ|+ 2L1r

µ1

+ L2
1r

2µ1
)
‖u‖1

q,r + ‖e‖0
q,r

]
+ ‖Pr(f)‖1

q,r.

In the same way as in part 2.A we obtain the required estimate with the corresponding
constant C1(r) given by

C1(r) = 1− C(n, q, A, µ1)(r + 1)
[

max
x∈B(0,r)

|a(x)− δ|+ 2L1r
µ1 + L2

1r
2µ1

]
.

2.D. Let n = q = 2, p = 1. By using representation (5), we obtain

‖u‖1
2,r ≤ ‖Qr((a− δ)∇u+ bu+ e)‖0

2,r + ‖Pr(c ∇u+ du)‖0
2,r + ‖Pr(f)‖0

2,r

+‖∇Qr((a− δ)∇u+ bu+ e)‖0
2,r + ‖∇Pr(c ∇u+ du)‖0

2,r + ‖∇Pr(f)‖0
2,r. (8)

In order to apply Lemma 1, we have to show that the functions c∇u and du satisfy the
conditions required in that lemma. According to the hypotheses of the present lemma we
have ∫

B(0,r)

|c(x)||∇u(x)| dx ≤
( ∫
B(0,r)

|c(x)|2 dx
) 1

2
( ∫
B(0,r)

|∇u(x)|2 dx
) 1

2 ≤ L1r
µ1‖u‖1

2,r.

By the Cauchy inequality∫
B(0,r)

|d(x)||u(x)| dx ≤
( ∫
B(0,r)

|d(x)| dx
) 1

2
( ∫
B(0,r)

|d(x)||u(x)|2 dx
) 1

2
.

Let us consider the second multiplier. Since |u(x)| ≤ C

∫
B(0,r)

|x− y|−1|∇u(y)| dy, one has

∫
B(0,r)

|d(x)||u(x)|2 dx ≤ C

∫
B(0,r)

∫
B(0,r)

|d(x)||u(x)||∇u(y)||x− y|−1 dy dx

≤ C
( ∫
B(0,r)

∫
B(0,r)

|d(x)||u(x)|2|x− y|2(1−σ) dy dx
) 1

2

( ∫
B(0,r)

∫
B(0,r)

|d(x)||∇u(y)|2|x− y|−2σ dy dx
) 1

2
,

which is estimated by

C(µ1, σ)L1r
µ1‖u‖1

2,r

( ∫
B(0,r)

|d(x)||u(x)|2 dx
) 1

2
.

Thus we conclude that ∫
B(0,r)

|d(x)||u(x)| dx ≤ C(µ1)L
2
1r

2µ1‖u‖1
2,r.

The estimate of ‖bu‖0
2,r follows by the estimate from 2.C(a) for n = 2, i.e.,

‖bu‖0
2,r ≤ C(µ1)L1r

µ1‖u‖1
2,r.
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By using Lemma 1 and applying the obtained estimates, we have

‖u‖1
2,r ≤ Cr

(
max

x∈B(0,r)
|a(x)− δ|‖u‖1

2,r + C(µ1, A)L1r
µ1‖u‖1

2,r + ‖e‖0
2,r

)
+ C(µ1, A)L1(2r)

µ1+1
(
1− ln(2r)

)(
1 + c(µ1, A)

)
‖u‖1

2,r

+ C
(

max
x∈B(0,r)

|a(x)− δ|‖u‖1
2,r + C(µ1, A)L1r

µ1‖u‖1
2,r + ‖e‖0

2,r

)
+ C(µ1, A)L1(2r)

µ1
(
1 + c(µ1, A)

)
‖u‖1

2,r + ‖Pr(f)‖1
2,r.

Hence

‖u‖1
2,r

(
1− C(r + 1)

[
max

x∈B(0,r)
|a(x)− δ|+ C(µ1, A)L1r

µ1

]
− C(µ1, A)L1(2r)

µ1
(
1 + r − r ln(2r)

)(
1 + c(µ1, A)

))
≤ C(r + 1)C(µ1, A)L1(2r)

µ1
(
1 + r − r ln(2r)

)(
1 + c(µ1, A)

)(
‖e‖0

2,r + ‖Pr(f)‖1
2,r

)
.

Choosing r > 0 so that

0 < 1− C(r + 1)
[

max
x∈B(0,r)

|a(x)− δ|+ C(µ1, A)L1r
µ1

]
− C(µ1, A)L1(2r)

µ1
(
1 + r − r ln(2r)

)(
1 + c(µ1, A)

)
,

we obtain the required estimate. Lemma 2 is proved.

Lemma 3. Suppose that in the hypotheses of Lemma 2 we replace B(0, A) by G(0, A)
and B(0, r) by G(0, r). Let the functions u, f, e vanish on the spherical part of the surface
of the hemisphere G(0, r), but not necessarily on its bottom σr = G(0, r) ∩ {xn = 0} and
let Pr(f) be the restriction to G(0, r) of the former Pr(f̄) where f̄ is the extension to
B(0, r) by the “negative reflection with respect to xn”. Then the conclusion of Lemma 2
holds.

Proof. Let us set

D(x, y) = D(x1, x2, . . . , xn, y1, y2, . . . , yn)

= K
(√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn + yn)2
)
,

where K is the function defined before Lemma 1. Let ϕ ∈ C1
0

(
G(0, r)

)
. Then the function

ψ(x) =

∫
G(0,r)

(
K(x− y)−D(x, y)

)
ϕ(y) dy

belongs to C1
(
Ḡ(0, r)

)
and ψ(x1, x2, . . . , xn) = 0 if xn = 0. We extend ψ by zero outside of

G(0, r). Let us fix u satisfying (1). Then integral identity (1) holds for all v ∈ C1
0

(
G(0, r)

)
.

Let w ∈ C1
(
Ḡ(0, r)

)
and let w vanish on the spherical part of the boundary of the

hemisphere G(0, r) (but not necessarily on its bottom σr). Then we can replace v by w
in (1). In order to prove this fact we extend w by zero outside of G(0, r) and consider the
functions

wε(x1, x2, . . . , xn) = w(x1, x2, . . . , xn − ε).
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Since wε belongs to the space Lip0

(
G(0, r)

)
of Lipschitzian functions with compact support

in G(0, r), we can replace v in (1) by wε. Letting ε→ 0 we obtain that the identity holds
for w. Then we can replace v in (1) by ψ. Letting v = ψ in the integral identity and
using Fubini’s theorem we find∫

G(0,r)

∫
G(0,r)

((
Kxi

(x− y)−Dxi
(x, y)

)
ϕ(y)[aij(x)uxj

(x) + bi(x)u(x) + ei(x)]

+
(
K(x− y)−D(x, y)

)
ϕ(y)[ci(x)uxi

(x) + d(x)u(x) + f(x)]
)
dy dx = 0.

Hence∫
G(0,r)

ϕ(y)

∫
G(0,r)

((
Kxi

(x− y)−Dxi
(x, y)

)
[aijuxj

+ biu+ ei]

+
(
K(x− y)−D(x, y)

)
[ciuxi

+ du+ f ]
)
dx dy = 0.

Since this holds for all ϕ ∈ C1
0

(
G(0, r)

)
, we have for almost every y ∈ G(0, r)∫

G(0,r)

((
Kxi

(x− y)−Dxi
(x, y)

)
[aijuxj

+ biu+ ei]

+
(
K(x− y)−D(x, y)

)
[ciuxi

+ du+ f ]
)
dx = 0. (9)

Therefore,∫
G(0,r)

Kxi
(x− y)[aijuxj

+ biu+ ei] +K(x− y)[ciuxi
+ du+ f ] dx

−
∫

G(0,r)

(
Dxi

(x, y)[aijuxj
+ biu+ ei] +D(x, y)[ciuxi

+ du+ f ]
)
dx = 0.

Let us consider the second integral and make the change of variables zi = xi, i =
1, 2, . . . , n, zn = −xn. Let

G−(0, r) = B(0, r) ∩ {xn ≤ 0}, ~zn−1 = (z1, z2, . . . , zn−1).

Then we obtain the integral

−
∫

G−(0,r)

(
Dzi

(~zn−1,−zn, y)[a
ijuzj

+ biu+ ei] +D(~zn−1,−zn, y)[c
iuzi

+ du+ f ]
)
dz.

Note that D(~zn−1,−zn, y) = K(z − y) and Dzi
(~zn−1,−zn, y) = Kzi

(z − y) if 1 ≤ i < n,
Dzn(~zn−1,−zn, y) = −Kzi

(z − y) if i = n.

Let us extend [aijuxj
+ biu+ ei] and [ciuxi

+ du+ f ] to G−(0, r) in the following way:

(a) [aijuxj
+ biu+ ei](x1, x2, . . . , xn) = [aijuxj

+ biu+ ei](x1, x2, . . . ,−xn) if xn < 0 and
1 ≤ i < n,

[aijuxj
+biu+ei](x1, x2, . . . , xn) = −[aijuxj

+biu+ei](x1, x2, . . . ,−xn) if xn < 0 and i = n,

(b) [ciuxi
+ du+ f ](x1, x2, . . . , xn) = −[ciuxi

+ du+ f ](x1, x2, . . . ,−xn) if xn < 0.
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Then we obtain∫
B(0,r)

(
Kxi

(x− y)[aijuxj
+ biu+ ei] +K(x− y)[ciuxi

+ du+ f ]
)
dx = 0. (10)

Let us extend the function u to G−(0, r) as follows: u(x1, x2, . . . , xn) = u(x1, x2, . . . ,−xn)
if xn < 0. The functions aij, bi, ci, d are extended so that conditions (a) and (b) be
fulfilled (it is obvious that the extension of aij is continuous at zero because aij(0) = δij).
Then formula (3) holds for the new function u. Summing (10) and (3) we obtain the
representation of u in form (4) from Lemma 2. The rest of the proof coincides with Step
2 of Lemma 2. Lemma 3 is proved.

Theorem. Let G be a C1-domain and let the coefficients of integral identity (1) satisfy
the H1

q -condition on Γ ⊃ G with q ≥ n
n−1

, where an equality holds only if q = n = 2.
Suppose also that e ∈ Lq(G), f ∈ Lp(G), where p = qn

n+q
≥ 1, and that the function f

satisfies the following condition:

∫
Γ∩B(x,r)

|f(y)| dy ≤ Lrµ for some µ > 0 and all B(x, r)

if p = 1. Let u ∈ W 1,q(G) satisfy (1) on G. Then

‖u‖1
q,G ≤ C

(
‖e‖0

q,G + ‖f‖0
p,G + ‖u‖0

1,G

)
.

If q = n = 2, so p = 1, the term ‖f‖0
p,G must be replaced by L. The constant C depends

only on n,m,M, q,G, and the functions a, b, c, d.

Proof. 1. At every point x0 ∈ Ḡ there are neighborhoods U(x0) and W (x0), U(x0) ⊂
W (x0) ⊂ Γ and a one-to-one mapping ψx0 such that W (x0) and U(x0) are mapped onto
B(0, A) and B(0, r), 0 < r < A, A < 1

2
, respectively, if x0 is an inner point, and the

indicated neighborhoods are mapped onto G(0, A) and G(0, r) in the case of a boundary
point. The number r will be chosen in Step 3. Moreover, the mapping ψx0 has the
following properties:

(a) ψx0 and ψ−1
x0

belong to C1,

(b) ãij
(
ψx0(x0)

)
= akm(x0)

∂ψx0,i

∂xm

∂ψx0,j

∂xk
= δij,

(c) the Jacobian of ψx0 equals some constant J(x0) and C1 < |J(x0)| < C2 for all
x0 ∈ Ḡ, where the constants C1, C2 depend only on m,M .

This follows by the assumption that m|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ M |ξ|2 for all x ∈ Ḡ,

~ξ ∈ Rn and G ∈ C1.

2. Since the system of neighborhoods {U(x0)}x0∈Ḡ is a cover of Ḡ and Ḡ is compact,
we can choose a finite subcover {U(xk)}1≤k≤K . We may choose a partition of unity
ζ1, ζ2, . . . , ζK , where each ζk belongs to C1 and has support in U(xk). Let wk = ζku,
where u satisfies integral identity (1). Let

ẽi = ζke
i − aijζk,xj

u; f̃ = ζkf − ciζk,xi
u+ ζk,xi

(aijuxj
+ biu+ ei). (12)

Then wk also satisfies (1) with the coefficients e, f replaced by ẽ and f̃ . Note that the

supports of wk, ẽ, f̃ belong to U(xk).

3. Suppose that the theorem is false. Then there are sequences {um}∞m=1 ∈ W 1,q(G),
{em}∞m=1 ∈ Lq(G), {fm}∞m=1 ∈ Lp(G) (or {Lm}∞m=1 if p = 1) such that



15

1) ‖um‖1
q,G = 1 for all m ∈ N ,

2) {um} converges weakly in W 1,q(G),

3) {um} → 0 in L1(G),

4) {em} → 0 in Lq(G),

5) {fm} → 0 in Lp(G) if p > 1 and Lm → 0 if p = 1.

Then um → 0 in Lq(G), which follows from 2) and 3) and the embedding theorem.

We have um =
K∑

k=1

ζkum =
K∑

k=1

wm,k. Then ‖um‖1
q,G ≤

K∑
k=1

Ck‖wm,k‖1
q,U(xk). The function

wm,k satisfies the integral identity∫
U(xk)

(
vxi

(aijwm,k,xj
+ biwm,k + ẽi

m) + v(ciwm,k,xi
+ dwm,k + f̃m)

)
dx = 0,

where ẽm and f̃m are defined as above in (12). By using the mapping ψxk
from Step 1 we

obtain∫
B(0,r)

(
vxi

(aijwm,k,xj
+ biwm,k + ẽi

m)+v(ciwm,k,xi
+dwm,k + f̃m)

)
dx = 0, aij(0) = δij. (13)

In the boundary case the same holds for G(0, r) in place of B(0, r). Choosing 0 < r < A
so small that Lemma 2 and Lemma 3 apply, we obtain

‖wm,k‖1
q,r ≤ C1(‖ẽm‖0

q,r + ‖Pr(f̃m)‖1
q,r). (14)

4. Let p > 1. Let us estimate ‖ẽm‖0
q,r. We have

‖ẽm‖0
q,r ≤ ‖ζkem‖0

q,r + ‖a∇ζkum‖0
q,r ≤ C(ζk,∇ζk,M)(‖em‖0

q,r + ‖um‖0
q,r).

Hence ‖ẽm‖0
q,r → 0 if m → ∞. Let us estimate ‖Pr(f̃m)‖1

q,r. By using Lemma 1 and the
estimates from the proof of Lemma 2 and Lemma 3, we have

‖Pr(f̃m)‖1
q,r ≤ C(ζk, A, r, q, n)

(
‖fm‖0

p,r + ‖c‖0
n,r‖um‖0

q,r + ‖b‖0
n,r‖um‖0

q,r + ‖em‖0
q,r

)
+‖Pr(ζk,xi

aijum,xj
)‖1

q,r. (15)

Let us consider ‖Pr(ζk,xi
aijum,xj

)‖1
q,r. Note that tm = ζk,xi

aijum,xj
converges weakly to

zero in Lq, i.e., for all ϕ ∈ Lp,
1
p

+ 1
q

= 1, we have∫
Dr

ϕ(x)tm(x) dx→ 0 as m→∞, (16)

where Dr stands for B(0, r) or G(0, r) depending on the case (without or with boundary
points) we consider. If ψ ∈ Lp, then Pr(ψ) ∈ Lp, ∇Pr(ψ) ∈ Lp, which follows by Lemma 1.
Replacing ϕ in (16) by Pr(ψ) (or by ∇Pr(ψ) in the boundary case) and using Fubini’s
theorem we obtain∫

Dr

(∫
Dr

K(x− y)ψ(y) dy
)
tm(x) dx =

∫
Dr

ψ(y)
(∫
Dr

K(x− y)tm(x) dx
)
dy

and similarly for ∇Pr(ψ). Then we conclude that the sequences Pr(tm) and ∇Pr(tm)
converge weakly to zero in Lq. Taking a subsequence we conclude that the sequence
Pr(tm) converges weakly to zero in W 1,q. Then it strongly converges to zero in Lq. Since
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∇Pr(tm) converges weakly to zero in Lq and the sequence ∇2Pr(tm) is uniformly bounded
in Lq (see Lemma 1), we obtain taking a subsequence that ∇Pr(tm) converges weakly
to zero in W 1,q. Then it strongly converges to zero in Lq. Thus we have that Pr(tm)
converges to zero in W 1,q. Consequently, according to inequality (15), we obtain

‖Pr(f̃m)‖1
q,r → 0 as m→∞.

Then estimate (14) yields that ‖wm,k‖1
q,r → 0 as m → ∞. This holds for each k ≤ K,

hence ‖um‖1
q,G → 0 as m → ∞. This contradicts the fact that ‖um‖1

q,G = 1. In the case
n = q = 2 the proof is similar. The theorem is proved.

Given a locally integrable function u, we set

‖u‖Mµ1 (Γ) = inf

{
L :

∫
Γ∩B(x,r)

|u(x)| dx ≤ Lnrnµ1 for all B(x, r)

}
.

Definition 2. We say that a function u belongs to Mµ1(Γ) if u is integrable on Γ and
‖u‖Mµ1 (Γ) <∞.

Definition 3. Let δ > 0. We say that the coefficients a, b, c, and d satisfy the H1
q,δ-

condition on a domain Γ if aij ∈ C0,δ(Γ), the functions bi, ci, and d are measurable and

(a) if n
n−1

< q < n, then bi, ci ∈ Ln+δ(Γ), d ∈ Ln+δ
2

(Γ);

(b) if q = n ≥ 2, then |b|n, |c|n, |d|n2 ∈Mµ1(Γ);

(c) if q > n, then bi ∈ Lq(Γ), ci ∈ Ln+δ(Γ), d ∈ Lp(Γ), p = nq
n+q

.

Corollary. Let us replace H1
q in the hypotheses of the theorem by H1

q,δ with some δ > 0.
Suppose that ‖a‖C0,δ , ‖b‖, ‖c‖, ‖d‖ ≤ C0 and c1 ≤ m ≤M ≤ c2 for some positive constants
c1, c2, C1, where the norms ‖b‖, ‖c‖, ‖d‖ are defined as follows:

(a) if n
n−1

< q < n, then ‖b‖ = ‖b‖Ln+δ(Γ), ‖c‖ = ‖c‖Ln+δ(Γ), ‖d‖ = ‖d‖L n+δ
2

(Γ);

(b) if q = n ≥ 2, then ‖b‖ = ‖|b|n‖Mµ1 (Γ), ‖c‖ = ‖|c|n‖Mµ1 (Γ), ‖d|| = ‖|d|n2 ‖Mµ1 (Γ);

(c) if q > n, then ‖b‖ = ‖b‖Lq(Γ), ‖c‖ = ‖c‖Ln+δ(Γ), ‖d‖ = ‖d‖Lp(Γ), p = nq
n+q

.

Then there exists a number C = C(n, q,G,C0, c1, c2) such that the conclusion of the
theorem holds.

Proof. 1. Suppose that the statement is false. Then there are sequences {um}∞m=1 ∈
W 1,q(G), {em}∞m=1 ∈ Lq(G), {fm}∞m=1 ∈ Lp(G) (or {Lm}∞m=1 if p = 1) such that

(1) ‖um‖1
q,G = 1 for all m ∈ N ,

(2) {um} converges weakly in W 1,q(G),

(3) {um} → 0 in L1(G),

(4) {em} → 0 in Lq(G),

(5) {fm} → 0 in Lp(G) if p > 1 and Lm → 0 if p = 1.
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Now um → 0 in Lq(G), which follows from 2) and 3) and the embedding theorem. There
are sequences {am}∞m=1, {bm}∞m=1, {cm}∞m=1, {dm}∞m=1 such that one has

‖am‖, ‖bm‖, ‖cm‖, ‖dm‖ ≤ C0

and ∫
G

vxi
(aij

mum,xj
+ bimum + ei

m) + v(cimum,xi
+ dmum + fm) dx = 0

for all v ∈ C1
0(G). Then repeating part 3 of the proof of the theorem and using the above

notation we obtain∫
B(0,r)

(
vxi

(aij
mwm,k,xj

+ bimwm,k + ẽi
m) + v(cimwm,k,xi

+ dmwm,k + f̃m)
)
dx = 0, aij

m(0) = δij.

2. Let us prove that there exists r ∈ (0, A) so small that estimate (14) holds with a
constant C1 independent of m.

1) Since ‖am(x)‖C0,δ(B(0,A)) ≤ C(A,C0, c1, c2), the sequence {am(x)} is equicontinuous
at the origin.

2) If n
n−1

< q < n, then by Hölder’s inequality we have

‖b‖n,r ≤ c(n)r
n+δ

δ ‖b‖n+δ,r ≤ c(n)r
n+δ

δ C0,

‖c‖n,r ≤ c(n)r
n+δ

δ ‖c‖n+δ,r ≤ c(n)r
n+δ

δ C0,

‖d‖n
2
≤ c(n)r

2(n+δ)
δ ‖d‖n+δ

2
,r ≤ c(n)r

2(n+δ)
δ C0.

According to part 2.A of the proof of Lemma 2 and 1), 2) we have

C1(r) = 1− C(n, q, A)(r + 1)
[

max
x∈B(0,r)

|a(x)− δ|+ ‖b‖0
n,r + ‖c‖0

n,r + ‖d‖0
n
2

,r

]
≥ 1−C(n, q, A)(r+1)

[
C(A,C0, c1, c2)r+c(n,C0)r

n+δ
δ +c(n,C0)r

n+δ
δ +c(n,C0)r

2(n+δ)
δ

]
.

There exists r ∈ (0, A) so small that C1(r) >
1
2

and

‖wm,k‖1
q,r ≤ 2C(n, q, A)(r + 1)

(
‖ẽm‖0

q,r + ‖Pr(f̃m)‖1
q,r

)
.

We obtain the required estimate.

3) If q > n, then by Hölder’s inequality we have

‖c‖n,r ≤ c(n)r
n+δ

δ ‖c‖n+δ,r ≤ c(n)r
n+δ

δ C0.

According to part 2.B of the proof of Lemma 2 and 1), 3) we obtain the required estimate
as above.

4) If q = n then, we replace L1 by C0 in parts 2.C and 2.D of the proof of Lemma 2.
Repeating the proof of the Lemma 2 and applying 1) we obtain the required estimate. So
we have

‖wm,k‖1
q,r ≤ C1(‖ẽm‖0

q,r + ‖Pr(f̃m)‖1
q,r),

where C1 depends only on n, q, r, A, C0, c1, c2.

3. The end of the proof essentially repeats the coresponding part of the proof of the
theorem. Let us additionally note that one has the following estimates:

‖ẽm‖0
q,r ≤ ‖ζkem‖0

q,r + ‖a∇ζkum‖0
q,r ≤ C(ζk,∇ζk, c2, c1, C0)(‖em‖0

q,r + ‖um‖0
q,r),



18 STANISLAV V. SHAPOSHNIKOV

‖Pr(f̃m)‖1
q,r ≤ C(n, q, r, A)‖f̃m‖0

p,r ≤
C(n, q, r, A, ζk,∇ζk)

(
‖fm‖0

p,r + ‖cm‖0
n,r‖um‖0

q,r + ‖b‖0
m,r‖um‖0

q,r + ‖em‖0
q,r

)
+‖Pr(ζk,xi

aij
mum,xj

)‖1
q,r,

where ‖cm‖, ‖bm‖ ≤ C0. Since {um,xj
} converges weakly to zero in Lq and ‖ζk,xi

aij
m‖C0,δ ≤

C(∇ζk, C0, c1, c2) we obtain that the sequence tm = ζk,xi
aij

mum,xj
converges weakly to zero

in Lq. The corollary is proved.

Remark. Let us consider a collection F (Γ) of elliptic equations on a domain G ⊂ Γ

∂xi
(aij∂xj

u+ biu)− ci∂xi
u− du = f − ∂xi

ei,

where the set {a} is compact in C(Γ) and there are positive numbers c1, c2 such that

c1|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ c2|ξ|2 for all x ∈ Ḡ, ξ ∈ Rn and a ∈ {a}. Suppose the families

{b}, {c}, {d} satisfy the following conditions:

(a) if n
n−1

< q < n, then {b}, {c} ⊂ Ln(Γ), {d} ⊂ Ln
2
(Γ), and the families of functions

{|b|n}, {|c|n}, {|d|n2 } have compact closure in the weak topology of L1(Γ);

(b) if q = n ≥ 2, then the families {|b|n}, {|c|n}, {|d|n2 } are bounded in Mµ1(Γ),

(c) if q > n, then the family {b} is bounded in Lq(Γ), the family {c} is bounded in
Ln(Γ), the family {d} is bounded in Lp(Γ), where p = nq

n+q
, and the family {|c|n} has

compact closure in the weak topology of L1(Γ).

Let G be a C1-domain and let q ≥ n
n−1

, where the equality holds only if q = n = 2.
Suppose also that e ⊂ Lq(G), f ⊂ Lp(G), where p = qn

n+q
≥ 1, and that the functions

from f satisfy the following condition:∫
Γ∩B(x,r)

|f(y)| dy ≤ L(f)rµ(f) for some µ(f) > 0 and all B(x, r) if p = 1.

Let u ∈ W 1,q(G) satisfy an equation from F (Γ) in the weak sense. Then one has

‖u‖1
q,G ≤ C

(
‖e‖0

q,G + ‖f‖0
p,G + ‖u‖0

1,G

)
.

If q = n = 2, so p = 1, then the term ‖f‖0
p,G must be replaced by L(f). The number C

depends only on n, q,G,Γ, c0, c1, and the colection F (Γ).

Proof. Recall that a set Q ⊂ L1(Γ) has compact closure in the weak topology of L1(Γ) if
and only if Q is uniformly integrable and that Q is uniformly integrable if and only if Q
has uniformly absolutely continuous integrals. Applying this fact and repeating the proof
of the corollary we obtain the required result.

The author warmly thanks V. I. Bogachev for many fruitful discussions.

References

[1] Morrey C.B. Multiple integrals in the calculus of variations. Springer-Verlag, Berlin – Heidelberg –
New York, 1966.
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