ON MORREY’S ESTIMATE OF SOLUTIONS OF ELLIPTIC
EQUATIONS

STANISLAV V. SHAPOSHNIKOV

ABSTRACT. We give a complete proof of Morrey’s estimate for W' -norms of solutions
of second order elliptic equations on a domain in terms of their L;-norms. In addition,
we investigate dependence of the constants in this estimate on the coefficients of the
equation.

The purpose of this work is to provide a complete proof of an important result of Morrey
announced in his book [1] only with a brief hint and giving an estimate of the WP-norm
of a solution of a second order elliptic equation on a domain in terms of the coefficients of
the equation and the Li-norm of the solution. In addition, we investigate dependence of
the constants in this estimate on the coefficients of the equation. The precise formulations
are given in the theorem below and its corollary (see also the concluding remark). It states
that if a function u in the Sobolev class W14(G) satisfies the elliptic equation

Op, (a7 0y u + b'u) — 'Opyu — du = f — Oy,€’

in the weak sense (in the form of the integral identity below), where the usual summation
rule is used, the matrix-valued mapping (a”); j<, is continuous, uniformly bounded and
uniformly nondegenerate, the vector-valued mappings (b'), (¢'), (¢'), and scalar functions
d and f are integrable in suitable degrees, then one has

lullwra@c) < CllellLy@ + 1L + lullie)-

This result has found interesting applications in the study of weak elliptic equations for
measures undertaken in [2], [3], and therefore it is important to have a complete proof.
The main feature of this estimate, as compared to many related estimates found in the
extensive literature on the subject (see, e.g., [4], [5], [6], [7]), is that it estimates the
Wh4(G)-norm of u via the L;(G)-norm of u on the same domain. It is much easier to
estimate the W14(G)-norm of u via the L,(G)-norm or to estimate the W¢(G’)-norm
of u on a subdomain G’ C G with compact closure via the L;(G)-norm on the larger
domain G. In addition, we investigate dependence of the constants in these estimates on
the coefficients of the equation.

We retain the notation of [1], according to which W4(@) is the Sobolev class of all func-
tions on a domain G that belong to L,(G) together with their weak first order derivatives.
Let B(xz,r) denote the open ball of radius r centered at . Throughout we use the symbols
A1 171551 F 1L and |71 to denote the norms in Ly (B(0,7)). Ly(D), W' (B(0,r))
and W19(D), respectively, where D is a domain in R". The standard symbols like C'(D)
and C'(D) are employed to denote the classes of continuous and continuously differen-
tiable functions. The subindex 0 in the notation like Cy(D) means compact support. Let
Uy, := Oy,u stand for the partial derivative (possibly, in the Sobolev sense) with respect
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to the variable x;. Set
G(O7 T) = B(O,'f’) N {(xhx% s 7xn): Tn, Z O}

Let G be a bounded domain of class C' in R". Let a function u € W4(G), where
q > 1, satisfy the integral identity

/v%(aijumj +bu+e') +v(cu,, +du+ f)dz =0 (1)
G

for all v € CJ(G), where the coefficients a are such that, for positive constants m, M,

one has m[¢]? < 3 a¥(x)&¢; < MIEJ]? for all # € G, € € R™. The assumptions on the
ig=1

functions b, ¢, €', d, and f will be specified below, but in any case they are supposed to

be measurable and integrable enough in order the above identity could make sense.

Definition 1. We say that the coefficients a,b,c, and d satisfy the H;—conditz'on on a

domain T if a¥ € C(T'), and b', ", and d are measurable and
(a) if ;25 < q <n, then V', c" € L,(T), d € L= ('),

(b) if ¢ =n > 2, then / (16]™ + |¢|™ + |d|2) dz < LM for some ju, > 0 and all

'NB(z,r)
B(x,r),
(c) if g >mn, then b’ € Ly(T'), ¢ € Lo(T), d € Ly(T), p = ;L.
We set
@) =Y [ Kula =) d,
=1 B0,
PO = [ K@-fads
B(0,r)
where
—1
—, N> 2
K(y)={ n(n—_2)a(n)y"™
5= In Jy], n=2.

Lemma 1. The functions P,(f) and Q,(e) have the following properties:
(a) If n=2,q = 2, then
IP-(FIIS, < Cu)L(2r)P+ (1 +1n L)

whenever / |f(y)|dy < Lp* for some p >0 and all B(z,p), 0 <1 < 3;
B(0,r)NB(,p)

ifn=2,q>2, then

1P < Cln, @)l f115,7°(1 +1In(5;) for all f € Ly(B(0,7)), 0 <7 < 3;

ifn>2,1<q<n, then

HP?“(f)H?f—qq,r < C’(A,n,q)r||f||27r for all f € Lq(B(O,r)) and 0 <r< A< %;

Ifn>2q>1, then



1P (Hllgs < Cln, @)r? (£, for all f € Ly(B(0,7));

(b) If n =2,q =2, then
IV (N5, < C(u)L(2r)"

provided that / |f(y)|dy < Lp* for some > 0 and all B(z, p);
B(0,r)NB(z.p)

ifn>2,qg>1, then

IVE(DIG, < Cln,a)rllflg, for all f € Ly(B(0,7));

ifn>21<q<n, then

||VPT(f)||(l%7T < C(n,q, D|IfNS, for all f € Ly(B(0,7)) and 0 <r < A.

(¢) If n>2,q>1, then

1@+ ()l < Cln,q)rlellg,. for all e € Ly(B(0,r));
ifn>2,q>1, then

IVQ: ()l < C(n,q)ellg, for all e € Ly(B(0,r)).

Proof. 1. The fourth inequality in (a), the second inequality in (b) and the first
inequality in (c) can be deduced from the following assertion [4, p. 157

iflgqgooandf(x)ELP(Q),0§5:%—%<)\,and
W = [l =yl pw)
Q

then one has

1 — 9\ @1-9) _ _
=) eI

In order to deduce the desired inequalities from this result, we note that, if n > 2, then
|K(z —y)| < C(n)|xz —y|*™; if n > 2, then |K,,(z —y)| < C(n)|lz —y|'~". We set in the
above assertion 2 = B(0,7), A = %, 9 = 0 in the fourth inequality from (a), A = %, 0=20
in the second inequality from (b) and the first enequality from (c).

VAU ) L) < (

2. Let us prove the first inequality from (a). Let us continue the function f by zero
outside of B(0,r) and set ¢(p) = [ |f(y)|dy. Then
)

B(z,p

/ \1ﬂ\$—y\|If(y)ldy=/anlso/(p)dpéln(%)w(%H/plw(p)dp

B(0,r) 0 0
1
< L(27’)“ln(2—) + T L(2r)H
r

Integrating with respect to x we obtain the required estimate.

Let us prove the second inequality from (a). Note that if f € L,(B(0,7)), n =2,q > 2,
then
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W)l dy < c)lIf15,p° " for all B(x, p).

B(0,r)NB(z,p)

Repeating the proof of the first inequality from (a) with L = ¢(n)| f]|9, and p = 2 — %
we obtain

/ nfz —y||[f ()] dy < c(n)]| fllg.(2r)

B(0,r)

1 2 2
2-2 ~11| £[0 2-2
aIn(—) 4+ (2 2 a,

Integrating with respect to x we obtain the required estimate.

3. Let us prove the first inequality from (b). One has

/|x— 1)l dy) /rx y () |dy/|x YO ()] dy,

B(0,r)

where o € (0, 1/2). In order to estimate the first multiplier, we continue f by zero outside
B(0,r) and define ¢(p) as above. Then

2r

/ [z —y| ™| f(y)| dy = /pQ"w’(p) dp

B(0,r) 0
2r

= (2r) % p(2r) + 20/p‘2"_1<p(p) dp < L(2r)#=29) 4 20(u — 20) "L L(2r)#%.
0

Therefore,

(/(] |x—y|‘1|f(y)|dy)2dx)é

B(0,r) B(0,r)

<( [ ([ m=vrva)( [ e )\dy)dx>1

B(0,r) B(0,r) B(0,r)

< Clpayten ([ [ eyl ayar)’

B(0,r) B(0,r)

< C(u, 0)L(2r)”_"< / |z — y[2oD d:v)é < O(u, o) L(2r)".

B(0,r)

4. Let us prove the third enequality from (b). Let us extend the function f by zero
outside of B(0,7). Then P.(f)(z) = Pa(f)(z), [ £, = [IfIl) 4 Using the fact that has
already been proved in Steps 1,2,3 the estimate |[V2P4(f)[|S 4 < C(n, )| fI)4 (see [4,
p. 217]), and Sobolev’s inequality for ¢ < n, we have

IV (F)na o < IV PA(F) e 4 < CL(B(O, A), 0, 1) [VPa(f)]lg,4

< C(B(0, A), ¢,n)l| fllg.a = C(B(0, A), ¢, n)[| f .,
We conclude that the third inequality from (b) is proved.



5

In order to prove the second inequality from (c) using again that if f € L, ¢ > 1, then
Pa(f) € W*1(B(0,A)) and

IV2Pa(F)llg.a < Cn. )1 f 115

which is proved in [4, p. 217]. Noting that Q,(e)(y) = Y. —9,,P.(¢")(y), we obtain the
i=1
second inequality in (c).

5. Applying Sobolev’s inequality for ¢ < n and the second inequality from (b) we obtain
the third inequality from (a). This completes the proof of Lemma 1.

Lemma 2. Suppose the coefficients of integral identity (1) satisfy the qu-condition on
B(0,A), 0 < A< % with ¢ > 5 where an equality holds only if q=n=2. There is r €
(0, A) such that if u € Wl’q(B(O,r)) satisfies equation (1) on B(0,r), suppu € B(0,r),
P.(f) € Wh(B(0,r)), e € Ly(B(0,7)), supp f € B(0,r), suppe € B(0,r), a¥(0) = §%,
then

lullwrasory) < Clellzy o) + I1P-()llwrasor))
where C' = C’(a, b,c,d, B(O,A),r,q,n).

Proof. 1. Let u satisfy integral identity (1). If w is fixed, then identity (1) with
G = B(0,r) holds for all v € C} (B( )) Since u, e, f have compact support in B(0,7),
identity (1) holds for all v € C'(B (0 r)). Let us consider the convolution 1 of the

functions ¢ € C} and K given by (z / K(z —y)p(y)dy. Clearly, ¢ is a C!-

function, moreover i, (x / K., (x —y)py )dy Substituting ¢ in place of v in (1)
B(0,r)

we have

/ / Koo — )o()a” (@)us, (¢) + b (z)u(z) + ¢ (2)

B(0,r)
+ K(x = )¢yl (@), (@) + d@)u(z) + [(2)]) dy de = 0.
According to Fubini’s theorem we obtain
/ ©(y) / (Kx(:c —y)a7uy, + bu+ €] + K(z — y)[cug, + du + f]) dx dy = 0.
B(0,r) B(0,r)
Since this equality holds for all ¢ € C§(B(0,r)), we have for almost every y € B(0,r)

/ (sz. (z — y)[a7uy, + b'u+ €] + K(z — y)[uy, + du + f]) dx = 0. (2)

B(0,r)
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Since u € Wy?(B(0,7)), according to [4, p. 158] we obtain

uy) =Y [Ty,

2 () T ol
B(0,r)

By using the function K, one can represent u as
/ —K,. (v — y)§“u,, () dz. (3)
B(0,r)
Summing (2) and (3) we obtain
/ Ky, (z —y)[(a7 — 07 )u,, +b'u+e']dy+ / K(z—vy)[c"uy, +du+ f]dz. (4)
B(0,r) B(0,r)

According to the definition of the functions @,(e) and P,.(f), identity (4) can be repre-
sented in the following way:

u(z) = Qr((a —0)Vu+bu+e) + P.(cVu+ du+ f). (5)

2.A. Let -5 < q <mn, then p = n”—& > 1. Let us note that p = n”—& < n. By Lemma 1
and (5) we obtain

lullg, < 1Qr((a = 8)Vu+bu+ e)llg, + [1Pr(e Vu+ du)|%e .+ |1 P(£)]g,

< Cn.q, A)r( mac fa(a) = oll[Vull, + [bull, + el +lle Tul, + [aul}, )

€B(0,r)

HIP ()l (6)

and

IVully, < IVQ:((a = 6)Vu + bu + e)llg, + V(e Vu+du) %, + [IVE(£)lly,

< Cfn, g, A)( e (o) =8IV ully, + bully, + el + le Full, + [dulf, )

€B(0,r)

HIVE(H)llg (7)
Let us estimate separately the right-hand sides in these inequalities.

(a) By virtue of Hélder’s inequality and the imbedding theorem for Sobolev spaces, we
obtain

oy, = ([ o latae )’

B(0,r)
l n—gq
n n nq
< / )| da / fuz < Clm, @) IBI2, lull,
B(0,r) B(0,r)

(b) According to Hoélder’s inequality with the indices +q and ”+q we have



L
le Vulg, = / o) 45 V)| 5 ) ™
l 1
< / ()| da) ( / Vu(e)f?de) " < el ull,
B(0,r) (0,r)

(¢) According to Holder’s inequality with the indices 2% and “t? and the imbedding
n—q 2q
theorem, we obtain

0 ng ng Lﬂ
el = ([ 1d(@)| 5 ()| dar) ™

B(0,r)

§/|d

By using these estimates and summing (6) and (7), we obtain

n—q
far)’ / e " < Ol Y, Jull,

B(0,r)

lully, < Cln.q. A)r+ 1) [ max la(e) =]+ bl + el + %, )l + el |

z€B(0,r)
+ 1P ()l

Jully, (1= Cnq, A)r + D[ max Ja(z) = o]+ [Bl5,, + el + d]%,])

z€B(0,r)
< C(n,q, A)(r+ 1)(llellg, + [1P-(F)llg.)-
By using the continuity of @ and the absolute continuity of the Lebesgue integral, we
choose 0 < r < A such that
Ci(r) =1=C(n, ¢, A)(r + 1)[ max |a(x) =0+ [[Bll. + llellu, + l1dl3,,] > 0.

x€B(0,r)
Then

1 C(”a q, A)(T + 1)
lullg, < o) (lellg. + I12-(F)llg

ar):

2.B. Let ¢ > n. In this case inequalities (6) and (7) hold true. Let us obtain some
additional estimates.

(a) By the imbedding theorem for ¢ > n (see [4, p. 154]) we have

a—-n
bullg, < Cln,@)ra [1Bllg,[lullg..

(b) In a similar way we get the estimate
a—-n
dully,. < Cln,q)r = |ldlp llullg,
(c) In the same way as in part 2.A. (b) we obtain the estimate

le Vullp, < llelln Ml
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By using this estimates and summing (6) and (7), we find

lully, < Cnq, A)r+ 1) max fa(z) = 8] + "% bl + el

z€B(0,r)
g—n
7l Ve, + el | + 1P

lully, (1= Cn,q, A)r + 1) max Jaw) = o + r*% oS, + lellS, + 7% 1l )

xeB(0,r)

< C(n, ¢, A)(r + 1) (llellg, + 12 (H)lg.r)-

In the same way as in part 2.A with the corresponding constant C}(r), we obtain the
required estimate.

2.C. Let ¢ = n > 2. In this case inequalities (6) and (7) hold. Let us obtain some
additional estimates.

(a) In order to estimate ||bul|; . we consider (||bul}, .)". We use the well-known inequality
) <) [ 1o = o ITuty)] dy,
B(0,r)

which follows from (3). Then

/|b )" fu(e |”dx—/|b )" lu()" ()| de

B(0,r)
/|b )" fu(a) / & — 4| Vu(y)| dy de

B(0,r)

/ /|b )" e = ol | Vuly)| dy do

B(0,r) B

[ b<:c>r"*|u<a:>\"*rx—yr“*ﬂ“*m)(|w<y>\\b(m)ﬂx—yrw)dyd:c.

= |
B(0,r) B(0,r)

According to Holder’s inequality the right-hand side is estimated by

o [ e - ai) T x

B(0,r) B(0,r)

1
([ p@rivuwre - et dyds)”
B(0,r) B(0,r)



Let us estimate every multiplier separately. For the first multiplier we have

n—1

n—1
([ [ p@ru@r -y dydr) *
B(0,r) B(0,r)

<( [ wruor( [ =) a)

B(0,r) B(0,r)

< Clomyr® ([ o)l ula) ds)

B(0,r)

1

n—=>1
n

In order to estimate the second multiplier, we first estimate the following integral. Let

o0)= [ ol

B(y,p)
and let b be continued by zero outside B(0,7). Then we obtain

2r
/ |b(z)|" |z — y[" " dw = /p”"(l‘”)sO’(p) dp
) 0

B(0,r

2r
= 2?0 p(r) = Do [ 90 () dp
0

< L3 ) (14 (n = Dol — (0= 1)0) ™) < Cln, r, 0) L7 (2r)"00 =070,

where 0 < 0 < p11/(n — 1). Now the second multiplier is estimated in the following way:

1
([ ] wa@rivuwle - o=t dyde)" < €. a)La(zr 0l
B(0,r) B(0,r)

These estimates yield that

1bulln, < €, pa) La(20) lully, -

(b) The estimate ||c Vu||0%7r < |lelly ]l is obtained in the same way as in 2.A.
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(c) Let us estimate Hdu||0%’r. By using the same inequality as in (a) we find

[ @t /|d )2 (@) u(z) | da

B(0,r)
/ @) u(o)] '+ / o= o' Vuly)] dyda
B(0,r) B(0,r)
cow [ / @) ()] 2 =y~ V()] dy d
B(0,r) B(0,r)
co [ [ (4@ T u)] % o~ g0 (jd@)] e - 0 )
B(0,r) B(0,r)
(IVut)lld@)E e -y ") dyda
n72
n=n)(i-o)
w( [ [ W@ -y dydr) "
B(0,r) B(0,r)
( / / Id(w)|%|x—y|”“‘"’”+”‘5dydw)" / / |d(x)|%|vu(y)|”|x—y|—n5dydx)"
B(0,r) B(0,r) B(0,r) B(0,r)

Let us estimate every multiplier. The first multiplier is estimated as follows:

n—2
n n(l—n)(l1—o) n
([ 1@ e - o5 aya)

Now let us estimate the second multiplier. We have

//|$— |n(1 na+n6|d( )| dydl‘)
([([1e= st dy)ata ar)”

< C(n, iy, 0)Lyr=oHH e — O,y | o) Lyr-Mototltm,

Now let us estimate the third multiplier. We have

//‘d )"z — |_n5dydx>i
/ St [ e — o1 dc) )’

< HuH;,rC(na M1, 5)[’170“176'

Let 0 < § < pq, ﬁ <o < %. Applying the obtained estimates we find

ldull . < C(n, pa) LY ()™ [[ull -
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Summing (6) and (7), we have

||u||;,r S C(?’L,q,A,/Ll)(T‘ + 1) [( er%?g( ) |Cl( ) — (5' + 2L17“M1

+ Lir®) [Jullg, + Hellgm} B llgr

In the same way as in part 2.A we obtain the required estimate with the corresponding
constant C;(r) given by

Ci(r)=1-=C(n,q, A, 1) (r + 1) r%z(ix : la(x) — 0| + 2Lyr" + L%r%‘l]
xeB(0,r

2.D. Let n = ¢ =2, p = 1. By using representation (5), we obtain
lullz, < 1Qr((a = 0)Vu+bu+e)lly, + | Prlc Vu+du)y, + [[1B(f)]3,
+HIVQ.((a = 8)Vu+bu+e)ly, + IVP(c Vu+du)ly, + VP, (8)

In order to apply Lemma 1, we have to show that the functions ¢Vu and du satisfy the
conditions required in that lemma. According to the hypotheses of the present lemma we
have

/r v < ([ et i)’ /IW ) < Lol

B(0,r) 0,r)

By the Cauchy inequality

/yd ()| de < /|d \dx (/ ]d(x)Hu(a:)]Qdm)é.
B(0,r)

B(0,r) B(0,r)

Let us consider the second multiplier. Since |u(z)| < C / |z — y| 7! [Vu(y)| dy, one has

B(0,r)

[ l@llutz |2dx<c/ /|d (e [Va) o — ol dy dz
B(0,r)
<cf / /\d<x>||u<x>|2rx—y12<1U)dyd:cy

B(0,r) B(O,r)
1
([ [ aivute - i),

B(0,r) B(0,r)

which is estimated by

Clm o)L Jallh, ([ ld@ (o) d)”
B(0,r)
Thus we conclude that
[ l@lluta)| do < Cun) B ull,
B(0,r)
The estimate of ||bul|3,. follows by the estimate from 2.C(a) for n = 2, i.e.,
bully,. < C(pa) Lar® [fullz,-
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By using Lemma 1 and applying the obtained estimates, we have

lull, < Cr( max Ja(e) = ollulls, + CGut, A)Lir* lully, + el

+ Cpr, A) Ly (2r)" (1 = In(2r)) (1 + e, A)) |Jull3,
+0( max faw) = bl Jull3, + Clan, A)Lar ully, + el )

z€B(0,r)
+ C(pr, ALy (2r)" (1 + e, A) Nlulla, + [P,

Hence

s, (1= C(r+1)| max Ja(x) = 6] + Cu, ALy |

x€B(0,r)
_ C(,ul, A)Ll(Qr)“l (1 +r—-r 111(27")) (1 + c(,ul, A)))
< C(r+ 1)C(pa, ALy (2r)" (147 — rIn(2r)) (1 + (i, A)) (lellz, + 12 ()l2,)-
Choosing r > 0 so that
0<1-C(r+1) Ler%z(xg’ir) la(x) — 6] + C(pa, A)Llrﬂl]
— C(p1, ALy (2r)" (1 + 7 — rIn(2r)) (1 + (1, A)),

we obtain the required estimate. Lemma 2 is proved.

Lemma 3. Suppose that in the hypotheses of Lemma 2 we replace B(0, A) by G(0, A)
and B(0,7) by G(0,7). Let the functions u, f, e vanish on the spherical part of the surface
of the hemisphere G(0,1), but not necessarily on its bottom o, = G(0,7) N {z, = 0} and
let P,(f) be the restriction to G(0,7) of the former P.(f) where f is the extension to

B(0,r) by the “negative reflection with respect to x,,”. Then the conclusion of Lemma 2

holds.

Proof. Let us set
D(z,y) = D(x1, 22, ..., Tpy Y1, Y25 - -+, Yn)
= K (Vo= g7+ (52— o) + o+ (@0 + 90)7),

where K is the function defined before Lemma 1. Let ¢ € C§(G(0,7)). Then the function

blz) = / (K(x —y) — D)) oy) dy

G(0,r)

belongs to C* ((_?(0, 7“)) and (z1, xg, ..., x,) = 0if 2, = 0. We extend ¢ by zero outside of
G(0,7). Let us fix u satisfying (1). Then integral identity (1) holds for all v € C} (G(O, 7"))
Let w € C! (G(O,r)) and let w vanish on the spherical part of the boundary of the
hemisphere G(0,r) (but not necessarily on its bottom ¢,). Then we can replace v by w
in (1). In order to prove this fact we extend w by zero outside of G(0, ) and consider the
functions

We(T1, Loy o, Ty) = W(T1, T, ..., Ty — €).
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Since w, belongs to the space Lip, (G(O7 T)) of Lipschitzian functions with compact support
in G(0,7), we can replace v in (1) by w,. Letting ¢ — 0 we obtain that the identity holds
for w. Then we can replace v in (1) by 9. Letting v = v in the integral identity and
using Fubini’s theorem we find

/ / - Dy 2,0)) )0 (), (2) + Va)u(e) + €'(2)

G(0,r) G(0,r)
+ (K (@ = ) = D(w,y)) W)l (2)us, () + d@)u(z) + f(2)]) dydz = 0.
Hence
/ / _Dxi<$’y))[a Uy, +blu—|—e]
G(0,r)

+ (K(z — y) — D(z,y))[c'us, + du+ f]> dx dy = 0.

Since this holds for all ¢ € C§(G(0,r)), we have for almost every y € G(0,7)

| ((Feo =) = Do) s, + u e
G(0,r)

+(K(x = y) = D(@,y))[c'us, + du + f]) do = 0. (9)

Therefore,

/ Ky, (z — y)[a7u,, + b'u+ €'l + K(z — y)[c'uy, + du+ f]dx

G(0,r)
— / <Dgcl.(ac7 Y)aug, + b'u+ €'l + D(z, y)[c'uy, + du + f]) dxr = 0.
G(0,r)
Let us consider the second integral and make the change of variables z; = z;, ¢ =
1,2,....,n, z, = —x,. Let

G=(0,r) = B(0,r) N{z, <0}, Z,1=1_(21,22,--+,2n-1)-

Then we obtain the integral

_ / (Dzi(,?n_l, —2n, Y)[a7u, + bu+ €] + D(Z—1, =25, y)[cus, + du + f]) dz
G—(0,r)

Note that D(z,_1, —zn,y) = K(z —y) and D, (2,1, —2n,y) = K,,(z —y) if 1 <i < mn,
D, (Zi-1,—2zn,y) = =K, (z —y) if i = n.

Let us extend [aYu,, + b'u 4 €'] and [c'u,, + du + f] to G~(0,r) in the following way:

(a) [aTuq, + biu+ e|(x1, 22, .., 2y) = [aTug, + bu+ €] (21, 22, ..., —1,) if 2, <0 and
1 <17 <n,
[0y, +D'ut€') (21, Ta, . . ., xy) = —[a Uy, +D'ut€|(x1, 22, ..., —x) if 2, < 0and i =n,

(b) [Cuy, + du+ fl(x1, T2, ..., 2) = —[CUp, + du+ f](x1, 29, ..., —x,) if 2, < 0.
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Then we obtain

/ (Kwi (z — y)[a7uy, + b'u+ €] + K(z — y)[uy, + du + f]) dx = 0. (10)
B(0,r)

Let us extend the function u to G~(0,7) as follows: u(xy, s, ..., x,) = u(zy, 22, ..., —Ty)
if z, < 0. The functions a” b',c’,d are extended so that conditions (a) and (b) be
fulfilled (it is obvious that the extension of a”/ is continuous at zero because a”(0) = §).
Then formula (3) holds for the new function u. Summing (10) and (3) we obtain the
representation of u in form (4) from Lemma 2. The rest of the proof coincides with Step
2 of Lemma 2. Lemma 3 is proved.

Theorem. Let G be a C'-domain and let the coefficients of integral identity (1) satisfy
the H;—conditz'on on I' O G with ¢ > "5, where an equality holds only if ¢ = n = 2.

Suppose also that e € Ly(G), f € L,(G), where p = nq—j:q > 1, and that the function f
satisfies the following condition: / |f(y)|dy < Lt for some p > 0 and all B(z,r)

I'nB(xz,r)

if p=1. Let u € WY(G) satisfy (1) on G. Then

lullze < Cllellge + 1flpe + lulie)-

Ifg=n =2, sop=1, the term HfH%G must be replaced by L. The constant C depends
only onn,m, M, q,G, and the functions a,b,c,d.

Proof. 1. At every point 2y € G there are neighborhoods U (z¢) and W (), U(zo) C
W (zo) C I' and a one-to-one mapping v, such that W(z,) and U(zy) are mapped onto
B(0,A) and B(0,7), 0 < r < A, A < 3, respectively, if o is an inner point, and the
indicated neighborhoods are mapped onto G(0, A) and G(0,r) in the case of a boundary
point. The number r will be chosen in Step 3. Moreover, the mapping 1),, has the

following properties:

(a) s, and ;! belong to C*,
Y 0 xoia 0. id
(b) & (4, (10)) = ™ () Syt Ot = 55

(c) the Jacobian of 1., equals some constant J(x) and C; < |J(z¢)| < C: for all
xo € G, where the constants C, Cy depend only on m, M.

This follows by the assumption that m[£|? < Y a¥(x)&& < M|EJ? for all z € G,
ig=1

£e R and G € CL.
2. Since the system of neighborhoods {U(x)},,eq is a cover of G and G is compact,
we can choose a finite subcover {U(zy)}i<k<x. We may choose a partition of unity

¢1,Co, - .-, Ci, where each ¢, belongs to C! and has support in U(xzy). Let wy, = (pu,
where u satisfies integral identity (1). Let

¢ = Ckei - aijCk,xju; f - Ckf - Cigk,wiu + gk,ri(aijuwj + b'u + ei)' (12)

Then wy also satisfies (1) with the coefficients e, f replaced by € and f. Note that the
supports of wy, €, f belong to U(xy).

3. Suppose that the theorem is false. Then there are sequences {u,,}>_;, € Wh(Q),
{em} 1 € Ly(G), {fm}e_y € L,(G) (or {Ly,}_, if p=1) such that
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1) [|tmllsq =1 for all m € N,
3) {um} — 0in Li1(G),
4) {e,} — 0in L,(G),
5 {fm} —0in L,(G) ifp>1and L, —0if p=1.
Then u,, — 0 in L,(G), which follows from 2) and 3) and the embedding theorem.

)

2) {u,,} converges weakly in Wh4(G),
)
)

We have u,,, = Z Crlly, = Z Wy, ;- Then ||um|| < Z Ckmek”qU(xk The function

W, i, satisfies the 1ntegra1 1dent1ty

/ (Ua:i(aijwm,k,xj + biwm,k + é:n) + U(Ciwm,k,xi + dwm,k + fm)) dx = O,
U(zg)

where ¢, and fm are defined as above in (12). By using the mapping v, from Step 1 we
obtain

/ <vxi(a"jwm,k@j + b Wi g+ €4) + (Wi s +dwm7k+fm)> dr =0, a”(0) = §7. (13)
B(0,r)
In the boundary case the same holds for G(0,r) in place of B(0,7). Choosing 0 < r < A
so small that Lemma 2 and Lemma 3 apply, we obtain

lwmillgr < CrlllEmllg, + 1P (Fm)llgr)- (14)
4. Let p > 1. Let us estimate ||€,]|9,. We have
1Emllgr < lSkemllgr + 1aVitimllg, < C(Ch, Ve, M) (llemllgr + lumllg)-

Hence [|é, |9, — 0 if m — oco. Let us estimate HPr(fm)Hér By using Lemma 1 and the
estimates from the proof of Lemma 2 and Lemma 3, we have

HPT(fm)H;,T S C(CkaAv Taq7n)<||fm||0 + ||C”2r||um”27r + HbH?L,rHumHg,r + ||em||2,r)

+[| P (Ck ;0" Umm])H;,r- (15)
Let us consider ||P(Ce,0”tUmg,)|lg,- Note that tn, = Cue,07 Uy ., converges weakly to
zero in L, i.e., for all ¢ € L, IlJ + % =1, we have

/gp(m)tm(:c) dr — 0 asm — oo, (16)
D,
where D, stands for B(0,r) or G(0,r) depending on the case (without or with boundary
points) we consider. If ¢ € L,, then P.(¢)) € L,, VP,(¢) € L,, which follows by Lemma 1.
Replacing ¢ in (16) by P.(¢) (or by VP,(¢) in the boundary case) and using Fubini’s
theorem we obtain

//Kx— dy dx—/l/z /Km— )dx)dy

and similarly for VP.(¢). Then we conclude that the sequences P, (t,,) and VP, ()
converge weakly to zero in L,. Taking a subsequence we conclude that the sequence
P,.(t;m) converges weakly to zero in W4, Then it strongly converges to zero in L,. Since
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V P,(t;,) converges weakly to zero in L, and the sequence V2P, (t,,) is uniformly bounded
in L, (see Lemma 1), we obtain taking a subsequence that VP, (t,,) converges weakly
to zero in W14, Then it strongly converges to zero in L,. Thus we have that P,.(t,,)
converges to zero in W14, Consequently, according to inequality (15), we obtain

1P (fi)llgr — 0 as m — oo

Then estimate (14) yields that [[wpll;, — 0 as m — oo. This holds for each k < K,

hence [Jum||; ¢ — 0 as m — oo. This contradicts the fact that |[us,|; ; = 1. In the case

n = ¢ = 2 the proof is similar. The theorem is proved.

Given a locally integrable function u, we set

|| agea (ry = inf{L: / |u(x)|de < L"r™1 for all B(aj,r)}.

'nB(z,r)

Definition 2. We say that a function u belongs to M" (') if u is integrable on T' and
lullages oy < oo

Definition 3. Let § > 0. We say that the coefficients a,b,c, and d satisfy the quﬁ—
condition on a domain I if a¥ € C*(T'), the functions b',c', and d are measurable and

(a) if L5 <q<n, thenb',¢’ € L,45(T), d € LnTH(F);
() if g =n > 2, then b, |e]" |d]3 € M#(T);
(¢) if g > n, then b' € Ly(T), ¢ € L,45(T), d € L,(I"), p= 2L

n+q’
Corollary. Let us replace qu in the hypotheses of the theorem by quﬁ with some § > 0.
Suppose that ||al|co.s, ||b]], ||c]|, [|d]] < Co and ¢y < m < M < ¢y for some positive constants
c1, c2, Cy, where the norms ||b||, ||c||, ||| are defined as follows:

(a) of 355 < g <n, then |Ibl] = [1Bllz, .oy, llell = llellzo sy Il = lldllz s )
(b) if g =n > 2, then [[bll = [[1b]"|arms vy, llell = llef*l|azms ), eIl = [l [[arm
(¢) if g >n, then |[bl} = |[bll oy llell = Nellz, sy, Al = Mldllz, @), = 355

Then there ezists a number C = C(n,q,G,Cy,c1,c) such that the conclusion of the
theorem holds.

Proof. 1. Suppose that the statement is false. Then there are sequences {u,,}>°_; €
WHI(G), {embmat € Ly(G), {fm}i=1 € Lp(G) (or { L}, if p = 1) such that

(1) llumllyq =1 for all m € N,

(2) {u;m} converges weakly in W4(G),

(3) {um} — 01in Ly (G),

() {em} — 0in L,(G).

5) {fm}—0in L,(G)ifp>1land L, —0if p=1.
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Now w,, — 0 in L,(G), which follows from 2) and 3) and the embedding theorem. There
are sequences {am, 1501, {bn}5 1, {cm o1, {dn}5°_, such that one has
[l om I, [leml], lldmll < Co
and
/vxi(a%um,xj + b Uy +el )+ U(cinum,xi + dptty, + frn)dz =0
e

for all v € CJ(G). Then repeating part 3 of the proof of the theorem and using the above
notation we obtain

/ <vxi(agwm7k,xj + bﬁnwm,k +éE )+ v(cﬁnwm,k@i + dp Wi + fm)> dr =0, a?(0) = 6.
B(0,r)

2. Let us prove that there exists r € (0, A) so small that estimate (14) holds with a
constant C independent of m.

1) Since ||am(7)|lcos(p0,4) < C(A, Co,c1,c2), the sequence {a,,(7)} is equicontinuous
at the origin.

2) If %= < ¢ < n, then by Holder’s inequality we have

n+ 5

Bl < c(n)r 5 [Blassr < c(n)rs”
n+ 5

¢l < c(n > B ellnrsr < cln)rE
ldlly < e(n)r™ 5 dl|nss, <n>r2("”

According to part 2.A of the proof of Lemma 2 and 1), 2) we have

Ci(r) =1~ Cln,q, A)r+ )| max_Jafe) — o] + b2, + el + %,

x€B(0,r)

21-Cm g Ar+l) [O(A Co, 1, ¢2)r 4 e(n, Co)r™s™ + c(n, Co)r™s" +c(n, Co)r 2(“5)}

There exists r € (0, A) so small that Cy(r) > 1 and
lwmillg, <2C(n,q, A+ 1) ([mllg, + 1P (fn)llg.r)-

We obtain the required estimate.

3) If ¢ > n, then by Holder’s inequality we have

n+d n+o
ellnr < c(n)r 5 | ellnrsr < c(n)r™s Co.

According to part 2.B of the proof of Lemma 2 and 1), 3) we obtain the required estimate
as above.

4) If ¢ = n then, we replace L; by Cy in parts 2.C and 2.D of the proof of Lemma 2.
Repeating the proof of the Lemma 2 and applying 1) we obtain the required estimate. So
we have

lwmkllge < Crlllemllgs + 12 (fa)llg.),
where C depends only on n,q,r, A, Cy, c1, cs.

3. The end of the proof essentially repeats the coresponding part of the proof of the
theorem. Let us additionally note that one has the following estimates:

emllgr < IGkemllg, + 1aViitmllg, < C Gk, Vi, e, 1, Co)(llemllgs + Ilumllg,),
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HPT(J;m)Hé,r <C(n,q,r, A)HmeO,r <

C(”? q,T, A7 Cka VC]C)(HmeO,T + HCmHg,rHumHo,r + Hbugl,ruum

+||PT(Ck,$iagum7$j)||;,’r”

where [|ci |, [|bm || < Co. Since {up, 4, } converges weakly to zero in L, and || 2,0 || cos <
C(V{, Cy, c1, c2) we obtain that the sequence t,, = Ck’xiaﬁfbum’xj converges weakly to zero
in L,. The corollary is proved.

2,7“ + HemHg,r)

Remark. Let us consider a collection F'(I') of elliptic equations on a domain G C T’
Oy (aij(')xju +b'u) — ¢ Opu — du = f — Oy,€’,

where the set {a} is compact in C(I') and there are positive numbers ¢, ¢y such that

calé]? < 3 a¥(2)&€ < elé]? for all z € GLE € R™ and a € {a}. Suppose the families
ij=1
{b},{c},{d} satisfy the following conditions:
(a) if %5 < g <n, then {b},{c} C L,(I), {d} C L=(I'), and the families of functions
{16/}, {lc["}, {|d|? } have compact closure in the weak topology of L (T);

(b) if ¢ = n > 2, then the families {|b|"}, {|c|["}, {|d|2} are bounded in M*(T),

(c) if ¢ > n, then the family {b} is bounded in L, (T"), the family {c} is bounded in
L,(I'), the family {d} is bounded in L,(I"), where p = -“L. and the family {|c¢|*} has

n+q’
compact closure in the weak topology of Lq(T).

Let G be a C'-domain and let ¢ > - where the equality holds only if ¢ = n = 2.

n—1"

Suppose also that e C Ly(G), f C L,(G), where p = nq—ﬁ > 1, and that the functions
from f satisfy the following condition:

/ |f(y)|dy < L(f)r*)  for some p(f) > 0 and all B(z,r) if p = 1.
I'nB(z,r)
Let u € Wh(Q) satisfy an equation from F(T) in the weak sense. Then one has
fullte < C(lelle + 1F1e + ulq).

If ¢ =n=2,s0p=1, then the term ||f||) , must be replaced by L(f). The number C
depends only on n,q, G, T, ¢o, ¢1, and the colection F(T).

Proof. Recall that a set @) C L1(I") has compact closure in the weak topology of L;(I") if
and only if ) is uniformly integrable and that @) is uniformly integrable if and only if @
has uniformly absolutely continuous integrals. Applying this fact and repeating the proof
of the corollary we obtain the required result.

The author warmly thanks V. I. Bogachev for many fruitful discussions.
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