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Abstract. We prove that the optimal transportation mapping that takes a Gaussian
measure γ on an infinite dimensional space to an equivalent probability measure g · γ
satisfies the Monge–Ampère equation provided that log g ∈ L1(γ) and g log g ∈ L1(γ).

1. Introduction and Main Result

The Monge–Kantorovich problem and the Monge–Ampère equation have become a very
popular object of research in the last decade (see [1], [15], [20], where one can find addi-
tional references). In the finite dimensional case, considerable progress has been achieved
by Brenier [5] and McCann [13], whose works stimulated a growing flow of publications.
Among important earlier contributions one should mention Sudakov’s research [16]. In this
paper we are interested in the infinite dimensional situation and extend several recent re-
sults from [9], [10], [11]. Our principal contribution is a derivation of the Monge–Ampère
equation for transformations of Gaussian measures on infinite dimensional spaces. We
shall use the following important existence result from [9]. Let X be a locally convex
space and let γ be a centered Radon Gaussian measure on X with the Cameron–Martin
space H. The natural inner product in H is denoted by 〈 · , · 〉H ; the corresponding norm
is | · |H . One may assume without loss of generality that X = R∞, the countable power of
the real line, and that γ is the countable power of the standard Gaussian measure; then
H = l2. Suppose that we are given a probability measure g · γ such that

WH(γ, g · γ)2 = inf
m∈P(γ,g·γ)

∫
X×X

|x1 − x2|2H dm(x1, x2) < ∞,

where P(γ, g ·γ) is the set of all Radon probability measures on X×X whose projections
on the first and second factors are γ and g · γ. Then there exists a unique Borel mapping

T : X → X sending γ to g ·γ such that WH(γ, g · γ)2 =

∫
X

|T (x)− x|2H dγ. This mapping

is called the optimal transportation plan or the optimal transportation mapping. An
effective sufficient condition for WH(γ, g · γ) to be finite is the finiteness of entropy

Entγg :=

∫
X

g log g dγ < ∞.

This is a consequence of the Talagrand inequality ([18], see also [12] for other inequalities
of this type). This transportation plan has the form T = I + ∇Φ, where Φ belongs to
the Sobolev class W 2,1(γ) and is 1-convex (see the definition below). If g > 0 γ-a.e. and
log g ∈ L1(γ), then there exists a mapping S such that T and S are reciprocal, i.e., one
has

T ◦ S(x) = S ◦ T (x) = x for γ-a.e. x.
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Moreover, S realizes the optimal transportation plan that takes g ·γ to γ and S = I +∇Ψ,
where Ψ ∈ W 2,1(γ) is 1-convex.

The Monge–Kantorovich problem can be considered also from the point of view of
partial differential equations. Suppose we are given two probability measures f dx and
g dx on Rn and the corresponding optimal transportation plan T , which is known to be the
gradient of a convex function V . Performing formally the change of variables we obtain
f = g(∇V ) det D2V . This formula is a partial case of the Monge–Ampère equation. The
following rigorous result was obtained by McCann [14] (see also [20]).

Theorem 1.1. (McCann) Let µ = f dx and ν = g dx be two absolutely continuous
probability measures on Rn such that µ is equivalent to Lebesgue measure and let V be
a convex function such that ∇V takes µ to ν. Let det(D2

acV ) be the determinant of the
density D2

acV of the absolutely continuous part of D2V (i.e., the determinant in Alexan-
droff’s sense). Let M be the set of points where D2

acV is defined and invertible. Then M
is of full µ-measure and for almost all x ∈ M one has

f(x) = g(∇V (x)) det D2
acV (x).

Before we discuss the situation in the infinite dimensional case, let us introduce some
notation. Let L2(γ, H) denote the Hilbert space of H-valued γ-measurable mappings v
with finite norm

‖v‖L2(γ,H) =

(∫
X

|v(x)|2
H

γ(dx)

)1/2

.

The Hilbert–Schmidt norm of a symmetric operator A on H is defined by

‖A‖H =
( ∞∑

i=1

(Aei, Aei)
)1/2

,

where {ei} is any orthonormal basis in H. Every vector h ∈ H corresponds to a γ-

measurable linear functional ĥ on X such that 〈h, k〉H = (ĥ, k̂)L2(γ) for all k ∈ H and

l(h) =

∫
X

l(x)ĥ(x) γ(dx)

for all l ∈ X∗. The functional ĥ belongs to the closure of X∗ in L2(γ); see [2] for details.
Set xi := êi(x). As noted above, one may assume that we deal with the standard Gaussian
product-measure on R∞ and then êi is the usual ith coordinate function. The σ-algebra
generated by ê1, . . . , ên is denoted by Fn. The space of smooth cylindrical functions,
denoted by FC∞

b , consists of all functions of the form ζ(x1, . . . , xn), where ζ ∈ C∞
b (Rn)

for some n.
The Sobolev class W 2,1(γ) consists of all functions f ∈ L2(γ) that have a generalized

gradient ∇f ∈ L2(γ, H) along H such that∫
X

∂hϕ f dγ = −
∫

X

ϕ〈∇f, h〉H dγ +

∫
X

ϕfĥ dγ

for all h ∈ H and ϕ ∈ FC∞
b , where ∂h is the partial derivative along h. The Sobolev class

W 2,1(γ, H) of H-valued mappings is defined in a similar way (see [2] for details). The
Sobolev class W 2,2(γ) consists of all twice weakly H-differentiable functions with finite
norm

‖f‖W 2,2(γ) =
(∫

X

f 2 dγ +

∫
X

|∇f |2H dγ +

∫
X

‖D2f‖2
H dγ

) 1
2
.
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The Ornstein–Uhlenbeck semigroup {Pt} on Lp(γ), 1 ≤ p < ∞, is defined by

Ptf(x) :=

∫
X

f
(
e−tx +

√
1− e−2t y

)
γ(dy).

Let L be the generator of {Pt} on L2(γ). We recall that L is an extension of the operator

∆Hf −
〈
x,∇Hf

〉
H

:=
∞∑

n=1

(∂2
ei
f − xi∂ei

f) acting on smooth cylindrical functions. The

divergence of an H-valued vector field F is defined by

δF :=
∞∑
i=1

(
∂ei

F i − xiF
i
)
, F i = 〈F, ei〉H ,

if F is smooth cylindrical; then divergence extends to vector fields from the Sobolev space
W 2,1(γ, H).

Given a function f ∈ L1(γ) such that f log f ∈ L1(γ), one defines Lf in the sense of

distributions as the linear functional ϕ 7→
∫

X

fLϕ dγ on FC∞
b (note that fLϕ ∈ L1(γ) by

Young’s inequality). If f ∈ L2(γ), then Lf is a continuous linear functional on W 2,2(γ).
Convergence in the sense of distributions over (X, γ) is understood as pointwise conver-
gence of linear functionals on FC∞

b .
We recall the definition of a θ-convex function introduced in [8]. Let F : X → R∪{∞}

be a measurable mapping such that γ({F < ∞}) > 0 and let θ ∈ R1. Let

Fθ : H ×X → R ∪ {∞}, Fθ(h,w + h) =
θ

2
|h|2H + F (w + h).

Then F is called θ-convex if for all h, k ∈ H and α, β ∈ [0, 1] with α + β = 1, one has

Fθ(αh + βk, w + αh + βk) ≤ αFθ(h,w + h) + βFθ(k, w + k) γ-a.e.,

where the measure zero set on which this inequality fails may depend on h, k and α. See
[8] for some equivalent definitions.

We recall that a Radon measure µ on X is called Skorohod differentiable along a vector
h ∈ X if there exists a Radon measure dhµ such that for every smooth cylindrical function
ζ one has ∫

X

∂hζ(x) µ(dx) = −
∫

X

ζ(x) dhµ(dx).

Note that γ is differentiable along any h ∈ H and dhγ = −ĥ · γ. The second order
derivative is defined inductively as d2

hhµ := dh(dhµ). In this paper we are especially
interested in the second derivatives of the 1-convex potentials Φ and Ψ. In our case Φ
and Ψ admit the first Sobolev derivatives ∇Φ and ∇Ψ along H. We define Φkh, where
k, h ∈ H, as a Radon measure satisfying the relation∫

X

ζ(x) Φkh(dx) = −
∫

X

∂hζ(x)∂kΦ(x) γ(dx) +

∫
X

ζ(x)∂kΦ(x)ĥ(x) γ(dx).

If ∂kΦ is differentiable in the Sobolev sense, then, according to this definition, Φkh =
∂h∂kΦ · γ.

The density of the absolutely continuous part of Φkh (with respect to γ) is denoted by

Φac
kh and the singular part is denoted by Φsing

kh . Note that by 1-convexity Φsing
hh is a nonneg-

ative measure (Corollary 2.4). In the case when there exists an H-valued measure with
matrix elements Φeiej

, we denote this measure by the symbol D2Φ. If
∑∞

i=1 |Φac
eiei

(x)|2 < ∞
γ-a.e., then the H-valued mapping with matrix elements Φac

eiej
is denoted by the symbol
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D2
acΦ (even if D2Φ does not exist). If the measure D2Φ exists and has bounded variation

as an H-valued measure, then D2
acΦ is the density of its absolutely continuous part with

respect to γ. Below we give some sufficient conditions for the existence of D2Φ. We recall
that if a measure m on X with values in the Hilbert space H is of bounded variation,
then it has the form m = F ·m0, where m0 is a bounded nonnegative measure on X (e.g.,
the total variation of m) and F is an m0-integrable mapping with values in H. Let mac

0

be the absolutely continuous component of m0 with respect to γ; the measure F ·mac
0 is

called the absolutely continuous component of m with respect to γ.
If a number n is less than the dimension of a matrix B, we denote by Bn×n the n× n-

matrix defined by Bn×n(i, j) = B(i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ n.
The conditional expectation of f ∈ L1(γ) with respect to Fn is denoted by IE(f |Fn). Set

Pnx =
∑n

i=1 êi(x)ei. The measure γ can be represented as a direct product γ = γn ⊗ γ̃n,
where γn = γ◦P−1

n and γ̃n is the image of γ under the projection x 7→ x−Pnx on the space
X(n) = {z : z = x − Pnx}. If one deals with the standard Gaussian product-measure,
then γn and γ̃n are product-measures on the corresponding spaces. It is known (see [2])
that

IE(f |Fn)(x) =

∫
X(n)

f(x + z)γ̃n(dz).

The operator IE(·|Fn) extends to bounded Radon measures as follows: IE(m|Fn) is the
restriction of a measure m to the σ-algebra Fn. It is verified directly that PtIE(f |Fn) =
IE(Ptf |Fn).

In this paper we consider the following problem: when do the potentials Φ and Ψ satisfy
an infinite dimensional analog of the Monge–Ampère equation? The heuristic formulas
for the Monge–Ampère equation are

g = det2(I + D2Ψ) exp
(
LΨ− 1

2
|∇Ψ|2H

)
, (1.1)

1

g(T )
= det2(I + D2Φ) exp

(
LΦ− 1

2
|∇Φ|2H

)
. (1.2)

Here det2 denotes the Carleman–Fredholm determinant which is defined for any symmetric
Hilbert–Schmidt operator Λ by the formula

det2(I + Λ) =
∞∏
i=1

(1 + λi)e
−λi ,

where λi are the eigenvalues of Λ counted with their multiplicities. Note that if I +Λ ≥ 0,
then det2(I + Λ) ≤ 1, because (1 + λ)e−λ ≤ 1 for all λ ≥ −1.

Diverse results on the change of variables formula for general nonlinear shifts along the
Cameron–Martin space can be found in [2], [19]. However, these results do not seem to
be directly applicable to our case.

As the first step one has to show that all the objects involved in equalities (1.1) and
(1.2) exist indeed. It has been shown by Feyel and Üstünel in [9] that LΦ (considered
as a distribution on the space (X, γ)) is a Radon measure if g < C. The density of its
absolutely continuous part with respect to γ is denoted by LacΦ. Similarly, if g > c > 0,
then LΨ is a Radon measure, and LacΨ is the density of its absolutely continuous part
with respect to γ. Another result from [9] states that if 0 < c < g < C, then

g(T )limndet2[I + D2
acIE(Φ|Fn)] exp

(
LacΦ− 1

2
|∇Φ|2H

)
≤ 1,
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and

g ≥ limndet2[I + D2
acIE(Ψ|Fn)] exp

(
LacΨ− 1

2
|∇Ψ|2H

)
.

We see that these results give only inequalities instead of the expected equalities. However,
by another result of Feyel and Üstünel from [10], if − log g is an H-convex function,
which is certainly a very strong restriction, then the infinite dimensional Monge–Ampère
equation holds. A uniform estimate of the second derivative of the potential Φ established
by Caffarelli [7] plays an important role in the proof.

The main result of this paper is the following theorem.

Theorem 1.2. Suppose that log g ∈ L1(γ), g log g ∈ L1(γ). Then there exist H-valued
mappings D2

acΨ and D2
acΦ with matrix elements Φac

eiej
and Ψac

eiej
and a subsequence {nk}

such that γ-a.e. there exist finite limits

L0Ψ = lim
m→∞

1

m

m∑
k=1

nk∑
i=1

(
Ψac

eiei
− xi∂ei

Ψ
)
, L0Φ = lim

m→∞

1

m

m∑
k=1

nk∑
i=1

(
Φac

eiei
− xi∂ei

Φ
)
. (1.3)

In addition,

g = det2(I + D2
acΨ) exp

(
L0Ψ− 1

2
|∇Ψ|2H

)
, (1.4)

1

g(T )
= det2(I + D2

acΦ) exp
(
L0Φ− 1

2
|∇Φ|2H

)
. (1.5)

Furthermore, (I + D2
acΨ)(I + D2

acΦ(S)) = (I + D2
acΦ(S))(I + D2

acΨ) = I.
(ii) Suppose that g > c > 0 and g log g ∈ L1(γ). Then L0Ψ = LacΨ and

g = det2(I + D2
acΨ) exp

(
LacΨ− 1

2
|∇Ψ|2H

)
. (1.6)

(iii) Suppose that 0 < g < C and log g ∈ L1(γ). Then L0Φ = LacΦ and

1

g(T )
= det2(I + D2

acΦ) exp
(
LacΦ− 1

2
|∇Φ|2H

)
. (1.7)

Here and throughout the equality f1 = f2 for measurable functions means that f1(x) =
f2(x) a.e.

2. Auxiliary results and proofs

Before proving our main theorem we make several remarks and prove some auxiliary
results. Let us consider a probability measure g · γ and an approximation of g by func-
tions gn → g such that every gn is measurable with respect to Fn. We shall consider
the approximations P 1

n
IE(g|Fn) and IE(g|Fn). Let {Tn} and {Sn} be two sequences of

optimal transportation plans sending γ to gn · γ and gn · γ to γ, accordingly. By the finite
dimensional case

Tn = I +∇Φn, Sn = I +∇Ψn,

where Φn and Ψn are 1-convex functions. It is clear that Tn and Sn are reciprocal, i.e.,

Tn ◦ Sn(x) = Sn ◦ Tn(x) = x γ-a.e.

It has been shown in [9] that Tn → T and Sn → S in γ-measure, hence γ-a.e. for some
subsequence (this is explained in more detail in Remark 2.1 below). By the regularity
theory developed by Caffarelli (see, e.g., [6] or [20]) we obtain that Φn and Ψn are twice
continuously differentiable in the case of gn = P 1

n
IE(g|Fn) (see Remark 2.1(iii)).
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The following important identity was proved in [11]:∫
X

log
gm

gn

gm dγ =
1

2

∫
X

|Sn − Sm|2Hgm dγ

+

∫
X

[
Tr

(
DSn(DSm)−1 − I

)
− log det

(
DSn(DSm)−1

)]
gm dγ, (2.8)

where DF denotes the derivative of a mapping F . Note that both integrands are non-
negative. Letting gn = 1 or gm = 1 we obtain the following relations:∫

X

log
1

gn

dγ =
1

2

∫
X

|Sn(x)− x|2H γ(dx)−
∫

X

log det2DSn dγ, (2.9)∫
X

gm log gm dγ =
1

2

∫
X

|Sm(x)− x|2Hgm γ(dx)−
∫

X

log det2

[
(DSm)−1

]
gm dγ. (2.10)

These formulas give the following estimates of the transport cost:

1

2

∫
X

|∇Ψn|2H dγ ≤
∫

X

log
1

gn

dγ,
1

2

∫
X

|∇Φn|2H dγ ≤
∫

X

gn log gn dγ. (2.11)

The second inequality is the well-known Talagrand inequality. An immediate consequence
of (2.8) is the existence of an optimal transport S sending g · γ to γ. Another useful
consequence of this identity is a result on convergence of DSn and (DSn)−1 (see [11]). In
Theorem 2.2 below we obtain an important extension of this result.

Let us write

(I + Kn)2 := DSn = I + D2Ψn, (I + Ln)2 := (DSn)−1,

where Kn and Ln are mappings with values in the space of symmetric operators.

Remark 2.1. (i) Suppose that log g ∈ L1(γ) and g log g ∈ L1(γ). Throughout the paper
we consider the following two types of approximations of g by cylindrical functions:

g̃n := IE(g|Fn) and gn := IE(P 1
n
g|Fn).

By the martingale property g̃n → g in L1(γ) and γ-a.e. Moreover, it follows from Jensen’s

inequality that the sequences of entropies

∫
X

g̃n log g̃n dγ and

∫
X

log
1

g̃n

dγ are monotone

and converge to

∫
X

g log g dγ and

∫
X

log g dγ, respectively.

(ii) Let S̃n(x) := x+∇Ψ̃n(x) and T̃n(x) := x+∇Φ̃n(x) be the optimal transports taking

g̃n · γ to γ and γ to g̃n · γ, respectively. One has Ψ̃n, Φ̃n ∈ W 2,1(γ). By a result from [9]

one has ∇Ψ̃n → ∇Ψ in L2(γ, H). Equality (2.8) yields that ∇Φ̃n → ∇Φ in L2(g ·γ, H). It

follows from (2.11) that the sequences {∇Ψ̃n}, {∇Φ̃n} are bounded in the Hilbert space

L2(γ, H). Hence ∇Ψ̃n → ∇Ψ and ∇Φ̃n → ∇Φ weakly in L2(γ, H). In particular, this

implies that LΨ̃n → LΨ and LΦ̃n → LΦ in the sense of distributions on (X, γ).
(iii) The approximations gn enjoy even better properties. It is well-known that if g ∈

Lp(γ) for some p > 1, then gn = IE(P 1
n
g|Fn) ∈ FC∞

b . If we only have

∫
X

g log g dγ < ∞,

then gn = P 1
n
IE(g|Fn) is twice continuously differentiable. This is verified by Young’s

inequality using that fact that IE(g|Fn) log IE(g|Fn) ∈ L1(γ). By the contracting property
of the Ornstein–Uhlenbeck semigroup and convergence P 1

n
g → g in L1(γ) we obtain that

gn → g in L1(γ). Passing to a subsequence one can assume without loss of generality that
gn → g γ-a.e. It can be proved by the same arguments as in (i) that convergence of the
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corresponding entropies holds also in this case. Apart from the well-known smoothing
properties, the Ornstein–Uhlenbeck semigroup possesses other nice properties related to
the optimal transport. It has been noted in [9] (however, without proof) that ∇Φn → ∇Φ
in L2(γ, H), hence a subsequence converges γ-a.e. Convergence ∇Ψn → ∇Ψ in L2(g ·γ, H)
follows easily from identity (2.8). Let us briefly discuss the case of Φ, which is needed
for our purposes. In order to avoid a repetition of lengthy arguments in the proof of
Theorem 4.1 in [9] we only comment on the steps where some difference between the two
cases appears. Set Gt(x, y) := g

(
e−tx +

√
1− e−2t y

)
and consider the optimal transport

T : X ×X → X ×X sending γ ⊗ γ to Gt · (γ ⊗ γ). Since

W 2
2

(
γ ⊗ γ, (g · γ)⊗ γ

)
= W 2

2 (γ, g · γ) =

∫
X

|∇Φ|2H dγ

and Gt · (γ⊗γ) is the image of (g ·γ)⊗γ under a measure-preserving H-orthogonal linear
operator, we have

W 2
2

(
γ ⊗ γ, Gt · (γ ⊗ γ)

)
= W 2

2 (γ, g · γ).

The projection of Gt · (γ ⊗ γ) onto the first factor is Ptg · γ. Let µ ∈ P(X2 ×X2) be the
solution of the Monge–Kantorovich problem for the couple of measures

(
γ⊗γ, Gt ·(γ⊗γ)

)
.

The projection of µ on the first factor X2 is a probability measure with the marginals γ
and Ptg · γ. By virtue of optimality one has

W 2
2 (γ, Ptg · γ) ≤ W 2

2

(
γ ⊗ γ, Gt · (γ ⊗ γ)

)
= W 2

2 (γ, g · γ).

Since P 1
n
g → g in L1(γ), by the semicontinuity of the function x → |x|H we obtain that

limnW
2
2 (γ, P 1

n
g · γ) ≥ W 2

2 (γ, g · γ),

hence

lim
n→∞

W 2
2 (γ, P 1

n
g · γ) = W 2

2 (γ, g · γ).

Then, following the proof of Theorem 4.1 in [9], one can show that ∇Φn → ∇Φ in
L2(γ, H). In what follows we may assume without loss of generality that ∇Φn → ∇Φ and
∇Ψn → ∇Ψ γ-a.e. Obviously, LΨn → LΨ and LΦn → LΦ in the sense of distributions.
These remarks will be employed below.

Theorem 2.2. Assume that log g ∈ L1(γ) and Entγg < ∞. Let gn = P1/nIE(g|Fn). Then
there exists measurable mappings K and L with values in the space of symmetric Hilbert–
Schmidt operators such that, for some subsequence {nk}, the mappings DSnk

−I = D2Ψnk

and (DSnk
)−1− I converge γ-a.e. to (I +K)2− I and (I +L)2− I in the Hilbert–Schmidt

norm. Moreover, (I +K)(I +L) = (I +L)(I +K) = I and the following inequalities hold:∫
X

log
1

g
dγ ≥ 1

2

∫
X

|∇Ψ|2H dγ −
∫

X

log det2

[
(I + K)2

]
dγ, (2.12)

∫
X

g log g dγ ≥ 1

2

∫
X

|∇Φ|2H dγ −
∫

X

log det2

[
(I + L)2

]
g dγ. (2.13)

In particular, ∫
X

(
‖K‖2

H + ‖L‖2
H

)
min (1, g) dγ < ∞. (2.14)
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Proof. Passing to a subsequence we may assume that gn → g γ-a.e. The hypothesis
log g ∈ L1(γ) implies that g > 0 γ-a.e. Let g := infn gn. As gn = P 1

n
IE(g|Fn) > 0 γ-a.e.,

we obtain that g > 0 γ-a.e. It has been proved in [11, Theorem 6.1] under the stronger
assumption g > c > 0 that, passing to a subsequence which will be denoted by the same
indices, one has Kn → K and Ln → L γ-a.e. in the uniform operator norm. In addition,
(I + K)(I + L) = (I + L)(I + K) = I γ-a.e. This result can be easily generalized to
the present setting. It suffices to follow the proof in [11] and replace the measure c · γ by
min(1, g) · γ in all the estimates. In particular, all the ”almost surely” statements remain
valid.

Let us show almost sure convergence in the Hilbert–Schmidt norm. It has been proved
in [11] that

Tr
(
(I + L)(I + Kn)2(I + L) + (I + K)(I + Ln)2(I + K)− 2I

)
→ 0 γ-a.e.

Let us write (I + L)(I + Kn)2(I + L) = I + Zn. Since

(I + K)(I + Ln)2(I + K) =
[
(I + L)(I + Kn)2(I + L)

]−1

,

we obtain

Tr(I + Zn + (I + Zn)−1 − 2I) = Tr
[
Z2

n(I + Zn)−1
]
→ 0 γ-a.e.

Since Zn tends to 0 in the operator norm, we obtain TrZ2
n → 0, hence

(I + L)(I + Kn)2(I + L)− I → 0 γ-a.e.

in the Hilbert–Schmidt norm. Taking into account that I + K is bounded, we obtain∥∥(I +K)
(
(I +L)(I +Kn)2(I +L)− I

)
(I +K)

∥∥
H = ‖(I +Kn)2− (I +K)2‖H → 0 γ-a.e.

Therefore,

Tr
(
2(Kn −K) + K2

n −K2
)2

= Tr
(
(Kn −K)(2I + Kn + K)

)2 → 0 γ-a.e.

Since I + K is invertible and the operators Kn converge to K in the operator norm, we
have Tr(Kn −K)2 → 0. Hence Kn → K. Clearly, K2

n → K2, hence

(I + Kn)2 − I → (I + K)2 − I.

The case of (I + Ln)2 − I is handled in the same way. In particular, we obtain that

det2

[
(I + Kn)2

]
→ det2

[
(I + K)2

]
, det2

[
(I + Ln)2

]
→ det2

[
(I + L)2

]
γ-a.e.

According to Remark 2.1 one has∫
X

gn log gn dγ →
∫

X

g log g dγ,

∫
X

log gn dγ →
∫

X

log g dγ

and ∇Ψn → ∇Ψ γ-a.e. Hence by the relations

(I +∇Φ) ◦ (I +∇Ψ) = I, (g · γ) ◦ (I +∇Ψ)−1 = γ

and Fatou’s theorem we obtain inequalities (2.12) and (2.13) from inequalities (2.9) and
(2.10). Inequality (2.14) follows by (2.12), (2.13), and the estimate

− log det2

[
(I + K)2

]
− log det2

[
(I + L)2

]
≥ ‖K‖2

H + ‖L‖2
H.

In order to prove this estimate we observe that its left-hand side equals

−Tr[(K2 + 2K)(L2 + 2L)]
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by the general formula

det2(I + A)det2(I + B) = det2[(I + A)(I + B)] exp Tr(AB)

and the identity (I + K)(I + L) = I. This identity yields KL + K + L = 0. By using
that K and L commute we find

−(K2 + 2K)(L2 + 2L) = −KL(4I + 2K + 2L + KL) = (K + L)(4I + K + L)

= K2 + L2 + 2KL + 4(K + L) = K2 + L2 − 2KL

= K2 + L2 + 2K2(I + K)−1 ≥ K2 + L2.

The proof is complete. �

Remark 2.3. Note that DTn = (DSn)−1(Tn). Since by Jensen’s inequality∫
X

gn log gn dγ ≤
∫

X

g log g dγ,

the Radon–Nikodym densities of γ ◦ T−1
n with respect to γ form a γ-uniformly integrable

sequence {gn}. Hence one has ‖DTn − (I + L)2(T )‖H → 0 in measure. Passing to a
subsequence we may assume that ‖DTn − (I + L)2(T )‖H → 0 γ-a.e.

It will be shown in Lemma 2.9 that (I + K(x))2 − I and
[
I + L(T (x))

]2 − I coincide
a.e. with D2

acΨ(x) and D2
acΦ(x), respectively.

Corollary 2.4. Let log g ∈ L1(γ) and g log g ∈ L1(γ). Then, for any h, k ∈ H, there
exist bounded Radon measures Ψhk and Φhk and one has

Ψhk =
1

2

[
Ψ(h+k)(h+k) −Ψhh −Ψkk

]
, Φhk =

1

2

[
Φ(h+k)(h+k) − Φhh − Φkk

]
.

In addition, the measures Φsing
hh and Ψsing

hh are nonnegative and one has

Φac
hh ≥ lh(T ) γ-a.e., Ψac

hh ≥ kh γ-a.e.,

where

kh :=
〈
((I + K)2 − I)h, h

〉
H

, lh :=
〈
((I + L)2 − I)h, h

〉
H

.

Proof. We recall that Φ, Ψ ∈ W 2,1(γ). By a result from [4] the measure
[
Φ+ĥ2

]
·γ := F h ·γ

is twice Skorohod differentiable and the following inequality for its variation norm holds:

‖d2
hh(F

h · γ)‖ ≤ 2‖F h‖L1(d2
hhγ) + 2‖∂hF

h‖L1(dhγ).

It follows easily by the Cauchy inequality that ‖d2
hh(F

h ·γ)‖ < ∞, hence ‖d2
hh(Φ·γ)‖ < ∞.

Similarly, ‖d2
hh(Ψ · γ)‖ < ∞. For any smooth cylindrical function η one has

∫
X

η(x) Ψ(h+k)(h+k)(dx) = −
∫

X

(∂hη + ∂kη)∂h+kΨ dγ +

∫
X

(ĥ + k̂)η∂h+kΨ dγ. (2.15)

One has ∂h+kΨ = ∂hΨ + ∂kΨ. By using (2.15) and the identities∫
X

η(x) Ψhh(dx) = −
∫

X

∂hη∂hΨ dγ +

∫
X

ĥη∂hΨ dγ,

∫
X

η(x) Ψkk(dx) = −
∫

X

∂kη∂kΨ dγ +

∫
X

k̂η∂kΨ dγ,
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we find∫
X

η(x)
[
Ψ(h+k)(h+k) −Ψhh −Ψkk

]
(dx)

= −
∫

X

(
∂hη∂kΨ + ∂kη∂hΨ

)
dγ +

∫
X

η
(
k̂∂hΨ + ĥ∂kΨ

)
dγ.

Note that

−
∫

X

∂hη∂kΨ dγ +

∫
X

ĥη∂kΨ dγ = −
∫

X

∂kη∂hΨ dγ +

∫
X

k̂η∂hΨ dγ

=

∫
X

Ψ
(
∂h∂kη − ∂hηk̂ − ∂kηĥ + ηĥk̂ − η〈h, k〉H

)
dγ.

Hence
1

2

∫
X

η(x)
[
Ψ(h+k)(h+k) −Ψhh −Ψkk

]
(dx) = −

∫
X

∂hη∂kΨ dγ +

∫
X

ĥη∂kΨ dγ.

Therefore, 1
2

[
Ψ(h+k)(h+k) −Ψhh −Ψkk

]
= Ψhk. The case of Φ is analogous.

Let us show that the measures Ψsing
hh and Φsing

hh are nonnegative. We may assume that

ĥ(h) = 1. The function

t 7→ Ψ(x + th) + ĥ(x + th)2/2

is convex, hence its derivative t 7→ ∂hΨ(x + th) + ĥ(x + th) is increasing. Suppose that B

is a Borel set such that γ(B) = 0 and Ψsing
hh (B) < 0. One can find a sequence of smooth

cylindrical functions fj such that 0 ≤ fj ≤ 1, fj → IB a.e. with respect to the measure
γ + |Ψhh|. Hence fj → 0 γ-a.e. By the Lebesgue dominated convergence theorem we
obtain

Ψsing
hh (B) = − lim

j→∞

∫
X

∂hfj(x)∂hΨ(x) γ(dx).

We show that the right-hand side is nonnegative. To this end, we note that

lim
j→∞

∫
X

∂hfj(x)∂hΨ(x) γ(dx)

= lim
j→∞

∫
X

(
∂hfj(x)[∂hΨ(x) + ĥ] + fj(x)ĥ[∂hΨ(x) + ĥ]

)
γ(dx),

because ∫
X

∂hfj(x)ĥ γ(dx) = −
∫

X

fj(x)(1− ĥ2) γ(dx)

tends to zero as j →∞ and the same is true for the integral of fj(x)ĥ[∂hΨ(x)+ ĥ], which

is clear from the integrability of ĥ2 + |ĥ∂hΨ(x)| and the Lebesgue dominated convergence
theorem. Finally, we observe that∫

X

(
∂hfj(x)[∂hΨ(x) + ĥ] + fj(x)ĥ[∂hΨ(x) + ĥ]

)
γ(dx) ≤ 0.

Indeed, one can approximate Ψ in W 2,1(γ) by functions Ψk ∈ W 2,2(γ) with the property

that the functions t 7→ ∂hΦk(x + th) + ĥ(x + th) are increasing. Then, by the integration
by parts formula, the integral on the left for Ψk in place of Ψ equals the integral of

−fj∂h[∂hΨk(x) + ĥ], which is nonpositive, because fj ≥ 0, ∂h[∂hΨk(x) + ĥ] ≥ 0.
Let us fix a nonnegative function ζ ∈ FC∞

b . By Remark 2.1, Fatou’s theorem and
Theorem 2.2 we obtain
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∫
X

khζ dγ ≤ lim
n→∞

∫
X

(Ψn)hhζ dγ = − lim
n→∞

∫
X

(
∂hΨn∂hζ − ĥ∂hΨnζ

)
dγ

= −
∫

X

(
∂hΨ∂hζ − ĥ∂hΨζ

)
dγ =

∫
X

Ψac
hhζ dγ +

∫
X

ζ(x) Ψsing
hh (dx).

By the singularity of Ψsing
hh we obtain kh ≤ Ψac

hh a.e. The case of Φ is similar. �

Corollary 2.5. (i) Suppose that g ≥ c > 0 for some constant c and g log g ∈ L1(γ). Then
there exists an H-valued measure D2Ψ of bounded variation.

(ii) Suppose that 0 < g ≤ C for some constant C and log g ∈ L1(γ). Then there exists
an H-valued measure D2Φ of bounded variation.

Proof. (i) Let us show that the finite dimensional measures D2Ψn have uniformly bounded
variations regarded as H-valued measures. Since these measures are given by H-valued
densities (I + Kn)2 − I with respect to γ, it suffices to have a uniform bound of the
integrals of ‖2Kn +K2

n‖H with respect to γ. It is clear from the proof of Theorem 2.2 that
the integrals of ‖Kn‖2

H against the measure min(1, g) · γ, hence against γ, are uniformly
bounded. It remains to observe that ‖K2

n‖H ≤ ‖Kn‖2
H.

Now let us show that there exists anH-valued measure D2Ψ of bounded variation whose
matrix elements are Ψeiej

. For every h ∈ H, the derivative of ∂hΨ along h in the sense
of distributions over Wiener space is nonnegative, hence is represented by a nonnegative
Radon measure νh (see [17]). This measure is the limit of the sequence of functions
∂2

hΨn = 〈D2Ψnh, h〉H in the sense of distributions. Let us define the operator-valued
measure D2Ψ by the equality

〈D2Ψh, k〉H :=
1

2
(νh+k − νh − νk).

The value of the right-hand side on every fixed Borel set is a symmetric bilinear form.
This is clear from the fact that the integral of any test function θ against (νh+k−νh−νk)/2
coincides with the limit of the integrals of the functions θ[∂2

h+kΨn−∂2
hΨn−∂2

kΨn] against γ.
The uniform estimate of variations with respect to the H-norm yields that this bilinear
form is generated by a symmetric Hilbert–Schmidt operator and that the obtained H-
valued measure is of bounded variation. Assertion (ii) is analogous. We only note that
the integral of ‖Kn(Tn(x))‖2

H+‖Ln(Tn(x))‖2
H against γ (which appears when we consider

the second derivative of Φ) equals the integral of ‖Kn(x)‖2
H + ‖Ln(x)‖2

H against gn · γ,
hence is estimated by a constant. �

The following lemma is a generalization of [9, Lemma 7.2].

Lemma 2.6. Let log g ∈ L2(γ). Then LΨ is a bounded Radon measure and γ-a.e. one
has LacIE(Ψ|Fn) → LacΨ. If | log g|2g ∈ L1(γ), then LΦ is a bounded Radon measure and
γ-a.e. one has LacIE(Φ|Fn) → LacΦ.

Proof. Let us approximate g by the functions g̃n := IE(g|Fn) and denote by Ψ̃n the
corresponding potentials. By the finite dimensional change of variables formula one has

log
1

g̃n

= −LacΨ̃n +
1

2
|∇Ψ̃n|2H − log det2(I + D2

acΨ̃n).

It is known (see Remark 2.1) that LΨ̃n → LΨ in the sense of distributions. Let us show
that log g̃n → log g in the sense of distributions. Indeed, according to Jensen’s inequality
for every fixed bounded nonnegative FN -measurable function η and n > N one has
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−
∫

X

η log g̃n dγ ≤ −
∫

X

ηIE(log g|Fn) dγ = −
∫

X

η log g dγ.

As g̃n → g a.e. and the function x log x is bounded from below, we obtain by Fatou’s
theorem

limn

∫
X

η log
1

g̃n

dγ = limn

∫
X

η
(
log

1

g̃n

) 1

g̃n

g̃n dγ = limn

∫
X

η
(
log

1

g̃n

) 1

g̃n

g dγ

≥
∫

X

η
(
log

1

g

)1

g
g dγ =

∫
X

η log
1

g
dγ.

Hence lim
n→∞

∫
X

η log g̃n dγ =

∫
X

η log g dγ. Taking into account that

log
1

g̃n

+ LacΨ̃n ≥ 0,

we obtain that log 1
g
+LΨ ≥ 0 in the sense of distributions. We observe that log g defines

an element of the dual to the Sobolev space W 2,1(γ) and LΨ belongs to the dual to
W 2,2(γ). Hence log 1

g
+ LΨ is a bounded Radon measure (see [17]). It was shown in [9]

that {LacIE(Φ|Fn)} is a submartingale convergent γ-a.e. to LacΦ. The analogous assertion
for Ψ is proved along the same lines. The proof of the remaining assertions in the case
of Φ is similar. We only note that it follows from our hypotheses that the integrals of
| log gn(Tn)|2 against γ are uniformly bounded. As gn(Tn) → g(T ) in measure, we obtain
that log gn(Tn) → log g(T ) in L1(γ). The rest of the proof is the same as in the case
of Ψ. �

Lemma 2.7. Let A = (ai,j) be a symmetric (n + 1)× (n + 1) matrix such that I + A > 0
and let B = An×n. Then − log det2(I + A) ≥ − log det2(I + B).

Proof. Let us take a new orthonormal basis v1, . . . , vn in Rn such that B is diagonal
in this basis and has the eigenvalues b1, . . . , bn and consider the matrix A in the basis
v1, . . . , vn, en+1. Then TrA = TrB + an+1,n+1. One can easily show that

det(I + A) = det(I + B)
[
1 + an+1,n+1 −

n∑
i=1

a2
i,n+1

1 + bi

]
.

Hence

TrA− log det(I + A)

= TrB + an+1,n+1 − log det(I + B)− log
(
1 + an+1,n+1 −

n∑
i=1

a2
i,n+1

1 + bi

)
≥ TrB − log det(I + B).

The proof is complete. �

We need also the following technical lemma. Let λ denote Lebesgue measure.

Lemma 2.8. Let F : Rd → Rd be a locally integrable mapping such that its derivative
DF in the sense of generalized functions is a locally bounded measure with values in the
space of nonnegative symmetric matrices. Let DacF be the operator-valued density of the
absolutely continuous component of DF and let Ω := {x : det DacF (x) > 0}. Then the
measure λ|Ω ◦ F−1 is absolutely continuous.
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Proof. It suffices to show that there is a sequence of measurable sets Ωk ⊂ Ω such that
Ω\

⋃∞
k=1 Ωk has measure zero and each measure λ|Ωk

◦ F−1 has a density. Therefore,
denoting by m(A) the minimal eigenvalue of a matrix A, it suffices to prove our claim for
the restrictions of F to the sets Ωα :=

{
x ∈ Ω: m

(
DacF (x)

)
≥ α

}
, α > 0. Moreover,

it suffices to consider bounded subsets of Ωα. We fix numbers α > 0 and δ > 0, a
ball B, and a probability density θ ∈ C∞

0 (Rn). Let θ(x) := kdθ(x/k) and Fk = F ∗ θk.
Then Fk(x) → F (x) and DacF ∗ θk(x) → DacF (x) a.e., since DacF is a locally integrable
operator-valued mapping (as a density of the absolutely continuous part of a locally
bounded operator-valued measure). By Egoroff’s theorem, there exists a measurable set
Eδ ⊂ Ωα ∩ B such that λ((Ωα ∩ B)\Eδ) < δ and the sequence DacF ∗ θk(x) converges
uniformly on Eδ. Hence we may assume that m

(
(DacF ∗ θk)(x)

)
≥ α/2 for all k and all

x ∈ Eδ. We observe that

D(F ∗ θk)(x) = DF ∗ θk(x) =

∫
Rn

θk(x− y) DF (dy)

≥
∫

Rn

θk(x− y)DacF (y) dy = DacF ∗ θk(x)

in the sense of quadratic forms, since the singular component of DF also takes values in
the space of nonnegative symmetric operators. Therefore,

m
(
D(F ∗ θk)(x)

)
= m

(
DF ∗ θk(x)

)
≥ m

(
DacF ∗ θk(x)

)
≥ α/2, x ∈ Eδ.

It follows that det[D(F ∗ θk)(x)] ≥ (α/2)d for all x ∈ Eδ, which yields that the measure
µk := λ|Eδ

◦ (F ∗ θk)
−1 admits a density %k ≤ (2/α)d. Since the measures µk converge

weakly to the measure λ|Eδ
◦ F−1, we conclude that the latter has a density too. Letting

δ → 0, we arrive at the desired conclusion. �

In the proof of the next lemma we employ two important results from measure theory
(see [3]). Let µ be a finite nonnegative measure on a measurable space (X,A) and let
{fn} ⊂ L1(µ) be a norm bounded sequence. Then, according to the Komlós theorem,
there exist a subsequence {hn} ⊂ {fn} and a function f ∈ L1(µ) such that the sequence
of averages n−1

∑n
i=1 hn converges to f µ-a.e. In addition, by the Gaposhkin theorem,

such a subsequence can be found with the property that, for every ε > 0, there exists a
subset Xε ⊂ X such that µ(X \Xε) < ε and hn → f weakly in L1(µ|Xε).

Lemma 2.9. Suppose that log g ∈ L1(γ), g log g ∈ L1(γ). Then there exist H-valued
mappings D2

acΨ and D2
acΦ with matrix elements Φac

eiej
and Ψac

eiej
such that

I + D2
acΨ = (I + K)2, I + D2

acΦ = (I + L(T ))2 γ-a.e.

In addition, there exist finite limits in (1.3) and formulas (1.4) and (1.5) hold.

Proof. Let us consider the approximations gn = P1/nIE(g|Fn) → g and let Ψn be the cor-
responding potentials such that ∇Ψn → ∇Ψ weakly in L2(γ; H) according to Remark 2.1.
By the finite dimensional change of variables formula one has

log
1

gn

= −LΨn +
1

2
|∇Ψn|2H − log det2(I + D2Ψn).

By Theorem 2.2, passing to a subsequence, we have ‖2K + K2 − D2Ψn‖H → 0 γ-a.e.,
hence we have log det2(I + D2Ψn) → log det2

[
(I + K)2

]
γ-a.e. Moreover, by Remark 2.1,

we have gn → g and |∇Ψn|2H → |∇Ψ|2H γ-a.e. Hence for γ-almost all x, there exists a
finite limit

L̃Ψ(x) := lim
n→∞

LΨn(x)
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and the following formula holds:

g = det2

[
(I + K)2

]
exp

(
L̃Ψ− 1

2
|∇Ψ|2H

)
. (2.16)

Analogously, taking into account that {γ◦T−1
n

γ
} = {gn} is a γ-uniformly integrable sequence

and extracting a suitable subsequence we obtain

1

g(T )
= det2

[
(I + L(T ))2

]
exp

(
L̃Φ− 1

2
|∇Φ|2H

)
, (2.17)

where L̃Φ(x) = lim
n→∞

LΦn(x) for γ-a.e. x.

We divide the subsequent proof into several steps.
Step 1. Let us show that

L̃Ψ + L̃Φ(S) =
∞∑
i=1

[
k2

i + 2ki + l2i + 2li − xi∂ei
Ψ− Si∂ei

Φ(S)
]
. (2.18)

Indeed, taking into account that (I + K)(I + L) = I we find

det2(I + K)2det2(I + L)2 = exp
[
−Tr(K2 + 2K + L2 + 2L)

]
.

Now (2.17) yields

1

g
=

1

g(T ◦ S)
=

exp
(
−Tr(K2 + 2K + L2 + 2L)

)
det2

[
(I + K)2

] exp
(
L̃Φ(S)− 1

2
|∇Φ(S)|2H

)
.

Hence by (2.16) we have

Tr(K2 + 2K + L2 + 2L) = L̃Ψ + L̃Φ(S)− 1

2
|∇Ψ|2H − 1

2
|∇Φ(S)|2H .

Finally, we obtain

L̃Ψ + L̃Φ(S) =
∞∑
i=1

[
k2

i + l2i + 2ki + 2li +
1

2
(∂ei

Ψ)2 +
1

2
(∂ei

Φ(S))2
]
.

Taking into account that Si(x) = xi+∂ei
Ψ(x) and ∂ei

Φ
(
S(x)

)
= xi−Si(x) by the equality

S(x) +∇Φ
(
S(x)

)
= x we find

1

2
(∂ei

Ψ)2 +
1

2
(∂ei

Φ(S))2 = −xi∂ei
Ψ− Si∂ei

Φ(S).

The proof of (2.18) is complete.
Step 2. Equality (2.18) yields

L̃Ψ + L̃Φ(S) = lim
m→∞

[
LK,mΨ + LL,mΦ(S)

]
γ-a.e., (2.19)

where

LK,mΨ :=
m∑

i=1

[
k2

i + 2ki − xi∂ei
Ψ

]
, LL,mΦ :=

m∑
i=1

[
l2i (T ) + 2li(T )− xi∂ei

Φ
]
.

Let us show that for some subsequence {nk} one has γ-a.e.

L̃Ψ = lim
m→∞

1

m

m∑
k=1

LK,nk
Ψ, L̃Φ = lim

m→∞

1

m

m∑
k=1

LL,nk
Φ. (2.20)
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To this end we consider new approximations of g and S = I + ∇Ψ. Set Qn = I + Fn,
where

Fn =
n∑

i=1

F i
nei, F i

n :=
〈
Fn, ei

〉
H

=

{
∂ei

Ψ, i ≤ n
0, i > n.

Let

un = det2

[
I + (Ψac

eiej
)n×n

]
exp

( n∑
i=1

(Ψac
eiei

− xi∂ei
Ψ)− 1

2

n∑
i=1

(∂ei
Ψ)2

)
.

Let x̃n be the image of x =
∑∞

i=1 êi(x)ei under the projection x 7→ x − Pnx, i.e., x̃n =∑∞
i=n+1 êi(x)ei. The measure γ can be represented as a product measure γ = γn ⊗ γ̃n,

where γn = γ ◦ P−1
n . For any fixed x̃n the mapping Fn can be considered as a mapping

from Rn to Rn. Moreover, it is the gradient of a 1-convex function. As by Corollary 2.4)
we have

(I + Kn×n)2 ≤ I + (Ψac
eiej

)n×n (2.21)

and I + K(x) is invertible γ-almost everywhere, we obtain that I + (D2
acΨ)n×n on Rn is

almost surely invertible. Hence by Lemma 2.8, for γ̃n-almost every fixed x̃n, the image of
the measure un( · , x̃n) · γn, where

un(z, x̃n) = un(z1e1 + · · ·+ znen + x̃n)

and z = (z1, . . . , zn) ∈ Rn, under the mapping

Rx̃n : Rn → Rn, z 7→ Qn(z1e1 + · · ·+ znen + x̃n),

admits a density with respect to the n-dimensional Lebesgue measure. By Theorem 1.1
one has [

un( · , x̃n) · γn

]
◦R−1

x̃n
= γn|Rx̃n (Rn)

for γ̃n-almost every fixed x̃n and by Fubini’s theorem (un · γ) ◦Q−1
n = γ|Qn(X).

In the same way we define Rn = I + Un, where

Un =
n∑

i=1

U i
nei, U i

n :=
〈
Un, ei

〉
H

=

{
∂ei

Φ, i ≤ n
0, i > n.

Exactly as above we prove that the measure γ ◦R−1
n is absolutely continuous with respect

to γ and its density vn satisfies the relation

1

vn ◦Rn

= det2

[
I + (Φac

eiej
)n×n

]
exp

( n∑
i=1

(Φac
eiei

− xi∂ei
Φ)− 1

2

n∑
i=1

(∂ei
Φ)2

)
.

We set vn(y) := 0 if y /∈ Rn(X).
Let us apply the above mentioned Komlós and Gaposhkin theorems to the sequence

{un} and the measure γ (note that ‖un‖L1(γ) ≤ 1 for every n). For the sake of simplicity
we denote the new subsequence obtained from those theorems again by {un}. Let u∞ be
the corresponding limit. Repeating this procedure for the sequence of functions 1/vn(Rn)
we may assume that it also admits a limit f∞ in the sense of the cited theorems. We set
v∞ := 1/f∞(S), where v∞(x) := ∞ if f∞(S)(x) = 0. Hence 1/vn(Rn) → 1/v∞(T ) weakly
in L1(γ|Xε) for every ε. It suffices to show that

L̃Ψ ≥ limn
1

n

n∑
m=1

LK,mΨ, L̃Φ ≥ limn
1

n

n∑
m=1

LL,mΦ γ-a.e. (2.22)

Indeed, if (2.22) holds, then (2.19) yields that γ-a.e. one has
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L̃Ψ + L̃Φ(S) = lim
n→∞

1

n

n∑
m=1

(
LK,mΨ + LL,mΦ(S)

)
≤ limn

1

n

n∑
m=1

LK,mΨ + limn
1

n

n∑
m=1

LK,mΦ(S),

and the strict inequality in (2.22) is impossible. Furthermore,

L̃Ψ + L̃Φ(S) = limn
1

n

n∑
m=1

LK,mΨ + limn

1

n

n∑
m=1

LK,mΦ(S) = L̃Ψ + limn

1

n

n∑
m=1

LK,mΦ(S).

Hence we obtain

L̃Φ = limn

1

n

n∑
m=1

LK,m = limn
1

n

n∑
m=1

LK,m = lim
n→∞

1

n

n∑
m=1

LK,m.

Analogous relations hold for L̃Ψ.
Now let us prove (2.22). First we show that u∞ ≤ g γ-a.e. Fix a bounded nonnegative

continuous function ϕ. One has∫
X

ϕ(S)g dγ =

∫
X

ϕ dγ ≥
∫

Qn(X)

ϕ dγ =

∫
X

ϕ(Qn)un dγ ≥
∫

Xε

ϕ(Qn)un dγ.

As Qn → S γ-a.e., we have ϕ(Qn) → ϕ(S) γ-a.e. By the Egoroff theorem one can choose
a compact set Kε ⊂ Xε such that γ(Xε \Kε) ≤ ε and ϕ(Qn) → ϕ(S) uniformly on Kε.
By using that un → u∞ weakly in L1(γ|Xε), we obtain∫

Xε

ϕ(Qn)un dγ ≥
∫

Kε

ϕ(Qn)un dγ →
∫

Kε

ϕ(S)u∞ dγ.

Hence ∫
X

ϕ(S)g dγ ≥
∫

Kε

ϕ(S)u∞ dγ.

Then ∫
X

ϕ(S)g dγ ≥
∫

X

ϕ(S)u∞ dγ,

since we have γ(
⋃

ε Kε) = 1. As S has an inverse mapping T , for every measurable set B
one can find a uniformly bounded sequence of nonnegative smooth cylindrical functions
ηj such that ηj → IB ◦ T a.e., which gives ηj ◦ S → IB a.e., whence∫

B

u∞ dγ ≤
∫

B

g dγ.

This implies the desired estimate u∞ ≤ g γ-a.e. In the same way the relations∫
X

ϕ(T )

g(T )
dγ =

∫
X

ϕ dγ ≥
∫

Rn(X)

ϕ
vn

vn

dγ ≥
∫

X

ϕ(Rn)

vn(Rn)
dγ

yield that 1/v∞(T ) ≤ 1/g(T ) γ-a.e, hence v∞ ≥ g γ-a.e.
Now suppose that (2.22) does not hold. Assume that on a positive measure set M

one has L̃Ψ + δ ≤ limn
1
n

∑n
m=1 LK,mΨ for some δ > 0. Then, taking into account that

I + D2
acΦ ≥ (I + K)2, we obtain that γ|M -a.e.
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u∞ = lim
n→∞

1

n

n∑
k=1

uk

= lim
n→∞

1

n

n∑
k=1

det2

[
I + (Ψac

eiej
)k×k

]
exp

( k∑
i=1

(Ψac
eiei

− xi∂ei
Ψ)− 1

2

k∑
i=1

(∂ei
Ψ)2

)
≥ lim

n→∞
exp

( 1

n

n∑
k=1

[
log det2

[
I + (Ψac

eiej
)k×k

]
+

k∑
i=1

(Ψac
eiei

− xi∂ei
Ψ)− 1

2

k∑
i=1

(∂ei
Ψ)2

])
= exp

(
lim

n→∞

1

n

n∑
k=1

[
log det

[
I + (Ψac

eiej
)k×k

]
−

k∑
i=1

xi∂ei
Ψ− 1

2

k∑
i=1

(∂ei
Ψ)2

])
≥ exp

(
limn

1

n

n∑
k=1

[
log det

[
(I + K)2

k×k

]
−

k∑
i=1

xi∂ei
Ψ− 1

2

k∑
i=1

(∂ei
Ψ)2

])
= exp

(
limn

1

n

n∑
k=1

[
log det2

[
(I + K)2

k×k

]
+

k∑
i=1

k2
i + 2ki − xi∂ei

Ψ− 1

2

k∑
i=1

(∂ei
Ψ)2

])
= det2(I + K)2 exp

[
limn

1

n

n∑
k=1

k∑
i=1

(k2
i + 2ki − xi∂ei

Ψ)
]
exp

(
−1

2
|∇Ψ|2H

)
≥ det2(I + K)2 exp

(
L̃Ψ + δ−1

2
|∇Ψ|2H

)
= geδ.

This contradicts the estimate u∞ ≤ g γ-a.e. Hence L̃Ψ ≥ limn
1
n

∑n
m=1 LK,mΨ. The case

of L̃Φ is considered in the same way.
Step 3. Let us show that I +D2

acΨ = (I +K)2 and I +D2
acΦ = (I +L(T ))2. Suppose

that at a point x the infinite matrix
(
Ψac

eiej
(x)

)
does not coincide with K(x)2 + 2K(x).

Then there exist a natural number N and a nontrivial nonnegative symmetric operator
B of finite rank such that B has the same eigenbasis as K(x) and at the point x one has

(I + Kn×n)2 + Bn×n ≤ I + (D2
acΨ)n×n

for all n ≥ N and there is no equality for n = N . Hence, at the point x, there is no
equality for all n ≥ N and

det(I + Kn×n)2 < det
(
(I + Kn×n)2 + Bn×n

)
≤ det

(
I + (D2

acΨ)n×n

)
for all n > N . Since Tr is additive, the relation det2(I + A) = det(I + A) exp(−TrA)
yields

det2

[
(I + Kn×n)2

]
< det2

[(
(I + Kn×n)2 + Bn×n

)]
exp TrBn×n.

This gives the strict inequality

det2

[
(I + K)2

]
< det2

[
(I + K)2 + B

]
exp TrB
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at the point x. Therefore, exactly as above, we obtain at x the relations

u∞ ≥ lim
n→∞

exp
( 1

n

n∑
k=1

[
log det

[
I + (Ψac

eiej
)k×k

]
−

k∑
i=1

xi∂ei
Ψ− 1

2

k∑
i=1

(∂ei
Ψ)2

])
≥ lim

n→∞
exp

( 1

n

n∑
k=1

[
log det

[
(I + Kk×k)

2 + Bk×k

]
−

k∑
i=1

xi∂ei
Ψ− 1

2

k∑
i=1

(∂ei
Ψ)2

])
≥ lim

n→∞
exp

( 1

n

n∑
k=1

[
log det2

[
(I + Kk×k)

2 + Bk×k

]
+

k∑
i=1

k2
i + 2ki + (Bei, ei)− xi∂ei

Ψ
])

exp
(
−1

2
|∇Ψ|2H

)
= log det2

[
(I + K)2 + B

]
exp

(
TrB + L̃Ψ− 1

2
|∇Ψ|2H

)
> log det2(I + K)2 exp

(
L̃Ψ− 1

2
|∇Ψ|2H

)
= g

This contradiction implies our claim. The case of Φ is analogous. Note that the equality

(I + D2
acΨ)(I + D2

acΦ(S)) = (I + D2
acΦ(S))(I + D2

acΨ) = I

follows from the relation (I + K)(I + L) = I. �

Lemma 2.10. (i) Let g > c > 0 and g log g ∈ L1(γ). Then the series
∑∞

i=1 Ψsing
eiei

converges
in variation to a bounded nonnegative Borel measure on X.

(ii) If 0 < g ≤ C and log g ∈ L1(γ), then the series
∑∞

i=1 Φsing
eiei

converges in variation
to a bounded nonnegative Borel measure on X.

Proof. (i) Let us consider the sequence of functions

Tr
(
D2Ψn + D2Φn(Sn)

)
= Tr

(
2(Kn + Ln) + K2

n + L2
n

)
.

Since (I + Kn)(I + Ln) = I, we have KnLn = −Kn − Ln and

Tr
(
D2Ψn + D2Φn(Sn)

)
= Tr(Kn − Ln)2.

By Theorem 2.2 and the assumption g > c, we have

sup
n

∫
X

Tr
(
K2

n + L2
n

)
dγ < ∞,

hence

sup
n

∫
X

Tr
(
D2Ψn + D2Φn(Sn)

)
dγ := M < ∞.

By the integration by parts formula

lim
n→∞

∫
X

(Ψn)eiei
dγ = lim

n→∞

∫
X

∂ei
Ψnêi dγ =

∫
X

∂ei
Ψêi dγ =

∫
X

Ψac
eiei

dγ + Ψsing
eiei

(X).

Note that γ ◦ S−1
n = 1

gn(Tn)
dγ. Since sup

n

∫
X

log
1

gn

dγ < ∞, the sequence of densities

dγ ◦ S−1
n /dγ = 1/gn(Tn) is uniformly integrable. Since (Φn)eiei

→ Φac
eiei

γ-a.e. (see



ON THE MONGE–AMPÈRE EQUATION IN INFINITE DIMENSIONS 19

Theorem 2.2 and Lemma 2.9), we obtain (Φn)eiei
◦Sn → Φac

eiei
◦S in measure. By Fatou’s

theorem one has

M ≥ limn

∫
X

Tr
(
D2Ψn + D2Φn(Sn)

)
dγ

≥
∫

X

Tr
(
D2

acΨ + D2
acΦ(S)

)
dγ +

∞∑
i=1

Ψsing
eiei

(X) =

∫
X

Tr(K − L)2 dγ +
∞∑
i=1

Ψsing
eiei

(X).

Since
∑∞

i=1 Ψsing
eiei

≥ 0, we obtain ‖
∑∞

i=1 Ψsing
eiei
‖ < ∞. Case (ii) is considered in a similar

way. �

Proof of Theorem 1.2. In view of Lemma 2.9 it remains to show (ii) and (iii). Consider
case (ii). We have to prove that if g > c > 0 and g log g ∈ L1(γ), then L0Ψ coincides
with LacΨ, the density of the absolutely continuous part of the distributional divergence
of ∇Ψ. To this end we consider yet another approximation of Ψ by the conditional
expectations Λn := IE(Ψ|Fn). It is readily verified that Λn is 1-convex. By Corollary 2.5
there exists the H-valued measure D2Ψ of bounded variation. We have the decomposition
D2Ψ = D2

acΨ ·γ +D2
singΨ. Let us denote by D2

ac,nΨ the matrix whose (i, j)-element equals

〈D2
acΨei, ej〉H if i, j ≤ n and is zero otherwise. Let D2

sing,nΨ be defined similarly for the
singular part. Given a bounded Borel measure m on X, let [m]ac denote the density of
the absolutely continuous part of m with respect to γ. The same notation is used for
H-valued measures. It follows from the integration by parts formula that

D2
acΛn = IE(D2

ac,nΨ + D2
sing,nΨ|Fn)

= IE(D2
ac,nΨ|Fn) +

[
IE(D2

sing,nΨ|Fn)
]
ac

.

By the Jessen theorem (see [19, Theorem 1.2.1]) and Lemma 2.10 we obtain

lim
n→∞

[
IE

( ∞∑
i=1

Ψsing
eiei
|Fn

)]
ac

= 0 a.e.

Hence Tr
[
IE(D2

sing,nΨ|Fn)
]
ac
→ 0. Since

[
IE(D2

sing,nΨ|Fn)
]
ac

is nonnegative, the sequence

of H-valued mappings
[
IE(D2

sing,nΨ|Fn)
]
ac

converges to zero also in the Hilbert–Schmidt
norm. We have

‖D2
acΛn‖H ≤

∥∥IE(D2
ac,nΨ|Fn)

∥∥
H +

∥∥[
IE(D2

sing,nΨ|Fn)
]
ac

∥∥
H

≤ IE
(
‖D2

ac,nΨ‖H|Fn

)
+

∥∥[
IE(D2

sing,nΨ|Fn)
]
ac

∥∥
H

≤ IE
(
‖D2

acΨ‖H|Fn

)
+

∥∥[
IE(D2

sing,nΨ|Fn)
]
ac

∥∥
H.

As
∥∥D2

acΨ
∥∥
H ∈ L1(γ), we obtain limn‖D2

acΛn‖H ≤
∥∥D2

acΨ
∥∥
H γ-a.e. On the other hand,

for every h ∈ H one has

(Λn)ac
hh = IE(Ψac

hh|Fn) +
[
IE(Ψsing

hh |Fn)
]
ac
→ Ψac

hh γ-a.e.

Hence for γ-almost all x we have D2
acΛn(x) → D2

acΨ(x) weakly in H and

limn‖D2
acΛn(x)‖H ≥ ‖D2

acΨ(x)‖H.

Combining this inequality with the previous one we conclude that

lim
n→∞

‖D2
acΛn‖H = ‖D2

acΨ‖H and lim
n→∞

‖D2
acΛn −D2

acΨ‖H = 0 γ-a.e.

In particular,
lim

n→∞
det2(I + D2

acΛn) = det2(I + D2
acΨ) γ-a.e. (2.23)
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The justification of convergence |∇Λn|2H → |∇Ψ|2H γ-a.e. follows the same ideas and is
even simpler. According to Lemma 2.6 (the hypotheses of that lemma are fulfilled in the
situation we consider) one has LacΛn → LacΨ γ-a.e. Let us define wn by

log
1

wn

= −LacΛn +
1

2
|∇Λn|2H − log det2(I + D2

acΛn).

Clearly, wn admits a limit for γ-almost all x. We denote this limit by w∞ and write

log
1

w∞
= −LacΨ +

1

2
|∇Ψ|2H − log det2(I + D2

acΨ).

Exactly as above we prove with the help of Theorem 1.1 and Lemma 2.8 that the mapping
Gn := I + ∇Λn sends wn · γ to IGn(X) · γ. Let us show that w∞ = g. Let us fix a
nonnegative function ζ ∈ FC∞

b . Let LsingΨ := LΨ − LacΨ · γ be the singular part of
the measure LΨ. As shown in Lemma 2.9 (see (2.20)) one has LΨn → L0Ψ γ-a.e. In
addition, LΨn ≥ log gn > log c, because det2(I +D2Ψn) ≤ 1. By Fatou’s theorem we have∫

X

ζL0Ψ dγ ≤ lim
n→∞

∫
X

ζLΨn dγ ≤ − lim
n→∞

∫
X

〈
∇Ψn,∇ζ

〉
H

dγ

=

∫
X

ζLacΨ dγ +

∫
X

ζ(x)LsingΨ(dx).

Since LsingΨ is singular with respect to γ, we have L0Ψ ≤ LacΨ. Hence w∞ ≥ g γ-a.e.
On the other hand, since wn → w∞, one has∫

X

ζ(S)w∞ dγ ≤ lim
n→∞

∫
X

ζ
(
x +∇Λn(x)

)
wn(x) γ(dx)

= lim
n→∞

∫
Gn(X)

ζ dγ ≤
∫

X

ζ dγ =

∫
X

ζ(S)g dγ.

Since S is invertible, this implies the opposite inequality by the same reasoning as in
Lemma 2.9. Therefore, we obtain the equality w∞ = g, which completes the proof of (1.6).
Case (iii) is analogous. �

One can ask about conditions ensuring the absolute continuity of D2Ψ and D2Φ. A
result of this type can be deduced from Caffarelli’s estimate. It has been shown in [7]
that if the optimal mapping I +∇Φ takes the standard Gaussian measure γ on Rd to the
measure e−V · γ, where V is convex, then I + D2Φ ≤ I. Following Caffarelli’s techniques
it is not hard to prove that if Vhh ≥ −1 + ε for some h ∈ Rd, |h| = 1 and ε > 0, then
1+Φhh ≤ 1

ε
. Analogously one can prove that if a second partial derivative of V is bounded

from above, then the corresponding second partial derivative of x2

2
+ Ψ is bounded (see

[11] for details). These estimates can be generalized to the infinite dimensional case. In
particular, under this type of restriction on g one obtains the absolute continuity of D2Φ
and D2Ψ (see [11] for details). For example, if D2(− log g) is bounded either from above
or from below, then the corresponding potential (Φ or Ψ) belongs to the Sobolev class
W 2,2(γ). The precise statements are given below. The following proposition generalizes
Lemma 5.1 from [10]. The proof is similar.

Proposition 2.11. Let X = Rd and let γ be the standard Gaussian measure.
(i) Let g = eΦ and D2Φ ≤ M , where M < 1. Then I + D2Φ ≤ 1√

1−M
I. In addition,∫

Rd

|∇Φ|2 dγ + (1−M)

∫
Rd

‖D2Φ‖2
H dγ ≤ 2

∫
Rd

g log g dγ.
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(ii) Let g = eΨ and D2Ψ ≥ −M , where M > −1. Then I + D2Ψ ≤
√

1 + M · I. In
addition, ∫

Rd

|∇Ψ|2 dγ +
1

1 + M

∫
X

‖D2Ψ‖2
H dγ ≤ 2

∫
Rd

log
1

g
dγ.

These finite dimensional estimates can be easily generalized to the infinite dimensional
situation. As a result we obtain the following statement.

Corollary 2.12. Let g be a probability density with respect to γ. Suppose that g = e−V ,
where the function V is (1 − ε)-convex, ε > 0. Then Φ ∈ W 2,2(γ). If g = eW , where W
is an M-convex function for some M > −1, then Ψ ∈ W 2,2(γ).
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