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1. Introduction

In the last decade there has been a growing interest in the study of connections between
the two classical optimization problems raised by Monge and Kantorovich. In particular,
fruitful relations between these problems, nonlinear transformations of measures, nonlin-
ear differential equations and nonlinear functional inequalities have been revealed (see [1],
[3], [4], [8], [9], [10], [11], [12], [13], [14], [15], [17], [18], [20], [21], [23], [24], [26], [28], [29],
where one can find additional references). We recall that the general Monge problem deals
with measurable mappings T from a given probability space (X,A, µ) to a probability
space (Y,B, ν) that transform µ into ν and minimize the integrals

K(µ, ν, h, T ) :=

∫
X

h(x, T (x))µ(dx)

for a given nonnegative measurable function h on X × Y (called a cost function). The
corresponding infimum is denoted by K(µ, ν, h). Under broad assumptions, there is a
mapping T at which the infimum is attained. Such a mapping is called an optimal
transportation between µ and ν. If X = Y is a metric space with a distance d, then
typical cost functions are h(x, y) = d(x, y)p. It has been shown by Talagrand [28] that if
X = Y = Rd, h(x, y) = |x − y|2, µ = γ is the standard Gaussian measure and ν = g · γ,
where g log g ∈ L1(γ) with the convention 0 log 0 := 0, then

K(γ, g · γ, h) ≤ 2Entγ(g),

where

Entγ(g) :=

∫
X

g log g dγ.

Writing T as T (x) = x+ F (x), we represent Talagrand’s inequality in the form∫
X

|F |2 dγ ≤ 2

∫
X

g log g dγ.
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In this work, we consider a more general problem when a mapping T = I + F , where
I(x) = x, transforms a measure µ into a measure g · µ and one is interested in the
integrability of functions of |F | under appropriate integrability assumptions on g. An
interesting result in this direction is due to Fernique [16] who considered a Gaussian
measure γ on a separable Fréchet space and a probability measure g ·γ such that g ∈ Lp(γ)
for some p > 1. It was shown in [16] that there exists a mapping T = U + S, where the
mapping U preserves the measure γ and S is a mapping with values in the Cameron–
Martin space H of γ, such that the function exp(ω|S|2H) is integrable for sufficiently
small ω (however, the mapping T is not necessarily the optimal transportation). Our main
result in Section 2 contains Talagrand’s inequality and Fernique’s estimate for optimal
transportation as partial cases and applies to more general transformations. All the
results in this work have the following form: if a probability measure µ is transformed
into a probability measure ν = g · µ by a mapping T (x) = x+ F (x), then∫

Rd

Φ1(|F (x)|)µ(dx) ≤
∫

Rd

Φ2

(
g(x)

)
µ(dx)

for certain functions Φ1 and Φ2 under appropriate assumptions on µ. A lot of special cases
are obtained by varying the class of measures µ, transformations T , and functions Φ2. For
example, if µ is Gaussian (or satisfies the logarithmic Sobolev inequality) and Φ2(g) = gp,
then Φ1(|F |) = exp(ω|F |2), and if Φ2(g) = g| log g|p, then Φ1(|F |) = |F |r. Section 2 deals
with the case where µ is a Gaussian or strictly convex measure, T is either a rather general
invertible transformation or an optimal transportation for the cost functions h(x, y) =
|x − y|p, p ∈ (1, 2]. In Section 3 and Section 4 we consider the optimal transportations
for h(x, y) = |x− y|2 in the case of measures satisfying the logarithmic Sobolev inequality
and the Poincaré inequality, respectively.

Let us introduce some notation and terminology. Given a measure µ and a µ-integrable
function g, we denote by g · µ the measure with density g with respect to µ. The symbol
W p,k(U) stands for the classical Sobolev space of functions on an open set U ⊂ Rd that
belong to Lp(U) along with their generalized partial derivatives up to order k. The
symbol W p,k(U,Rd) denotes the space of mappings from U to Rd whose components

belong to W p,k(U). The class W p,k
loc consists of mappings (or functions) f on Rd such that

ζf ∈ W p,k(Rd,Rd) (respectively, ζf ∈ W p,k(Rd)) for every ζ ∈ C∞
0 (Rd).

Suppose µ is a Borel measure on Rd with density % ∈ W 1,1
loc . Given a mapping F ∈ W 1,1

loc ,
let

δµF (x) := divF (x) +
〈
F (x),∇%(x)/%(x)

〉
,

where we set ∇%(x)/%(x) = 0 whenever %(x) = 0. If |F |%, |F ||∇%|, |DF |% ∈ L1
loc(Rd), then

for all ϕ ∈ C∞
0 (Rd) one has ∫

Rd

ϕδµF dµ = −
∫

Rd

〈∇ϕ, F 〉 dµ.

Let x2 := |x|2 if x ∈ Rd. Given a linear operator A on Rd, we set

det2A := detA exp
(
Trace(I − A)

)
.

If A is symmetric and has eigenvalues a1, . . . , ad, then det2A =
∏d

i=1 aie
1−ai . In particular,

if A ≥ 0, then 0 ≤ det2A ≤ 1. If A = I +B, then

det2A = det(I +B) exp(−TraceB).

An absolutely continuous measure µ on Rd is called convex if its density has the form
exp(−V ), where V is a convex function.
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A probability measure µ on Rd is said to satisfy the logarithmic Sobolev inequality if
there exists a number C > 0 such that the following inequality holds for every function
ϕ ∈ C∞

b (Rd):∫
Rd

ϕ2 logϕ2 dµ−
(∫

Rd

ϕ2 dµ
)

log
(∫

Rd

ϕ2 dµ
)
≤ 2C

∫
Rd

|∇ϕ|2 dµ. (1.1)

A necessary condition for µ to satisfy (1.1) is the existence of ε > 0 such that exp
(
ε|x|2

)
∈

L1(µ) (in fact, this is true for any ε < (2C)−1, see [22, Ch. 5]). It has been shown in
[30] that if µ is a convex measure such that exp

(
ε|x|2

)
∈ L1(µ) for some ε > 0, then µ

satisfies (1.1) with some C(ε). As an example of a measure satisfying (1.1) one can take
a probability measure with density exp(−V ), where V is a twice differentiable convex
function with D2V (x) ≥ C−1I (see [22]).

A probability measure µ on Rd is said to satisfy the Poincaré inequality if for all
ϕ ∈ C∞

b (Rd) one has ∫
Rd

(
ϕ−

∫
Rd

ϕdµ
)2

dµ ≤ C2

∫
Rd

|∇ϕ|2 dµ. (1.2)

According to [2], any convex measure satisfies (1.2). Note that every measure µ satisfying
(1.2) satisfies also the inequality∫

Rd

∣∣ϕ− ∫
Rd

ϕdµ
∣∣p dµ ≤ Cp

∫
Rd

|∇ϕ|p dµ, ϕ ∈ C∞
b (Rd), (1.3)

for every p ≥ 2 and Cp = C
p/2
2 (1 + p2/4)p/2. Indeed, without loss of generality we may

assume that

∫
Rd

ϕdµ = 0. Let p = 2+ t. By the Poincaré and Hölder inequalities one has∫
Rd

|ϕ|2+t dµ ≤
(∫

Rd

ϕ|ϕ|t/2 dµ
)2

+ C2(1 + t/2)2

∫
Rd

|∇ϕ|2|ϕ|t dµ

≤
∫

Rd

ϕ2 dµ

∫
Rd

|ϕ|t dµ+ C2(1 + t/2)2
(∫

Rd

|∇ϕ|2+t dµ
) 2

2+t
(∫

Rd

|ϕ|2+t dµ
) t

2+t

≤
[∫

Rd

C2|∇ϕ|2 dµ+ C2(1 + t/2)2
(∫

Rd

|∇ϕ|2+t dµ
) 2

2+t
](∫

Rd

|ϕ|2+t dµ
) t

2+t

≤ C2

[
1 + (1 + t/2)2

](∫
Rd

|∇ϕ|2+t dµ
) 2

2+t
(∫

Rd

|ϕ|2+t dµ
) t

2+t
,

which yields our claim.
Note that if µ satisfies (1.1) or (1.2) with some constants, then any probability measure

of the form expU · µ also does provided that U is bounded (see [22, p. 96]).
Finally, we recall that by Brenier’s theorem [13] (see [29, p. 66]) for every pair of Borel

probability measures µ and ν on Rd with finite second moments such that µ is absolutely
continuous, there is a convex function V on Rd (which is finite on a convex set of full
µ-measure) such that the mapping T = ∇V transforms µ into ν and is a unique optimal
transportation between µ and ν for the cost function h(x, y) = |x − y|2. Moreover,
suppose that ν is also absolutely continuous. Let us define the Legendre transform V ∗ of
the function V by

V ∗(x) = sup
y

[
〈x, y〉 − V (y)

]
.

Then V ∗ is finite and convex on a convex set of full ν-measure, the mapping S = ∇V ∗

transforms ν into µ, is a unique optimal transportation between ν and µ, and for µ-a.e. x
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and y satisfies the relations

∇V ∗(∇V (x)) = x, V (x) + V ∗(∇V (x)) =
〈
x,∇V (x)

〉
, V (x) + V ∗(y) ≥

〈
x, y

〉
. (1.4)

McCann [23] (see also [29]) refined Brenier’s theorem as follows: given two Borel proba-
bility measures µ and ν on Rd such that µ is absolutely continuous (no moment condition
is imposed), there is a mapping T that is the gradient of a convex function and transforms
µ into ν. Such a mapping is unique in the sense that any two such mappings coincide
µ-a.e.

2. Estimates of nonlinear transformations

First we consider transformations of the standard Gaussian measure γ on Rd.

Theorem 2.1. Let T = I + F be a Borel mapping on Rd that is injective on a set of
full γ-measure and transforms γ into a measure g · γ and let F ∈ W 1,1

loc . Suppose that for
some κ ≥ 0 almost everywhere one has 〈DF (x)a, a〉 ≥ −κ|a|2 for all a ∈ Rd and that
det2(I + DF ) > 0 almost everywhere (i.e., det(I + DF ) > 0 almost everywhere). Let θ
be a nonnegative increasing locally Lipschitzian function on [0,+∞) such that for some
ω ∈ (0, (4κ)−1) almost everywhere one has θ′ ≤ ωθ. Suppose also that there are a number
α > 2(1− 4ωκ)−1 and a function Ψ ∈ L1(γ) such that

g| log g|θ(α| log g|) ∈ L1(γ), log det2(I +DF )θ
(
|F |2

)
≤ Ψ. (2.1)

Then∫
Rd

|F |2θ
(
|F |2

)
dγ ≤

(1

2
− 2ωκ− 1

α

)−1
[∫

Rd

g| log g|θ(α| log g|) dγ +

∫
Rd

Ψ dγ

]
. (2.2)

In particular, if det2(I +DF ) ≤ 1 a.e. (which is fulfilled if, e.g., the operators I +DF (x)
are symmetric nonnegative), then∫

Rd

|F |2θ
(
|F |2

)
dγ ≤

(1

2
− 2ωκ− 1

α

)−1
∫

Rd

g| log g|θ(α| log g|) dγ. (2.3)

Finally, if θ satisfies the indicated hypotheses on the whole real line, then in (2.1), (2.2)
and (2.3) one can replace θ(α| log g|) by θ(α log g).

Proof. Suppose first that there is a number τ such that θ is constant on [τ,+∞). Note
that θ(|F |2) ∈ W 1,1

loc and we have the equality

∇θ(|F |2) = 2θ′(|F |2)DF · F (2.4)

and the estimate

θ′(|F (x)|2)|DF (x) · F (x)| ≤
√
τ sup

t∈[0,τ ]

θ′(t)‖DF (x)‖. (2.5)

In order to justify this, we fix a ball U and take a sequence of mappings Fj ∈ C∞
0 that

converge to F in the norm ofW 1,1(U,Rd) and almost everywhere. Then θ(|Fj|2) → θ(|F |2)
in L1(U). In addition, the mappings ∇θ(|Fj|2) = 2θ′(|Fj|2)DFj ·Fj converge in L1(U,Rd)
to the mapping 2θ′(|F |2)DF · F , which proves that θ(|F |2) on U belongs to W 1,1(U) and
there hold (2.4) and (2.5).

Let us fix a function ζ ∈ C∞
0 (Rd) such that 0 ≤ ζ(x) ≤ 1 and |∇ζ(x)| ≤ M . It follows

from our hypotheses that T has a Borel version that is injective on a full measure set and
has Lusin’s property (N). Hence there holds the usual change of variables formula

log g(T ) = −δγF +
1

2
|F |2 − log det2(I +DF ),
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where δγF (x) = divF (x)−
〈
F (x), x

〉
(see [19] and [6, Theorem 5.8.29], [5, §6.3]). There-

fore, one has

∫
Rd

log g(T )θ(|F |2)ζ dγ ≥ −
∫

Rd

δγFθ(|F |2)ζ dγ +
1

2

∫
Rd

|F |2θ(|F |2)ζ dγ −
∫

Rd

Ψζ dγ

= 2

∫
Rd

〈
DF · F, F

〉
θ′(|F |2)ζ dγ +

∫
Rd

θ(|F |2)〈F,∇ζ〉 dγ

+
1

2

∫
Rd

|F |2θ(|F |2)ζ dγ −
∫

Rd

Ψζ dγ

≥ −2κ

∫
Rd

|F |2θ′(|F |2)ζ dγ +
1

2

∫
Rd

|F |2θ(|F |2)ζ dγ +

∫
Rd

θ(|F |2)〈F,∇ζ〉 dγ −
∫

Rd

Ψζ dγ

≥
(1

2
− 2ωκ

) ∫
Rd

|F |2θ(|F |2)ζ dγ +

∫
Rd

θ(|F |2)〈F,∇ζ〉 dγ −
∫

Rd

Ψζ dγ.

The second equality in the above chain of relationships holds by the integration by parts
formula, which is applicable by (2.4). By using the inequality

xθ(y) ≤ α−1yθ(y) + |x|θ(α|x|), (2.6)

which holds for every x and every y ≥ 0 (one has either x ≤ y/α or x > y/α), we obtain∫
Rd

log g(T )θ(|F |2)ζ dγ ≤ 1

α

∫
Rd

|F |2θ(|F |2)ζ dγ +

∫
Rd

| log g(T )|θ(α| log g(T )|)ζ dγ.

Therefore,(1

2
− 2ωκ− 1

α

) ∫
Rd

|F |2θ(|F |2)ζ dγ ≤
∫

Rd

θ(|F |2)〈F,∇ζ〉 dγ

+

∫
Rd

| log g(T )|θ(α| log g(T )|)ζ dγ +

∫
Rd

Ψζ dγ. (2.7)

Let us take a sequence of functions ζj ∈ C∞
0 (Rd) such that

sup
j,x

|∇ζj(x)| ≤M, 0 ≤ ζj(x) ≤ 1, and ζj(x) = 1 if |x| ≤ j.

Letting ζ = ζj in (2.7), we observe that as j → ∞, the first integral on the right tends
to zero, because θ(|F |2)|F | is a bounded function, and the sequence {|∇ζj|} is uniformly
bounded and tends to zero pointwise. Hence (2.7) holds with ζ = 1. The change of
variables formula yields(1

2
− 2ωκ− 1

α

) ∫
Rd

|F |2θ(|F |2) dγ ≤
∫

Rd

g| log g|θ(α| log g|) dγ +

∫
Rd

Ψ dγ,

which completes the proof in the case under consideration. In the general case let θj(t) =
θ(t) if t ≤ j and θj(t) = θ(j) if t ≥ j. Since θj ≤ θ, estimate (2.2) for every θj in place of
θj yields the same estimate for θ.

If one has det2(I+DF ) ≤ 1 a.e., then we take Ψ = 0. Finally, if θ satisfies the indicated
hypotheses on the whole real line, then in inequality (2.6) one can replace θ(α|x|) by θ(αx),
which will lead to replacing θ(α| log g|) by θ(α log g) in (2.1), (2.2) and (2.3). �

Corollary 2.1. Let Tj = I + Fj be Borel mappings on Rd that are injective on full
measure sets and transform γ into the measures gj · γ such that the densities gj converge
in measure γ to a probability density g with respect to γ and the mappings Fj converge in

measure γ to a mapping F . Suppose that Fj ∈ W 1,1
loc , for some κ ≥ 0 almost everywhere
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one has 〈DFj(x)a, a〉 ≥ −κ|a|2 for all a ∈ Rd and also 0 < det2(I + DFj) ≤ 1 almost
everywhere. Let θ be a nonnegative increasing locally Lipschitzian function on [0,+∞)
such that for some ω ∈ (0, (4κ)−1) almost everywhere one has θ′ ≤ ωθ. Suppose that
supj

∥∥g| log g|θ(α| log g|)
∥∥

L1(γ)
<∞, where α > 2(1− 4ωκ)−1. Then γ ◦ (I + F )−1 = g · γ

and ∫
Rd

|F |2θ
(
|F |2

)
dγ ≤

(1

2
− 2ωκ− 1

α

)−1

sup
j

∫
Rd

gj| log gj|θ(α| log gj|) dγ.

Corollary 2.2. Let T = I + F be the optimal transportation between γ and g · γ for the
cost function h(x, y) = |x − y|2. Let θ be the same as in the theorem, where ω < 1/4.
Suppose that g| log g|θ(α| log g|) ∈ L1(γ), where α > 2(1− 4ω)−1. Then∫

Rd

|F |2θ
(
|F |2

)
dγ ≤

(1

2
− 2ω − 1

α

)−1
∫

Rd

g| log g|θ(α| log g|) dγ.

Proof. Let us take a sequence of smooth positive probability densities gj ∈ C∞
b (Rd) with

respect to the measure γ such that gj → g a.e. and the integrals of gj| log gj|θ(α| log gj|)
against γ converge to the integral of g| log g|θ(α| log g|). The corresponding optimal
transportations Tj = I + Fj converge in measure γ to the optimal transportation T =
I + F for g according to the lemma below. In addition, one has I + DFj > 0 and
0 < det2(I + DFj) ≤ 1. Finally, by Caffarelli’s regularity theory the mappings Tj are
smooth (see [29, p. 140]). �

As in Theorem 2.1, if θ satisfies the indicated conditions on the whole real line, then in
both corollaries one can replace θ(α| log g|) by θ(α log g).

Lemma 2.1. Let µ be a Borel probability measure on Rd with a density that is locally
separated from zero. Suppose that a sequence of Borel probability measures νj on Rd

converges weakly to a Borel probability measure ν. Let Vj and V be finite convex functions
such that µ ◦ (∇Vj)

−1 = νj and µ ◦ (∇V )−1 = ν. Suppose that

sup
j

∫
Rd

|∇Vj| dµ <∞.

Then the mappings ∇Vj converge µ-almost everywhere to ∇V . The same is true if the
hypotheses are fulfilled on an open convex set in Rd.

Proof. First we verify convergence of∇Vj to∇V in measure µ. Let Uk be the closed ball of

radius k centered at the origin. By adding constants we may assume that

∫
U1

Vj(x) dx = 0

for all j. It follows from our hypothesis and the compactness of the embeddingW 1,1(U1) →
L1(U1) that the sequence of functions Vj|U1 contains a subsequence convergent in L1(U1).
We denote this subsequence again by {Vj}. For the same reason, for every fixed k, the

sequence of functions Vj − ck,j, where ck,j =

∫
Uk

Vj(x) dx, has a subsequence {Vjn − ck,jn}

that converges in L1(Uk). Then the sequence {ck,jn} converges, which yields convergence
of {Vjn} in L1(Uk). By a diagonal procedure we can choose a subsequence denoted by {Wj}
that converges in L1(Uk) for every k and converges almost everywhere. It is readily seen
that if a sequence of convex functions on the real line converges almost everywhere, then
it converges pointwise. By applying Fubini’s theorem we conclude that the sequence {Wj}
converges pointwise to a convex function W . It is well-known (see [27, Theorems 24.5
and 25.4]) that then the sequence of mappings ∇Wj, which are defined almost everywhere,
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converges almost everywhere to∇W . Hence this sequence converges in L1(Uk) for every k,
because it is uniformly integrable on every ball Uk with Lebesgue measure by the estimate

|∂xi
Ψ(x)| ≤ |Ψ(x+ ei)|+ |Ψ(x)|+ |Ψ(x− ei)|,

which holds for every convex function Ψ and every i. The measures µ◦ (∇Wj)
−1 converge

weakly to the measure µ◦(∇W )−1. It follows that ν = µ◦(∇W )−1. Therefore, ∇V = ∇W
a.e., because a convex function whose gradient transforms µ into ν is uniquely defined up
to a constant. Finally, our reasoning applies to every subsequence in the initial sequence,
whence our claim about convergence in measure µ follows.

In order to see that we have almost everywhere convergence of the whole sequence, we
consider the sequence {∇Vj} that converges in measure µ to the mapping ∇V (as shown
above) and assume that the functions Vj and V have zero integrals over U1, which can
be achieved by adding constants. Then the sequence {Vj} converges to V in measure µ.
If the sequence {Vj(x0)} does not converge to V (x0) at some point x0, then it contains
a subsequence {Vjn(x0)} separated from V (x0). By the above reasoning one can find a
further subsequence in {Vjn}, denoted by the same symbol, that converges pointwise to
a convex function W that differs from V . This gives a contradiction, because V (x) =
W (x) a.e., since {Vjn} converges in measure to W and to V . As noted above, pointwise
convergence of the functions Vj yields almost sure convergence of their gradients. �

Corollary 2.3. Let µ be a Borel probability measure on Rd with a density that is locally
separated from zero. Suppose that a sequence of Borel probability measures νj converges
weakly to a Borel probability measure ν and that the measures µ, νj and ν have finite
second moments. Let Tj be the optimal transportation between µ and νj for the cost
function h(x, y) = |x− y|2. If

sup
j

∫
Rd

|Tj| dµ <∞,

then the mappings Tj converge µ-a.e. to the optimal transportation between µ and ν.

Example 2.1. (i) Suppose that a Borel probability measure µ has a density locally
separated from zero and a finite second moment. Let PD2(µ) denote the class of all
probability densities g with respect to µ such that the function g(x)|x|2 is µ-integrable.
For every g ∈ PD2(µ), let Tg be the optimal transportation between µ and g · µ for the
cost function h(x, y) = |x− y|2. Suppose also that µ satisfies the Talagrand inequality∫

Rd

|Tg(x)− x|2 µ(dx) ≤ cEntµ(g)

for every g ∈ PD2(µ). Let gj ∈ PD2(µ) converge in measure µ to g ∈ PD2(µ) and let
supj Entµ(gj) < ∞. Then |Tgj

− Tg| → 0 in Lr(µ) for every r < 2 and Tgj
→ Tg almost

everywhere. It is well-known that the hypotheses in this example are fulfilled for any
measure µ that has a density locally separated from zero and satisfies the logarithmic
Sobolev inequality, e.g., for the standard Gaussian measure.

(ii) Let µ be Lebesgue measure on the cube K = [0, 1]d. For every Borel probability
measure ν on K, let Tν : K → K be the optimal transportation between µ and ν. It is
known that there is a Borel (even continuous) mapping η : [0, 1] → [0, 1]d that transforms
Lebesgue measure λ on [0, 1] to Lebesgue measure on [0, 1]d (see [6, Ch. 9]). Then the
mapping ν 7→ ξν := Tν ◦ η defines a parameterization of Borel probability measures on K
by mappings from [0, 1] to K with the following continuity property: λ◦ξ−1

ν = ν for every
ν and ξνj

→ ξν λ-a.e. whenever νj → ν weakly. We recall that such a representation
is called Skorohod’s parameterization of probability measures on K and can be obtained
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for every Polish space. This result for general Polish spaces is due to Blackwell, Dubbins,
and Fernique; see the corresponding references and discussion in [7] and [6, Ch. 8], where
it is explained how the partial case of [0, 1]3 yields the general result.

The theorem can be used for establishing the integrability of the functions |F |r and
exp(ω|F |2) under appropriate integrability assumptions on g| log g|p or gp.

Example 2.2. (i) Let θ(t) = exp(ωt). Under the assumption that almost everywhere
〈DF (x)a, a〉 ≥ −|a|2 for all a ∈ Rd and 0 < det2(I + DF ) ≤ 1 (which is fulfilled if
I +DF (x) is a nonnegative symmetric operator), we obtain that∫

Rd

|F |2 exp(ω|F |2) dγ ≤
(1

2
− 2ω − 1

α

)−1
∫

Rd

g1+α| log g| dγ (2.8)

if ω < 1/4− 1/(2α). Hence |F |2 exp(ω|F |2) ∈ L1(γ) whenever ω < (p− 3)(4p− 4)−1 and
g ∈ Lp(γ).

(ii) Set α = 3 and ω = 1/20. Let θ(t) = (20r)r + tr, where r ≥ 1. Then θ′ ≤ ωθ, and
under the same assumptions on DF as in (i), we obtain that there is a number C(r) that
depends only on r such that∫

Rd

|F |2+r dγ ≤ C(r)

∫
Rd

g| log g|r+1 dγ.

If 0 < r < 1, then in a similar manner we obtain the estimate∫
Rd

|F |2+r dγ ≤ C(r)

∫
Rd

g[| log g|r+1 + 1] dγ

by using the function θ(t) = 20r + max(1, |t|r). Finally, taking θ = 1, we arrive at the
estimate ∫

Rd

|F |2 dγ ≤ C

∫
Rd

g| log g| dγ,

which, however, can be easily strengthened to Talagrand’s estimate∫
Rd

|F |2 dγ ≤ C

∫
Rd

g log g dγ

by returning directly to the proof of the theorem with θ = 1.

A closer look at the proof shows that it applies to more general measures. Suppose
that µ is a probability measure on Rd with density f = exp(−V ), where V is a twice
differentiable convex function.

Theorem 2.2. Let D2V ≥ σI with some σ > 0 and let T = I+F be a Borel mapping on
Rd that is injective on a full measure set and transforms µ into a measure g · µ. Suppose
that F and θ satisfy the same hypotheses as in Theorem 2.1. Assume that there are a
number α > 0 with 1/α < σ/2− 2ωκ and a function Ψ ∈ L1(µ) such that

g| log g|θ(α| log g|) ∈ L1(µ), log det2(I +DF )θ
(
|F |2

)
≤ Ψ.

Then∫
Rd

|F |2θ
(
|F |2

)
dµ ≤

(σ
2
− 2ωκ− 1

α

)−1
[∫

Rd

g| log g|θ(α| log g|) dµ+

∫
Rd

Ψ dµ

]
.

If det2(I +DF ) ≤ 1 a.e., then∫
Rd

|F |2θ
(
|F |2

)
dµ ≤

(σ
2
− 2ωκ− 1

α

)−1
∫

Rd

g| log g|θ(α| log g|) dµ.
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Finally, if θ satisfies the indicated conditions on the whole real line, then one can replace
θ(α| log g|) by θ(α log g).

Proof. The reasoning is similar. Note that δµF = divF−〈F,∇V 〉. The change of variables
formula takes the form

log g(T ) = −δµF + V (T )− V − 〈∇V, F 〉 − log det2(I +DF ).

It follows by our hypotheses that

V (x+ F (x))− V (x)− 〈∇V (x), F (x)〉 ≥ σ|F (x)|2.
Therefore, in the situation of the first step of the proof above a similar reasoning yields
the estimate∫

Rd

log g(T )θ(|F |2) dµ ≥
(σ

2
− 2ωκ

) ∫
Rd

|F |2θ(|F |2) dµ−
∫

Rd

Ψ dµ.

The rest of the proof is completely analogous to that of the previous theorem. �

Remark 2.1. For certain special functions θ our general estimate (2.2) can be slightly
improved with the same proof. For example, suppose that in the situation of Theorem 2.1
one has θ(t) = exp(ωt) (as in Example 2.2(i)). Let us repeat the proof of the theorem by
using the inequality xy ≤ ex−1 + y log y in place of inequality (2.6). Then, for any fixed
α > 0 and ω < α

1+2ακ
, we obtain

α log g(T )θ(|F |2) ≤ 1

e
exp[α log g(T )] + θ(|F |2) log θ(|F |2)

≤ 1

e
exp[α log g(T )] + ω|F |2θ(|F |2),

since log θ(t) ≤ ωt (in the general case log θ(t) ≤ ωt + log θ(0) if θ(0) > 0). Finally, we
have ∫

Rd

|F |2 exp
(
ω|F |2

)
dγ ≤ 2

e(α− 4ωκα− 2ω)

[∫
Rd

g1+α dγ + eα

∫
Rd

Ψ dγ

]
, (2.9)

which is more precise than (2.8). Indeed, if κ = 1, then exp
(
ω|F |2

)
∈ L1(γ) provided

that g ∈ L1+α(γ) and ω < α/(4α + 2), whereas (2.8) requires that ω < (α − 2)/(4α), in
particular, in order to have ω > 0 one must take α > 2. However, as α→∞ both bounds
on ω converge to 1/4. The same concerns Theorem 2.2.

It is worth noting that in general the function exp(ω|F |2) may fail to be γ-integrable
for ω > 1/2 even if g is bounded. It suffices to consider the functions T (x) := x− sx with
s ∈ (0, 1) on the real line with the standard Gaussian measure γ. The restriction s < 1 is
needed here to ensure our hypothesis that T ′ ≥ 0. Without that hypothesis, the function
exp(ω|F |2) need not be γ-integrable even for ω = 1/8 in the case of a mapping preserving
the measure γ (example: T (x) := x− 2x = −x).
Remark 2.2. A closer look at the proof of Theorem 2.1 shows that one can relax the
hypotheses on the mapping T that transforms γ into g · γ as follows. It suffices to assume
only that there holds the change of variables formula

G(T (x)) = exp
[
−TraceΛ(x) + 〈F (x), x〉+ |F (x)|2/2

](
det2(I + Λ(x))

)−1

,

where x 7→ Λ(x) is some locally integrable operator-valued mapping such that δγF (x) :=
TraceΛ(x)− 〈F (x), x〉 satisfies the condition∫

Rd

δγFθ(|F |2) dγ ≤ −2κ

∫
Rd

θ′(|F |2)|F |2 dγ.
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A realization of this approach might use the inequality∫
Rd

ϕ(x)Trace[I + Λ(x)] dx ≤ −
∫

Rd

〈∇ϕ(x), T (x)〉 dx

for all nonnegative ϕ ∈ C∞
0 (Rd) established in [14] for optimal transportations corre-

sponding to sufficiently general cost functions (then Λ is Alexandroff’s second derivative
of some potential). It would be interesting to extend the results from [14] to more general
cost functions.

Remark 2.3. (i) Fernique’s result [16] has been established under the same bound on
ω as in estimate (2.9). However, as noted above, Fernique considered somewhat dif-
ferent mappings, so that it was not clear whether his estimate would hold for optimal
transportations.

(ii) Let us consider the inverse mapping S = T−1 which is the optimal transportation
between g ·γ and γ in the case of cost function h(x, y) = |x− y|2. Note that S transforms
γ into 1

g(T )
· γ. Hence

1

2

∫
Rd

|S(x)− x|2 γ(dx) ≤
∫

Rd

1

g(T )
log

1

g(T )
dγ =

∫
Rd

log
1

g
dγ.

In the same way as above one can show that if 1/g ∈ Lτ (γ) for some τ > 0, then
there exists α > 0 such that exp

(
α|S(x) − x|2

)
∈ L1(γ) and if log g ∈ L1+τ (γ), then

|S(x)− x|2(1+β) ∈ L1(γ) for some β > 0.
(iii) Let γ be a centered Radon Gaussian measure on a locally convex space X and let

H be its Cameron–Martin space with the norm | · |H (see [5]). One can assume that γ is
the countable product of the standard Gaussian measures on the real line and is defined
on R∞, then H = l2 with its usual norm. Suppose that g is a probability density with
respect to γ such that g log g ∈ L1(γ). As shown in [17], there exists a Borel mapping
T : X → X of the form T (x) = x + F (x), where F : X → H, such that γ ◦ T−1 = g · γ
and ∫

X

|F (x)|2H γ(dx) = inf

∫
X

|R(x)|2H γ(dx),

where inf is taken over all Borel mappings I+R such that R : X → H and γ ◦(I+R)−1 =
g · γ. By using the methods of [17] and [10] one can show that Corollary 2.2 extends to
this situation and one has∫

X

|F |2θ
(
|F |2H

)
dγ ≤

(1

2
− 2ω − 1

α

)−1
∫

X

g| log g|θ(α| log g|) dγ.

Let us now consider the cost function h(x, y) = 1
p
|x − y|p, where 1 < p ≤ 2. One can

easily prove that the conjugated function for h0(x) := 1
p
|x|p equals

h∗0(x) =
p− 1

p
1

p−1

|x|q,

where 1
p

+ 1
q

= 1. It is known that the corresponding optimal transportation T between

γ and g · γ has the form
T (x) = x+∇h∗0(∇Φ(x))

for some h-concave locally Lipschitzian potential Φ (see [18] or [29, p. 92]). Here the h-
concavity of Φ means that Φ = (Φh)h, where ψh(x) = infy[h(x, y)−ψ(y)]. Renormalizing
Φ one can assume that

T (x) = x+ |∇Φ(x)|q−2∇Φ(x).
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Let Ap(x) := D
[
|x|q−2x

]
. One has

(Ap(x))ij = |x|q−2
(
δij + (q − 2)

xixj

|x|2
)
.

Suppose additionally that ∇Φ ∈ W 1,1
loc . Then one can show that the above mentioned

h-concavity of Φ yields

A−1
p (∇Φ) +D2Φ ≥ 0.

This is verified in [29, p. 103] under more restrictive assumptions on h (which are not
satisfied in our case), but the additional differentiability of ∇Φ enables one to arrive at
the same conclusion. It follows from the estimate |x|q−2I ≤ Ap(x) ≤ (q − 1)|x|q−2I that

D2Φ ≥ −|∇Φ|2−qI.

Theorem 2.3. Let T = I + F be the optimal transportation between γ and g · γ for the
cost function h(x, y) = 1

p
|x− y|p, where 1 < p ≤ 2. Suppose additionally that ∇Φ ∈ W 1,1

loc .

Then the following assertions are true.
(i) For every β > 0 one has∫

Rd

|F |2(β+1) dγ ≤ 2β+1

∫
Rd

|2β(q − 1) + log g|β+1g dγ. (2.10)

(ii) Whenever α > 0 and 0 < ω < α
2+4(q−1)α

one has∫
Rd

|F |2 exp
(
ω|F |2

)
dγ ≤ 2

e(α− 4αω(q − 1)− 2ω)

∫
Rd

g1+α dγ. (2.11)

In particular, exp
(
ω|F |2

)
∈ L1(γ) if g ∈ L1+α(γ).

(iii) If θ is a nonnegative increasing locally Lipschitzian function on [0,+∞) such that
θ′ ≤ ωθ for some ω < (α− 1)(4α(q − 1))−1, where α > 1, then∫

Rd

|F |2θ(|F |2) dγ ≤ 2
(
1− 4ωq + 4ω − 1

α

)−1
∫

Rd

g| log g|θ(α| log g|) dγ. (2.12)

Proof. The reasoning is much the same as above. We only observe that F = |∇Φ|q−2∇Φ,
hence |F | = |∇Φ|q−1. Therefore, in case (iii) one has〈

∇θ
(
|∇Φ|2q−2

)
, F

〉
= (2q − 2)θ′

(
|∇Φ|2q−2

)
|∇Φ|3q−6

〈
D2Φ · ∇Φ,∇Φ

〉
≥ −(2q − 2)ωθ

(
|∇Φ|2q−2

)
|∇Φ|2q−2 = −(2q − 2)ω|F |2θ(|F |2).

It is also important that 0 ≤ det2DT ≤ 1, since DT = Ap(∇Φ)
(
A−1

p (∇Φ) + D2Φ
)

is a
product of two nonnegative matrices. The rest of the proof repeats the reasoning from
Theorem 2.1 applied to the estimation of the integral of the function log g(T )θ

(
|∇Φ|2(q−1)

)
,

which yields an inequality for the integral of the function |∇Φ|2(q−1)θ
(
|∇Φ|2(q−1)

)
=

|F |2θ(|F |2). �

As noted above, the assumption ∇Φ ∈ W 1,1
loc is rather restrictive and seems to be

unnecessary. It is likely that one can get rid of this assumption by approximating ∇Φ
in the general case by better differentiable transportations (which, however, still needs
justification) or by developing the idea of Remark 2.2 in the present situation.
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3. The case of measures satisfying the logarithmic Sobolev inequality

In this section we consider only the quadratic cost function. We show that the result
of the previous section holds (qualitatively) also for measures satisfying the logarithmic
Sobolev inequality. The estimates which we obtain here for an arbitrary measure µ sat-
isfying the logarithmic Sobolev inequality are in general weaker than in the Gaussian
case. However, the same relation holds: if g ∈ L1+ε(µ) for some ε > 0, then the func-
tion exp

(
ω|T (x) − x|2

)
is integrable for sufficiently small ω. A similar result for power

estimates is established.
We shall apply the following remarkable result proved by Bobkov and Götze in [4]: for

every measure satisfying (1.1) there holds the inequality∫
Rd

exp
[
f −

∫
Rd

f dµ
]
dµ ≤

∫
Rd

exp
(
C|∇f |2

)
dµ. (3.1)

In the Gaussian case, this inequality was proved in [25] with a worse constant (see also [5,
§5.6]).

For the proof of the main result in this section we need an auxiliary estimate. Suppose µ
satisfies (1.1). Let V be a convex function such that T = ∇V is an optimal transportation
between µ and g · µ. Note that |∇V | ∈ L2(µ), because µ and ν possess finite second
moments, so |T | ∈ L2(µ). The functions V and V ∗ are convex, hence V (x) ≥M1−M2|x|
and V ∗(x) ≥ M1 −M2|x| for some numbers M1 and M2. This shows that the functions

exp
[
t
(
x2/2 − V (x)

)]
and exp

[
t
(
x2/2 − V ∗(x)

)]
are µ-integrable if t < C−1. Moreover,

the following inequality holds true:∫
Rd

exp
[ 1

C

(x2

2
− V ∗(x)

)]
µ(dx) ≤ exp

[ 1

C

∫
Rd

(
V (x)− x2

2

)
µ(dx)

]
. (3.2)

Justification is similar to the proof of the infimum-convolution inequality in [22, Ch. 6].
For notational simplicity we assume that C = 1. Given a real function f on Rd let

f̃(x) = inf
y

[f(y) + |x− y|2/2].

It is shown in [22, Ch. 6] that for every bounded measurable function f one has∫
Rd

exp f̃ dµ ≤ exp

∫
Rd

f dµ. (3.3)

The desired result is formally obtained by letting f(x) := V (x) − x2/2, because then

f̃(x)−x2/2 = −V ∗(x). However, a reduction to bounded functions is not straightforward
and it is easier to modify the corresponding reasoning. Thus, given a function f ∈ L1(µ),

we have to show that exp f̃ ∈ L1(µ) and (3.3) holds. We may assume that the integral of
f against µ is zero. Let

gn := exp min(f̃ , n)

(∫
Rd

exp min(f̃ , n) dµ

)−1

.

Then νn := gn ·µ is a probability measure and f̃ ∈ L1(νn), since f̃ ≤ f and so max(f̃ , 0) ∈
L1(µ), and if f̃(x) < 0, then f̃(x) exp f̃(x) ≤ 1. It is known (see [22, Ch. 6]) that
the logarithmic Sobolev inequality yields the estimate K(µ, ν) ≤ Entµ(dν/dµ), where

K(µ, ν) := K(µ, ν, h) with h(x, y) = |x− y|2/2. Since f̃(x) ≤ f(y) + |x− y|2/2, we have
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by the Kantorovich–Rubinshtein inequality (see [29, p. 19])∫
Rd

f̃ dνn =

∫
Rd

f̃ dνn −
∫

Rd

f dµ ≤ K(µ, νn) ≤ Entµ(gn).

Hence∫
Rd

f̃ exp min(f̃ , n) dµ+ log ‖ exp min(f̃ , n)‖L1(µ) ≤
∫

Rd

min(f̃ , n) exp min(f̃ , n) dµ.

As min(f̃ , n) ≤ f̃ , we conclude that ‖ exp min(f̃ , n)‖L1(µ) ≤ 1. By Fatou’s theorem this

yields the integrability of exp f̃ and the estimate ‖ exp f̃‖L1(µ) ≤ 1.

Theorem 3.1. Let µ satisfy (1.1) and let T (x) = x+∇Φ(x) be the optimal transportation
between µ and g · µ. Then√

ω

4C

(
1−

√
16ωC

)∫
Rd

|∇Φ|2 exp
(
ω|∇Φ|2

)
dµ+

∫
Rd

exp
(
ω|∇Φ|2

)
dµ ≤

(∫
Rd

gp dµ
) 1

p
,

where ω ≥ 0, 16ωC < 1, and p = 1
1−

√
ωC

. In particular, the function |∇Φ|2 exp
(
ω|∇Φ|2

)
belongs to L1(µ).

Proof. As we have already noted above, (1.1) yields the inclusion exp(εx2) ∈ L1(µ) for
any ε < (2C)−1. Since g ∈ Lp(µ), the function |x|2g(x) is µ-integrable. By the change
of variables formula we have |T |2 ∈ L1(µ), i.e., |∇Φ| ∈ L2(µ). It is well-known that on
account of (1.1) this yields Φ ∈ L2(µ). Since the potential Φ is defined up to a constant,

one can choose Φ in such a way that

∫
Rd

Φ dµ = 0. Recall that Φ(x)+ x2

2
= V (x) for some

convex function V . Let us fix a number r > 0. Inequality (3.2) yields∫
Rd

exp
[ 1

C

(x2

2
− V ∗(x)

)]
µ(dx) ≤ exp

[ 1

C

∫
Rd

(
V (x)− x2

2

)
µ(dx)

]
= 1. (3.4)

By using (1.4) we obtain

r

2

∫
Rd

|∇V (x)− x|2 exp
(
ω|∇V (x)− x|2

)
µ(dx) =

r

∫
Rd

[x2

2
− V (x)− V ∗(∇V (x)) +

|∇V (x)|2

2

]
exp

(
ω|∇V (x)− x|2

)
µ(dx).

By the inequality xy ≤ x log x− x+ ey the latter does not exceed∫
Rd

exp
[
r
x2

2
− rV (x)

]
µ(dx) +

∫
Rd

exp
[
r
|∇V (x)|2

2
− rV ∗(∇V (x)

)]
µ(dx)

+ 2ω

∫
Rd

|∇V (x)− x|2 exp
(
ω|∇V (x)− x|2

)
µ(dx)− 2

∫
Rd

exp
(
ω|∇V (x)− x|2

)
µ(dx).

Hence(r
2
− 2ω

) ∫
Rd

|∇V (x)− x|2 exp
(
ω|∇V (x)− x|2

)
dµ+ 2

∫
Rd

exp
(
ω|∇V (x)− x|2

)
dµ

≤
∫

Rd

exp
[
r
x2

2
− rV (x)

]
µ(dx) +

∫
Rd

exp
[
r
x2

2
− rV ∗(x)

]
g(x)µ(dx).

The expression on the right is finite by Hölder’s inequality∫
Rd

exp
[
r
x2

2
− rV ∗(x)

]
g(x)µ(dx) ≤

(∫
Rd

exp
[
rq
x2

2
− rqV ∗(x)

]
µ(dx)

) 1
q
(∫

Rd

gp dµ
) 1

p
,
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where 1
p

+ 1
q

= 1 and rq ≤ 1
C
. By (3.4) we have∫

Rd

exp
[
r
x2

2
− rV ∗(x)

]
g(x)µ(dx) ≤ ‖g‖Lp(µ).

Applying (3.1) we find∫
Rd

exp
[
r
x2

2
− rV (x)

]
µ(dx) ≤

∫
Rd

exp
[
Cr2|x−∇V (x)|2

]
µ(dx).

Choosing r2 = ω/C we obtain the desired result. �

We note that the requirement ω < (16C)−1 is more restrictive than the conditions in
Section 2.

Theorem 3.2. For every β > 0, there exist numbers A = A(β,C) and B = B(β,C)
depending only on β and C such that if µ satisfies (1.1) and T (x) = x + ∇Φ(x) is the
optimal transportation between µ and g · µ, then∫

Rd

|∇Φ|2(1+β) dµ ≤ A+B
(∫

Rd

| log g|1+βg dµ
)2

.

Proof. We observe that the function |T (x)|2+2β is µ-integrable by the change of variables
formula and the µ-integrability of the function |x|2+2βg(x), which follows by the estimate

|x|2+2βg(x) ≤ |x|2+2β exp(εx2) + | log g/ε|1+βg,

where 0 < ε < (2C)−1. In the same way as in Theorem 3.1 we obtain

1

2C

∫
Rd

|∇V (x)− x|2(1+β) µ(dx)

=
1

C

∫
Rd

[x2

2
− V (x)− V ∗(∇V (x)) +

|∇V (x)|2

2

]
|∇V (x)− x|2β µ(dx)

=
1

C

∫
Rd

[x2

2
−V (x)

]
|∇V (x)−x|2β µ(dx)+

1

C

∫
Rd

[x2

2
−V ∗(x)

]
|∇V ∗(x)−x|2βg(x)µ(dx).

Assuming that

∫
Rd

(
V (x)− x2

2

)
µ(dx) = 0 and using the inequality xy ≤ ey + x log x− x

and the estimate∫
Rd

exp
[ 1

C

(x2

2
− V ∗

)]
µ(dx) ≤ exp

[ 1

C

∫
Rd

(
V (x)− x2

2

)
µ(dx)

]
,

we find

1

C

∫
Rd

[x2

2
− V ∗(x)

]
|∇V ∗(x)− x|2βg(x)µ(dx) ≤

∫
Rd

exp
[ 1

C

(x2

2
− V ∗(x)

)]
µ(dx)

+

∫
Rd

g(x)|∇V ∗(x)− x|2β log
(
g(x)|∇V ∗(x)− x|2β

)
µ(dx)−

∫
Rd

g(x)|∇V ∗(x)− x|2β µ(dx)

≤ 1 +

∫
Rd

|∇V (x)− x|2β log
(
g(∇V (x))|∇V (x)− x|2β

)
µ(dx)−

∫
Rd

|∇V (x)− x|2β µ(dx)

≤ 1 +

∫
Rd

|∇V (x)− x|2β log |∇V (x)− x|2β µ(dx)

+
(∫

Rd

|∇V (x)− x|2(β+1) µ(dx)
) β

1+β
(∫

Rd

| log g(∇V (x))|β+1 µ(dx)
) 1

1+β
.
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Note that

1

2β

∫
Rd

|∇V (x)− x|2β log |∇V (x)− x|2β µ(dx)

≤
∫

Rd

|∇V (x)− x|2β+1 µ(dx) ≤
(∫

Rd

|∇V (x)− x|2(β+1) µ(dx)
)β+1

2
1+β

.

In addition, by Hölder’s inequality and (1.3) we have

∫
Rd

[x2

2
− V (x)

]
|∇V (x)− x|2β µ(dx)

≤
(∫

Rd

|∇V (x)− x|2(1+β) µ(dx)
) β

1+β
(∫

Rd

∣∣x2

2
− V (x)

∣∣1+β
µ(dx)

) 1
1+β

≤
(∫

Rd

|∇V (x)− x|2(1+β) µ(dx)
) β

1+β
(∫

Rd

∣∣x2

2
− V (x)

∣∣2(1+β)
µ(dx)

) 1
2(1+β)

≤ K(β,C)
(∫

Rd

|∇V (x)− x|2(1+β) µ(dx)
)β+1

2
1+β

.

Letting t =

∫
Rd

|∇V (x)− x|2(1+β) µ(dx), we obtain

t

2C
≤ 1 + t

β
1+β

(∫
Rd

| log g|1+βg dµ
) 1

1+β
+

(
2β +K(β,C)

)
t

β+1
2

1+β .

This relation implies our claim. �

4. The case of measures satisfying the Poincaré inequality

In general |∇Φ|2 is not exponentially integrable for measures satisfying the classical
Poincaré inequality. Indeed, consider the following measures on the real line: µ = 1

2
e−|x| dx

and ν = e−2|x| dx. In this case T (x) = 2x and T (x) − x = x. Clearly, dν
dµ
∈ Lp(µ) for

every p > 0, but exp(ω|T (x)−x|2) is not µ-integrable if ω > 0. However, it is known (see,
e.g., [21], [31]) that if µ satisfies the classical Poincaré inequality, then K(µ, g · µ, h) with
h(x, y) = |x− y|2 can be estimated via ‖g‖2

L2(µ). Here we prove Lp-estimates for optimal

transportations in the case of measures satisfying the Poincaré inequality (1.2). The idea
of proof is seen from the following simple reasoning in the case p = 2.

Keeping the notation from the previous section and choosing V in such a way that

∫
Rd

(
V (x)− x2

2

)
µ(dx) = 0,
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we obtain

1

2

∫
Rd

|∇V (x)− x|2 µ(dx) =

∫
Rd

[x2

2
− V (x)− V ∗(∇V (x)) +

|∇V (x)|2

2

]
µ(dx)

=

∫
Rd

[x2

2
− V ∗(x)

]
g(x)µ(dx)

≤
∫

Rd

[
V (x)− x2

2

]
g(x)µ(dx) =

∫
Rd

[
V (x)− x2

2

]
(g(x)− 1)µ(dx)

≤
(∫

Rd

(g − 1)2 dµ

)1/2(∫
Rd

[
V (x)− x2

2

]2

µ(dx)

)1/2

=

(∫
Rd

(g2 − 1) dµ

)1/2(
C2

∫
Rd

|∇V (x)− x|2 µ(dx)

)1/2

.

Hence ∫
Rd

|∇V (x)− x|2 µ(dx) ≤ 4C2

∫
Rd

(g2 − 1) dµ.

Theorem 4.1. Let µ satisfy (1.2). Then for every β > 0 one has

1

2

[∫
Rd

|∇V (x)− x|2(β+1) µ(dx)
] 1

2(β+1) ≤ C
1

2(1+β)

2(1+β)

(∫
Rd

g2 dµ
) 1

2(1+β)
+ C

1
2(1+β)

2(1+β).

Proof. First we observe that the function |T (x)| belongs to all Lp(µ). This is easily seen
by the change of variables formula and the µ-integrability of the function |x|pg(x), which
follows by the Cauchy inequality and the µ-integrability of the function |x|2p implied by
the Poincaré inequality. In the same way as above we estimate

1

2

∫
Rd

|∇V (x)− x|2(β+1) µ(dx)

=

∫
Rd

|∇V (x)− x|2β
[x2

2
− V (x)− V ∗(∇V (x)) +

|∇V (x)|2

2

]
µ(dx).

By using Hölder’s inequality, the estimate V (x)+V ∗(x) ≥ x2, and the change of variables
formula, we obtain∫

Rd

|∇V (x)− x|2β
[ |∇V (x)|2

2
− V ∗(∇V (x))

]
µ(dx)

=

∫
Rd

|∇V ∗(x)−x|2β
[x2

2
−V ∗(x)

]
g(x)µ(dx) ≤

∫
Rd

|∇V ∗(x)−x|2β
[
V (x)− x2

2

]
g(x)µ(dx)

≤
(∫

Rd

|∇V ∗(x)− x|2(β+1)g(x)µ(dx)
) β

1+β
(∫

Rd

∣∣V (x)− x2

2

∣∣1+β
g(x)µ(dx)

) 1
1+β

≤
(∫

Rd

|∇V (x)− x|2(β+1) µ(dx)
) β

1+β
(∫

Rd

∣∣V (x)− x2

2

∣∣2(1+β)
µ(dx)

) 1
2(1+β)

(∫
Rd

g2 dµ
) 1

2(1+β)

≤ C
1

2(1+β)

2(1+β)

(∫
Rd

|∇V (x)− x|2(β+1) µ(dx)
)β+1

2
1+β

(∫
Rd

g2 dµ
) 1

2(1+β)
.
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In addition,∫
Rd

|∇V (x)− x|2β
[x2

2
− V (x)

]
µ(dx)

≤
(∫

Rd

|∇V (x)− x|2(β+1) µ(dx)
) β

1+β
(∫

Rd

∣∣V (x)− x2

2

∣∣1+β
µ(dx)

) 1
1+β ≤

≤ C
1

2(1+β)

2(1+β)

(∫
Rd

|∇V (x)− x|2(β+1) µ(dx)
) β

1+β
(∫

Rd

∣∣∇V (x)− x
∣∣2(1+β)

µ(dx)
) 1

2
1

1+β

≤ C
1

2(1+β)

2(1+β)

(∫
Rd

|∇V (x)− x|2(β+1) µ(dx)
)β+1

2
1+β

.

Our claim follows from these estimates. �
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