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Abstract

In this paper we discuss existence and uniqueness for a one-dimensional time inho-
mogeneous stochastic differential equation directed by an F-semimartingale M and
a finite cubic variation process ξ which has the structure Q + R where Q is a finite
quadratic variation process and R is strongly predictable in some technical sense: that
condition implies in particular that R is weak Dirichlet, and it is fulfilled, for instance,
when R is independent of M . The method is based on a transformation which reduces
the diffusion coefficient multiplying ξ to 1. We use generalized Itô and Itô-Wentzell
type formulae. A similar method allows to discuss existence and uniqueness theorem
when ξ is a Hölder continuous process and σ is only Hölder in space. Using an Itô
formula for reversible semimartingales we also show existence of a solution when ξ is
a Brownian motion and σ is only continuous.
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equation, Hölder processes, weak Dirichlet processes.

MSC-Classification: Primary: 60H05, 60H10. Secondary: 60G18, 60G20

1 Introduction

This paper deals with the study of stochastic differential equations driven by a process which is
not a semimartingale. We aim at illustrating how, using different types of Itô or Itô-Wentzell
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formulae, it is possible to establish existence and uniqueness results for a stochastic differential
equation driven by a non-semimartingale ξ with a multiplication factor σ. When the paths of ξ
have very few regularity, more regularity on σ is required. On the contrary, if the Hölder regularity
of ξ is γ > 1

2 , σ only needs to fulfill a Hölder regularity.

As we said, one of the achievements of the paper is constituted by an Itô-Wentzell formula for
processes having a finite cubic variation. There are today an incredible amount of generalized
Itô formulae and it would be for us almost impossible to quote them all. The standard situation
can be found in [9] and [23], see also [25]. Given a finite quadratic variation process ξ, and
f ∈ C1,2([0, 1]× R), one expands f(t, ξt) as follows.

f(t, ξt) = f(0, ξ0) +

∫ t

0

∂sf(s, ξs) +

∫ t

0

∂xf(s, ξs)d
◦ξs, (1)

where the integral with respect to ξ is a symmetric integral, see definition 2.6. In the literature,
there are generalizations in several directions, among them the following:

1. the case that ξ is not of finite quadratic variation, for instance ξ is a finite cubic variation
and f is of class C1,3 , see for instance [6], or ξ is a fractional Brownian motion with Hurst
index H > 1

6 , and f is of class C6, see e.g. [11, 3];

2. the case when ξ is a (reversible) semimartingale, so essentially a classical process but f is of
class C1, see in general [10, 24].

Itô formula for finite quadratic variation processes admits extensions of Itô-Wentzell type, as in
[8], where the the dependence in time is of semimartingale type. More precisely, it is possible to
expand the process Xt(ξt), where Xt(x) is a family of semimartingales depending on a parameter
with respect to a given filtration F = (Ft), if for every fixed parameter x, the semimartingale
Xt(x) admits a representation as a classical stochastic integral with respect to some vector of
driving F-semimartingales (N1, ..., Nn), ξ is F-adapted, and the vector (ξ,N1, ..., Nn) has all its
mutual brackets, see definition 2.3. We generalize this result, establishing an Itô-Wentzell formula
for a finite cubic variation process ξ provided that some technical assumption on (ξ,N1, . . . , Nn)
is fulfilled, see hypothesis (D) in definition 3.6: we assume the existence of a filtration H ⊇ F,
with respect to which the vector (N1, ..., Nn) is still a vector of semimartingales, such that ξ is
decomposable into the sum of two H-adapted processes Q and R, where (Q,N1, ..., Nn) has all its
mutual brackets, and R is strongly predictable with respect to H, see definition 3.5. In particular
R is an H-weak Dirichlet process in the sense of [6]. We recall that an H-weak Dirichlet process is
the sum of a continuous H-local martingale and of an H-adapted process Q such that [Q,N ] = 0
for every H-semimartingale N . Recent developments on that subject appeared in [12] and [2]. The
mentioned hypothesis on R is verified in the following cases:

• R is F0 measurable;

• R is independent from (N1, ..., Nn) and the filtration generated by (N1, ..., Nn) and the
whole process R contains F.

Among others, the calculus developed to perform Itô-Wentzell formula helps us to clarify the
structure of F-weak Dirichlet processes if F is the natural filtration associated with a Brownian
motion W . If Q is an F-adapted process and [Q,W ] has all its mutual brackets, the covariation
[Q,L] can be computed explicitly for every continuous F-semimartingale L, see proposition 3.9.
This allows us to prove that a process A is F-weak Dirichlet if and only if it is the sum of an F-local
martingale and of an F-adapted process Q, with [Q,W ] = 0.
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On the other hand a stochastic differential equation of the form

d◦Xt = σ(t,Xt) [d◦ξt + b(t,Xt)d
◦Mt + α(t, ξt)dVt] , (2)

is considered where M is a local martingale, V a bounded variation process, and ξ is a finite
cubic variation process with (ξ,M) verifying hypothesis (D). We show, in different cases, how it is
possible to apply Itô formula to reduce the diffusion coefficient σ to 1, and to formulate existence
and uniqueness of equation (2) by studying equations where the process ξ appears only as an
additive term. The improper terminology of diffusion coefficient will be indeed used in the whole
paper. A particular case of that equation was considered in [6] when b = 0. There σ was of class
C3, and the notion of solution for a process X was somehow unnatural since it required that the
couple (X, ξ) was a symmetric vector Itô process. In the case σ is bounded from below by a positive
constant, that equation can be investigated with our techniques, weakening the assumptions on
the coefficients, enlarging the class of uniqueness and improving the sense of solution avoiding the
notion of symmetric vector Itô process.

In the literature, stochastic differential equations of forward type as

d−Xt = σ(Xt)d
−ξt + b(t,Xt)dLt, (3)

were solved operating via classical transformations, in the case ξ has finite quadratic variation,
see [22], for definition of forward integral. In [23] a first attempt was done when L has bounded
variation. In [8] existence and uniqueness were studied in a class of processes (X(t, ξt)) where
X(t, x) is a family of semimartingale depending on a parameter and L is a semimartingale. There
the regularity of σ was of C4 type with σ′, σ′′ being bounded. In that framework our result enlarges
again the class of uniqueness, and we also require less regularity.

Equations of type (2) were considered in the framework of T. Lyons and collaborators rough paths
theory, see [17], even in the multidimensional case when σ is Lipschitz, b = α = 0, for a process
with deterministic p-variation strictly smaller than 3, and in the case of fractional Brownian motion
with Hurst index H > 1

6 , [1]. That approach is purely deterministic in contrast with ours which
combines the pathwise techniques of the stochastic calculus via regularization and probabilistic
concepts, see hypothesis (D).

Another topic of interest is the study of equation

d◦Xt = σ(t,Xt) [d◦ξt + α(t,Xt)dt] , (4)

where σ is only locally Hölder continuous, α is locally Lipschitz with linear growth, and ξ is a
Hölder continuous process. We apply the same method to this equation but exploiting an Itô
formula available for processes having Hölder continuous paths established in [27].

We combine our method with a recent result obtained in [18] with respect to an equation driven
by a fractional Brownian motion with diffusion coefficient equal to 1. This permits us to improve
our general result about existence and uniqueness of equation (2) when ξ = BH , and BH is a
fractional Brownian motion with Hurst index bigger than 1

2 :

d◦Xt = σ(t,Xt)
[
d◦BH

t + α(t,Xt)dt
]
. (5)

If the fractional Brownian motion reduces to a Brownian motion, an Itô formula for C1 functions
of reversible semimartingales is taken into consideration to formulate an existence theorem for
equation (5), when σ is only continuous and α is bounded measurable.
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Our analysis of uniqueness, in the case of weak assumption on the diffusion coefficient, is inspired
by classical ordinary differential equations of the type

dX(t)

dt
= σ(X(t)), (6)

with σ only continuous with linear growth. In that case, Peano theorem insures existence but not
uniqueness. Suppose that x0 = {x ∈ R, s.t. σ(x) = 0} . Then, if for some ε > 0,

∫ x0+ε

x0

1

|σ|
(y)dy =

∫ x0

x0−ε

1

|σ|
(y)dy = +∞, (7)

for every initial condition, this equation admits a unique solution. If previous condition is not
verified, then it is possible to show that at least two solutions for equation (6) exist, with initial
condition X0 = x0. Suppose, for instance, that the second integral is finite. Setting H(x) =∫ x

x0

1
σ(y)dy, x > x0, one can construct two solutions, i.e. X(t) ≡ x0 and X(t) = H−1(t). This

phenomenon will be illustrated in the stochastic case, even with σ inhomogeneous, see for instance
proposition 4.30 and remark 4.31.

We observe that a similar condition as (7), appears in the study of one-dimensional stochastic
differential equation of Itô type dX(t) = σ(X(t))dW (t) where W is a classical Brownian motion.
Uniqueness for every initial condition holds if and only if

∫ x0+ε

x0−ε

1

σ2
(t)dt = +∞, (8)

for every x0 ∈ R, see [5].

To summarize, towards the study of equation (2), we innovate along the following axes with respect
to the literature.

• We suppose that ξ is a finite cubic variation process and σ is time inhomogeneous.

• The notion of solution is clarified and we do not need to introduce the notion of symmetric
vector Itô process.

• One new tool that we establish is a Itô-Wentzell type formula where finite cubic variation
processes are involved.

• We continue the analysis related to the structure of weak Dirichlet processes.

• When the paths of ξ are Hölder, with parameter greater than 1
2 we require very weak

regularity on the coefficients.

• In the case of classical Brownian motion a new existence theorem is established for the
Stratonovich equation.

• We drastically weaken the classical assumptions on the coefficients for existence and unique-
ness.

The paper is organized as follows. In section 2 we recall some definitions and results about stochas-
tic calculus with respect to finite cubic variation processes. We state Itô formula and a result of
stability of finite cubic variation through C1 transformations. We also show some technical prop-
erties of the symmetric integral regarding its behavior when it is restricted to some subspace of
the reference probability space, stopped or shifted with respect to some random time.
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Section 3 deals with the class Ck
ξ of the processes Z so defined

Zt = Xt(ξt),

being Xt(x) an Itô field driven by a vector (N1, . . . , Nn) of semimartingales such that hypothesis
(D) is verified for (ξ,N1, . . . , Nn), see definition 3.1, with regularity of order k in the space variable.
We prove that, if ξ has a finite cubic variation, processes in C1

ξ still have finite cubic variation, and

it is possible to establish an Itô-Wentzell formula to expand processes in C3
ξ . In this section we also

discuss connections with weak Dirichlet processes. We conclude this part proving the existence of
the symmetric integral of a process in C2

ξ with respect to a process in C2
ξ , and using this result to

formulate a chain-rule formula.

Section 4 discusses uniqueness and existence of equation (2). It is divided into nine subsections.
The first and the second parts specify the notion of solution and describe the framework: we
restrict ourselves to the case where the support S of σ is time-independent and a non-integrability
condition around its zeros of type (7) is fulfilled. The third part focuses on trajectories of solutions:
if X is a solution of equation (2), it can be expressed as a function of ξ and a semimartingale.
Moreover its trajectories are forced to live in some connected component of S, as soon as the initial
condition does. In the case the coefficients driving the equation are autonomous, a solution starting
in D = R/S, is identically equal to the initial condition. Putting things together, in the fourth
part, we establish an equivalence between equation (2) and an equation of the same form but with
diffusion coefficient equal to 1. We finally give some conditions for existence and uniqueness of
this last equation. In the fifth subsection we use results of section 3 to show that, under additional
assumptions on the regularity of σ and β, equation (2) admits a unique integral solution in the
set C2

ξ . In the sixth one we revisit our results in the case ξ has finite quadratic variation, and the
symmetric integral is substituted by the forward integral. The seventh subsection is devoted to the
application of the method when processes have Hölder trajectories. Subsection eight describes how
it is possible to combine the result of [18] and ours to treat the specific case of an equation driven by
fractional Brownian motion. Finally we discuss existence of solutions for a Stratonovich equation
driven by a Brownian motion, with continuous diffusion coefficient and bounded measurable drift.

2 Definitions, notations and basic calculus

In this section we recall basic concepts and results about calculus with respect to finite cubic
variation processes which will be useful later. For a more complete description of these arguments
the reader may refers to [6] or [11]. Throughout the paper (Ω,F , P ) will be a fixed probability
space. All processes are supposed to be continuous and indexed by the time variable t in [0, 1].
We adopt the notation Xt = X(t∨0)∧1, for every t in R. A sequence of continuous processes
(Xε)ε>0 will be said to converge ucp (uniformly convergence in probability) to a process X,
if sup0≤t≤1 |X

ε
t −Xt| converges to zero in probability, when ε goes to 0.

In the paper Ch,k will be the space of all continuous functions f : [0, 1] × R → R, which are of
class Ch in t, with derivatives in t up to order h continuous in (t, x), and of class Ch in x, with
derivatives in x up to order k continuous in (t, x).

Let n ≥ 2, and
(
X1, ..., Xn

)
be a vector of continuous processes. For any ε > 0 and t in [0, 1] set

[
X1, X2, ..., Xn

]
ε
(t) =

1

ε

∫ t

0

n∏

k=1

(
Xk

s+ε −Xk
s

)
ds,
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and
∣∣∣∣[X1, X2, ..., Xn

]∣∣∣∣
ε

=
1

ε

∫ 1

0

n∏

k=1

∣∣Xk
s+ε −Xk

s

∣∣ ds.

If
[
X1, X2, ..., Xn

]
ε
(t) converges ucp, when ε → 0, then the limiting process is called the n-

covariation process of the vector
(
X1, ..., Xn

)
, and denoted

[
X1, X2, ..., Xn

]
. If, furthermore,

every subsequence (εk)k≥0 admits a subsequence (ε̄k)k≥0 such that

sup
k≥0

∣∣∣∣[X1, X2, ..., Xn
]∣∣∣∣

ε̄k
< +∞, a.s., (9)

then the n-covariation is said to exist in the strong sense. If the processes
(
Xk
)n
k=1

are all equal
to a real valued process X, then the n-covariation of the considered vector will be denoted by [X ;n]
and called the n-variation process. If n = 2 this process is the quadratic variation and it is
denoted by [X ] , or [X,X ]. If n = 3 we will speak about cubic variation . If X has a quadratic
(respectively, strong cubic) variation, X will be called finite quadratic variation (respectively
strong cubic variation) process.

Remark 2.1. In [6] a different version of the definition of the strong n-variation is given. How-
ever, results contained there and recalled in the sequel can be proved to hold even under our weaker
assumption.

Example 2.2. We present several examples of strong finite cubic variation processes.

1. Let
(
BH

t , 0 ≤ t ≤ 1
)

be a fractional Brownian motion of Hurst index H, that is a Gaussian
process with zero mean and covariance

Cov(BH
s , B

H
t ) =

1

2

(
s2H + t2H − |t− s|

2H
)
.

It follows from remark 2.8 of [6], that the fractional Brownian motion with Hurst parameter
H = 1

3 is a strong cubic variation process.

2. Let
(
BH,K

t , 0 ≤ t ≤ 1
)

be a bifractional Brownian motion with parameters H ∈]0, 1[,K ∈

]0, 1]. We recall, see [14], that BH,K is a Gaussian process with zero mean and covariance

R(t, s) =
1

2K

((
t2H + s2H

)K
− |t− s|2HK

)
.

In [21] is shown that BH,K is a strong finite cubic variation process if HK ≥ 1
3 .

3. Let (Xt, 0 ≤ t ≤ 1) be a Gaussian mean zero process starting at zero, with stationary incre-
ments. Set (V (t))2 := V ar(Xt), for every t in [0, 1]. Fubini theorem and the fact that the
increments of X are stationary permit to perform the following evaluation:

E [||X,X,X ||ε] = c(V (ε))3,

for some positive constant c. If furthermore V (t) = O(t
1

3 ), condition (9) holds. Moreover, us-
ing similar methods as in [13] it is possible to prove that the sequences of processes [X,X,X ]ε
converges ucp. In particular X is a strong cubic variation process.
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4. Using [6] it is possible to exhibit examples of non-Gaussian strong finite cubic variation

processes. One such process is of the type Xt =
∫ t

0 G(t, s)dMs where M is a local martingale
and G is a continuous random field independent from M essentially such that
[G(·, s1), G(·, s2), G(·, s3)] exist for any s1, s2, s3. For example one may choose G(t, s) =
BH

t−s, where BH is a fractional Brownian motion independent of M , with H ≥ 1
3 .

Definition 2.3. A vector
(
X1, X2, ..., Xm

)
of continuous processes is said to have all its mutual

(respectively, strong) n-covariations if
[
X i1 , X i2 , ..., X in

]
exists (respectively, exists in the strong

sense) for any choice (even with repetition) of indices i1, i2, ..., in in {1, 2, ...,m} . If n = 2, we will
also say that the vector

(
X1, X2, ..., Xm

)
has all its mutual brackets. In that case

[
X1, ..., Xm

]

has bounded variation.

Proposition 2.4. If condition (9) holds, then
[
X1, X2, ..., Xn

]
has bounded variation whenever it

exists.

Remark 2.5. 1. If the n-variation [X ;n] exists in the strong sense for some n, then [X ;m] = 0
for all m > n. In particular, since the 2-covariation of two semimartigales exists strongly
and agrees with their usual covariation (see [22]), for any semimartingale S, [S;n] = 0 for
all n ≥ 3.

2. Let
(
X1, ..., Xn

)
be a vector having a strong n-covariation, and Y a continuous process.

Then
1

ε

∫ ·

0

Ys

n∏

k=1

(
Xk

s+ε −Xk
s

)
ds

converges ucp to ∫ ·

0

Y d
[
X1, X2, ..., Xn

]
.

3. If
(
X1, ...Xn

)
has its strong n-covariation then for every vector of continuous processes(

Y 1, Y 2, ..., Y m
)
, the vector (

X1, ..., Xn, Y 1, ..., Y m
)

has its strong (n+m)-covariation equal to zero.

4. If the n-variation [X ;n] exists in the strong sense, then for every continuous process Y and
every m > n such that [Y ;m] exists in the strong sense, we have

[X,

(m−1)times︷ ︸︸ ︷
Y, Y, ..., Y ] = 0.

Definition 2.6. Let X and Y be two continuous processes. For any ε > 0 and t in [0, 1] set

I◦ε (t,X, Y ) =
1

2ε

∫ t

0

Ys(Xs+ε −Xs−ε)ds.

If the process I◦ε (·, X, Y ) converges ucp when ε goes to zero, then the limiting process will be denoted

by
∫ t

0
Y d◦X and called the symmetric integral.

Remark 2.7. 1. It is easy to show that the symmetric integral, if it exists, is the limit ucp of

J◦
ε (t) =

1

2ε

∫ t

0

(Ys+ε + Ys)(Xs+ε −Xs)ds.

7



2. Let X be a continuous semimartingale and Y an adapted continuous process such that [X,Y ]
exists. Then the symmetric integral

∫ ·

0
Ysd

◦Xs exists,

∫ ·

0

Ysd
◦Xs =

∫ ·

0

YsdXs +
1

2
[X,Y ] .

and it coincides with classical Stratonovich integral if Y is a semimartingale.

We conclude this section by recalling a result about stability of the strong n-covariation through
C1 transformations, the Itô formula for strong cubic variation processes, and a chain-rule formula,
all of them established in [6], propositions 2.7, 3.7, and lemma 3.18.

Proposition 2.8. Let F 1, ..., Fn be n functions in C1(Rn). Let X =
(
X1, ..., Xn

)
be a vector of

continuous processes having all its mutual strong n-covariations. Then the vector

(
F 1(X), ..., Fn(X)

)

has the same property and

[
F 1(X), ..., Fn(X)

]
=

∑

1≤i1,...,in≤n

∫ t

0

∂i1F
1(X) · · · ∂in

Fn(X)d
[
X i1 , ..., X in

]
.

Proposition 2.9. Let ξ be a strong cubic variation process and V =
(
V 1, ..., V m

)
be a vector of

bounded variation processes. Then for every F belonging to the class C1,3(Rm × R) it holds

F (Vt, ξt) = F (V0, ξ0) +

m∑

i=1

∫ t

0

∂V iF (Vs, ξs)dV
i

s +

∫ ·

0

∂ξF (Vs, ξs)d
◦ξs

−
1

12

∫ t

0

∂
(3)
ξ F (Vs, ξs)d [ξ, ξ, ξ]s .

Lemma 2.10. Let ξ be a strong cubic variation process. Suppose that ψ and φ are, respectively,
in C1,3([0, 1] × R) and C1,2([0, 1] × R). Then X =

∫ ·

0 φ(s, ξs)d
◦ξs, and

∫ ◦

0 ψ(s, ξs)d
◦Xs exist and

∫ ·

0

ψ(s, ξs)d
◦Xs =

∫ ·

0

φψ(s, ξs)d
◦ξs −

1

4

∫ ·

0

∂ξψ∂ξφ(s, ξs)d [ξ, ξ, ξ]s .

In the sequel of the paper we will need to deal with the restriction of symmetric integrals to
subspaces of Ω, as well as with symmetric integrals stopped or shifted with respect to random
times. We list some simple technical properties about these operations.

If B is an element of F , with P (B) > 0, FB will denote the restriction of F on B : FB =
{F ∩B,F ∈ F} , PB the probability measure conditioned on B, and if f is a random variable on
(Ω,F , P ) , fB will denote the restriction of f to B.

Lemma 2.11. Let B in F with P (B) > 0. Let X and Y be two continuous processes such that∫ ·

0 Xd
◦Y exists. Then

∫ ·

0 X
Bd◦Y B exists and

∫ ·

0

XB
t d

◦Y B
t =

(∫ ·

0

Xtd
◦Yt

)B

PB a.s.
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Proof. The result follows immediately after having observed that for every δ > 0,

PB

({
sup

t∈[0,1]

∣∣∣∣∣I
◦
ε (t,XB, Y B) −

(∫ t

0

Xsd
◦Ys

)B
∣∣∣∣∣ > δ

})

≤
1

P (B)
P

({
sup

t∈[0,1]

∣∣∣∣I
◦
ε (t,X, Y ) −

(∫ t

0

Xsd
◦Ys

)∣∣∣∣ > δ

})
.

If τ and X are, respectively, a random time and a stochastic process on (Ω,F , P ) , Xτ will denote
the stochastic process X stopped to time τ : Xτ

t = Xt∧τ , 0 ≤ t ≤ 1.

Lemma 2.12. Let τ be a random time on (Ω,F , P ) , with P (τ ≤ 1) = 1, X and Y two continuous
stochastic processes such that

∫ ·

0
Xd◦Y exists. Then it holds:





∫ ·

0
Xτ

s d
◦Y τ

s =
(∫ ·

0
Xsd

◦Ys

)τ
;

∫ ·

0
Xτ+sd

◦ (Yτ+s) =
∫ τ+·

τ
Xsd

◦Ys.

Proof. We clearly have

sup
t∈[0,1]

∣∣∣∣I
◦
ε (t ∧ τ,X, Y ) −

(∫ .

0

Xsd
◦Ys

)

t∧τ

∣∣∣∣ ≤ sup
t∈[0,1]

∣∣∣∣I
◦
ε (t,X, Y ) −

∫ t

0

Xsd
◦Ys

∣∣∣∣ .

Therefore, for the first part of the statement we have to show that lim
ε→0

aε = 0, in probability, with

aε = sup
t∈[0,1]

|I◦ε (t ∧ τ,X, Y ) − I◦ε (t,Xτ , Y τ )| .

We can write

aε ≤ sup
t∈[0,1]

∣∣∣∣∣
1

ε

∫ τ∧t

(τ−ε)∧t

Xs (Yτ − Ys+ε) ds

∣∣∣∣∣+ sup
t∈[0,1]

∣∣∣∣∣
1

ε

∫ (τ+ε)∧t

τ∧t

Xτ (Yτ − Ys−ε) ds

∣∣∣∣∣ .

The convergence to zero almost surely, and so in probability, of the sequence of processes (aε) is
due to the continuity of the processes X and Y.

The second statement is a straightforward consequence of a simple change of variables which let
to obtain I◦(t,Xτ+·, Yτ+·) = I◦(τ + ·, X, Y ) − I◦(τ,X, Y ).

By similar arguments it is also possible to show the following lemma.

Lemma 2.13. Let
(
X1, ..., Xn

)
be a vector of continuous processes having its n-covariation, τ a

random time with P (τ ≤ 1) = 1, and B an element of F . Then the vectors
((
X1
)B

, ..., (Xn)
B
)
,

((
X1
)τ
, ..., (Xn)

τ)
and

(
X1

τ+·, ..., X
n
τ+·

)
have their n-covariation and





[
X1, ..., Xn

]B
=
[(
X1
)B

, ..., (Xn)
B
]

PBa.s.;

[
X1, ..., Xn

]τ
=
[(
X1
)τ
, ..., (Xn)

τ ]
;

[
X1

τ+·, ..., X
n
τ+·

]
=
[
X1, ..., Xn

]
τ+·

−
[
X1, ..., Xn

]
τ
.

9



3 Itô-fields evaluated at strong cubic variation processes

3.1 Stability of strong cubic variation

At this stage we introduce some definitions adapted from [8], which treated the finite quadratic
variation case. Let H = (Ht)t∈[0,1] be a filtration on (Ω,F) , satisfying the usual assumptions.

Definition 3.1. A random field (X(t, x), 0 ≤ t ≤ 1, x ∈ R) is called a Ck H-Itô-martingale field

driven by the vector N =
(
N1, ..., Nn

)
, if N is a vector of local martingales with respect to H, and

X(t, x) = f(x) +

n∑

i=1

∫ t

0

ai(s, x)dN i
s, (10)

where

f : Ω × R → R is, for every x, H0-measurable and belonging to Ck(R) a.s.;

X and ai : [0, 1]×R×Ω → R, i = 1, ..., n are adapted for every x, almost surely continuous with
their partial derivatives with respect to x in (t, x) up to order k;

for every index h ≤ k it holds

∂(h)
x X(t, x) = ∂(h)

x f(x) +

n∑

i=1

∫ t

0

∂(h)
x ai(s, x)dN i

s.

Definition 3.2. Let p ≥ 1. A continuous random field (Z(t, x), 0 ≤ t ≤ 1, x ∈ R) , is called an
H-strict zero p-variation process if it is H-adapted for every x, and

sup
|x|≤R

1

ε

∫ 1

0

|Z(t+ ε, x) − Z(t, x)|
p
dt→ 0 in probability, (11)

for all R > 0.

If p = 2 (respectively, p = 3) Z will be called an H-strict zero quadratic(respectively, cubic)
process.

Note that if

Z(t, x) =

m∑

j=1

∫ t

0

bj(s, x)dV j
s , (12)

where bj are continuous fields, and (V j
t )0≤t≤1, j = 1, ...,m are bounded variation processes, then

(11) is verified for every p > 1.

Definition 3.3. A random field X will be called a Ck H-Itô-semimartingale field if it is the
sum of a Ck H-Itô-martingale field and an H-strict zero quadratic variation process Z having the
form (12):

X(t, x) = f(x) +

n∑

i=1

∫ t

0

ai(s, x)dN i
s +

m∑

j=1

∫ t

0

bj(s, x)dV j
s , (13)

10



with coefficients
(
bj
)m
j=1

continuous with their partial derivatives with respect to x in (t, x) up to

order k.

Proposition 3.4. Let X =
(
X i(t, x), 0 ≤ t ≤ 1, x ∈ R, i = 1, 2, 3

)
be a vector of random fields being

the sum of a vector of C1 H-Itô-martingale fields
(
Y i(t, x), 0 ≤ t ≤ 1, x ∈ R, i = 1, 2, 3

)
, driven

by the vector of local martingales
(
N1, ..., Nn

)
, and of a vector of H-strict zero cubic variation

processes
(
Zi(t, x), 0 ≤ t ≤ 1, x ∈ R, i = 1, 2, 3

)
which are a.s. in C0,1([0, 1] × R):

X i = Y i + Zi, i = 1, 2, 3.

Let ξ be a strong cubic variation and H-adapted process. Then the vector X has its strong mutual
3-covariations and

[
X i1(·, ξ), X i2(·, ξ), X i3(·, ξ)

]
=

∫ ·

0

(
∂xX

i1
) (
∂xX

i2
) (
∂xX

i3
)
(s, ξs)d [ξ, ξ, ξ]s ,

for every choice of indices (i1, i2, i3) in {1, 2, 3} .

Proof. We first remark that it is not reductive to suppose that the vector of the driving local
martingales is the same for all the Itô fields taken into consideration. We consider the case X =
X1 = X2 = X3 = Y + Z. The proof in the general case requires the same essential concepts. We
suppose also, for simplicity of notations, that the C1 H-Itô-martingale field has the form (10) with
n = 1, N1 = N, a1 = a. We have to prove that

Cε =
1

ε

∫ ·

0

(X(s+ ε, ξs+ε) −X(s, ξs))
3
ds

converges ucp to
∫ ·

0 (∂xX(s, ξs))
3
d [ξ,ξ, ξ]s , and that X(·, ξ) verifies condition (9).We can write

X(s+ ε, ξs+ε) −X(s, ξs) = (X(s+ ε, ξs+ε) −X(s+ ε, ξs)) + (X(s+ ε, ξs) −X(s, ξs))

= A(s, ε) +B(s, ε),

so as to decompose Cε as follows:

Cε(t) = I1
ε (t) + I2

ε (t) + 3I3
ε (t) + 3I4

ε (t),

with

I1
ε (t) =

1

ε

∫ t

0

(A(s, ε))3 ds, I2
ε (t) =

1

ε

∫ t

0

(B(s, ε))3 ds,

I3
ε (t) =

1

ε

∫ t

0

(A(s, ε))2 (B(s, ε)) ds, I4
ε (t) =

1

ε

∫ t

0

(A(s, ε)) (B(s, ε))2 ds.

Since X is differentiable in ξ, A(s, ε) may be rewritten as

A(s, ε) = ρ(s, ε) (ξs+ε − ξs) ,

with

ρ(s, ε) =

∫ 1

0

∂xX(s+ ε, ξs + λ (ξs+ε − ξs))dλ.

11



Then

I1
ε (t) =

1

ε

∫ t

0

(∂xX(s, ξs))
3
(ξs+ε − ξs)

3
ds

+
1

ε

∫ t

0

(
(ρ(s, ε))3 − (∂xX(s, ξs))

3
)

(ξs+ε − ξs)
3 ds.

By remark 2.5.2 the first term of this sum converges ucp to
∫ ·

0
(∂xX(s, ξs))

3 d [ξ,ξ, ξ]s , while the
absolute value of the second term is bounded by

sup
s∈[0,1]

∣∣∣(ρ(s, ε))3 − (∂xX(s, ξs))
3
∣∣∣
(

1

ε

∫ 1

0

|ξs+ε − ξs|
3 ds

)
,

which converges to zero in probability since ∂xX is continuous, and ξ is a strong cubic variation
process.

We show that I2
ε (t) converges to zero ucp. We observe that we can apply a substitution argument

thanks to the Hölder continuity of a (see [23], proposition 2.1), and the adaptedness of the process
ξ, and get

B(s, ε) =

(∫ s+ε

s

a(r, x)dNr

)

x=ξs

+ (Z(s+ ε, ξs) − Z(s, ξs))

=

∫ s+ε

s

a(r, ξs)dNr + (Z(s+ ε, ξs) − Z(s, ξs)) .

Then

∣∣I2
ε (t)

∣∣ ≤ 1

ε

∫ 1

0

|B(s, ε)|
3
ds ≤

4

ε

∫ 1

0

∣∣∣∣
∫ s+ε

s

a(r, ξs)dNr

∣∣∣∣
3

ds

+
4

ε

∫ 1

0

|Z(s+ ε, ξs) − Z(s, ξs)|
3
ds.

For every k in N∗ we set

Ωk = {[N ]1 ≤ k} ∩

{
sup

t∈[0,1]

|ξt| ≤ k

}
, τk = inf {t| [N ]t ≥ k} , Nk = N τk

.

Then τk is a stopping time and by optional sampling theorem Nk is a local square integrable
martingale. Since ∪∞

k=0Ω
k = Ω, almost surely, it is sufficient to verify that for every k in N∗, the

sequence of processes
(
IΩk

I2
ε (t)

)
converges to zero ucp. Since Z is an H-strict zero cubic variation

process and on Ωk the process ξ is bounded by a constant,

lim
ε→0

IΩk

(
1

ε

∫ ·

0

(Z(s+ ε, ξs) − Z(s, ξ))3 ds

)
= 0 ucp,

and so we get the desired convergence if

lim
ε→0

∫ 1

0

1

ε

∣∣∣∣
∫ s+ε

s

ak(r, ξs)dN
k
r

∣∣∣∣
3

ds = 0, in probability,
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where ak : [0, 1] × R → R has the same regularity of a, it is bounded and it agrees with a on
[0, 1] × {x ∈ R| |x| ≤ k} . We can write

∫ 1

0

1

ε

∣∣∣∣
∫ s+ε

s

ak(r, ξs)dN
k
r

∣∣∣∣
3

ds ≤
4

ε

∫ 1

0

∣∣∣∣
∫ s+ε

s

ak(r, ξr)dN
k
r

∣∣∣∣
3

ds

+
4

ε

∫ 1

0

∣∣∣∣
∫ s+ε

s

(
ak(r, ξs) − ak(r, ξr)

)
dNk

r

∣∣∣∣
3

ds.

The process
∫ ·

0 a
k(r, ξr)dN

k
r is a continuous semimartingale, then it has a finite quadratic variation

by remark 2.5.1 and so the first term of the sum converges to zero in probability being bounded
by (

sup
t∈[0,1]

∣∣∣∣
∫ s+ε

s

ak(r, ξr)dN
k
r

∣∣∣∣

)(∫ 1

0

1

ε

∣∣∣∣
∫ s+ε

s

ak(r, ξr)dN
k
r

∣∣∣∣
2

ds

)
.

Therefore, to conclude we only need to apply Burkholder inequality, and Lebesgue dominated
convergence theorem to see that

lim
ε→0

E

[∫ 1

0

1

ε

∣∣∣∣
∫ s+ε

s

(
ak(r, ξs) − ak(r, ξr)

)
dNk

r

∣∣∣∣
3

ds

]
= 0.

Finally by Hölder inequality

∣∣I3
ε (t)

∣∣ ≤

(
1

ε

∫ 1

0

|A(s, ε)|
3
ds

) 2

3
(

1

ε

∫ 1

0

|B(s, ε)|
3
ds

) 1

3

,

and

∣∣I4
ε (t)

∣∣ ≤

(
1

ε

∫ 1

0

|A(s, ε)|
3
ds

) 1

3
(

1

ε

∫ 1

0

|B(s, ε)|
3
ds

) 2

3

,

then I3
ε (t), and I4

ε (t), converges to zero ucp, since, as already proved before, 1
ε

∫ 1

0
|B(s, ε)|

3
ds

converges to zero in probability and

1

ε

∫ 1

0

|A(s, ε)|
3
ds ≤ ||ξ, ξ, ξ||ε sup

s∈[0,1]

|ρ(s, ε)|
3
. (14)

We conclude observing that the cubic variation of X exists strongly thanks to inequality (14), the

strong finite cubic variation of ξ and the convergence to zero in probability of 1
ε

∫ 1

0
|B(s, ε)|

3
ds.

3.2 Strongly predictability, covariations and weak Dirichlet processes

Given a vector of processes
(
N1, ..., Nn

)
, S(N1, ..., Nn), will denote the set of all filtrations on

(Ω,F) with respect to which
(
N1, ..., Nn

)
is a vector of semimartingales.

Definition 3.5. A process R is strongly predictable with respect to H if

∃ δ > 0, such that Rε+· is H-adapted, for every ε ≤ δ.
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Definition 3.6. We will say that the vector
(
ξ,N1, ..., Nn

)
satisfies hypothesis (D) with respect

to H, if H belongs to S(N1, ..., Nn), and there exist two continuous processes, adapted to H, such
that

(D)





ξ = R +Q;
R is strongly predictable with respect to H;
the vector

(
Q,N1, ..., Nn

)
has all its mutual brackets.

We give two examples where there exists a filtration H with respect to which the decomposition
(D) occurs.

Example 3.7. Let
(
N1, ..., Nn

)
be a vector of local martingales with respect to a filtration F =

(Ft)t∈[0,1]. Suppose that ξ = R+Q, where

{
R is F0-measurable;
(Q,N1, ..., Nn) has all its mutual brackets and Q is F-adapted.

Then the hypothesis (D) is satisfied with respect to the filtration F.

Example 3.8. Let
(
N1, ..., Nn

)
be a vector of semimartingales with respect to its natural filtration

G = (Gt)t∈[0,1]. Suppose that ξ = R +Q, where

{
R is independent from

(
N1, ..., Nn

)
;

(Q,N1, ..., Nn) has all its mutual brackets.

Then, if Q is adapted to the filtration

H = (Gt ∨ σ(R))t∈[0,1] ,

the vector
(
ξ,N1, ..., Nn

)
satisfies the hypothesis (D) with respect to H.

For every H-local martingale N we denote with L2
N (H) the set of all progressively measurable

processes h such that

||h||L2(d[N ]) =

∫ 1

0

h2
sd [N ]s < +∞, a.s..

L2
N (H) endowed with the topology of the convergence in probability with respect to the norm

||·||L2(d[N ]) , is an F -space in the sense of [4]. The F -space of all continuous H-adapted processes

equipped with the uniform convergence in probability will be denoted by A(H).

Proposition 3.9. Let Q be a continuous and H-adapted process and N a continuous H-local
martingale such that (Q,N) has all its mutual brackets. Then for every h in L2

N (H), and Y =∫ ·

0
hsdNs, the bracket [Q, Y ] exists and

[Q, Y ] =

∫ ·

0

hsd [Q,N ]s .

In particular (Q, Y ) has all its mutual brackets and [Q, Y ] has bounded variation.
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Proof. By localization arguments we do not loose generality if we suppose that Q is uniformly
bounded and N is square integrable. We set Γ(h) :=

∫ ·

0
hsd [Q,N ]s , for every h in L2

N (H), and for
every ε > 0 we consider the map Γε : L2

N (H) → A(H) so defined:

Γε(h) =
1

ε

∫ ·

0

(Qε+s −Qs)

(∫ s+ε

s

hrdNr

)
ds.

Γε is a linear and continuous operator from L2
N (H) to A(H). Let h be continuous. We claim that

(Γ(h)ε) converges ucp to Γ(h). Remark 2.5.2 implies

lim
ε→0

∫ ·

0

hs (Qs+ε −Qs) (Ns+ε −Ns) = Γ(h), ucp.

We hence achieve the claim if

lim
ε→0

Iε(t) = lim
ε→0

∣∣∣∣
1

ε

∫ t

0

(Qs+ε −Qs)

(∫ s+ε

s

(hs − hr) dNr

)
ds

∣∣∣∣ = 0, ucp.

Again by standard localization techniques we can suppose h uniformly bounded. We use Cauchy-
Schwartz inequality to write

Iε(t) ≤

(
1

ε

∫ ·

0

(Qs+ε −Qs)
2
ds

) 1

2

(∫ ·

0

1

ε

∣∣∣∣
∫ s+ε

s

(hs − hr) dNr

∣∣∣∣
2

ds

) 1

2

.

The expectation of the second factor of the product is convergent to zero by Burkolder inequality,
the continuity and the boundedness of h.

Moreover it is possible to show that for every h in L2
N (H), sup

ε>0
d2 (Γε(h), 0) ≤ d1 (h, 0), being d1

and d2 two metrics inducing the given topologies of A(H) and L2
N (H), respectively. We recall

that H-adapted continuous processes are dense in L2
N (H), so that Banach-Steinhaus theorem for

Fréchet spaces ([4] chapter 2.1) and the density of continuous processes permit to conclude.

Proposition 3.10. Let (Zε) be a sequence of continuous and H-adapted processes, and N a
continuous H-local martingale. Suppose that (Zε) converges to zero in A(H). Then for every h in
L2

N (H), and Y =
∫ ·

0 hsdNs,

lim
ε→0

1

ε

∫ ·

0

Zε
s (Ys+ε − Ys) ds = 0, ucp.

Proof. Since the convergence in probability is equivalent to existence of subsequences convergent
to zero almost surely, it is not reductive to suppose that (Zε) converges uniformly to zero, almost
surely. We set, for every k in N∗,

Ωk =

{
ω ∈ Ω, s.t. sup

0≤s≤1
|Zε

s | ≤ k, ∀ε ≤ k−1

}
, and Zε,k = ZεI{sup

0≤u≤·|Z
ε
u|≤k}.

Then it is sufficient to show that

lim
ε→0

Ck
ε = lim

ε→0

1

ε

∫ ·

0

Zε,k
s (Ys+ε − Ys) ds, ucp, ∀k ∈ N∗.
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Let k be fixed. Thanks to adaptedness of the process Zε,k we can write

Ck
ε =

1

ε

∫ ·

0

(∫ s+ε

s

Zε,k
s hrdNr

)
ds. (15)

Let (τn)n∈N
be a sequence of H-stopping times such that N τn

, the local martingale N stopped at
time τn, is a square integrable martingale and sup0≤s≤τn |hs| ≤ n. Stopping integral (15) to time
τn, let us apply exercise 5.17, pag.165 of [20] to write

1

ε

∫ ·∧τn

0

(∫ (s+ε)∧τn

s

Zε,k
s hrdN

τn

r

)
ds =

∫ ·∧τn

0

(
1

ε

∫ r

(r−ε)

Zε,k
s hrds

)
dN τn

r .

By proposition 2.74 of [15], we are allowed to take the limit for n→ +∞, and write

Ck
ε =

∫ ·

0

(
1

ε

∫ r

r−ε

Zε,k
s hrds

)
dNr, a.s..

Using Doob and Hölder inequalities we obtain

E

[
sup

t∈[0,1]

∣∣Ck
ε (t)

∣∣2
]

≤ cE

[∫ 1

0

(
1

ε

∫ r

r−ε

Zε,k
s hrds

)2

d [N ]r

]

≤ cE

[
sup

s∈[0,1]

∣∣Zε,k
s

∣∣2
∫ 1

0

h2
rd [N ]r

]
,

for some positive constant c. Lebesgue dominated convergence theorem permits to complete the
proof.

Corollary 3.11. Let R be an H-strongly predictable continuous process. Then for every continuous
H-local martingale N, and h in L2

N (H), [R, Y ] = 0.

Proof. It has to be shown that
(

1
ε

∫ ·

0
Zε

s (Ys+ε − Ys) ds
)
, converges to zero ucp, with Zε = Rε+· −

R. Since R is H-strongly predictable, Zε is definitely H-adapted. Moreover the continuity of R
insures the uniformly convergence to zero, almost surely, of Zε. Proposition 3.10 leads to the
conclusion.

We go on defining and discussing some properties of weak Dirichlet processes.

Definition 3.12. An H-weak Dirichlet process is the sum of a continuous H-local martingale
M and a continuous process Q such that [Q,N ] = 0, for every H-local martingale N .

Corollary 3.11 directly implies the following.

Corollary 3.13. An H-strongly predictable continuous process R is an H-weak Dirichlet process.

Proposition 3.9 permits to better specify the nature of such processes with respect to Brownian
filtrations, as precised in the corollary below.

Corollary 3.14. Suppose that W is a Brownian motion on (Ω,F , P ) . Let H be its natural filtration
augmented by the P null sets. A continuous process D is an H-Dirichlet process if and only if it
is the sum of a continuous H-local martingale M and a process Q such that [Q,W ] = 0.
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Proof. Necessity is obvious. Suppose that D is the sum of an H-local martingale M and a process
Q such that [Q,W ] = 0. Let N be an H-local martingale. Then there exist a process h in L2

W (H)
such that N = N0 +

∫ ·

0 hsdWs. By proposition 3.9 [Q,N ] =
∫ ·

0 hsd [Q,W ]s = 0.

Theorem 3.15. Let (X(t, x), 0 ≤ t ≤ 1, x ∈ R) be the sum of a C1 H-Itô-martingale field of the
form (10), and a H-strict zero quadratic variation process Z in C0,1 ([0, 1]× R). Let ξ be such that
the vector

(
ξ,N1, ..., Nn

)
satisfies the hypothesis (D) with respect to the filtration H. Then for any

semimartingale of the form Y =
∑n

i=1

∫ .

0
hi

sdN
i
s, with hi in L2

N (H) for every i = 1, ..., n, it holds :

[X(·, ξ), Y ] =

n∑

i=1

∫ ·

0

∂xX(s, ξs)h
i
sd
[
ξ,N i

]
s

+
n∑

i,j=1

∫ ·

0

aj(s, ξs)h
i
sd
[
N i, N j

]
s
.

In particular [X(·, ξ), Y ] has bounded variation.

Remark 3.16. In [8] the authors explore the existence of mutual brackets of Itô fields, and so it
could appear natural to do the same in this context. However, it is clear that in this case such a
bracket cannot exist unless R is a finite quadratic variation process.

Proof. (of the theorem). We suppose for simplicity of notations that n = 1, and we denote with h
the process h1. We have to study the convergence ucp of

Cε(t) =
1

ε

∫ t

0

(X(s+ ε, ξs+ε) −X(s, ξs)) (Ys+ε − Ys)ds.

We have

Cε(t) =
1

ε

∫ t

0

(X(s+ ε, ξs+ε) −X(s+ ε,Qs +Rs+ε)) (Ys+ε − Ys)ds

+
1

ε

∫ t

0

(X(s+ ε,Qs +Rs+ε) −X(s,Qs +Rs+ε)) (Ys+ε − Ys)ds

+
1

ε

∫ t

0

(X(s,Qs +Rs+ε) −X(s, ξs)) (Ys+ε − Ys)ds

= J1
ε (t) + J2

ε (t) + J3
ε (t)

For J1
ε (t) we use Taylor type formula

X(s+ ε, ξs+ε) −X(s+ ε,Qs +Rs+ε) = ∂xX(s, ξs) (Qs+ε −Qs)

+ ρ(s, ε) (Qs+ε −Qs)

with

ρ(s, ε) =

∫ 1

0

[∂xX(s+ ε, λ(Qs+ε −Qs) + (Qs +Rs+ε)) − ∂xX(s, ξs)] dλ,

to get

J1
ε (t) =

1

ε

∫ t

0

∂xX(s, ξs) (Qs+ε −Qs) (Ys+ε − Ys)ds+
1

ε

∫ t

0

ρ(s, ε) (Qs+ε −Qs) (Ys+ε − Ys)ds.
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Since h is continuous and H-adapted, it is progressively measurable and almost surely bounded.
By proposition 3.9 (Q,

∫ ·

0
hsdNs) has all its mutual brackets, and so by remark 2.5.2 the first term

converges ucp to ∫ ·

0

∂xX(s, ξs)hsd [Q,N ]s ,

while the second term has limit equal to zero ucp since both Q and Y have finite quadratic variation.

We consider the term J2(t). Thanks to the hypothesis (D), the process (Qs +Rs+ε, 0 ≤ s ≤ 1) is
H-adapted for every ε ≤ δ. Then we can write for every ε ≤ δ

J2
ε (t) =

1

ε

∫ t

0

(∫ s+ε

s

(a(r,Qs +Rs+ε) − a(r, ξr)) dNr

)
(Ys+ε − Ys) ds

+
1

ε

∫ t

0

(∫ s+ε

s

a(r, ξr)dNr

)
(Ys+ε − Ys) ds

+
1

ε

∫ t

0

(Z(s+ ε,Qs +Rs+ε) − Z(s,Qs +Rs+ε)) (Ys+ε − Ys) ds.

The second term converges ucp by definition to

[∫ ·

0

a(s, ξs)dNs, Y

]
=

∫ t

0

hsa(s, ξs)d [N,N ]s ,

while using Hölder inequality, and the fact that Z is a strict zero quadratic variation process it
is possible to show that the last term converges to zero ucp. Again by Hölder inequality the first
term converges to zero ucp if

lim
ε→0

1

ε

∫ 1

0

(∫ s+ε

s

(a(r,Qs +Rs+ε) − a(r, ξr)) dNr

)2

ds = 0, in probability.

This can be proved with techniques already used for the convergence to zero of the term I2
ε in

the proof of proposition 3.4. Regarding the term J3, we apply proposition 3.10 to the sequence
of processes (X(·, Q+R·+ε) −X(·, ξ)) , the local martingale N, and the process h, which let us
conclude that J3 converges to zero ucp.

Using similar arguments to those of previous proposition one can prove the following.

Proposition 3.17. Let β be in C0,1 ([0, 1]× R) , and
(
ξ,N1, ..., Nn

)
be a vector of continuous

processes satisfying the hypothesis (D) with respect to H. Then for every semimartingale of the
form

Y =

n∑

i=1

∫ ·

0

hi
sdN

i
s,

with hi in L2
Ni(H) for every i = 1, ..., n, [β(·, ξ), Y ] exists and

[β(·, ξ), Y ] =

n∑

i=1

∫ ·

0

hi
s∂xβ(s, ξs)d

[
ξ,N i

]
s
. (16)

In particular [β(·, ξ), Y ] has bounded variation.
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Corollary 3.18. Let
(
ξ,N1, ..., Nn

)
be a vector of continuous processes satisfying the hypothesis

(D) with respect to H. Let X = (X(t, x), 0 ≤ t ≤ 1, x ∈ R) and Z = (Z(t, x), 0 ≤ t ≤ 1, x ∈ R) be
either functions in C0,1([0, 1] × R) or C1 H-Itô-semimartingale fields of the form (13). Then for
every semimartingale of the form

Y =

n∑

i=1

∫ ·

0

hi
sdN

i
s

with hi in L2
Ni(H) for every i = 1, ..., n, it holds

∫ ·

0

X(s, ξs)d
◦

(∫ s

0

Z(r, ξr)d
◦Yr

)
=

∫ ·

0

(XZ) (s, ξs)d
◦Ys.

Proof. The corollary is a consequence of proposition 3.15 and the decomposition of the symmetric
integral into a classical stochastic integral plus an half covariation as specified in remark 2.7.2.

3.3 Itô-Wentzell formula

Proposition 3.19. Suppose that (X(t, x), 0 ≤ t ≤ 1, x ∈ R) is a C3 H-Itô-semimartingale field of
the form (13). Let

(
ξ,N1, ..., Nn

)
be a vector of continuous processes satisfying the hypothesis (D)

with respect to H. Then the symmetric integral
∫ ·

0 ∂xX(s, ξs)d
oξs exists and

X(·, ξ) = X(0, ξ0) +

n∑

i=1

∫ ·

0

ai(s, ξs)dN
i
s +

m∑

j=1

∫ ·

0

bj(s, ξs)dV
j
s +

∫ ·

0

∂xX(s, ξs)d
oξs

+
1

2

n∑

i=1

∫ ·

0

∂xa
i(s, ξs)d

[
N i, ξ

]
s
−

1

12

∫ ·

0

∂(3)
x X(s, ξs)d [ξ, ξ, ξ]s .

Proof. We suppose n = m = 1, and we make the usual simplification in the notation of the Itô
field considered. By continuity of the process X(·, ξ) the sequence of processes

1

ε

∫ t

0

(X(s+ ε, ξs+ε) −X(s, ξs)) ds

converges almost surely to (X(t, ξt) −X(0, ξ0)). In particular

X(t, ξt) −X(0, ξ0) = lim
ε→0

1

ε

∫ t

0

(X(s+ ε, ξs+ε) −X(s+ ε, ξs)) ds

+ lim
ε→0

1

ε

∫ t

0

(X(s+ ε, ξs) −X(s, ξs)) ds

= lim
ε→0

I1
ε (t) + lim

ε→0
I2
ε (t),

if the two limits on the right hand side of previous equality exist. Applying substitution arguments
and interchanging the integrals with respect to time, the semimartingales N and V, I2

ε (t) converges
ucp to ∫ ·

0

a(s, ξs)dNs +

∫ ·

0

b(s, ξs)dVs.
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Since X(·, x) is differentiable till order three with respect to x, we can write

X(s+ ε, ξs+ε) = X(s+ ε, ξs) + ∂xX(s+ ε, ξs) (ξs+ε − ξs) (17)

+
1

2
∂(2)

x X(s+ ε, ξs) (ξs+ε − ξs)
2

+
1

6
∂(3)

x X(s+ ε, ξs) (ξs+ε − ξs)
3

+ ρ(ξs, ξs+ε) (ξs+ε − ξs)
3 ,

X(s+ ε, ξs) = X(s+ ε, ξs+ε) + ∂xX(s+ ε, ξs+ε) (ξs − ξs+ε) (18)

+
1

2
∂(2)

x X(s+ ε, ξs+ε) (ξs − ξs+ε)
2

+
1

6
∂(3)

x X(s+ ε, ξs+ε) (ξs − ξs+ε)
3

+ ρ(ξs+ε, ξs) (ξs − ξs+ε)
3
,

with limε→0 ρ(ξs, ξs+ε) = limε→0 ρ(ξs+ε, ξs) = 0, almost surely. By subtracting these two quantities
and integrating over [0, t] we get

I1
ε (t) =

1

2ε

∫ t

0

(∂xX(s+ ε, ξs) + ∂xX(s+ ε, ξs+ε)) (ξs+ε − ξs) ds

−
1

4ε

∫ t

0

(
∂(2)

x X(s+ ε, ξs+ε) − ∂(2)
x X(s+ ε, ξs)

)
(ξs+ε − ξs)

2
ds

+
1

12ε

∫ t

0

(
∂(3)

x X(s+ ε, ξs) + ∂(3)
x X(s+ ε, ξs+ε)

)
(ξs+ε − ξs)

3
ds

+
1

2ε

∫ t

0

(ρ(ξs, ξs+ε) + ρ(ξs+ε, ξs)) (ξs+ε − ξs)
3
ds

= J1
ε (t) + J2

ε (t) + J3
ε (t) + J4

ε (t).

Since ξ is a strong cubic variation process J4
ε converges to zero ucp. J2

ε converges ucp to

−
1

4

[
∂(2)

x X(·, ξ), ξ, ξ
]
.

In fact,

J2
ε (t) = −

1

4ε

∫ t

0

(
∂(2)

x X(s+ ε, ξs+ε) − ∂(2)
x X(s, ξs)

)
(ξs+ε − ξs)

2
ds

+
1

4ε

∫ t

0

(
∂(2)

x X(s+ ε, ξs) − ∂(2)
x X(s, ξs)

)
(ξs+ε − ξs)

2
ds.

The first term converges ucp to

−
1

4

[
∂(2)

x X(·, ξ), ξ, ξ
]

= −
1

4

∫ ·

0

∂(3)
x X(s, ξs)d [ξ, ξ, ξε]s ,

since ∂2
xX(·, x) is a C2 Itô-semimartingale field and proposition 3.4 can be applied. The second

term converges to zero ucp. In fact, by Hölder inequality its absolute value is bounded by

1

4

(
1

ε

∫ 1

0

∣∣∣∂(2)
x X(s+ ε, ξs) − ∂(2)

x X(s, ξs)
∣∣∣
3

ds

) 1

3

||[ξ, ξ, ξ]||
2

3

ε ds.
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Since ∂
(2)
x X is a C1 Itô-semimartingale field, the first factor of the product can be shown to

converge to zero in probability, using tools already developed in the proof of proposition 3.4 for
the term

∫ ·

0 |B(s, ε)|
3
ds. Concerning the term J3

ε we have

J3
ε (t) =

1

12ε

∫ t

0

(
∂(3)

x X(s+ ε, ξs+ε) + ∂(3)
x X(s+ ε, ξs) − 2∂(3)

x X(s, ξs)
)

(ξs+ε − ξs)
3 ds

+
1

6ε

∫ t

0

∂(3)
x X(s, ξs) (ξs+ε − ξs)

3 ds

By remark 2.5.2, the second term converges ucp to 1
6

∫ ·

0 ∂
(3)
x X(s, ξs)d [ξ, ξ, ξ]s , while the first term

converges to zero 0 a.s., since ξ is has a finite strong cubic variation, and both ∂
(3)
x X and ξ are

continuous. Finally

J1
ε =

1

2ε

∫ t

0

(∂xX(s, ξs) + ∂xX(s+ ε, ξs+ε)) (ξs+ε − ξs) ds

+
1

2ε

∫ t

0

(∂xX(s+ ε, ξs) − ∂xX(s, ξs)) (ξs+ε − ξs) ds.

The second term can be decomposed in the following way

1

2ε

∫ t

0

(∂xX(s+ ε, ξs) − ∂xX(s, ξs)) (ξs+ε − ξs) ds

=
1

2ε

∫ t

0

(∫ s+ε

s

(∂xa(r, ξs) − ∂xa(r, ξr)) dNr

)
(Qs+ε −Qs) ds

+
1

2ε

∫ t

0

(∫ s+ε

s

(∂xa(r, ξs) − ∂xa(r, ξr)) (Rs+ε −Rs) dNr

)
ds

+
1

2ε

∫ t

0

(∫ s+ε

s

∂xa(r, ξr)dNr

)
(ξs+ε − ξs) ds

+
1

2ε

∫ t

0

(Z(s+ ε, ξs) − Z(s, ξs)) (ξs+ε − ξs) ds,

with Z =
∫ ·

0 ∂xb(s, ·)dVs. The first term of the sum converges to zero ucp by Hölder inequality,
since Q is a finite quadratic variation process and

lim
ε→0

∫ t

0

1

ε

(∫ s+ε

s

(∂xa(r, ξs) − ∂xa(r, ξr)) dNr

)2

ds = 0, in probability .

By proposition 3.15

lim
ε→0

1

2ε

∫ t

0

(∫ s+ε

s

∂xa(r, ξr)dNr

)
(ξs+ε − ξs) ds =

1

2

∫ ·

0

∂xa(s, ξs)d [N, ξ] , in probability.

The second term can be shown to converge to zero by arguments used in the proof of proposition
3.10, while the last term converges to zero ucp since Z is H-strict zero p-variation process, for every
p > 1. As a consequence of this the first term of J1

ε is forced to converge to
∫ ·

0

∂xX(s, ξs)d
◦ξs,

and we get the result.
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3.4 Existence of symmetric integrals and chain-rule formulae

Definition 3.20. We will denote with Ck
ξ (H) the set of all processes of the form

Zt = X(t, ξt),

being X a Ck H-Itô-semimartingale field driven by the vector of local martingales (N1, ..., Nn),
such that the vector

(
ξ,N1, ..., Nn

)
satisfies the hypothesis (D), with respect to the filtration H.

Remark 3.21. The set Ck
ξ (H) is an algebra (apply classical Itô formula).

Remark 3.22. 1. A process Z belongs to C3
ξ (H) if and only if there exist an H0-measurable

random variable Z0, a vector of H-adapted processes (N1, ..., Nn) such that
(
ξ,N1, ..., Nn

)

satisfies the hypothesis (D) with respect to H, a vector of H-adapted stochastic processes(
h1, ..., hn

)
, and a process γ in C2

ξ (H), such that

Z = Z0 +

∫ ·

0

γsd
◦ξs +

n∑

i=1

∫ ·

0

hsdN
i
s.

The statement is a direct consequence of Itô-Wentzell formula.

2. Combining remark 2.5, the reversed Itô-Wentzell formula, and proposition 3.4, it is possible
to prove that if γ1, γ2, and γ3 belong to C2

ξ (H), then

[∫ ·

0

γ1
sd

◦ξs,

∫ ·

0

γ2
sd

◦ξs,

∫ ·

0

γ3
sd

◦ξs

]
=

∫ ·

0

γ1
sγ

2
sγ

3
s [ξ, ξ, ξ]s .

3. A significant example of the class C3
ξ (H) is given by the following. Let W =

(
W 1, ...,Wn

)

be a n-dimensional Brownian motion on (Ω,F , P ) with respect to its natural filtration H

augmented by the P null sets. Let ξ be a strong cubic variation process such that the vector(
ξ,W 1, ...,Wn

)
satisfies the hypothesis (D) with respect to H. Then the set C3

ξ (H) coincides
with the processes of the form

Z = Z0 +

∫ ·

0

γsd
◦ξs + L

where γ is in C2
ξ (H) and L is an H-semimartingale. This holds since every H-local martingale,

zero at t = 0, admits a representation as a stochastic integral with respect to W.

Proposition 3.23. For every Z in C2
ξ (H) and U in C3

ξ (H) the symmetric integral

∫ ·

0

Zsd
◦Us,

exists and belongs to C2
ξ (H). If Zt = Y (t, ξt), and Ut = X(t, ξt), where X(·, x) and Y (·, x) have

representations

X(·, x) = X0(x) +

n∑

i=1

∫ ·

0

ai(s, x)dN i
s +

m∑

j=1

∫ ·

0

bj(s, x)dV j
s , (19)
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and

Y (·, x) = Y0(x) +

n∑

i=1

∫ ·

0

āi(s, x)dN i
s +

m∑

j=1

∫ ·

0

b̄j(s, x)dV j
s , (20)

Then

∫ ·

0

Zsd
◦Us =

n∑

i=1

∫ ·

0

(Y ai)(s, ξs)dN
i
s +

m∑

j=1

∫ ·

0

(Y bj)(s, ξs)dV
j
s

+

∫ ·

0

(Y ∂xX)(s, ξs)d
oξs +

1

2

n∑

i=1

∫ ·

0

∂x(Y ai)(s, ξs)d
[
N i, ξ

]
s

+
1

2

n∑

i,j=1

∫ ·

0

(aj āi)(s, ξs)d
[
N i, N j

]
s

−
1

12

∫ ·

0

((
3∂(2)

x X
)

(∂xY ) +
(
∂(3)

x X
)
Y
)

(s, ξs)d [ξ, ξ, ξ]s .

Proof. We restrict ourselves to the case n = m = 1, and we denote a1 = a, ā1 = ā. We have to
investigate the convergence of

Cε(t) =
1

2ε

∫ t

0

(Zs+ε + Zs) (Us+ε − Us) ds

=
1

2ε

∫ t

0

(Zs+ε + Zs) (X(s+ ε, ξs+ε) −X(s+ ε, ξs)) ds

+
1

2ε

∫ t

0

(Zs+ε + Zs) (X(s+ ε, ξs) −X(s, ξs)) ds

= I1
ε (t) + I2

ε (t).

As concerns the second term we can write

I2
ε (t) =

1

2ε

∫ t

0

(Zs+ε − Zs) (X(s+ ε, ξs) −X(s, ξs)) ds

+
1

ε

∫ t

0

Zs (X(s+ ε, ξs) −X(s, ξs)) ds.

Using techniques already introduced in previous section and in proposition 3.15 one can show that
these two terms converge, respectively, ucp to

1

2

[
Y (·, ξ),

∫ ·

0

a(r, ξr)dNr +

∫ ·

0

b(r, ξr)dVr

]
=

1

2

∫ ·

0

((∂xY )a)(s, ξs)d [N, ξ]s

+
1

2

∫ ·

0

(āa)(s, ξs)d [N,N ]s ,

and
∫ ·

0 Zsa(s, ξs)dNs +
∫ ·

0 Zsb(s, ξs)dVs.

We consider the first term. To this extent, for every s in [0, 1] we multiply equalities (17) and (18)
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respectively by Zs and Zs+ε to get

I1
ε (t) =

1

2ε

∫ t

0

(∂xX(s+ ε, ξs)Zs + ∂xX(s+ ε, ξs+ε)Zs+ε) (ξs+ε − ξs) ds

−
1

4ε

∫ t

0

(
∂(2)

x X(s+ ε, ξs+ε)Zs+ε − ∂(2)
x X(s+ ε, ξs)Zs

)
(ξs+ε − ξs)

2
ds

+
1

12ε

∫ t

0

(
∂(3)

x X(s+ ε, ξs)Zs + ∂(3)
x X(s+ ε, ξs+ε)Zs+ε

)
(ξs+ε − ξs)

3
ds

+
1

2ε

∫ t

0

(ρ(ξs, ξs+ε)Zs + ρ(ξs+εZs+ε, ξs)Zs) (ξs+ε − ξs)
3
ds.

The proof follows the same outlines of the calculus already performed in the proof of the Itô-
Wentzell formula for the term I1

ε (t). Itô-Wentzell formula is indeed a particular case of this result
(Z = 1). The only difference, here, is that the symmetric integral

∫ ·

0 ∂xX(s, ξs)Zsd
◦ξs exists since

∂xX(·, x)Z is still a C2 H-Itô-semimartingale field, and for such a field, the existence was already
proved before. Then, similarly, we obtain

lim
ε→0

I1
ε (t) =

∫ t

0

Zs∂xX(s, ξs)d
oξs +

1

2

∫ t

0

Zs∂xa(s, ξs)d [N, ξ]s

−
1

4

[
∂(2)

x X(·, ξ)Z, ξ, ξ
]

t
+

1

6

∫ t

0

Zs∂
(3)
x X(s, ξs)d [ξ, ξ, ξ]s , ucp.

The conclusion follows applying proposition 3.4 to get the equality

[
∂(2)

x X(·, ξ)Z, ξ, ξ
]

t
=

∫ t

0

(
Zs∂

(3)
x X(s, ξs) + ∂(2)

x X∂xY (s, ξs)
)
d [ξ, ξ, ξ]s ,

which leads to the result.

Proposition 3.24. Let Z and U be in C2
ξ (H), with Zt = Y (t, ξt), and Ut = X(t, ξt), where X(·, x)

and Y (·, x) have representations (19) and (20). Then the symmetric integral
∫ ·

0

Zsd
◦

(∫ s

0

U(r)d◦ξr

)

exists and
∫ ·

0

Zsd
◦

(∫ s

0

Urd
◦ξr

)
=

∫ ·

0

ZsUsd
◦ξs −

1

4

∫ ·

0

((∂xX) (∂xY )) (s, ξs)d [ξ, ξ, ξ]s .

Proof. We consider the field (X∗(t, x), 0 ≤ t ≤ 1, x ∈ R) so defined

X∗(t, x) =

∫ x

0

X(t, z)dz.

Clearly X∗ is a C3 H-Itô-semimartingale field, so Itô-Wentzell formula can be applied to write

∫ t

0

X(s, ξs)d
◦ξs = X∗(t, ξt) −

n∑

i=1

∫ t

0

ai,∗(s, ξs)dN
i
s −

m∑

j=1

∫ t

0

bj,∗(s, ξs)dV
j

s

−
1

2

n∑

i=1

∫ t

0

ai(s, ξs)d
[
ξ,N i

]
s
+

1

12

∫ t

0

∂(2)
x X(s, ξs)d [ξ, ξ, ξ]s ,
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where

ai,∗(t, x) =

∫ x

0

ai(t, z)dz, bj,∗(t, x) =

∫ x

0

bj(t, z)dz,

for i = 1, ..., n, and j = 1, ...,m, are the coefficients comparing in the representation of X∗. Since
the Y (·, ξ) and X∗(·, ξ) are in C2

ξ (H), and C3
ξ (H), respectively, we can use propositions 3.15 and

3.23 to conclude.

4 On a SDE driven by a strong cubic variation process and

semimartingales

4.1 The equation

On a filtered probability space (Ω,F ,F, P ) , with F = (Ft)t∈[0,1] , F1 = F , let ξ, M and V
be adapted and respectively a strong cubic variation process a local martingale and a bounded
variation process. We suppose ξ0 = 0. Let σ, β : [0, 1] × R → R be continuous functions,
α : [0, 1] × R × Ω → R be progressively measurable and locally bounded in x, uniformly in t,
almost surely, and η be a random variable F0-measurable.

Definition 4.1. A continuous process X : Ω × [0, 1] → R, is called solution to equation

{
d◦Xt = σ(t,Xt) [d◦ξt + β(t,Xt)d

◦Mt + α(t,Xt)dVt] , 0 ≤ t ≤ 1
X0 = η

(21)

on (Ω,F , P ) , if

1. X0 = η;

2. X is a strong cubic variation process;

3. [β(·, X),M ] exists and it has bounded variation;

4. for every ψ in C1,∞([0, 1]× R),
∫ ·

0 ψ(s,Xs)d
◦Xs exists and

∫ ·

0

ψ(t,Xt)d
◦Xt =

∫ ·

0

(ψσ) (t,Xt) [d◦ξt + β(t,Xt)d
◦Mt + α(t,Xt)dVt]

−
1

4

∫ ·

0

(∂xσ)
(
σ2
)
(∂xψ) (t,Xt)d [ξ, ξ, ξ]t , a.s..

Remark 4.2. 1. A solution to equation (21) is a solution to the integral equation

Xt = η +

∫ t

0

σ(s,Xs)d
◦ξs +

∫ t

0

(σβ) (s,Xs)d
◦Ms (22)

+

∫ t

0

(σα) (s,Xs)dVs,

(consider the case ψ = 1).

2. If X is a solution then property 4. is satisfied for every ψ in C1,2 (see [6], remark 4.2, pag.
286).
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4.2 Hypotheses on the coefficients

The construction here used to prove some results about uniqueness and existence of equation (21),
is based on the following assumption

(H1) {(t, x) ∈ [0, 1]× R, s.t. σ(t, x) 6= 0} = [0, 1]× S =
⋃∞

n=0 ([0, 1] × Sn) ,

where S is an open set in R, and thus the countable union of its connected components

(Sn = (an, bn) ,−∞ ≤ an < bn ≤ +∞)n∈N
.

For every n in N we define the function Hn : [0, 1]× Sn :

Hn(t, x) =

∫ x

cn

1

σ(t, z)
dz

being cn in Sn, and we denote H(t, x) =
∑+∞

n=0H
n(t, x)I[0,1]×Sn(t, x), for (t, x) in [0, 1] × S. We

will also need to assume that

(H2)

∫ cn

an

1

|σ(t, z)|
dz +

∫ bn

cn

1

|σ(t, z)|
dz = +∞, ∀t ∈ [0, 1], ∀n ∈ N.

Remark 4.3. 1. Assumption (H1) is always verified if σ is autonomous, that is if σ(t, x) =
σ(x), for every 0 ≤ t ≤ 1.

2. Suppose that σ is locally Lipschitz in space, then assumption (H2) is satisfied, for every n
in N such that −∞ < an < bn < ∞. In fact, since σ(t, an) = σ(t, bn) = 0 for every t, there
will be a constant c > 0, such that

{
|Hn(t,a)| ≥ c (log(|cn − an|) − log(|an − a|)) ,
|Hn(t,b)| ≥ c (log(|cn − bn|) − log(|bn − b|)) ,

for every a, b in Sn. If σ is locally Lipschitz in space, assumption (H2) reduces to verify the
non-integrability condition above only when an or bn are infinity. Even in that case, (H2)
is just there to avoid technicalities related to the possible explosion of the solution. As far as
uniqueness is concerned, it is not needed.

Under assumption (H2), for every n in N and t in [0, 1], Hn(t, ·) : Sn → R, admits an inverse
Kn(t, ·) : R → Sn. If σ never vanishes then we will simply denote Kn with K. Clearly, for every
n, Kn is the solution of the following equation

{
∂yK

n(t, y) = σ(t,Kn(t, y)), (t, y) ∈ [0, 1]× R

Kn(t, 0) = cn.

For every g : [0, 1] × S → R, we will denote

g̃(t, y, ω) =

+∞∑

n=0

I{η∈Sn}(ω)g(t,Kn(t, y)), (ω, t, y) ∈ Ω × [0, 1] × R.
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4.3 Some properties on the trajectories of a solution

The key point of our construction relays on the following property about trajectories of solutions
holding if σ never vanishes. As we will see, in this case, a solution to equation (21) can be
represented in terms of the primitive of σ−1 which can be defined on R at every instant. When
this is not the case this property will be still true only locally, the local character depending on the
initial condition η, and for its description we will need to consider the primitives of σ−1 on each
connected component of S.

Lemma 4.4. Let σ be in C1,2, never vanishing and satisfying (H2), β be in C0,1. Suppose that
X is a solution to equation (21) adapted to F. Then

H(·, X) = ξ +N,

where N is the F-semimartingale

N = H(0, η) +

∫ ·

0

β(s,Xs)dMs +

∫ ·

0

α(s,Xs)dVs +

∫ ·

0

∂sH(s,Xs)ds

+
1

2
[β(·, X),M ] +

1

12

∫ ·

0

(
σ∂(2)

x σ + (∂xσ)2
)

(s,Xs)d [ξ, ξ, ξ]s .

Furthermore if σ is autonomous, then the result still holds even if X fulfills property 4. of definition
4.1, only for autonomous functions ψ.

Proof. Considering the first part of the statement we set Y = H(·, X). By assumption X is a
strong cubic variation process. Since σ is of class C1,2, H is in C1,3, and so by applying Itô
formula for strong cubic variation processes (see proposition 2.9), property 4. of definition 4.1 and
the decomposition of the symmetric integral into a classical integral and a covariation term (see
remark 2.7.2), we deduce the following expression for Y :

Y = H(0, η) + ξ +

∫ ·

0

β(s,Xs)dMs +
1

2
[β(·, X),M ] +

∫ ·

0

α(s,Xs)dVs

+

∫ ·

0

∂sH(s,Xs)ds−
1

4

∫ ·

0

(
σ2 (∂xσ)

(
∂(2)

x H
))

(s,Xs)d [ξ, ξ, ξ]s

−
1

12

∫ ·

0

(
∂(3)

x H(s,Xs)
)
d [X,X,X ]s .

By property 3., Y is a strong cubic variation process as sum of a strong cubic variation process
and of an F-semimartingale. Moreover by remarks 2.5.1 and 2.5.4, [Y, Y, Y ] = [ξ, ξ, ξ] . Proposition
3.4 tells us that

[X,X,X ] = [K(·, Y ),K(·, Y ),K(·, Y )] =

∫ ·

0

(∂yK(s, Ys))
3
d [Y, Y, Y ]s

=

∫ ·

0

(σ (s,Xs))
3 d [ξ, ξ, ξ]s .

Using previous equality and computing the partial derivative of H with respect to x we finally
reach the result.
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Before dealing with the case of a possibly vanishing diffusion coefficient σ, we state the lemma
below which will be useful for it.

Lemma 4.5. Let (Xt, 0 ≤ t ≤ 1) be a solution of equation (21) on the probability space (Ω,F , P ).
Let B ∈ F , and τ a random time. Then, according to the notations of section 2, the following
statements are true:

1. the process XB, fulfills properties 2., 3. and 4. of definition 4.1 with respect to ξB, MB and
V B on the space

(
B,FB, PB

)
;

2. the processes ξτ fulfills properties 2., 3. and 4. of definition 4.1 with respect to ξτ , M τ , and
V τ ;

3. if the coefficients of equation (21) are autonomous, and X fulfills property 4. only for
autonomous functions, then the process X·+τ fulfills properties 2., 3. of definition 4.1, and
property 4. only for autonomous functions, with respect to the processes ξ·+τ , M·+τ −Mτ ,
and V·+τ .

Proof. The first and the last point are direct consequences of lemma 2.11, 2.12 and lemma 2.13.
Concerning the second one we clearly have that Xτ is a strong cubic variation process by lemma
2.13. By lemma 2.12:

[β(·, X),M ]
τ

= [βτ ,M τ ] ,

with βτ
t = β(t ∧ τ,Xt∧τ ). Moreover, the continuity of M and β ensures the convergence to zero,

almost surely, of the sequence of processes

1

ε

∫ ·

0

(
β((s+ ε) ∧ τ,X(s+ε)∧τ ) − β(s ∧ τ,Xs∧τ )

) (
M(s+ε)∧τ −Ms∧τ

)
ds

−
1

ε

∫ ·

0

(
β(s+ ε,X(s+ε)∧τ ) − β(s,Xs∧τ )

) (
M(s+ε)∧τ −Ms∧τ

)
ds

=
1

ε

∫ τ∧·

(τ−ε)∧·

(β(τ,Xτ ) − β(s+ ε,Xτ )) (Mτ −Ms) ds.

This implies that [β(·, Xτ ),M τ ] = [βτ ,M τ ] = [β(·, X),M ]
τ

exists and it has bounded variation.

If ψ is in C1,∞([0, 1] × R), at the same way we have

1

ε

∫ ·

0

(ψ(s ∧ τ,Xs∧τ ) − ψ(s,Xs∧τ ))
(
X(s+ε)∧τ −X(s−ε)∧τ

)
ds

=
1

ε

∫ (τ+ε)∧·

τ∧·

(ψ(τ,Xτ ) − ψ(s,Xτ )) (Xτ −Xs−ε) ds,

and the right-hand side of the equality converges uniformly to zero almost surely. Then

∫ ·

0

ψ(s,Xτ
s )d◦Xτ

s =

(∫ ·

0

ψ(s,Xs)d
◦Xs

)τ

,

and so using successively lemma 2.11 and 2.12 we obtain that Xτ fulfills also property 4. of
definition 4.1.
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To treat the case when σ is possibly vanishing we define

νσ := I{η∈S}(ω)H(0, η), for every ω in Ω.

Proposition 4.6. Let σ be in C1,2 satisfying assumptions (H1) and (H2), and β be in C0,1. Then
if (Xt, 0 ≤ t ≤ 1) is a solution to equation (21), adapted to F, and P ({η ∈ Sn}) = 1, for some
n ≥ 0, it holds

P ({Xt ∈ Sn, ∀t ∈ [0, 1]}) = 1,

and
H(·, X) = ξ +N, for all t in [0, 1], a.s.,

where N is the F-semimartingale

N = νσ +

∫ ·

0

β(s,Xs)dMs +

∫ ·

0

α(s,Xs)dVs +

∫ ·

0

∂sH(s,Xs)ds

+
1

2
[β(·, X),M ] +

1

12

∫ ·

0

(
σ∂(2)

x σ + (∂xσ)
2
)

(s,Xs)d [ξ, ξ, ξ]s .

Furthermore, if σ is autonomous, the result still holds even if X fulfills property 4. of definition
4.1 only for autonomous functions.

Proof. Let D = R/S. For every h in N∗, let τh be the first instant the distance between the process
X and D becomes smaller than h−1 :

τh = inf
{
t ∈ [0, 1], s.t. d(Xt, D) ≤ h−1

}
∧ 1,

where for every C closed set of R, x 7→ d(x,C) = infr∈C |x − r|, is continuous and its support is

equal to C. We denote, according to the notations of section 2, Ωh =
{
τh > 0

}
, Fh

t = FΩh

t ,Fh =(
Fh

t

)
0≤t≤1

, P h = PΩh

, and for every stochastic process Y on Ω, we put Y h = (Y Ωh

)τh

. Since

P (η ∈ S) = 1 there exists k > 0 such that P (Ωh) > 0, for every h ≥ k.

Let h ≥ k ∨ (d(cn, D))−1, be fixed. We observe that Ωh is F0-measurable; hence Fh belongs to
S(Mh). Suppose that X is a solution to equation (21). By lemma 4.5.1 and 4.5.2, Xh is a solution
of

{
d◦Xh

t = σ(t,Xh
t )
[
d◦ξh

t + β(t,Xh
t )d◦Mh

t + α(t,Xh
t )dV h

t

]
, 0 ≤ t ≤ 1

Xh
0 = ηh,

on the probability space
(
Ωh,Fh, P h

)
. Moreover, by construction,

P h
({
Xh

t ∈ Sn,h, ∀t ∈ [0, 1]
})

= 1,

with Sn,h =
{
x ∈ Sn, s.t. d(x,D) ≥ h−1

}
. Let σh : [0, 1] × R → R, be a function with the same

regularity as σ, never vanishing, and agreeing with σ on Sn,h together its first and second derivatives
in x, and its first derivative in t. Then Xh is still a solution of

{
d◦Xh

t = σh(t,Xh
t )
[
d◦ξh

t + β(t,Xh
t )d◦Mh

t + α(t,Xh
t )dV h

t

]
, 0 ≤ t ≤ 1

Xh
0 = ηh.
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If X fulfills property 4. only for autonomous functions, then, by lemma 2.12, Xh carries on doing
it, with respect to the processes ξh, Mh, and V h, even after having replaced σ by σh. In particular
lemma 4.4 can be applied in both of these two cases. Consequently if

Hn,h(t, x) =

∫ x

cn

1

σh(t, z)
dz,

on Ωh it holds P h almost surely:

Hn,h(·, Xh) = Hn,h(0, ηh) + ξh +

∫ ·

0

β(s,Xh
s )dMh

s +

∫ ·

0

α(s,Xh
s )dV h

s

+

∫ ·

0

∂sH
n,h(s,Xh

s )ds+
1

2

[
β(·, Xh),Mh

]

+
1

12

∫ ·

0

(
σh∂(2)

x σh + (∂xσ
h)2
)

(s,Xh
s )d

[
ξh, ξh, ξh

]
s
.

We remark that
{
τh > 0

}
⊆
{
ηh ∈ Sn,h

}
, and that h ≥ (d(cn, D))−1 implies that cn belongs

to Sn,h. Further, if x belongs to Sn,h, then [cn, x] ⊆ Sn,h. Therefore Hn,h(t, x) = H(t, x), and
∂tH

n,h(t, x) = ∂tH(t, x), for every x in Sn,h. Then using lemma 2.11, lemma 2.12, and by similar
reasonings to those already used in the proof of lemma 4.5, we obtain the following equality holding
P h almost surely on Ωh :

H(t,Xt) = ξt +Nt, t ≤ τh, (23)

with

N = νσ +

∫ ·

0

β(s,Xs)dMs +

∫ ·

0

α(s,Xs)dVs +

∫ ·

0

∂sH(s,Xs)ds

+
1

2
[β(·, X),M ] +

1

12

∫ ·

0

(
σ∂(2)

x σ + (∂xσ)2
)

(s,Xs)d [ξ, ξ, ξ]s .

Let τ = limh→+∞ τh. Since
⋃+∞

h=0 Ωh = Ω, almost surely, we get, for t = τh

lim
h→+∞

H(τh, Xτh) = ξτ +Nτ , a.s..

On the other hand, thanks to the continuity of X, d(Xτ , D) = 0 on {τ < 1} . This imply

{τ < 1} ∪ ({τ = 1} ∩ {Xτ ∈ D}) ⊆ {Xτ ∈ ∂D} .

Furthermore by assumption (H2)

{Xτ ∈ ∂D} ⊆

{
lim

h→+∞
|H(τh, Xτh)| = +∞

}
⊆

{
lim

h→+∞
H(τh, Xτh) = ξτ +Nτ

}c

.

Then it must hold P ({τ < 1} ∪ ({τ = 1} ∩ {X1 ∈ D})) = 0. We thus have obtained the first part
of our result since

({τ < 1} ∪ ({τ = 1} ∩ {X1 ∈ D}))c = {Xt ∈ Sn, ∀t ∈ [0, 1]} .

To complete the proof it is sufficient to take the limit for h→ +∞ in (23).
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Proposition 4.7. Let σ, α and β be autonomous, σ in C1,2, satisfying assumption (H2), and β
in C0,1. Let X be a solution to (21) adapted to F. Then if P ({η ∈ D}) = 1

P ({Xt ∈ D, ∀t ∈ [0, 1]}) = 1,

and so Xt = η, ∀t ∈ [0, 1], almost surely.

Proof. For every h ∈ N∗, we consider the first instant the distance between the process X and D
becomes greater than h−1 :

τh = inf
{
t ∈ [0, 1] s.t. d(Xt, D) ≥ h−1

}
∧ 1,

and we put Y h
t = Yt+τh , for Y = X, ξ, V, and Mh

t = Mt+τh −Mτh. We observe that Xh is adapted
to Fh =

(
Fh

t

)
t∈[0,1]

, where

Fh
t =

{
A ∈ F|A ∩

{
τh ≤ s− t

}
∈ Fs, ∀s ≥ t

}
,

and that Fh belongs to S(Mh) (see problem 3.27 of [16]). Then combining lemma 4.5.3 and
proposition 4.6 we find that

P
(
{Xτh ∈ Sm} ∩

{
Xt ∈ Sm, ∀t ≥ τh

})
= P ({Xτh ∈ Sm}) , ∀h,m ∈ N∗.

In particular, since τh ≤ τk when h ≥ k,

P ({Xτh ∈ Sm} ∩ {Xτk ∈ Sn}) = 0, ∀n 6= m,h ≥ k.

This implies

P ({Xτk ∈ Sn}) = P


⋂

h≥k

{Xτh ∈ Sn}


 , ∀n ∈ N, ∀k ∈ N∗. (24)

Furthermore, again by proposition 4.6 we get

H(X1) −H(Xτh) − Y h = 0, a.s. on {Xτh ∈ Sn} , ∀h ∈ N∗, (25)

with

Y h = ξ1 +

∫ 1

τh

β(Xs)dMs +

∫ 1

τh

α(Xs)dVs +
1

2
([β(X),M ]1 − [β(X),M ]τh)

+
1

12

∫ 1

τh

(
σ∂(2)

x σ + (∂xσ)2
)

(Xs)d [ξ, ξ, ξ]s .

Using assumption (H2), and equality (24) we thus find

P ({Xτk ∈ Sn}) = P


⋂

h≥k

{Xτh ∈ Sn}


 = 0, ∀k, n ∈ N.

since in the subspace
⋂

h≥k {Xτh ∈ Sn} we are allowed to take the limit in equality (25). This
holds for every k and n in N∗, so we get

P ({Xt ∈ D, ∀t ∈ [0, 1]}
c
) ≤ P

(
⋃

k>0

{Xτk ∈ S}

)
= 0.
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4.4 Existence and uniqueness

Proposition 4.8. Suppose that there exists a filtration H ⊇ F, with respect to which the vector
(ξ,M) satisfies the hypothesis (D). Let σ be in C1,2, satisfying assumptions (H1) and (H2), β be
in C0,1. If (Yt, 0 ≤ t ≤ 1) is an F-adapted solution of the stochastic differential equation

Y = νσ + ξ +

∫ ·

0

β̃(s, Ys)dMs +

∫ ·

0

α̃(s, Ys)dVs +

∫ ·

0

∂̃sH(s, Ys)ds (26)

+
1

2

∫ ·

0

∂̃xββ̃σ̃(s, Ys)d [M,M ]s +
1

2

∫ ·

0

∂̃xβσ̃(s, Ys)d [M, ξ]s

+
1

12

∫ ·

0

(σ̃
˜
∂

(2)
x σ + (∂̃xσ)

2
)(s, Ys)d [ξ, ξ, ξ]s ,

then the process

X =

∞∑

n=0

I{η∈Sn}K
n(·, Y ) + I{η∈D}η (27)

is a solution of equation (21) adapted to F; Conversely, if P ({η ∈ S}) = 1, or σ, β, and α are
autonomous and (Xt, 0 ≤ t ≤ 1) is a solution to equation (21), adapted to F, then the process

Y = I{η∈S}H(·, X) + I{η∈D}ξ

solves equation (26), and it is F-adapted.

Proof. Let (Yt, 0 ≤ t ≤ 1) be an F-adapted solution of equation (26) and (Xt, 0 ≤ t ≤ 1) as in
formula (27). X is a continuous process with X0 = η. Furthermore Y is a strong cubic variation
process as the sum of ξ and a semimartingale (recall remark 2.5.1), and so, by proposition 3.4,
the process Kn(·, Y ), for every n, has a finite strong cubic variation too. Then X has the same
property and

[X,X,X ] =

∞∑

n=0

I{η∈Sn} [Kn(·, Y ),Kn(·, Y ),Kn(·, Y )]

=

∞∑

n=0

I{η∈Sn}

∫ ·

0

(σ(s,Kn(s, Ys))
3
d [ξ, ξ, ξ]s =

∫ ·

0

(σ (s,Xs))
3
[ξ, ξ, ξ]s ,

where for the last equality we used the fact that σ(t,Xt)I{η∈D} = 0, for every 0 ≤ t ≤ 1. Thanks

to hypothesis (D), Y is the sum of R and the process Q̃ = Y −R, with Q̃ = Q+
∫ ·

0
hsdMs + Ṽ , h

continuous and H-adapted, and Ṽ having bounded variation. Proposition 3.9 implies that (Q̃,M)
has all its mutual brackets. Then the the vector (Y,M) verifies the hypothesis (D), with respect
to H. By proposition 3.17 [β(·, X),M ] has bounded variation since it is equal to

∞∑

n=0

I{η∈Sn} [β(·,Kn(·, Y )),M ] ,
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with

[β(·,Kn(·, Y )),M ] =

∫ ·

0

(∂xβσ) (s,Kn(s, Ys))d [Y,M ]s

=

∫ ·

0

(∂xβσ) (s,Kn(s, Ys))d [ξ,M ]s

+

∫ ·

0

(β∂xβσ) (s,Kn(s, Ys))d [M,M ]s , (28)

on {η ∈ Sn}. Let ψ of class C1,∞. We first remark that, since both classical and symmetric integral
have a local character, for every n in N∗ on {η ∈ Sn} it holds:

Y = νσ + ξ +

∫ ·

0

β(s,Kn(s, Ys))dMs +

∫ ·

0

α(s,Kn(s, Ys))dVs +

∫ ·

0

∂sH(s,Kn(s, Ys))ds

+
1

2

∫ ·

0

∂xββσ(s,Kn(s, Ys))d [M,M ]s +
1

2

∫ ·

0

∂xβσ(s,Kn(s, Ys))d [M, ξ]s

+
1

12

∫ ·

0

(σ∂(2)
x σ + (∂xσ)2)(s,Kn(s, Ys))d [ξ, ξ, ξ]s .

We apply Itô formula for strong cubic variation processes to writeX =
∑∞

n=0 I{η∈Sn}X
n+I{η∈D}η,

with

Xn = η +

∫ ·

0

∂sK
n(s, Ys)ds+

∫ ·

0

∂yK
n(s, Ys)d

◦Ys −
1

12

∫ ·

0

∂(3)
y Kn(s, Ys)d [Y, Y, Y ]s .

Using equality (28) we can write on {η ∈ Sn} ,

Y = νσ + ξ +

∫ ·

0

β(s,Kn(s, Ys))d
◦Ms +

∫ ·

0

α(s,Kn(s, Ys))dVs

+

∫ ·

0

∂sH(s,Kn(s, Ys))ds+
1

12

∫ ·

0

(σ∂(2)
x σ + (∂xσ)2)(s,Kn(s, Ys))d [ξ, ξ, ξ]s .

Deriving with respect to s the equality H(s,Kn(s, y)) = y, we obtain the relation

∂sK
n(s, y) = −σ(s,Kn(s, y))∂sH(s,Kn(s, y)),

which combined with equation (26), the equalities

∂yK
n(s, y) = σ(s,Kn(s, y)), ∂(2)

y (σ(s,Kn(s, y))) = ∂(3)
y Kn(s, y),

and corollary 3.18, gives the following expression for Xn on {η ∈ Sn} :

Xn = η +

∫ ·

0

σ(s,Xn
s )d◦ξs +

∫ ·

0

(σβ) (s,Xn
s )d◦Ms +

∫ ·

0

(σα) (s,Xn
s )dVs.

Coefficients appearing in the last expression for Xn and function ψ are regular enough to use
successively lemma 2.10 and corollary 3.18 to get on {η ∈ Sn} :

∫ ·

0

ψ(t,Xn
t )d◦Xn

t =

∫ ·

0

(ψσ) (t,Xn
t ) [d◦ξt + β(t,Xn

t )d◦Mt + α(t,Xn
t )dVt]

−
1

4

∫ ·

0

(∂xσ)
(
σ2
)
(∂xψ) (t,Xn

t )d [ξ, ξ, ξ]t .
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The conclusion follows since
∫ ·

0 ψ(t,Xt)d
◦Xt =

∑∞
n=0 I{η∈Sn}

∫ ·

0 ψ(t,Xn
t )d◦Xn

t , almost surely.

We consider the second part of the statement. By proposition 4.6

Y = H(·, X) = ξ +N, on {η ∈ S} .

The vector (ξ,N,M) fulfills the hypothesis (D) with respect to H. Indeed N =
∫ ·

0 hsdMs + Ṽ , with

h continuous and H-adapted, and Ṽ with bounded variation. By proposition 3.17

I{η∈S} [β(·, X),M ] =

∞∑

n=0

I{η∈Sn} [β(·,Kn(·, ξ +N),M ] ,

with

[β(·,Kn(·, ξ +N),M ] =

∫ ·

0

(∂xβσ(s,Kn(s, ξs +Ns))) d [ξ,M ]s

+

∫ ·

0

(β∂xβσ(s,Kn(s, ξs +Ns))) d [M,M ]s .

Therefore, on {η ∈ Sn} , N is more explicitly given by the following expression

N = νσ +

∫ ·

0

β(s,Kn(s, Ys))dMs +

∫ ·

0

α(s,Kn(s, Ys))dVs (29)

+
1

2

∫ ·

0

(σβ∂xβ) (s,Kn(s, Ys))d [M,M ]s +
1

2

∫ ·

0

(σ∂xβ) (s,Kn(s, Ys))d [M, ξ]s

+

∫ ·

0

∂sH(s,Kn(s, Ys))ds +
1

12

∫ ·

0

(
σ∂(2)

x σ + (∂xσ)
2
)

(s,Kn(s, Ys))d [ξ, ξ, ξ]s .

Putting expression (29) in the equality

Y = I{η∈S} (ξ +N) + I{η∈D}ξ = ξ +

∞∑

n=0

I{η∈Sn}N

we achieve the proof of the proposition.

Theorem 4.9. Suppose that there exists a filtration H ⊇ F, with respect to which the vector (ξ,M)
satisfies the hypothesis (D). Let σ satisfy assumptions (H1), (H2), and the following hypotheses

(H3)





(i) σ is in C1,2,

(ii) ∂
(2)
x σ is locally Lipschitz in x, uniformly in t ,

(iii) sup(t,x)∈[0,1]×Sn |∂t log(|σ(t, x)|)| ≤ an, ∀n ∈ N

(iv)
(
|∂xσ|

2 +
∣∣∣σ∂(2)

x σ
∣∣∣
)

(t, x) ≤ an (1 + |Hn(t, x)|) , (t, x) ∈ [0, 1]× Sn, ∀n ∈ N

for some sequences (an)n∈N
, in N; let β and α verify

(H4)





(i) β is in C0,1 and it is bounded,

(ii) ∂xβ and α are locally Lipschitz in x, uniformly in t

(iii) (|σ| |∂xβ| + |α|) (t, x) ≤ an (1 + |Hn(t, x)|) , (t, x) ∈ [0, 1]× Sn,
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for all n in N. Then if P ({η ∈ S}) = 1 or that σ, β, and α are autonomous, equation (21) has a
unique F-adapted solution given by

X =

∞∑

n=0

I{η∈Sn}K
n(·, Y ) + I{η∈D}η,

where Y is the unique F-adapted solution to equation (26).

Remark 4.10. We precise that hypothesis (H4) has to be satisfied by α a.s.. In the sequel we will
implicitly use this convention.

Proof. The result follows from the existence and uniqueness of equation (26). The last holds since
assumptions (H3) and (H4) imply the local Lipschitz continuity and the linear growth property
of the coefficients of equation (26), which are sufficient conditions to ensure its existence and
uniqueness (see [8], pag. 29, lemma 34). In fact, the functions

(t, y) 7→ β(t,Kn(t, y)), σ∂(2)
x σ(t,Kn(t, y)), α(t,Kn(t, y)), (∂xσ(t,Kn(t, y)))2 , σ∂xβ(t,Kn(t, y)),

have linear growth thanks to the boundeness of β, (iv) of (H3) and (iii) of (H4); moreover they
are locally Lipschitz being the composition of continuous functions differentiable with continuity or
locally Lipschitz in y. The map (t, y) 7→ ∂tH

n(t,Kn(t, y)) is locally Lipschitz, being differentiable
with continuity with respect to y. By (iii) of (H3)

|∂tH
n(t, x)| ≤

∫ x

cn

|∂t log |(σ(t, z))|

|σ(t, z)|
dz ≤ an|H

n(t, x)|,

which implies the linear growth for (t, y) 7→ ∂tH(t,Kn(t, y)).

Recalling examples 3.8 and 3.7 one can prove the following results.

Corollary 4.11. Suppose that there exist two adapted processes Q and R, such that ξ = R + Q,
R is F0-measurable and (Q,M) has all its mutual brackets. Let σ, β, and α verify the regularity
assumptions of proposition 4.9. Then if the P ({η ∈ S}) = 1, or the coefficients are autonomous,
there exists a unique F-adapted solution to equation (21).

Corollary 4.12. Suppose that there exist two adapted processes Q and R, such that ξ = R + Q,
with R independent from M, (Q,M) having all its mutual brackets, and F ⊆ H, being Ht =
σ (Ms, 0 ≤ s ≤ t) ∨ σ(R), for every 0 ≤ t ≤ 1. Let σ, β, and α verify the regularity assumptions
of proposition 4.9. Then if the P ({η ∈ S}) = 1, or the coefficients are autonomous, there exists a
unique F-adapted solution to equation (21).

If σ is bounded from below from a positive constant we can solve with our methods an equation
already studied in [6], where the diffusion coefficients does not appear as multiplier factor. There
the coefficient β was equal to zero, σ autonomous and of class C1,3. The authors needed to
introduce the notion of strong cubic vector Itô processes in the definition 4.1, requiring more that
the finite cubic variation of a solution X . In particular existence and uniqueness were proved to
hold in a smaller class than the ours, with more regularity on σ.
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4.5 On the uniqueness of the integral equation

We aim here at adding hypotheses on the coefficients driving equation (21) to find a suitable class
of processes among which its solution, in the sense described in definition 4.1 exists, and it is the
unique solution to the the integral equation (22).

Remark 4.13. 1. Let Z be in C2
ξ (H) and ψ in C1,4, with ∂tψ in C0,2. Then the process

(ψ(t, Zt), 0 ≤ t ≤ 1) is in C2
ξ (H).

2. Let
(
Xk(t, x), 0 ≤ t ≤ 1, x ∈ R

)
k∈N

be a sequence of C2 H-Itô-semimartingale fields, of this
form

Xk(t, x) = fk(x) +

n∑

i=1

∫ t

0

ak,i(s, x)dN i
s +

m∑

j=1

∫ t

0

bk,j(s, x)dV j
s ,

and (Ωk)k∈N
be a sequence of subspaces of Ω in H0, with ∪∞

k=0Ωk = Ω, a.s.. Then the random

field Y (t, x) =
∑∞

k=0 IΩk
Xk(t, x), is a C2 H-Itô-semimartingale field of the form

Y (t, x) = f(x) +
n∑

i=1

∫ t

0

ai(s, x)dN i
s +

m∑

j=1

∫ t

0

bj(s, x)dV j
s ,

with

f(x) =
∞∑

k=0

IΩk
fk(x), ai(t, x) =

∞∑

k=0

IΩk
ak,i(t, x), bj(t, x) =

∞∑

k=0

IΩk
bk,j(t, x).

Proposition 4.14. Suppose that there exists a filtration H ⊇ F, with respect to which the vector
(ξ,M) satisfies the hypothesis (D). Let σ β and α, satisfy hypotheses of proposition 4.9, with
furthermore σ in C1,4, ∂tσ in C0,2, β in C1,3, and ∂tβ in C0,1. Then if P ({η ∈ S}) = 1, or α,
σ, and β are autonomous, there exists a unique F-adapted solution to the integral equation (22) in
the space C2

ξ,η(H) of all processes in C2
ξ (H), starting at η.

Proof. The existence was proved in proposition 4.9. Consider, in fact, the process Y which is the
unique solution of equation (26). Classical Itô formula for semimartingales applied to the function
Kn and the semimartingaleN = Y −ξ, shows that the random field (Kn(t, x+Nt), t ∈ [0, 1], x ∈ R)
is a C2 H-Itô-semimartingale field driven by the local martingale M . Therefore by remark 4.13 X
is in C2

ξ,η(H).

Regarding uniqueness we show that an integral solution in C2
ξ,η(H) is a solution in the sense

described in definition 4.1. Let Z be the random field in C2
ξ,η(H) such that X = Z(·, ξ), where X is

a solution to equation (22). Condition 1. is fulfilled by hypothesis. Since ξ is an H-adapted strong
cubic variation process and Z is a C2 H-Itô-semimartingale field, by proposition 3.4 X satisfies
condition 2.. By classical Itô formula (β(t, Z(t, x)), 0 ≤ t ≤ 1, x ∈ R) is a C1 H-Itô-semimartingale
field driven by a vector of local martingales

(
N1, ..., Nn

)
such that the vector

(
ξ,N1, ..., Nn

)

satisfies the hypothesis (D) with respect to H. By definition there exist two H-adapted processes
R̄ and Q̄ such that ξ = R̄ + Q̄,

(
Q̄,N1, · · · , Nn

)
has all its mutual brackets, and R̄ε+· is H-

adapted. By corollary 3.11,
[
R̄,M

]
= 0. This implies the existence of

[
M, Q̄

]
which equals [ξ,M ] .

Then
(
ξ,N1, · · · , Nn,M

)
verifies the hypothesis (D) with respect to H, and by proposition 3.15

condition 3. is established. Since ∂tσ belongs to C0,2, it follows from the details of proofs that if
condition 4. is fulfilled for functions ψ in C1,∞ with ∂tψ in C0,2, previous results about uniqueness
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remain true. Let then ψ be in C1,∞, with ∂tψ in C0,2. X is a solution of the integral equation, so
we can write

∫ t

0

ψ(s,Xs)d
◦Xs =

∫ t

0

ψ̂(s, ξs)d
◦

(∫ s

0

σ̂(r, ξr)d
◦ξr

)

+

∫ t

0

ψ̂(s, ξs)d
◦

(∫ s

0

β̂σ(r, ξr)d
◦Mr

)

+

∫ t

0

ψ̂(s, ξs)d
◦

(∫ s

0

α̂σ(r, ξr)dVr

)
,

with the notation ψ̂(t, x) = ψ(t, Z(t, x)), for every function ψ : [0, 1] × R. As already remarked

before the processes (ψ̂(t, ξt), 0 ≤ t ≤ 1), as well as (σ̂(t, ξt), 0 ≤ t ≤ 1) are in C2
ξ,η(H) so as to let

us apply proposition 3.24. At the same way the random field (β̂σ(t, x), 0 ≤ t ≤ 1, x ∈ R) has the
properties needed in corollary 3.18. Then we obtain

∫ ·

0

ψ(s,Xs)d
◦Xs =

∫ ·

0

(ψσ) (s,Xs)d
◦ξs +

∫ ·

0

(ψβσ) (s,Xs)d
◦Ms

+

∫ ·

0

(ψασ) (s,Xs)dVs

−
1

4

∫ ·

0

(∂xψ) (∂xσ) (s,Xs) (∂xZ(s, ξs))
2
d [ξ, ξ, ξ]s .

By proposition 3.4

∫ ·

0

∂xψ∂xσ(s,Xs) (∂xZ(s, ξs))
2
d [ξ, ξ, ξ]s =

∫ ·

0

(∂xψ∂xσ) (s,Xs)d [X,X, ξ]s .

Finally, by multi-linearity of the 3-covariation application, and remarks 2.5.1 and 3.22

[X,X, ξ] =

[∫ ·

0

σ̂(s, ξs)d
◦ξs,

∫ ·

0

σ̂(s, ξs)d
◦ξs, ξ

]

=

∫ ·

0

(σ(s,Xs))
2
d [ξ, ξ, ξ]s .

and so condition 4. is proved to hold. This leads to the conclusion of the proof.

4.6 The finite quadratic variation case

If ξ is a finite quadratic variation process such that (ξ,M) has all its mutual brackets, then the
vector (ξ,M) satisfies the hypothesis (D) with respect to the filtration H = F. Moreover Ck

ξ (F)

reduces to the set of all the Ck F-Itô-semimartingale fields driven by a vector of semimartingales(
N1, · · · , Nn

)
such that

(
ξ,N1, · · · , Nn

)
has all its mutual brackets.

Results obtained in previous section can be improved regarding the regularity required for the
diffusion coefficient σ, by using techniques which are similar to those already developed in [23] and
[8] about stochastic calculus with respect to finite quadratic variation processes. More precisely
Itô formula for finite quadratic variation processes holds for C2 functions of the space variable,
which allows us to reduce of one the degree of regularity of σ.
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Definition 4.15. A continuous stochastic process (Xt, 0 ≤ t ≤ 1) will be said solution to equation
(21) if it has a finite quadratic variation, X0 = η, the vector (X,M) has all its mutual brackets,
and for every ψ in C1,∞ it holds:

∫ ·

0

ψ(s,Xs)d
◦Xs =

∫ ·

0

ψσ(s,Xs) [d◦ξs + β(s,Xs)d
◦Ms + α(s,Xs)dVs] .

Remark 4.16. Definition 4.1 and 4.15 are equivalent. It is sufficient to use proposition 3.17, and
recall that [ξ, ξ, ξ] = 0.

Similarly to the finite cubic variation case we state the following results.

Proposition 4.17. Let σ be in C1,1, satisfying assumptions (H1) and (H2), β be in C0,1. If
(Yt, 0 ≤ t ≤ 1) is an F-adapted solution of the stochastic differential equation

Y = νσ + ξ +

∫ ·

0

β̃(s, Ys)dMs +

∫ ·

0

α̃(s, Ys)dVs +

∫ ·

0

∂̃tH(s, Ys)ds (30)

+
1

2

∫ ·

0

∂̃xββ̃σ̃(s, Ys)d [M,M ]s +
1

2

∫ ·

0

∂̃xβσ̃(s, Ys)d [M, ξ]s ,

then the process X =
∑∞

n=0 I{η∈Sn}K
n(·, Y )+ I{η∈D}η is a solution of equation (21) adapted to F.

Conversely, if P ({η ∈ S}) = 1, or σ, β, and α are autonomous and (Xt, 0 ≤ t ≤ 1) is a solution to
equation (21), adapted to F, then the process Y = I{η∈S}H(·, X) + I{η∈D}ξ solves equation (30),
and it is F-adapted.

Proposition 4.18. Let σ be in C1, satisfy assumptions (H1), (H2), and such that

sup
(t,x)∈[0,1]×Sn

|∂t log(|σ(t, x)|)| ≤ an, ∀n ∈ N

for some sequences (an)n∈N
in R+; let β and α verify hypothesis (H4). Then if P ({η ∈ S}) = 1

or σ, β, and α are autonomous, equation (21) has a unique F-adapted solution.

We aim at comparing the results obtained with our method with those achieved in [8], and [23].
There σ was not a multiplier coefficient. Then the comparison can be made if σ is bounded from
below from a positive constant. In such a case equations studied by those authors are particular
cases of equation (21), where the symmetric integral is replaced by the forward one, see [22], for
definition.

We remember that, for two continuous stochastic processes X and Y, if the symmetric integral,∫ ·

0 Xsd
◦Ys, and the forward integral,

∫ ·

0 Xsd
−Ys, exist, then 1

2 [X,Y ] exists and

∫ ·

0

Xsd
◦Ys =

∫ ·

0

Xsd
−Ys +

1

2
[X,Y ] .

Using this relation, under assumptions of proposition 4.17, we can state this equivalence between
the solution to equation (21) in the symmetric and the forward sense. This notion of solution in
definition 4.15 has to be adapted replacing the symmetric integral with the forward one.

A process X is a solution of equation
{
d−Xt = σ(t,Xt) [d−ξt + β(t,Xt)d

−Mt + α(t,Xt)d
−Vt]

X0 = η,
(31)
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if and only if it solves




d◦Xt = σ(t,Xt) [d◦ξt + β(t,Xt)d
◦Mt + α(t,Xt)dVt]

− 1
2σ(t,Xt)

[
γ1(t,Xt))dV

1
t + γ2(t,Xt))dV

2
t + γ3(t,Xt))dV

3
t

]

X0 = η,

(32)

with γ1 = ∂xσ, γ
2 = 2∂xσβ + σ∂xβ, γ

3(t, x) = ∂xσβ
2 + σβ∂xβ, and V 1 = [ξ, ξ] , V 2 = [ξ,M ] , V 3 =

[M,M ] .

This equivalence and proposition 4.18 imply the following.

Remark 4.19. Suppose that, besides the hypotheses of proposition 4.18, ∂xσ is locally Lipschitz
in x, uniformly in t, and

|∂xσ| (t, x) ≤ an (1 + |Hn(t, x)|) , (t, x) ∈ [0, 1]× Sn, ∀n ∈ N.

Then equation (31) has a unique solution. Existence and uniqueness are ensured by equation (32).
Moreover the solution is given by X =

∑∞
n=0 I{η∈Sn}K

n(·, Y ) + I{η∈D}η where (Yt, 0 ≤ t ≤ 1) is
the unique solution of

Y = νσ + ξ +

∫ ·

0

β̃(s, Ys)dMs +

∫ ·

0

α̃(s, Ys)dVs +

∫ ·

0

∂̃sH(s, Ys)ds (33)

−
1

2

∫ ·

0

∂̃xσ(s, Ys)d [ξ, ξ]s −

∫ ·

0

∂̃xσβ̃(s, Ys)d [M, ξ]s −
1

2

∫ ·

0

∂̃xσβ̃
2(s, Ys)d [M,M ]s .

Remark 4.20. If we assume β only continuous, bounded and locally Lipschitz, equation (33)
still has a unique solution. Nevertheless X could fail to solve equation (32); indeed the bracket
[β(·, X),M ] may not exist under this weaker condition.

In order to avoid this additional conditions on β, equation (31) has to be studied directly using
stochastic calculus with respect to finite quadratic variation processes and forward integrals instead
of symmetric ones. By these methods it is possible to show the following result.

Proposition 4.21. Suppose that σ is in C1,1 and it satisfies assumptions (H1) and (H2), that β
is continuous and bounded, β, α, ∂xσ are locally Lipschitz in x uniformly in t, and moreover that

{
sup

(t,x)∈[0,1]×R

|∂t log(|σ(t, x)|)| < +∞;

(|∂xσ| + |α|) (t, x) ≤ an (1 + |Hn(t, x)|) , (t, x) ∈ [0, 1]× Sn, ∀n ∈ N.

Then equation (31) has a unique solution.

Moreover, as in the finite cubic variation case, we can also state the following.

Proposition 4.22. Let σ β and α, satisfy hypotheses of proposition 4.21, with furthermore σ in
C1,3, and ∂tσ in C0,1. Then, if P ({η ∈ S}) = 1, or α, σ, and β are autonomous, there exists a
unique F-adapted solution to the integral equation

X = η +

∫ ·

0

σ(s,Xs)d
−ξs +

∫ ·

0

σβ(s,Xs)d
−Ms +

∫ ·

0

σα(s,Xs)dVs,

in the space C1
ξ,η(F) of all processes in C1

ξ (F), starting at η.
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In [8] the authors show the existence and uniqueness of the integral equation (31), supposing σ
autonomous and in C1,4, in the class C2

ξ,η ⊂ C1
ξ,η. In [23] an equation of type (31) is studied with

semimartingale coefficient β equal to zero, and an autonomous diffusion coefficient. There σ is of
class C3, bounded with its partial derivative ∂xσ. Moreover the sense of solution is more restrictive
in that it involves the notion of vector Itô processes which are not necessary to introduce for the
application our method.

4.7 The Hölder continuous case

We intend to apply the methods developed in previous sections to the study of the stochastic
differential equation (21) when the processes ξ and V have γ-Hölder continuous paths, with 1

2 <
γ < 1, the semimartingale coefficient is equal to zero, and Vt = t:

{
d◦Xt = σ(t,Xt) [d◦ξt + α(t,Xt)dt] ,
X0 = η.

(34)

Remark 4.23. This method could be extended to the case V =
∫ ·

0
ψsds, with ψ ∈ L2+

loc. Indeed,

this would imply V γ-Hölder continuous with γ > 1
2 .

We will see that in this case the use of an Itô formula available for processes having Hölder
continuous paths will let to reduce the regularity of σ. If 0 < γ < 1, Cγ will denote the Banach
space of all γ-Hölder continuous functions with the norm

||f ||γ = sup
s,t∈[0,1]s6=t

|f(t) − f(s)|

|t− s|γ
+ ||f ||∞.

In this context we will look for existence and uniqueness of integral solutions with γ-Hölder con-
tinuous paths. We first recall some results about integral calculus with respect to Hölder functions
contained in [7] and [27].

Lemma 4.24. Let f and g be in C1, with f(0) = 0, and α+ γ > 1. Then the following inequality
holds: ∣∣∣∣

∫ t

0

f(r)dg(r)

∣∣∣∣ ≤ C ||f ||α ||g||γ t
1+ε

for some positive constant C and 0 < ε < α+ γ − 1.

Corollary 4.25. Let f and g be in C1, and α + γ > 1. Then the following inequality holds, for
every t, s in [0, 1] :

∣∣∣∣
∫ t

s

f(r)dg(r) − f(s)(g(t) − g(s))

∣∣∣∣ ≤ C ||f ||α ||g||γ |t− s|
1+ε

for some positive constant C and 0 < ε < α+ γ − 1. In particular
∫ ·

0 fdg is a γ-Hölder function.

Corollary 4.25 implies the following.

Proposition 4.26. If α+ γ > 1, the map F : (f, g) 7→
∫ ·

0 fdg defined on C1 × C1, with values in
Cγ , admits a unique continuous extension to Cα × Cγ .
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Proof. Let (f, g) and (h, k) in Cα × Cγ . The map F is bilinear, therefore

||F (f, g) − F (h, k)||γ ≤ ||F (f − h, k)||α + ||F (h, g − k)||γ .

Let s, t be in [0, 1]. By corollary 4.25

|F (f − h, g)(t) − F (f − h, g)(s)| ≤ C ||f − h||α ||g||γ |t− s|
γ
,

and similarly
|F (h, g − k)(t) − F (h, g − k)(s)| ≤ C ||h||α ||g − k||γ |t− s|

γ
.

This immediately implies

||F (f − h, g)||γ + ||F (h, g − k)||γ ≤ 2C
(
||g||γ ∨ ||h||α

)
||(f, g) − (h, k)||Cα×Cγ .

The unique continuous extension of F will be called the Young integral and denoted with
∫ ·

0
fdyg,

for every f in Cα and g in Cγ .

Remark 4.27. If f and h are in Cα and g in Cγ , with α+ γ > 1, we have

∫ ·

0

fdy

(∫ ·

0

hdyg

)
=

∫ ·

0

fhdyg.

The equality holds for (f, g) in C1 ×C1, and it can be extended to Cα ×Cγ by density arguments.

L.C. Young [26] introduced that integral in a more general setting, i.e. for f, g having respectively
p and q variation with p−1 + q−1 = 1. It can be proved that the Young integral

∫ ·

0
fdyg agrees

with the symmetric integral
∫ ·

0
fd◦g, see [25], and that it is a Riemann-Stieltjes type integral as

specified in the following proposition.

Proposition 4.28. Let f be in Cα and g in Cγ , with α+ γ > 1. Then for every 0 ≤ t ≤ 1

lim
δ→0

n−1∑

i=0

f(ti) (g(ti+1) − g(ti))

converges to
∫ ·

0
fdyg when the mesh δ of the partition π = {0 = t0 < t1 < ... < tn = t} , goes to

zero.

Proposition 4.28 permits to identify the Young integral and the integral of [27], see Th.4.2.1. We
thus are allowed to use the following Itô formula established in [27], Th. 4.3.1, pag.351.

Proposition 4.29. Let f be in Cγ and F be in C1 ([0, 1]× R) such that t 7→ ∂xF (t, f(t)) belongs
to Cα with α+ γ > 1. Then

F (t, ft) = F (0, f0) +

∫ t

0

∂xF (s, fs)d
◦fs +

∫ t

0

∂sF (s, fs)ds.
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We will need the hypothesis

(H′
1
)

{
σ is in C1,0;

|σ(t, x) − σ(t, y)| ≤ cn |x− y|
δ
, ∀t ∈ [0, 1], |x| + |y| ≤ n,

for every n in N, with c, cn > 0, δ > 1
γ
− 1.

We state the proposition, in the Hölder case, which is equivalent to proposition 4.8, in the finite
cubic variation case.

Proposition 4.30. Let σ satisfy (H1), (H′
1
), and (H2). Suppose that either P (η ∈ S) = 1, or α

and σ are autonomous. Then equation (34) has a unique solution with γ-Hölder continuous paths,
if and only if the following stochastic differential equation has a unique solution

Y = νσ + ξ +

∫ ·

0

(
∂̃sH + α̃

)
(s, Ys)ds. (35)

We observe that since ξ is γ-Hölder with γ greater than 1
2 , its cubic variation its equal to zero,

then equation (35) agrees with equation (26).

Remark 4.31. Hypothesis (H2) on the the zeros of σ, is indeed necessary for uniqueness. Suppose
α = 0, σ autonomous and vanishing only at some point x0 with 1

σ
being integrable around x0. Then

problem {
d◦Xt = σ(Xt)d

◦ξt
X0 = x0,

has at east two solutions X1
t ≡ x0 and X2

t = K(ξt), where K = H−1 and H(x) =
∫ x

x0

1
σ(z)dz.

Corollary 4.32. Suppose that in addition to the assumptions of proposition (4.30), α is bounded
and locally Lipschitz in x uniformly in t, and that σ verifies

sup
(t,x)∈[0,1]×Sn

|∂t log(|σ(t, x)|)| ≤ an

for some sequence of positive number (an)n∈N. Then equation (34) has a unique solution.

4.8 The case of the fractional Brownian motion

In this section we investigate a significant particular case. We suppose that ξ =
(
BH

t , 0 ≤ t ≤ 1
)

is a fractional Brownian motion on the given filtered probability space (the filtration F being
generated by BH and the sets of zero probability), with Hurst parameter H strictly larger than
1
2 . Further, we assume that η is deterministic, and α : [0, 1] × R → R, is measurable and locally
bounded in x, uniformly in t. It is well known that BH has λ-Hölder continuous paths, for every
λ < H, on [0, 1], almost surely. The information about the law BH allows us to make use of
some recent results about uniqueness and existence of a stochastic differential equation driven by
a fractional Brownian motion with drift equal to 1, which can be found in [18]. More precisely,
there the authors establish existence and uniqueness of the integral equation

Yt = y +BH
t +

∫ t

0

b(s, Ys)ds, 0 ≤ t ≤ 1, y ∈ R,

42



under this regularity assumption on b :

(H′
4
) |b(t, y) − b(s, x)| ≤ C

(
|x− y|

α
+ |t− s|

β
)
, (36)

for some positive constant C, with 1 > α > 1 − 1
2H
, β > H − 1

2 .

Imposing conditions ensuring that the assumption above is satisfied by the coefficients of equation
(35) we get the following corollary.

Corollary 4.33. Let α satisfy hypothesis (H′
4
), and σ assumptions (H1), (H2) and hypothesis

(H′
1
). Suppose moreover that σ is bounded, and such that if we denote

g(t, x) =
∂tσ(t, x)

(σ(t, x))2
, (t, x) ∈ [0, 1]× S

it holds

(H′
3
)





(i)
∫

Sn |g(t, x) − g(s, x)| dx ≤ an |t− s|β ,

(ii)
∫ y

x
supt∈[0,1] |g(t, z)|dz ≤ an |x− y|

α
, x, y ∈ Sn

(iii)
∫
Sn supt∈[0,1] |g(t, z)|dz < +∞,

if η ∈ Sn, for some positive constant an. Then the integral equation

X = η +

∫ ·

0

σ(s,Xs)dB
H
s +

∫ ·

0

σα(s,Xs)ds,

has a unique solution if η ∈ S, or η ∈ D and σ, and α are autonomous.

Proof. Suppose η ∈ Sn. Condition (iii) of (H′
3
) and the boundeness of σ imply that (t, y) 7→

Kn(t, y) is Lipschitz in x, uniformly in t, and Lipschitz in t uniformly in x. Thanks to conditions
(i) and (ii), (t, x) 7→ ∂tH(t, x) fulfills assumption (H′

4
) for some C positive constant. Then equation

(35) has a unique solution by the mentioned result of [18]. Proposition 4.30 permits to conclude.
If η ∈ D uniqueness follows by proposition 4.30.

4.9 Existence in the case of Brownian motion

If H = 1
2 , and BH = B is a Brownian motion, supposing σ only continuous, it is possible to find

a solution to equation
{
d◦Xt = σ(t,Xt) [d◦B + α(t,Xt)dt]
X0 = η.

(37)

This can be done using Itô formula permitting to expand C1 functions of reversible semimartingales
proved in [24]. We recall the result established by [24], see also [10], in the case of Brownian motion.

A semimartingale X is a reversible semimartingale if the process X̂ = (X1−t, 0 ≤ t ≤ 1) is a
semimartingale.

Proposition 4.34. Let X =
(
X1, ..., Xd

)
be a vector of continuous reversible semimartingales,

and f in C1(Rd). Then

f(Xt) = f(X0) +

d∑

i=1

∫ t

0

∂if(Xs)d
◦X i

s.
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Then we can state the following.

Proposition 4.35. Let σ satisfy (H1), (H2), α : [0, 1] × R → R be measurable and bounded, and
η deterministic. Suppose that for every n in N, if η is in Sn

sup
(t,x)∈[0,1]×Sn

|∂tH
n(t, x)| < +∞.

Then equation (37) has a solution.

Proof. If η ∈ D Xt ≡ η, is a solution. Suppose η ∈ Sn, for some n in N∗. Equation

Y = Hn(0, η) +B +

∫ ·

0

(α(t,Kn(s, Ys)) − ∂sH(s,Kn(s, Ys))) ds,

admits a solution since the function (t, y) 7→ α(t,Kn(t, y)) − ∂tH
n(t,Kn(t, y)) is measurable and

bounded, see Th.35 of [20]. Using Girsanov theorem Y is a Brownian motion under a probability
measure P ∗ equivalent to P. Therefore Y is a reversible semimartingale, see example of pag. 3 of
[24]. Then Itô formula for reversible semimartingales provides a solution to equation (37):

X = Kn(·, Y ) = η +

∫ ·

0

σ(t,Xt)d
◦Bt +

∫ ·

0

σα(t,Xt)dt.

Remark 4.36. We remark that for such a solution X,
∫ ·

0 σ(s,Xs)d
◦Bs is not a proper Stratonovich

integral since σ(·, X) may not be a semimartingale.
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[2] Coquet, F., Jakubowski, A., Mémin J., and Slominski, L., Natural decomposition of processes
and weak Dirichlet processes. Preprint (2004).

[3] Cheridito, P., Nualart D., Stochastic integral of divergence type with respect to fractional
Brownian motion with Hurst parameter H in (0,1/2) (2004). To appear: Annales de l’Institut
Henri Poincaré.
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[24] Russo, F., Vallois, P., Itô formula for C1 functions of semimartingales. Probab. Theory Relat.
Fields 104, 27-41 (1996).

[25] Russo, F., Vallois, P., Elements of stochastic calculus via regularization. Preprint LAGA Paris
13, 2004-28. Revised version (2005).
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