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1 Introduction

SPDE’s driven by Gaussian noise are well studied (see [32], [26], [10] and ref-
erences therein) whereas SPDE’s with Poisson noise are little less well known.
But within the last years SPDE’s driven for example by a compensated Poisson
random measure or a Lévy noise draw more attention, one reason for which
may be the prospect of numerous applications, e.g. in biology (cf. [31],[20]),
climatology (cf. [19]) or financial market theory (cf. [4], [13], [28]).

Apart from applications SPDE’s with Poisson noise are of independent interest
and basic investigations and a better understanding of stochastic integrals w.r.t.
a compensated Poisson random measure and of SPDE’s with Poisson noise is
an important step for the study of SPDE’s with Lévy noise. There is quite a
substantial amount of work that has been done in this field. In [18], [1], [24], [2],
[3] the authors analyze, among other things, SPDE’s with Poisson noise in one
dimension and show existence and uniqueness of solutions in H2 (see below).
Moreover, in [22] the authors deal with stochastic integral equations driven by
non Gaussian noise on separable Banach spaces of M -type 1 and 2 and prove
existence and uniqueness of pathwise solutions in H1 and H2.

In Section 1 we give an introduction to the theory of Poisson random mea-
sures and Poisson point processes where we shall follow largely the organization
of [18]. Moreover, we present the scheme of the construction of the stochastic
integral of Hilbert space valued integrands w.r.t. a compensated Poisson ran-
dom measure. Detailed proofs can be found in [21, Chapter 2.3]. In the style
of the definition of the integral w.r.t. a Wiener process (cf. [9]) or w.r.t. a
square-integrable martingale (cf. [23]) we define the integral by an L2-isometry,
which, in the case of the Wiener process, is just the classical Itô isometry. Inde-
pendently, stochastic integration in Banach spaces of M -type p, 1 ≤ p ≤ 2 was
done in [30].
We also present some useful properties of the stochastic integral, but without
proofs. For the interested reader we refer to [21, Chapter 3].

In Section 2 we proof the existence of the unique mild solution in H2 and
analyze its dependence on the initial condition. We proof the Gâteaux differen-
tiability of the mild solution as a mapping from L2 to H2.

As a consequence, in Section 3 we obtain a gradient estimate for the Gâteaux
derivative ∂X of X and for the resolvent (Rα) associated to the mild solution.
Under the additional assumptions that S(t), t ≥ 0, is quasicontractive, ν(U) <
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∞, B is constant and F is dissipative we get that

‖∂X(x)h(t)‖ ≤ eω0t

for all x, h ∈ H and t ≥ 0. Moreover, for all f ∈ C1
b (H, R), Rαf : H → R is

Gâteaux differentiable for all α ≥ 0 and

‖∂Rαf(x)‖L(H,R) ≤
1

α− ω0
sup
x∈H

‖Df(x)‖L(H) for all α > ω0, x ∈ H

2 Poisson random measures, Poisson point pro-
cesses and stochastic integration

2.1 Poisson random measures

Let (Ω,F , P ) be a complete probability space and (E,S) a measurable space.
Let M be the space of Z+ ∪ {+∞}-valued measures on (E,S) and

BM := σ(M 3 µ 7→ µ(B) |B ∈ S).

A Poisson random measure on (E,S) (and (Ω,F , P )) is a random variable
Π : (Ω,F) → (M,BM) such that for all B ∈ S: Π(B) : Ω → Z+ ∪ {+∞}
is Poisson distributed with parameter E[Π(B)] and such that for all pairwise
disjoint B1, . . . , Bm ∈ S, Π(B1), . . . ,Π(Bm) are independent.

It is shown in [18, I. Theorem 8.1, p.42] and a little bit more detailed in [21,
Theorem 2.5, p.20] that given a σ-finite measure m on (E,S) there exists a
complete probability space (Ω,F , P ) such that there exists a Poisson random
measure Π on (E,S) and (Ω,F , P ) with E[Π(B)] = m(B) for all B ∈ S. m
is then called the mean measure or intensity measure of the Poisson random
measure Π.

2.2 Poisson point processes

Let (Ω,F , P ) be a complete probability space with a normal filtration Ft, t ≥ 0
(, i.e. Ft, t ≥ 0, is right-continuous such that F0 contains all P -nullsets of F)
and (U,B) a measurable space.

A point function p on U is a mapping p : Dp ⊂ (0,∞) → U where the domain
Dp is countable.
p defines a measure Np(dt, dy) on ([0,∞) × U,B([0,∞)) ⊗ B) in the following
way. Define p̄ : Dp → (0,∞) × U , t 7→ (t, p(t)) and denote by c the counting
measure on (Dp,P(Dp)), i.e. c(A) := #A for all A ∈ P(Dp).
For B̄ ∈ B([0,∞))⊗ B define

Np(B̄) := c(p̄−1(B̄)).

Then, in particular, we have for all A ∈ B([0,∞)) and B ∈ B

Np(A×B) = #{t ∈ Dp|t ∈ A, p(t) ∈ B}.
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Notation: Np(t, B) := Np(]0, t]×B), t ≥ 0, B ∈ S.

Let PU be the space of all point functions on U and

BPU
:= σ(PU 3 p 7→ Np(t, B) | t > 0, B ∈ B)

A point process on U (and (Ω,F , P )) is a random variable p : (Ω,F) →
(PU ,BPU

).

A point process p on U is called Poisson point process if there exists a Pois-
son random measure Π on ((0,∞) × U,B(0,∞) ⊗ B) such that there exists
a P -nullset N ∈ F such that for all ω ∈ N c and for all B̄ ∈ B(0,∞) ⊗ B:
Np(w)(B̄) = Π(ω)(B̄). By e.g. [18, Chapter I.9, II.3] it is known that given a σ-
finite measure ν on (U,B) there exists a so called stationary (Ft)-Poisson point
process( with characteristic measure ν). We formulate this existence statement
in a more precise way in the following theorem. For a bit more detailed proof
we refer to [21, Theorem 2.11, p.27; Remark 2.14, p. 30].

Theorem 1. Given a σ-finite measure ν on (U,B) there exists a complete prob-
ability space (Ω,F , P ) with a normal filtration Ft, t ≥ 0, such that there exists
a Poisson point process p on U and (Ω,F , P ) such that

(i) for every t ≥ 0 and B ∈ B Np(t, B) is Ft-measurable,

(ii) {Np(]t, t + h]×B) |h > 0, B ∈ B} is independent of Ft for all t ≥ 0,

(iii) E[Np(dt, dy)] = λ(dt) ⊗ ν(dy) where λ denotes the Lebesgue-measure on
(0,∞),

(iv) for all B ∈ B with ν(B) < ∞, q(t, B) := Np(t, B) − tν(B), t ≥ 0, is an
(Ft)-martingale.

We call such a point process a stationary (Ft)-Poisson point process with char-
acteristic measure ν.

The definition of a stationary (Ft)-Poisson point process (with characteristic
measure ν) is covered by the more general definition of an (Ft)-Poisson point
process of class (QL) with compensator N̂p (see e.g. [18, Chapter II.3]). A
stationary (Ft)-Poisson point process (with characteristic measure ν) is a (Ft)-
Poisson point process of class (QL) with compensator N̂p(t, B) = tν(B), t ≥ 0,
B ∈ B. In this paper our main focus is laid on the stationary (Ft)-Poisson point
processes and for that reason we do not go into the particulars of (Ft)-Poisson
point process of class (QL).

If p is a stationary (Ft)-Poisson point process with characteristic measure ν,
then by definition, for all B ∈ B with ν(B) < ∞, q(t, B) := Np(t, B) − tν(B),
t ≥ 0, is an (Ft)-martingale. It is even an L2-martingale, i.e. E[q(t, B)2] < ∞
for all t ≥ 0. Then there exists the quadratic variation of q(t, B), t ≥ 0,
i.e. a P -unique, integrable, increasing, predictable process A(t), t ≥ 0, (i.e.
A : [0,∞[×Ω → R is measurable w.r.t. the predictable σ-field on [0, T ] × Ω)
such that q(t, B)2−A(t), t ≥ 0, is an (Ft)-martingale. A is denoted by 〈q(·, B)〉.
One gets that the quadratic variation of q(·, B) is the compensator of p, i.e. for
B1, B2 ∈ B with ν(Bi) < ∞, i = 1, 2,

〈q(·, B1), q(·, B2)〉(t) = tν(B1 ∩B2), t ≥ 0.
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(see e.g. [18, II. Theorem 3.1, p.60]).

From now on let (H, 〈 , 〉) be a separable Hilbert space, (Ω,F , P ) be a complete
probability space with a normal filtration Ft, t ≥ 0, (U,B, ν) a σ-finite measure
space and p a stationary (Ft)-Poisson point process on U with characteristic
measure ν.
In the following two subsections we give schemes of the (stochastic) integration
w.r.t. Np and q. For this purpose we need the predctable σ-field

PT (U) := σ(g : [0, T ]× Ω× U → R | g is (Ft ⊗ B)− adapted and left-continuous)
=σ( {]s, t]× Fs ×B | 0 ≤ s ≤ t ≤ T, Fs ∈ Fs, B ∈ B}

∪ {{0} × F0 ×B |F0 ∈ F0, B ∈ B})

2.3 Scheme of the construction of the stochastic integral
w.r.t. q

In the first step we define the stochastic integral for elementary processes. For
this purpose define the set

Γp := {B ∈ B | ν(B) < ∞}.

The class E of all elementary processes is determined by the following definition.

Definition 2. An H-valued process Φ(t) : Ω×U → H, t ∈ [0, T ], on (Ω×U,F⊗
B) is said to be elementary if there exists a partition 0 = t0 < t1 < · · · < tk = T
of [0, T ] and for m ∈ {0, . . . , k − 1} there exist Bm

1 , . . . , Bm
I(m) ∈ Γp, pairwise

disjoint, such that

Φ =
k−1∑
m=0

I(m)∑
i=1

Φm
i 1]tm,tm+1]×Bm

i

where Φm
i ∈ L2(Ω,Ftm

, P ;H), 1 ≤ i ≤ I(m), 0 ≤ m ≤ k − 1.
E is a linear space.

For Φ =
∑k−1

m=0

∑I(m)
i=1 Φm

i 1]tm,tm+1]×Bm
i
∈ E define the stochastic integral pro-

cess by

Int(Φ)(t) :=
∫ t+

0

∫
U

Φ(s, y) q(ds, dy) :=
∫

]0,t]

∫
U

Φ(s, y) q(ds, dy)

:=
k−1∑
m=0

I(m)∑
i=1

Φm
i (q(tm+1 ∧ t, Bm

i )− q(tm ∧ t, Bm
i )),

t ∈ [0, T ].
Then Int(Φ) is P -a.s. well-defined and Int is linear in Φ ∈ E .

In the second step we first show that for Φ ∈ E , Int(Φ) is an element of
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M2
T (H), the space of all H-valued (Ft)-martingales M(t), t ∈ [0, T ], such

that E[‖M(T )‖2] < ∞. Then, defining the seminorm ‖ ‖T on E by ‖Φ‖2T :=
E[

∫ T

0

∫
U
‖Φ(s, y)‖2 ν(dy) ds], we prove that

Int : (E , ‖ ‖T ) → (M2
T (H), ‖ ‖M2

T
)

is an isometry, where

‖M‖2M2
T

:= supt∈[0,T ]E[‖M(t)‖2] = E[‖M(T )‖2], M ∈M2
T (H).

, e.g. we show that

‖Int(Φ)‖M2
T

= supt∈[0,T ]E[‖
∫ t+

0

∫
U

Φ(s, y) q(ds, dy)‖2] = E[
∫ T

0

∫
U

‖Φ(s, y)‖2 ν(dy) ds].

(1)

To get a norm on E one has to consider equivalence classes of elementary pro-
cesses with respect to ‖ ‖T . For simplicity, the space of equivalence classes will
be denoted by E , too.
Since E is dense in the abstract completion Ē‖ ‖T of E w.r.t. ‖ ‖T it is clear that
there is a unique isometric extension of Int to Ē‖ ‖T .

In the third step we characterize Ē‖ ‖T .

Ē‖ ‖T can be characterized by

N 2
q (T,U,H) = L2([0, T ]× Ω× U,PT (U), λ⊗ P ⊗ ν;H).

2.4 Properties of the stochastic integral w.r.t. q

Proposition 3. Assume that Φ ∈ N 2
q (T,U,H) and that τ is an (Ft)-stopping

time such that P (τ ≤ T ) = 1. Then 1]0,τ ]Φ ∈ N 2
q (T,U,H) and∫ t+

0

∫
U

1]0,τ ](s)Φ(s, y) q(ds, dy) =
∫ (t∧τ)+

0

∫
U

Φ(s, y) q(ds, dy) (2)

for all t ∈ [0, T ] P -a.s.

Proposition 4. Let Φ ∈ N 2
q (T,U,H), (H̃, 〈 , 〉H̃) a further Hilbert space and

L ∈ L(H, H̃). Then L(Φ) ∈ N 2
q (T,U, H̃) and

L
( ∫ t+

0

∫
U

Φ(s, y) q(ds, dy)
)

=
∫ t+

0

∫
U

L(Φ(s, y)) q(ds, dy)

for all t ∈ [0, T ] P -a.s.

Proposition 5. Let Φ ∈ N 2
q (T,U,H) and define X(t) :=

∫ t+

0

∫
U

Φ(s, y) q(ds, dy),
t ∈ [0, T ]. Then X is càdlàg and X(t) = X(t−) P -a.s. for all t ∈ [0, T ].

Before we can formulate the next proposition we need the notion of the
square bracket of a real local (Ft)-martingale.
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Definition 6. Let M,N be real càdlàg local (Ft)-martingales. The bracket
process of M,N , also called simply the bracket of M,N , is defined by

[M,N ]t := M(t)N(t)−
∫ t

0

M(s−) dN(s)−
∫ t

0

N(s−) dM(s).

[M,M ] will be denoted by [M ] and called the square bracket of M .

Theorem 7. Let M,N be real càdlàg, locally square integrable local (Ft)-
martingales. The bracket [M,N ] of M is the P -unique, (Ft)-adapted, càdlàg
process A(t), t ≥ 0, with paths of finite variation on compacts such that

(i) MN −A is a local (Ft)-martingale,

(ii) ∆A(t) = ∆M(t)∆N(t) for all t ≥ 0 P -a.s.

Proof. [27, II.6 Corollary 2, p.65]

Proposition 8. Let Φ ∈ N 2
q (T,U, R). Then(

X(t)
)
t≥0

:= (
∫ (t∧T )+

0

∫
U

Φ(s, y) q(ds, dy)
)
t≥0

∈M2(R) and

[
∫ (·∧T )+

0

∫
U

Φ(s, y) q(ds, dy)] =
∫

]0,·∧T ]

∫
U

|Φ(s, y)|2 Np(ds, dy).

Proposition 9. Let Φ ∈ N 2
q (T,U, R). Denote by X the integral process (X(t))t≥0 :=

(
∫

]0,t∧T ]

∫
U

Φ(s, y) q(ds, dy)
)
t≥0

∈M2(R).

Moreover, let Y be an (Ft)-adapted, left continuous, bounded process ( |Y (t, ω)| ≤
K < ∞ for all t ≥ 0 and ω ∈ Ω).
Then

(i) Y ∈ Lucp and Y Φ ∈ N 2
q (T,U, R),

(ii)
∫

]0,t]

Y (s) dX(s) =
∫ t+

0

∫
U

Y (s)Φ(s, y) q(ds, dy) for all t ∈ [0, T ] P -a.s.
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In all following sections let (Ω,F , P ) be a complete probability space with a
normal filtration Ft, t ≥ 0, U a separable Banach space with Borel-σ-field B, ν
a σ-finite measure on (U,B) and p a stationary (Ft)-Poisson point process with
characteristic measure ν.

3 Existence and uniqueness of a mild solution

Let T > 0 and consider the following type of stochastic differential equation in
H {

dX(t) = [AX(t) + F (X(t))] dt + B(X(t), y) q(dt, dy)
X(0) = ξ

(3)

where we always assume that

1. A : D(A) ⊂ H → H is the infinitesimal generator of a C0-semigroup S(t),
t ≥ 0, of linear, bounded operators on H.

2. F : H → H is B(H)/B(H)-measurable.

3. B : H × U → H is B(H)⊗ B/B(H)-measurable s.t. B(x, ·) ∈ L(U,H).

4. ξ is an H-valued, F0-measurable random variable.

Remark 10. If we set MT := supt∈[0,T ] ‖S(t)‖L(H) then MT < ∞ by [25,
Theorem 2.2, p.4].

We interpret (3) as an integral equation:

Definition 11 (Mild solution). An H-valued predictable process X(t), t ∈
[0, T ], is called a mild solution of equation (3) if

X(t) = S(t)ξ +
∫ t

0

S(t− s)F (X(s)) ds

+
∫ t+

0

∫
U

S(t− s)B(X(s), y) q(ds, dy) P -a.s.
(4)

for all t ∈ [0, T ]. In particular, the appearing integrals have to be well defined.

The idea to interpret (3) by (4) can be justified in the following way.

If X(t), t ∈ [0, T ], is a mild solution of (3) and if we assume that∫ t

0
S(t−s)F (X(s)) ds and

∫ T+

0

∫
U

1]0,t](s)S(t−s)B(X(s), y) q(ds, dy), t ∈ [0, T ],
have predictable versions and that for all ζ ∈ D(A∗)∫ T

0

‖F (X(s))‖ ds < ∞ and∫ T

0

E
[ ∫ t

0

∫
U

|〈S(t− s)B(X(s), y), A∗ζ〉|2 ν(dy) ds
]

dt < ∞
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then by the fundamental theorem for Bochner integrals, Fubini’s theorem and
a stochastic Fubini theorem for the integral w.r.t. q (see [5, Theorem 5]) X is a
weak solution, i.e.

〈X(t), ζ〉 = 〈ξ, ζ〉+
∫ t

0

〈X(s), A∗ζ〉+ 〈F (X(s)), ζ〉 ds

+
∫ t

0

〈B(X(s), y), ζ〉 q(ds, dy) P -a.s.

for all t ∈ [0, T ]and ζ ∈ D(A∗).

3.1 Existence and uniqueness of the mild solution in H2(T, H)

Before stating the theorems about existence and uniqueness of a mild solution
we give some notations and present the idea of the proof.
First, we introduce the space where we want to find the mild solution of the
above problem. We define

H2(T,H) := {Y (t), t ∈ [0, T ] | Y has an H-predictable version,

Y (t) ∈ L2(Ω,Ft, P ;H) and sup
t∈[0,T ]

E[‖Y (t)‖2] < ∞}

and define a seminorm on H2(T,H) by

‖Y ‖H2 := sup
t∈[0,T ]

(
E[‖Y (t)‖2]

) 1
2 , Y ∈ H2(T,H).

We also consider the seminorms ‖ ‖2,λ,T , λ ≥ 0, on H2(T,H) given by

‖Y ‖2,λ,T := sup
t∈[0,T ]

e−λt
(
E[‖Y (t)‖2]

) 1
2 .

Then ‖ ‖H2 = ‖ ‖2,0,T and all seminorms ‖ ‖p,λ,T , λ ≥ 0, are equivalent.
Let ζ ∈ L2

0 := L2(Ω,F0, P ;H) and Z ∈ H2(T,H). Then Z has at least one
predictable version which we denote again by Z. Define

F(ζ, Z) :=
(
S(t)ζ +

∫ t

0

S(t− s)F (Z(s)) ds

+
∫ t+

0

∫
U

S(t− s)B(Z(s), y) q(ds, dy)
)

t∈[0,T ]
.

(5)

Later we will prove that under certain conditions on F and B the appearing
integrals are well-defined and the processes on the right hand side of (5) are
elements of H2(T,H). Moreover, under the assumption that all integrals are
well-defined, F is well-defined in the sense of version, i.e. taking another ζ̃ such
that ζ̃ = ζ P -a.s. and another predictable version Z̃ of Z, then F(ζ, Z) is a
version of F(ζ̃, Z̃) since F(ζ, Z)(t) = F(ζ̃, Z̃)(t) in ‖ ‖L2 .

A mild solution of problem (3) with initial condition ξ ∈ L2
0 is by Definition

11 an H-predictable process X(ξ) such that F(ξ, X(ξ)) = X(ξ) in the sense of
versions.
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The idea to prove the existence and uniqueness of a mild solution is to use
Banach’s fixed point theorem. This approach requires that H2(T,H) is a Ba-
nach space. For this purpose we consider equivalence classes in H2(T,H) w.r.t.
‖ ‖2,λ,T , λ ≥ 0. We denote the space of equivalence classes by H2(T,H).
For simplicity we use the following notations

H2(T,H) := (H2(T,H), ‖ ‖H2)

and
H2,λ(T,H) := (H2(T,H), ‖ ‖2,λ,T ), λ > 0.

Now we define for ξ ∈ L2
0 := L2(Ω,F0, P ;H) and Y ∈ H2(T,H), F̄(ξ, Y )

as the equivalence class of F(ζ, Z) w.r.t. ‖ ‖H2 for an arbitrary ζ ∈ ξ and
an arbitrary predictable representative Z ∈ Y . By the above considerations
F(ζ, Z) is independent of the representatives ζ and Z.
To get the existence of an implicit function X : L2

0 → H2(T,H) such that
F̄(ξ,X(ξ)) = X(ξ) in H2(T,H) for all ξ ∈ L2

0 we prove that F̄ as a mapping
from L2

0 ×H2(T,H) to H2(T,H) is well-defined and that there exists λT,2 =:
λ ≥ 0 such that

F̄ : L2
0 ×H2,λ(T,H) → H2,λ(T,H)

is a contraction in the second variable. Then the existence and uniqueness of
the mild solution X(ξ) ∈ H2,λ(T,H) of (3) with initial condition ξ ∈ L2

0 follows
by Banach’s fixed point theorem.
Since the norms ‖ ‖2,λ,T , λ ≥ 0, are equivalent we may consider X(ξ) then as an
element of H2(T,H) and get the existence of the implicit function
X : L2

0 → H2(T,H) such that F̄(ξ, X(ξ)) = X(ξ).

To get the existence of a mild solution on [0, T ] in H2(T,H) we make the fol-
lowing assumptions.

Hypothesis H.0

1. F : H → H is Lipschitz-continuous, i.e. there exists a constant C > 0
such that

‖F (x)− F (y)‖ ≤ C‖x− y‖
‖F (x)‖ ≤ C(1 + ‖x‖) for all x, y ∈ H.

2. B : H × U → H B(H)⊗ B/B(H)-measurable.

3. There exists an integrable mapping K : [0, T ] → [0,∞[ such that for all
t ∈ ]0, T ] and for all x, z ∈ H∫

U

‖S(t)(B(x, y)−B(z, y))‖2 ν(dy) ≤ K(t)‖x− z‖2∫
U

‖S(t)B(x, y)‖2 ν(dy) ≤ K(t)(1 + ‖x‖)2.

Theorem 12. Assume that the coefficients A, F and B fulfill the conditions
of Hypothesis H.0 then for every initial condition ξ ∈ L2

0 there exists a unique
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mild solution X(ξ)(t), t ∈ [0, T ], of equation (3) in H2(T,H).
In addition, we even obtain that the mapping

X : L2
0 → H2(T,H)

is Lipschitz continuous.

For the proof of Theorem 12 we need the following Lemma.

Lemma 13. Let Y (t), t ≥ 0, be a process on (Ω,F , P ) with values in a separable
Banach space E. If Y is adapted to Ft, t ∈ [0, T ], and stochastically continuous
then there exists a predictable version of Y .
In particular, if Y is adapted to Ft, t ∈ [0, T ], and continuous in the square
mean then there exists a predictable version of Y .

Proof. [9, Proposition 3.6 (ii), p.76]

Proof of Theorem 12. In the first part of the proof we show that F̄ : L2
0 ×

H2(T,H) → H2(T,H) is well-defined and a contraction in the second variable.

Let Y ∈ H2(T,H), predictable, then, obviously, Φ :=
(
1]0,t](s)S(t−s)B(Y (s), ·)

)
s∈[0,T ]

is an element of N 2
q (T,U,H) for all t ∈ [0, T ].

Next we show that there exists a predictable version of

(Z(t))t∈[0,T ] :=
( ∫ t+

0

∫
U

S(t− s)B(Y (s), y) q(ds, dy)
)
t∈[0,T ]

.

For this puprose we apply Lemma 13, i.e. we show that the process Z is adapted
to Ft, t ∈ [0, T ], and continuous as a mapping from [0, T ] to L2(Ω,F , P ;H).
Let 1 < α < 2 and define for t ∈ [0, T ]

Zα(t) :=
∫ ( t

α )+

0

∫
U

S(t− s)B(Y (s), y) q(ds, dy)

=
∫ ( t

α )+

0

∫
U

S(t− αs)S((α− 1)s)B(Y (s), y) q(ds, dy),

where we used the semigroup property of S(t), t ≥ 0.
Set Φα(s, ω, y) := S((α−1)s)B(Y (s, ω), y) then Φα is PT (U)/B(H)-measurable.
Moreover,

E
[ ∫ T

0

∫
U

‖Φα(s, y)‖2 ν(dy) ds
]
≤ 2(1 + ‖Y ‖2H2)

1
α− 1

∫ (α−1)T

0

K(s) ds < ∞.

Now we show that the mapping Zα : [0, T ] → L2(Ω,F , P ;H) is continuous
for all α > 1. For this reason let 0 ≤ u ≤ t ≤ T . By Proposition 3 we get that(

E
[
‖

∫ ( t
α )+

0

∫
U

S(t− αs)Φα(s, y) q(ds, dy)

−
∫ ( u

α )+

0

∫
U

S(u− αs)Φα(s, y) q(ds, dy)‖2
]) 1

2
,
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≤
(
E

[
‖

∫ T+

0

∫
U

1]0, u
α ](s)(S(t− αs)− S(u− αs))Φα(s, y) q(ds, dy)‖2

]) 1
2

+
(
E

[
‖

∫ T+

0

∫
U

1] u
α , t

α ](s)S(t− αs)Φα(s, y) q(ds, dy)‖2
]) 1

2

=
(
E

[ ∫ T

0

∫
U

1]0, u
α ](s)‖(S(t− αs)− S(u− αs))Φα(s, y)‖2 ν(dy) ds

]) 1
2

+
(
E

[ ∫ T

0

∫
U

1] u
α , t

α ](s)M
2
T ‖Φα(s, y)‖2 ν(dy) ds

]) 1
2
,

by the isometric property of the stochastic integral.
The first summand converges to 0 as u ↑ t or t ↓ u by Lebesgue’s dominated
convergence theorem since the integrand converges pointwisely to 0 as u ↑ t
or t ↓ u by the strong continuity of the semigroup and can be estimated inde-
pendently of u and t by 4M2

T ‖Φα(s, ω, y)‖2, (s, ω, y) ∈ [0, T ] × Ω × U , where
E

[ ∫ T

0

∫
U
‖Φα(s, y)‖2 ν(dy) ds

]
< ∞.

By analog arguments the second summand converges to 0 as u ↑ t or t ↓ u
To obtain the continuity of Z : [0, T ] → L2(Ω,F , P ;H) we prove the uniform
convergence of Zαn , n ∈ N, to Z in L2(Ω,F , P ;H) for an arbitrary sequence
αn, n ∈ N, with αn ↓ 1 as n →∞.

‖Z(t)− Zαn(t)‖2L2 =E
[
‖

∫ T+

0

∫
U

1] t
αn

,t](s)S(t− s)B(Y (s), y) q(ds, dy)‖2
]

=E
[ ∫ t

t
αn

∫
U

‖S(t− s)B(Y (s), y)‖2 ν(dy) ds
]

≤ 2
(
1 + ‖Y ‖2H2

) ∫ αn−1
αn

T

0

K(s) ds

Moreover, we know for all t ∈ [0, T ] that

( ∫ u+

0

∫
U

1]0,t](s)S(t− s)B(Y (s), y) q(ds, dy)
)
u∈[0,T ]

∈M2
T (H)

since (1]0,t](s)S(t−s)B(Y (s), ·))s∈[0,T ] ∈ N 2
q (T,U,H). In particular, this means

that the process Z is (Ft)-adapted.
Together with the continuity of Z : [0, T ] → L2(Ω,F , P ;H), by Lemma 13, this
implies the existence of a predictable version of Z, which we denote by

( ∫ t−

0

∫
U

1]0,t](s)S(t− s)B(Y (s), y) q(ds, dy)
)
t∈[0,T ]

.

The Bochner integral
∫ t

0

S(t− s)F (Y (s)) ds, t ∈ [0, T ], is well defined since

F (Y (t)), t ∈ [0, T ], is predictable and the process F (Y (t)), t ∈ [0, T ], is P -

a.s. Bochner integrable. Moreover,
∫ t

0

S(t− s)F (Y (s)) ds, t ∈ [0, T ], as well

as S(t)ξ, t ∈ [0, T ], ξ ∈ L2
0, are P -a.s. continuous and (Ft)-adapted, hence

predictable.
Concerning the H2(T,H)-norm we obtain for all ξ ∈ L2

0 and all predictable
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Y ∈ H2(T,H) that

‖S(·)ξ +
∫ ·

0

S(· − s)F (Y (s)) ds +
∫ ·−

0

∫
U

S(· − s)B(Y (s), y) q(ds, dy)‖H2

≤‖S(·)ξ +
∫ ·

0

S(· − s)F (Y (s)) ds‖H2

+ ‖
∫ ·+

0

∫
U

S(· − s)B(Y (s), y) q(ds, dy)‖H2

≤MT ‖ξ‖L2 + CTMT (1 + ‖Y ‖H2) + Cp(1 + ‖Y ‖H2)
( ∫ T

0

K(s) ds
) 1

2
< ∞

where we used the isometric property of the stochastic integral. It remains to
check that there exists λT =: λ ≥ 0 such that for all ξ ∈ L2

0

F̄(ξ, ·) : H2,λ(T,H) → H2,λ(T,H)

is a contraction where the contraction constant LT,λ does not depend on ξ. For
this purpose let ξ ∈ L2

0, Y, Ỹ ∈ H2(T,H), predictable, and λ ≥ 0, then

sup
t∈[0,T ]

e−λt‖
(
F(ξ, Y )−F(ξ, Ỹ )

)
(t)‖L2

≤ sup
t∈[0,T ]

e−λt‖
∫ t

0

S(t− s)[F (Y (s))− F (Ỹ (s))] ds‖L2

+ sup
t∈[0,T ]

e−λt‖
∫ t+

0

∫
U

S(t− s)[B(Y (s), y)−B(Ỹ (s), y)] q(ds, dy)‖L2 .

First we estimate the second summand. We use again equality (1) to obtain
that

E
[
‖
∫ t+

0

∫
U

S(t− s)[B(Y (s), y)−B(Ỹ (s), y)] q(ds, dy)‖2
] 1

2

=
( ∫ t

0

∫
U

E
[
‖S(t− s)[B(Y (s), y)−B(Ỹ (s), y)]‖2

]
ν(dy) ds

) 1
2

≤
( ∫ t

0

K(t− s)‖Y (s)− Ỹ (s)‖2L2 ds
) 1

2

≤‖Y − Ỹ ‖2,λ,T eλt
( ∫ T

0

∫
U

K(s, y)e−2λs ν(dy) ds
) 1

2
.

Dividing both sides of the above inequality by eλt provides that

‖
∫ ·+

0

∫
U

S(· − s)[B(Y (s), y)−B(Ỹ (s), y)] q(ds, dy)‖2,λ,T

≤
( ∫ T

0

K(s)e−2λs ds
) 1

2

︸ ︷︷ ︸
→0 as λ→∞

‖Y − Ỹ ‖p,λ,T .

Using the Lipschitz continuity of F , we estimate the first summand in a similar
way and obtain as upper bound for the first summand MT CT

1
2 ( 1

λ2 )
1
2 ‖Y − Ỹ ‖2,λ,T
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where MT CT
1
2 ( 1

λ2 )
1
2 → 0 as λ →∞.

Thus, we finally proved the existence of constants λT =: λ and LT,λ < 1 such
that

‖F̄(ξ, Y )− F̄(ξ, Ỹ )‖2,λ,T ≤ LT,λ‖Y − Ỹ ‖2,λ,T

for all Y, Ỹ ∈ H2,λ(T,H) and ξ ∈ L2
0. Hence the existence of a unique implicit

function

X : L2
0 → H2(T,H)
ξ 7→ X(ξ) = F̄(ξ, X(ξ))

is verified.
X is even Lipschitz continuous by Theorem 26 (ii) since

‖F(ξ, Y )−F(ζ, Y )‖H2 = ‖S(·)(ξ − ζ)‖H2 ≤ MT ‖ξ − ζ‖L2

and therefore

F̄(·, Y ) : L2
0 → H2(T,H)

is Lipschitz continuous where the Lipschitz constant does not depend on Y .

3.2 Differentiability of the mild solution w.r.t. the initial
condition

In this subsection we analyze the Gâteaux differentiability of the mild solution
of equation (3) with respect to the initial condition ξ ∈ L2

0. To this end we
make the following assumptions.

Hypothesis H.1

• F is Gâteaux differentiable and

∂F : H ×H → H

is continuous.

• For all y ∈ U B(·, y) : H → H is Gâteaux differentiable and for all y ∈ U ,
z ∈ H and t ∈ ]0, T ]

S(t)∂1B(·, y)z : H → H

is continuous.

• For all t ∈ ]0, T ] and z ∈ H the mapping

S(t)∂1B(·, ·)z : H → L2(U,B, ν;H)
x 7→ S(t)∂1B(x, ·)z

is continuous.
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Theorem 14. Assume that the coefficients A, F and B fulfill the conditions of
hypothesis H.0 and H.1. Then the following statements hold.

(i) The mild solution of (3)

X : L2
0 → H2(T,H)
ξ 7→ X(ξ)

is Gâteaux differentiable and the mapping

∂X : L2
0 × L2

0 → H2(T,H)

is continuous.

(ii) For all ξ̄, ζ̄ ∈ L2
0 the Gâteaux derivative of X fulfills the following equation

∂X(ξ̄)ζ̄ =
(
S(t)ζ̄ +

∫ t

0

S(t− s)∂F (X(ξ̄)(s))∂X(ξ̄)ζ̄(s) ds

+
∫ t+

0

∫
U

S(t− s)∂B(X(ξ̄)(s), y)∂X(ξ̄)ζ̄(s) q(ds, dy)
)

t∈[0,T ]

in H2(T,H) where the right-hand side is defined as the equivalence class
of (

S(t)ζ +
∫ t

0

S(t− s)∂F (Y (s))Z(s) ds

+
∫ t+

0

∫
U

S(t− s)∂B(Y (s), y)Z(s) q(ds, dy)
)

t∈[0,T ]

w.r.t. ‖ ‖H2 for arbitrary ζ ∈ ζ̄ and arbitrary predictable Y ∈ X(ξ̄),
Z ∈ ∂X(ξ̄)ζ̄.

(iii) In addition, the following estimate is true

‖∂X(ξ)ζ‖H2 ≤ KT,2‖ζ‖L2

for all ξ, ζ ∈ L2
0 where KT,2 denotes the Lipschitz constant of the mapping

X : L2
0 → H2(T,H).

For the proof of the above theorem we need the following lemmas.

Lemma 15. If Y : [0, T ] × Ω × U → H is PT (U)/B(H)-measurable then the
mapping

[0, T ]× Ω× U → H, (s, ω, y) 7→ 1]0,t](s)S(t− s)Y (s, ω, y)

is PT (U)/B(H)-measurable for all t ∈ [0, T ].

Proof. [21, Lemma 4.5]

Lemma 16. (i) If F satisfies H.0 and H.1 we obtain that ‖∂F (x)‖L(H) ≤ C
for all x ∈ H.
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(ii) If we assume that B : H ×U → H satisfies hypothesis H.0 and is Gâteaux
differentiable in the first variable then we get for all t ∈ ]0, T ] and x ∈ H
that H 3 z 7→ S(t)∂1B(x, ·)z ∈ L(H,L2(U,B, ν;H)) with

‖S(t)∂1B(x, ·)‖L(H,L2(U,B,ν;H)) ≤
√

K(t).

In particular, we obtain for all t ∈ [0, T ] and for all predictable Y, Z ∈
H2(T,H) that the mapping

Gt : [0, T ]× Ω× U → H

(s, ω, y) 7→ 1]0,t](s)S(t− s)∂1B(Y (s, ω), y)Z(s, ω)

is an element of N 2
q (T,U,H).

Proof. [21, Lemma 5.2]

Lemma 17. Assume that the mapping B satisfies the conditions of H.0 and
H.1. Then for all t ∈ ]0, T ] and x, z ∈ H

‖ 1
h

(
S(t)B(x + hz, ·)− S(t)B(x, ·)

)
− S(t)∂1B(x, ·)z‖2L2(U,B,ν;H)

≤ 1
h

∫ h

0

‖S(t)∂1B(x + sz, ·)z − S(t)∂1B(x, ·)z‖2L2(U,B,ν;H) ds

and therefore, in particular, one has that for all t ∈]0, T ]

S(t)B(x + hz, ·)− S(t)B(x, ·)
h

−→
h→0

S(t)∂1B(x, ·)z

in L2(U,B, ν;H).

Proof. Let t ∈ ]0, T ]. Since S(t)∂1B(·, y)z : H → H is continuous we obtain by
the fundamental theorem for Bochner integrals 31 that∫

U

‖ 1
h

(
S(t)B(x + hz, y)− S(t)B(x, y)

)
− S(t)∂1B(x, y)z‖2 ν(dy)

=
∫

U

‖ 1
h

∫ h

0

S(t)∂1B(x + sz, y)z − S(t)∂1B(x, y)z ds‖2 ν(dy)

≤
∫

U

1
h2

( ∫ h

0

‖S(t)∂1B(x + sz, y)z − S(t)∂1B(x, y)z‖ ds
)2

ν(dy)

≤
∫

U

1
h

∫ h

0

‖S(t)∂1B(x + sz, y)z − S(t)∂1B(x, y)z‖2 ds ν(dy)

=
1
h

∫ h

0

‖S(t)∂1B(x + sz, ·)z − S(t)∂1B(x, ·)z‖2L2(U,B,ν;H) ds.

Since

S(t)∂1B(x + ·z, ·)z : [0, 1] → L2(U,B, ν;H)
s 7→ S(t)∂1B(x + sz, ·)z



16

is uniformly continuous by hypothesis H.1 the second part of the assertion fol-
lows.

Lemma 18. Let (Ω,F , µ) be a finite measure space and let (E, d) be a polish
space.
Moreover, let Y, Yn, n ∈ N, be E-valued random variables on (Ω,F , µ) such that

Yn −→ Y in measure as n →∞.

Let (Ẽ, d̃) be an arbitrary metric space and f : (E, d) → (Ẽ, d̃) a continuous
mapping. Then

f ◦ Yn −→ f ◦ Y in measure as n →∞.

Proof. [15, Lemma 4.6, p.95]

Proof of theorem 14:
In order to prove the stated differentiability of the mild solution X we apply
theorem 27 (i) to the spaces Λ = L2

0 and E = H2,λ(T,H) and to the mapping
G = F̄ , where λ ≥ 0 is such that F̄ : L2

0×H2,λ(T,H) → H2,λ(T,H) is a contrac-
tion in the second variable. In this way we obtain that X : L2

0 → H2,λ(T,H) is
Gâteaux differentiable. By the equivalence of the norms ‖ ‖2,λ,T , λ ≥ 0, we then
also get the Gâteaux differentiability of X as a mapping from L2

0 to H2(T,H).
For simplicity, we check that F̄ : L2

0 × H2(T,H) → H2(T,H) fulfills the con-
ditions of theorem 27 which implies, again by the equivalence of the norms
‖ ‖2,λ,T , λ ≥ 0, that F̄ : L2

0 ×H2,λ(T,H) → H2,λ(T,H) satisfies them, too.

Proof of (i):

Step 1:

We show the existence of the directional derivatives of F̄ . For this purpose
let ξ̄, ζ̄ ∈ L2

0 and Ȳ , Z̄ ∈ H2(T,H). We show that there exist the directional
derivatives ∂1F(ξ, Y ; ζ) and ∂2F(ξ, Y ;Z) in H2(T,H) for ξ ∈ ξ̄, ζ ∈ ζ̄, Y ∈ Ȳ
and Z ∈ Z̄, where Y and Z are predictable. Then there exist the directional
derivatives of F̄ as the respective equivalence classes w.r.t. ‖ ‖H2 .

(a) It is obvious that ∂1F(ξ, Y ; ζ) = S(·)ζ ∈ H2(T,H).
(b) The integrals∫ t

0

S(t− s)∂F (Y (s))Z(s) ds, t ∈ [0, T ], and∫ t+

0

∫
U

1]0,t](s)S(t− s)∂1B(Y (s), y)Z(s) q(ds, dy), t ∈ [0, T ],

are well defined by H.0, H.1 theorem 36 (i) and lemma 16 (ii). In the following
we show that

∂2F(ξ, Y ;Z) =
( ∫ t

0

S(t− s)∂F (Y (s))Z(s) ds

+
∫ t+

0

∫
U

S(t− s)∂1B(Y (s), y)Z(s) q(ds, dy)
)

t∈[0,T ]
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∈ H2(T,H)

Let t ∈ [0, T ] and h 6= 0. Then we get that

‖F(ξ, Y + hZ)(t)−F(ξ, Y )(t)
h

−
∫ t

0

S(t− s)∂F (Y (s))Z(s) ds

−
∫ t+

0

∫
U

S(t− s)∂1B(Y (s), y)Z(s) q(ds, dy)‖L2(Ω,F,P ;H)

≤‖
∫ t

0

S(t− s)
(F (Y (s) + hZ(s))− F (Y (s))

h
− ∂F (Y (s))Z(s)

)
ds‖L2

+ ‖
∫ t+

0

∫
U

S(t− s)
( B(Y (s) + hZ(s), y)−B(Y (s), y)

h
− ∂1B(Y (s), y)Z(s)

)
q(ds, dy)‖L2

The first summand can be estimated independently of t ∈ [0, T ] by

MT T
1
2 E

[ ∫ T

0

‖F (Y (s) + hZ(s))− F (Y (s))
h

− ∂F (Y (s))Z(s)‖2 ds
] 1

2

and converges to 0 as h → 0 by Lebesgue’s dominated convergence theorem.
To get the convergence to 0 of the second summand as h → 0 we first fix α > 1
and get by the isometric formula (1)

(
E

[
‖

∫ t+

0

∫
U

S(t− s)
( B(Y (s) + hZ(s), y)−B(Y (s), y)

h

− ∂1B(Y (s), y)Z(s)
)

q(ds, dy)‖2
]) 1

2

=
(
E

[ ∫ t
α

0

∫
U

‖S(t− αs)S((α− 1)s)
( B(Y (s) + hZ(s), y)−B(Y (s), y)

h

− ∂1B(Y (s), y)Z(s)
)
‖2 ν(dy) ds

]
+E

[ ∫ t

t
α

∫
U

‖S(t− s)
( B(Y (s) + hZ(s), y)−B(Y (s), y)

h

− ∂1B(Y (s), y)Z(s)
)
‖2 ν(dy) ds

]) 1
2
,

where we used the semigroup property of S(t), t ≥ 0.
The first integral can be estimated by

M2
T E

[ ∫ T

0

∫
U

‖S((α− 1)s)
( B(Y (s) + hZ(s), y)−B(Y (s), y)

h

− ∂1B(Y (s), y)Z(s)
)
‖2 ν(dy) ds

]
.

If we fix s ∈ ]0, T ] we know by lemma 17 that

‖ 1
h

(
S((α− 1)s)B(Y (s) + hZ(s), ·)− S((α− 1)s)B(Y (s), ·)

)
− S((α− 1)s)∂1B(Y (s), ·)Z(s)‖2L2(U,B,ν;H)

→ 0 as h → 0.
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Lemma 16 (ii), gives us the upper bound for the above sequence so that we can
apply Lebesgue’s dominated convergence theorem to obtain that

M2
T E

[ ∫ T

0

∫
U

‖S((α− 1)s)
( B(Y (s) + hZ(s), y)−B(Y (s), y)

h

− ∂1B(Y (s), y)Z(s)
)
‖2 ν(dy) ds

]
.

→ 0 as h → 0.

Again by lemma 16 (ii), the second integral can be estimated independently of
h 6= 0 and t ∈ [0, T ] in the following way

E
[ ∫ t

t
α

∫
U

‖S(t− s)
( B(Y (s) + hZ(s), y)−B(Y (s), y)

h

− ∂1B(Y (s), y)Z(s)
)
‖2 ν(dy) ds

]
≤ 4

∫ (α−1)T
α

0

K(s) ds‖Z‖2H2

where ‖Z‖H2 < ∞ and
∫ (α−1)T

α

0

K(s) ds → 0 as α ↓ 1 since K ∈ L1([0, T ]).

Altogether, we have an estimation of the second summand which is independent
of t ∈ [0, T ] and we get the desired convergence in H2(T,H). Step 2:

We show that the directional derivatives

∂1F̄ : L2
0 ×H2(T,H)× L2

0 → H2(T,H)

∂2F̄ : L2
0 ×H2(T,H)×H2(T,H) → H2(T,H)

are continuous.

(a) The continuity of ∂1F̄ is obvious.
(b) To analyze the continuity of ∂2F̄ let Y, Yn, Z, Zn ∈ H2(T,H), n ∈ N, and
ξ, ξn ∈ L2

0, n ∈ N, such that Yn → Y and Zn → Z in H2(T,H) and ξn → ξ in
L2

0 as n →∞. Then we have for all t ∈ [0, T ] that

‖∂2F(ξn, Yn;Zn)− ∂2F(ξ, Y ;Z)‖H2

≤ sup
t∈[0,T ]

‖
∫ t

0

S(t− s)(∂F (Yn(s))Zn(s)− ∂F (Y (s))Z(s)) ds‖L2

+ sup
t∈[0,T ]

‖
∫ t+

0

∫
U

S(t− s)
(
∂1B(Yn(s), y)Zn(s)

− ∂1B(Y (s), y)Z(s)
)

q(ds, dy)‖L2 .

First, we estimate the second summand. For this purpose we fix α > 1 and use
the isometric formula (1) to get that

‖
∫ t+

0

∫
U

S(t− s)
(
∂1B(Yn(s), y)Zn(s)− ∂1B(Y (s), y)Z(s)

)
q(ds, dy)‖L2

≤
(
E

[ ∫ t

0

∫
U

‖S(t− s)∂1B(Yn(s), y)(Zn(s)− Z(s))‖2 ν(dy) ds
]) 1

2

+
(
E

[ ∫ t
α

0

∫
U

‖S(t− s)(∂1B(Yn(s), y)− ∂1B(Y (s), y))Z(s)‖2 ν(dy) ds
]
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+ E
[ ∫ t

t
α

∫
U

‖S(t− s)(∂1B(Yn(s), y)− ∂1B(Y (s), y))Z(s)‖2 ν(dy) ds
]) 1

2

≤
( ∫ t

0

K(s) ds
) 1

2 ‖Zn − Z‖H2 , by lemma 16(ii),

+
(
M2

T E
[ ∫ t

α

0

∫
U

‖S((α− 1)s)(∂1B(Yn(s), y)− ∂1B(Y (s), y))Z(s)‖2

ν(dy) ds
]

+ E
[ ∫ t

t
α

4K(t− s)‖Z(s)‖2 ds
]) 1

2

≤
( ∫ T

0

K(s) ds
) 1

2 ‖Zn − Z‖H2

+
(
M2

T E
[ ∫ T

0

∫
U

‖S((α− 1)s)(∂1B(Yn(s), y)− ∂1B(Y (s), y))Z(s)‖2

ν(dy) ds
]

+ 4
∫ (α−1)T

α

0

K(s) ds‖Z‖2H2

) 1
2
.

‖Zn − Z‖H2 → 0 as n → ∞ by assumption and
∫ (α−1)T

α

0

K(s) ds → 0 as α ↓ 1

by Lebesgue’s theorem since K ∈ L1([0, T ]).
To show the convergence of the third term to 0 as n →∞ we use lemma 18.
For fixed s ∈ ]0, T ] the sequence of random variables (Yn(s), Z(s)), n ∈ N,
converges in probability to (Y (s), Z(s)). Moreover, the mapping

f : H ×H → L2(U,B, ν;H)
(x, z) 7→ S((α− 1)s)∂1B(x, ·)z

is continuous. Hence, by lemma 18 it follows that

‖S((α− 1)s)(∂1B(Yn(s), ·)− ∂1B(Y (s), ·))Z(s)‖2L2(U,B,ν;H) −→n→∞
0

in probability. In addition, this sequence is bounded by 4K((α− 1)s)‖Z(s)‖2 ∈
L1(Ω,F , P ) which implies the uniform integrability. Therefore we get that

E
[
‖S((α− 1)s)(∂1B(Yn(s), ·)− ∂1B(Y (s), ·))Z(s)‖2L2(U,B,ν;H)

]
−→

n→∞
0.

Since the above expectation is bounded by 4K((α − 1)s)‖Z‖2H2 where
4K((α− 1)·)‖Z‖2H2 ∈ L1([0, T ]) we finally obtain that∫ T

0

E
[ ∫

U

‖S((α− 1)s)(∂1B(Yn(s), y)− ∂1B(Y (s), y))Z(s)‖2 ν(dy)
]

ds

−→
n→∞

0.

It is easy to see that the first summand converges to 0 by similar arguments.
Proof of (ii): Let ξ̄, ζ̄ ∈ L2

0. Then by theorem 27 (i) we have the following
representation of the Gâteaux derivative of X:

∂X(ξ̄)ζ̄ =
[
I − ∂2F̄(ξ̄, X(ξ̄))

]−1
∂1F̄(ξ̄, X(ξ̄))ζ̄
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and therefore we have that

∂X(ξ̄)ζ̄ = ∂1F̄(ξ̄, X(ξ̄))ζ̄ + ∂2F(ξ̄, X(ξ̄))∂X(ξ̄)ζ̄.

By (i) the assertion follows.
Proof of (iii): By theorem 12 the mild solution X : L2

0 → H2(T,H) is Lipschitz
continuous. We denote the Lipschitz constant of X by KT,2. Hence, we get that

‖∂X(ξ)ζ‖H2 ≤ KT,2‖ζ‖L2 for all ξ, ζ ∈ L2
0

4 Gradient Estimates for the Resolvent Corre-
sponding with the Mild Solution

In the first part of this section we make the following assumptions on the coef-
ficients A, F and B.

Hypothesis H.2

• (A,D(A)) is the generator of a quasi-contractive C0-semigroup S(t), t ≥ 0,
on H, i.e. there exists ω0 ≥ 0 such that ‖S(t)‖L(H) ≤ eω0t for all t ≥ 0.

• F is Lipschitz continuous and Gâteaux differentiable such that

∂F : H ×H → H

is continuous.

• F is dissipativ, i.e. 〈∂F (x)y, y〉 ≤ 0 for all x, y ∈ H.

• B : H × U → H such that

– for all y ∈ U B(·, y) : H → H is constant,

– there exists an integrable mapping K : [0, T ] → [0,∞[ such that for
all t ∈]0, T ] and x ∈ H holds∫

U

‖S(t)B(x, y)‖2 ν(dy) ≤ K(t)
(
1 + ‖x‖

)2
.

It is easy to check that, on condition that the assumptions of hypothesis H.2
are fulfilled,the coefficients A, F and B satisfy H.0 and H.1.
Under the assumptions of hypothesis H.2 we already proved in theorem 12 the
existence of a mild solution of the following stochastic differential equation{

dX(t) = [AX(t) + F (X(t))] dt + B(X(t), y) q(dt, dy)
X(0) = x ∈ H.

(6)

Moreover, the mild solution X : H → H2(T,H) is Gâteaux differentiable by
theorem 14(i).
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Notation: In the following we denote by X(x) and ∂X(x)h predictable repre-
sentatives in H2(T,H) of the respective equivalence classes in H2(T,H).

The Gâteaux derivative ∂X(x)h of X in x ∈ H in direction h ∈ H fulfills
the following equation:

∂X(x)h(t) = S(t)h +
∫ t

0

S(t− s)∂F
(
X(x)(s)

)
∂X(x)h(s) ds P -a.s.

for all t ∈ [0, T ] (see theorem 14(ii)).

Proposition 19. There exists a continuous version Y ∈ H2(T,H) of ∂X(x)h,
x, h ∈ H, such that

Y (t) = S(t)h +
∫ t

0

S(t− s)∂F
(
X(x)(s)

)
Y (s) ds for all t ∈ [0, T ]

P -a.s.

Proof. Let h ∈ H and Y ∈ H2(T,H). Then Y has at least one predictable
version which we denote again by Y . Define

G(h, Y ) :=
(
S(t)h +

∫ t

0

S(t− s)∂F (X(x)(s))Y (s) ds
)

t∈[0,T ]
. (7)

Then the appearing integral is well defined and an element of H2(T,H). More-
over, G is well defined in the sense of version, i.e. taking another predictable
version Ỹ of Y , then G(h, Y ) is a version of G(h, Ỹ ).
Define for h ∈ H and Y ∈ H2(T,H), Ḡ(h, Y ) as the equivalence class of
G(h, Z) w.r.t. ‖ ‖H2 for an arbitrary predictable representative Z ∈ Y . By
the above considerations, in H2(T,H), G(h, Z) is independent of the repre-
sentative Z, i.e. Ḡ is well defined. Moreover, there exists λT > 0 such that
Ḡ : H × H2

λT
(T,H) → H2

λT
(T,H) is a contraction in the second variable. By

Banach’s fixed point theorem we get the existence and uniqueness of an equiv-
alence class Z̄ ∈ H2

λT
(T,H) such that for all Y ∈ Z̄

Y (t) = S(t)h +
∫ t

0

S(t− s)∂F
(
X(x)(s)

)
Y (s) ds P -a.s.

for all t ∈ [0, T ]. In particular, ∂X(x)h ∈ Z̄.
Define now

Y (t) := S(t)h +
∫ t

0

S(t− s)∂F
(
X(x)(s)

)
∂X(x)h(s) ds, t ∈ [0, T ].

Obviously, Y is a version of ∂X(x)h and by the previous considerations we know
that

Y (t) = S(t)h +
∫ t

0

S(t− s)∂F
(
X(x)(s)

)
Y (s) ds P -a.s.



22

for all t ∈ [0, T ].
Moreover, both Y and the process

(
S(t)h+

∫ t

0
S(t−s)∂F

(
X(x)(s)

)
Y (s) ds

)
t∈[0,T ]

are continuous. To show this let Z ∈ H2(T,H).
Since

E[
∫ T

0

‖Z(s)‖ ds] ≤ T‖Z‖H2 < ∞

we get that ∫ t

0

‖Z(s)‖ ds < ∞ for all t ∈ [0, T ] P -a.s.

Let now u, t ∈ [0, T ] with u ≤ t then

‖S(t)h +
∫ t

0

S(t− s)∂F
(
X(x)(s)

)
Z(s) ds− S(u)h

−
∫ u

0

S(u− s)∂F
(
X(x)(s)

)
Z(s) ds‖

≤‖S(t)h− S(u)h‖

+ ‖
∫ u

0

(
S(t− s)− S(s− u)

)
∂F (X(x)(s))Z(s) ds‖

+ ‖
∫ t

u

S(t− s)∂F (X(x)(s))Z(s) ds‖.

The first summand converges to 0 as u ↑ t or t ↓ u by the strong continuity of
the semigroup.
As ‖Z(·)‖ ∈ L1([0, T ]) P -a.s. the second and third summand converge to 0 as
u ↑ t or t ↓ u by Lebesgue’s dominated convergence theorem where the P -nullset
does not depend on t and u.
Thus, we proved the existence of a continuous version Y of ∂X(x)h such that

Y (t) = S(t)h +
∫ t

0

S(t− s)∂F
(
X(x)(s)

)
Y (s) ds P -a.s.

for all t ∈ [0, T ] where by the above considerations also the right-hand side is
continuous. By the continuity of both sides we get that

Y (t) = S(t)h +
∫ t

0

S(t− s)∂F
(
X(x)(s)

)
Y (s) ds

for all t ∈ [0, T ] P -a.s.

In the following we have to distinguish between the case A ∈ L(H) and the case
of an arbitrary, possibly unbounded generator (A,D(A)).

4.1 First Case: A ∈ L(H)

Proposition 20. Let Y ∈ H2(T,H) be a continuous version of ∂X(x)h such
that

Y (t) = S(t)h +
∫ t

0

S(t− s)∂F
(
X(x)(s)

)
Y (s) ds for all t ∈ [0, T ]
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P -a.s. Then

Y (t) = h +
∫ t

0

AY (s) ds +
∫ t

0

∂F (X(x)(s))Y (s) ds for all t ∈ [0, T ]

P -a.s.

Proof. Since

E[
∫ T

0

‖Y (s)‖ ds] ≤ T‖Y ‖H2 < ∞

we get that ∫ t

0

‖Y (s)‖ ds < ∞ for all t ∈ [0, T ] P -a.s.

and therefore we have that P -a.s.

S(t− ·)∂F
(
X(x)(·)

)
Y (·) ∈ L1([0, t]) for all t ∈ [0, T ]. (8)

Then we obtain that P -a.s. for all t ∈ [0, T ] that∫ t

0

AY (s) ds

=
∫ t

0

AS(s)h ds +
∫ t

0

A
( ∫ s

0

S(s− u)∂F
(
X(x)(u)

)
Y (u) du

)
ds

=
∫ t

0

AS(s)h ds +
∫ t

0

∫ s

0

AS(s− u)∂F
(
X(x)(u)

)
Y (u) du ds,

by proposition 30, the fact that A ∈ L(H) and (8),

=
∫ t

0

d

ds
S(s)h ds +

∫ t

0

∫ t

u

d

ds
S(s− u)∂F

(
X(x)(u)

)
Y (u) ds du,

by proposition 37,

=S(t)h− h +
∫ t

0

S(t− u)∂F
(
X(x)(u)

)
Y (u) du

−
∫ t

0

∂F
(
X(x)(u)

)
Y (u) du, by proposition 33,

=Y (t)− h−
∫ t

0

∂F
(
X(x)(u)

)
Y (u) du.

Finally, we get that

Y (t) = h +
∫ t

0

AY (s) ds +
∫ t

0

∂F (X(x)(s))Y (s) ds for all t ∈ [0, T ]

P -a.s.

Let now Y ∈ H2(T,H) be a version of ∂X(x)h such that there exists a P -nullset
N ∈ F such that for all ω ∈ N c and t ∈ [0, T ]

(i) Y (·, ω) is continuous and Y (0, ω) = h
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(ii)
∫ t

0

‖Y (s, ω)‖ ds < ∞ and

(iii) Y (t, ω) = h +
∫ t

0

AY (s, ω) ds +
∫ t

0

∂F (X(x)(s, ω))Y (s, ω) ds (9)

Then, using proposition 33 and differentiating both sides of (9) we obtain that
for all ω ∈ N c:

Y ′(t, ω) = AY (t, ω) + ∂F (X(x)(t, ω))Y (t, ω) for λ-a.e. t ∈ [0, T ]

⇒ 1
2

d

dt
‖Y (t, ω)‖2 = 〈Y ′(t, ω), Y (t, ω)〉

= 〈AY (t, ω) + ∂F (X(x)(t, ω))Y (t, ω), Y (t, ω)〉
(10)

for λ-a.e. t ∈ [0, T ]. (11)

Proposition 21. For all ω ∈ N c and t ∈ [0, T ]

‖Y (t, ω)‖2 − ‖Y (0, ω)‖2 =
∫ t

0

d

ds
‖Y (s, ω)‖2 ds.

Proof. Let ω ∈ N c and t ∈ [0, T ]. By proposition 35 we have the show that the
mapping f : [0, t] → R, s 7→ ‖Y (s, ω)‖2 is absolutely continuous.
As first step we prove that g : [0, t] → R, s 7→ ‖Y (s, ω)‖ is absolutely continuous,
i.e. we show that given ε > 0 there exists δ > 0 such that

∑n
i=1|g(ti)− g(si)| < ε

whenever
∑n

i=1|ti − si| < δ for any finite set of disjoint intervals such that
]si, ti[⊂ [0, t] for each i.
Let ε > 0. For any set of disjoint intervals such that ]si, ti[⊂ [0, t] for each i we
have

n∑
i=1

|g(ti)− g(si)| =
n∑

i=1

|‖Y (ti, ω)‖ − ‖Y (si, ω)‖|

≤
n∑

i=1

‖Y (ti, ω)− Y (si, ω)‖

≤
n∑

i=1

∫ ti

si

‖AY (s, ω) + ∂F (X(x)(s, ω))Y (s, ω)‖ ds

=
∫

Sn
i=1]si,ti[

‖AY (s, ω) + ∂F (X(x)(s, ω))Y (s, ω)‖ ds.

Since ‖AY (·, ω) + ∂F (X(x)(·, ω))Y (·, ω)‖ ∈ L1([0, T ], dλ) there exists δ > 0
such that ∫

Sn
i=1]si,ti[

‖AY (ω, s) + ∂F (X(x)(ω, s))Y (ω, s)‖ ds < ε

provided
∑n

i=1|ti − si| = λ(
⋃n

i=1]si, ti[) < δ.
Now we use the fact that the product of two functions which are absolutely
continuous on a finite interval [a, b] is again absolutely continuous (see [11, 9.3
Example 7, p.161]) and obtain that ‖Y (·, ω)‖2 = ‖Y (·, ω)‖‖Y (·, ω)‖ is absolutely
continuous on [0, t]. Now, the assertion follows by proposition 35.
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Integrating both sides of equation (10), using the previous proposition and tak-
ing into account the dissipativity of F we obtain for all ω ∈ N c and t ∈ [0, T ]
that

‖Y (t, ω)‖2 − ‖Y (0, ω)‖2 =
∫ t

0

d

ds
‖Y (s, ω)‖2 ds

=2
∫ t

0

〈AY (s, ω) + ∂F (X(x)(s, ω))Y (s, ω), Y (s, ω)〉 ds

≤ 2
∫ t

0

〈AY (s, ω), Y (s, ω)〉 ds.

Since A is the generator of the quasi-contractive C0-semigroup S(t), t ≥ 0, we
get by the following calculation that 〈Ax, x〉 ≤ ω0‖x‖2 for all x ∈ H:

〈Ax, x〉 = lim
t↓0

1
t
〈S(t)x− x, x〉 ≤ lim

t↓0

1
t
(‖S(t)x‖‖x‖ − ‖x‖2)

≤ lim
t↓0

1
t
(eω0t − 1)‖x‖2 = (

d

dt
eω0t)| t=0 ‖x‖2 = ω0‖x‖2.

Consequently,

‖Y (t, ω)‖2 − ‖h‖2 = ‖Y (t, ω)‖2 − ‖Y (0, ω)‖2 ≤ 2
∫ t

0

ω0‖Y (s, ω)‖2 ds.

Using Gronwall’s lemma (see [17, Lemma 6.12]) we can conclude that ‖Y (t)‖2 ≤
e2ω0t‖h‖2 for all t ∈ [0, T ] P -a.s. Since Y is a version of ∂X(x)h, finally, we
have an exponentially estimation for ‖∂X(x)h(t)‖, t ∈ [0, T ]:

‖∂X(x)h(t)‖ ≤ eω0t‖h‖ P -a.s. for all t ∈ [0, T ].

4.2 Second case: (A, D(A)) is a (possibly) unbounded op-
erator

In this section we need stronger assumptions on the measure ν and the coeffi-
cient B.
For the second part of this chapter we make the following assumptions on the
coefficients A, F and B and the measure ν.

Hypothesis H.2’

• (A,D(A)) is the generator of a quasi-contractive C0-semigroup S(t), t ≥ 0,
on H, i.e. there exists ω0 ≥ 0 such that ‖S(t)‖L(H) ≤ eω0t for all t ≥ 0.

• F is Lipschitz continuous and Gâteaux differentiable such that

∂F : H ×H → H

is continuous.

• F is dissipativ, i.e. 〈∂F (x)y, y〉 ≤ 0 for all x, y ∈ H.
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• ν(U) < ∞.

• B : H × U → H, (x, y) 7→ z is constant.

If ν and B satisfy hypothesis H.2’ then we obtain for every C0-semigroup T (t),
t ≥ 0, on H that∫

U

‖T (t)B(x, y)‖2 ν(dy) ≤ sup
t∈[0,T ]

‖T (t)‖2L(H)‖z‖
2ν(U)(1 + ‖x‖)2

for all t ∈ [0, T ] and x ∈ H, i.e T (t)B, t ∈ [0, T ], satisfies hypothesis H.2.

Since (A,D(A)) is the generator of a quasi-contractive C0-semigroup S(t), t ≥ 0,
there is a constant ω0 ≥ 0 such that ‖S(t)‖L(H) ≤ eω0t for all t ≥ 0. By 39 A can
be approximated by the Yosida-approximation An, n ∈ N, n > ω0. Each An,
n > ω0, is an element of L(H) and, by proposition 40, again the infinitesimal
generator of a quasi-contractive C0-semigroup Sn(t), t ≥ 0, n ∈ N, n > ω0, such
that

‖Sn(t)‖L(H) ≤ exp(
ω0nt

n− ω0
) for all t ≥ 0, n > ω0.

Thus, we get that the coefficients An, F and B, n ∈ N, n > ω0, fulfill the
assumptions of H.2. and so those of H.0 and H.1.
Now, we can derive for n > ω0 the existence of a unique mild solution Xn(x) of
the following stochastic differential equation{

dX(t) = [AnX(t) + F (X(t))] dt + z q(dt, dy)
X(0) = x ∈ H

(12)

which is Gâteaux differentiable as a mapping from H to H2(T,H).

We define Fn and F̄n : H × H2,λ(T,H) → H2,λ(T,H), n > ω0, as in chap-
ter 5, section 1 for the coefficients An, n > ω0, F and B. Since An, n > ω0,
F and B fulfill H.0 and H.1 we get by theorem 12 the existence of a unique
mild solution Xn : H → H2(T,H) of (12) as the implicit function of F̄n, i.e.
F̄n(x,Xn(X)) = Xn(x) in H2(T,H). By theorem 14 Xn : H → H2(T,H),
n > ω0, is Gâteaux differentiable.

Notation: In the following we denote by Xn(x) and ∂Xn(x)H, n > ω0,
x, h ∈ H, predictable representatives in H2(T,H) of the respective equivalence
classes in H2(T,H).

Since An ∈ L(H) for all n ∈ N, n > ω0, we already know by section 4.1
that for all x, h ∈ H, t ∈ [0, T ] and n > ω0 holds

‖∂Xn(x)h(t)‖ ≤ eωnt‖h‖ P -a.s. (13)

where ωn :=
ω0n

n− ω0
.

Our next aim is to show that X(x) and ∂X(x)h are the limits in H2(T,H) of
(Xn(x))n∈N,n>ω0 and (∂Xn(x)h)n∈N,n>ω0 , respectively. For this purpose we use
theorem 28.
We have to check that the mappings F ,Fn, n ∈ N, fulfill the conditions of
theorem 28 if we set Λ := H and E := H2

λ0
(T,H) for an appropriate λ0 ≥ 0.
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Proposition 22. There exists λ0 ≥ 0 and α ∈ [0, 1[ such that for all n > ω0

and predictable Y, Z ∈ H2(T,H)

‖Fn(x, Y )−Fn(x, Z)‖2,λ0,T ≤ α‖Y − Z‖2,λ0,T and
‖F(x, Y )−F(x,Z)‖2,λ0,T ≤ α‖Y − Z‖2,λ0,T .

Proof. By the proof of theorem 12 we know that for all x ∈ H and predictable
Y, Z ∈ H2(T,H),

‖F(x, Y )−F(x,Z)‖2,λ,T ≤ MT C
( T

2λ

) 1
2 ‖Y − Z‖2,λ,T and

‖Fn(x, Y )−Fn(x,Z)‖2,λ,T ≤ MT,nC
( T

2λ

) 1
2 ‖Y − Z‖2,λ,T , n ∈ N,

where

MT := sup
t∈[0,T ]

‖S(t)‖L(H) ≤ eω0T and

MT,n := sup
t∈[0,T ]

‖Sn(t)‖L(H) ≤ exp(
ω0nT

n− ω0
), n ∈ N, n > ω0.

As the sequence exp( ω0nT
n−ω0

), n ∈ N, n > ω0, is convergent with limit eω0T it is
bounded from above by a constant K > 0. If we choose λ0 ≥ 0 such that

α := (K ∨MT )C
( T

2λ0

) 1
2 ∈ [0, 1[

then the assertion follows.

Proposition 23. For all x, y ∈ H, Z ∈ H2(T,H), predictable, and λ ≥ 0 the
mappings

∂1Fn(x, ·)y : H2(T,H) → H2(T,H)

∂2Fn(x, ·)Z : H2(T,H) → H2(T,H)

are continuous uniformly in n ∈ N, n > ω0.

Proof. Since for x, y ∈ H and Z ∈ H2(T,H), predictable, ∂1Fn(x,Z)y =
(Sn(t)y)t∈[0,T ] the continuity of ∂1Fn(x, ·)y uniformly in n ∈ N, n > ω0, is
obvious.
We have to show the continuity of

∂2Fn(x, ·)ZH2(T,H) → H2(T,H)

Y 7→
( ∫ t

0

Sn(t− s)∂F (Y (s))Z(s) ds
)

t∈[0,T ]
.

Let x ∈ H and Y, Yk, Z ∈ H2(T,H), predictable, k ∈ N, such that Yk −→
k→∞

Y in

H2(T,H). Then we get for all n > ω0 that

‖∂2Fn(x, Y )Z − ∂2Fn(x, Yk)Z‖H2
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≤MT,nT
1
2 E[

∫ T

0

‖∂F (Y (s))Z(s)− ∂F (Yk(s))Z(s)‖2 ds]
1
2

≤KT
1
2 E[

∫ T

0

‖∂F (Y (s))Z(s)− ∂F (Yk(s))Z(s)‖2 ds]
1
2 .

(For the definition of MT,n and K see the proof of proposition 22.)
Since ∂F : H×H → H is continuous we obtain by lemma 18 that ‖∂F (Y )Z − ∂F (Yk)Z‖ −→

k→∞
0 in λ|[0,T ] ⊗ P -measure.
Moreover,

‖∂F (Y )Z − ∂F (Yk)Z‖2 ≤ 4C2‖Z‖2 ∈ L1([0, T ]× Ω, λ|[0,T ] ⊗ P ).

Hence we obtain that

E[
∫ T

0

‖∂F (Y (s))Z(s)− ∂F (Yk(s))Z(s)‖2 ds] → 0 as k →∞.

Proposition 24. For all x, y ∈ H and predictbale Y, Z ∈ H2(T,H)

(i) Fn(x, Y ) → F(x, Y ) as n →∞, n > ω0,

(ii) ∂1Fn(x, Y )y → ∂1F(x, Y )y as n →∞, n > ω0,

(iii) ∂2Fn(x, Y )Z → ∂2F(x, Y )Z as n →∞, n > ω0,

in H2(T,H).

Proof.
(i) Let x ∈ H and Y ∈ H2(T,H), predictable, then(

E[‖Fn(x, Y )(t)−F(x, Y )(t)‖2]
) 1

2

≤
(
E[‖Sn(t)x− S(t)x‖2]

) 1
2

+
(
E[‖

∫ t

0

Sn(t− s)F (Y (s))− S(t− s)F (Y (s)) ds‖2]
) 1

2

+
(
E[‖

∫ t+

0

∫
U

Sn(t− s)z − S(t− s)z q(ds, dy)‖2]
) 1

2

≤ sup
t∈[0,T ]

‖Sn(t)x− S(t)x‖

+
(
E[T

∫ T

0

sup
t∈[0,T ]

1[0,t](s)‖Sn(t− s)F (Y (s))− S(t− s)F (Y (s))‖2 ds]
) 1

2

+
(
E[

∫ t

0

∫
U

‖Sn(t− s)z − S(t− s)z‖2 ν(dy) ds]
) 1

2

≤ sup
t∈[0,T ]

‖Sn(t)x− S(t)x‖

+ T
1
2
(
E[

∫ T

0

sup
t∈[0,T ]

1[0,t](s)‖Sn(t− s)F (Y (s))− S(t− s)F (Y (s))‖2 ds]
) 1

2
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+ ν(U)
1
2

( ∫ T

0

sup
t∈[0,T ]

1[0,t](s)‖Sn(t− s)z − S(t− s)z‖2 ds
) 1

2
.

supt∈[0,T ]‖Sn(t)x− S(t)x‖ → 0 as n →∞ for all x ∈ H by proposition 40.
Again by proposition 40, for fixed s ∈ [0, T ]

sup
t∈[0,T ]

1[0,t](s)‖Sn(t− s)F (Y (s))− S(t− s)F (Y (s))‖ −→
n→∞

0 (1)

and sup
t∈[0,T ]

1[0,t](s)‖Sn(t− s)z − S(t− s)z‖ −→
n→∞

0 (2).

Moreover, the first sequence (1) of mappings from [0, T ] × Ω to R is bounded
by (K + MT )C(1 + ‖Y ‖) ∈ L2([0, T ]× Ω, λ|[0,T ] ⊗ P ).
Hence, by Lebesgue’s dominated convergence theorem we get that

E[
∫ T

0

sup
t∈[0,T ]

1[0,t](s)‖Sn(t− s)F (Y (s))− S(t− s)F (Y (s))‖2 ds] → 0

as n →∞, n > ω0.
The second sequence (2): supt∈[0,T ] 1[0,t](·)‖Sn(t− ·)z − S(t− ·)z‖, n ∈ N, n >

ω0, is bounded by (K+MT )‖z‖ ∈ L2([0, T ]), thus, we obtain again by Lebesgue’s
theorem that

∫ T

0
supt∈[0,T ] 1[0,t](s)‖Sn(t− s)z − S(t− s)z‖2 ds → 0 as n → ∞,

n > ω0.

The proof of (ii) and (iii) can be done analoguously.

By proposition 23 and proposition 24 we justified that the mappings

F̄n : H ×H2
λ0

(T,H) → H2
λ0

(T,H), n ∈ N, n > ω0, and

F̄ : H ×H2
λ0

(T,H) → H2
λ0

(T,H)

fulfill the conditions of theorem 28 and, finally, we obtain that for all x, h ∈ H

Xn(x) → X(x) and ∂Xn(x)h → ∂X(x)h in H2
λ0

(T,H) as n →∞.

In particular, we get for each t ∈ [0, T ] the existence of a subsequence (nk(t))k∈N
such that

∂Xnk(t)(x)h(t) −→
k→∞

nk(t)>ω0

∂X(x)h(t) P -a.s.

Thus, by (13), it follows that for all t ∈ [0, T ]

‖∂X(x)h(t)‖ = lim
k→∞

nk(t)>ω0

‖∂Xnk(t)(x)h(t)‖ ≤ lim
k→∞

nk(t)>ω0

exp(
ω0nk(t)

nk(t)− ω0
t)‖h‖ (14)

= eω0t‖h‖ P -a.s.

4.3 Gradient estimates for the resolvent

We define the transition kernels and the “resolvent” corresponding with the
mild solution X(x), x ∈ H, in the following way.
Let f : (H,B(H)) → (R,B(R)), bounded. Define

ptf(x) := E[f(X(x)(t)], t ∈ [0, T ], x ∈ H, and
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Rαf(x) :=
∫ ∞

0

e−αtptf(x) dt, α ≥ 0.

Proposition 25. If f ∈ C1
b (H, R) where

C1
b := {g : H → R | g is continuously Fréchet differentiable such that

sup
x∈H

‖Dg(x)‖L(H,R) < ∞}

then Rαf : H → R is Gâteaux differentiable for all α ≥ 0 and for all x, h ∈ H
and α ≥ 0

∂Rαf(x)h =
∫ ∞

0

e−αtE[Df(X(x)(t))∂X(x)h(t)] dt.

Proof. Let α ≥ 0, x, h ∈ H and ε > 0 then we get that

|Rαf(x + εh)−Rαf(x)
ε

−
∫ ∞

0

e−αtE[Df(X(x)(t))∂X(x)h(t)] dt|

≤
∫ ∞

0

e−αtE
[
|f(X(x + εh)(t))− f(X(x)(t))

ε
−Df(X(x)(t))∂X(x)h(t)|

]
dt,

where by proposition 31

E
[
|f(X(x + εh)(t))− f(X(x)(t))

ε
−Df(X(x)(t))∂X(x)h(t)|

]
=E

[
|
∫ 1

0

Df
(
X(x)(t)− σ(X(x + εh)(t)−X(x)(t))

)
(X(x + εh)(t)−X(x)(t)

ε

)
−Df(X(x)(t))∂X(x)h(t) dσ|

]
≤E

[ ∫ 1

0

‖Df
(
X(x)(t)− σ(X(x + εh)(t)−X(x)(t))

)
‖L(H,R)

‖X(x + εh)(t)−X(x)(t)
ε

− ∂X(x)h(t)‖ dσ
]

+E
[ ∫ 1

0

‖Df
(
X(x)(t)− σ(X(x + εh)(t)−X(x)(t))

)
−Df(X(x)(t))‖L(H,R)‖∂X(x)h(t)‖ dσ

]
≤ sup

x∈H
‖Df(x)‖L(H,R)‖

X(x + εh)−X(x)
ε

− ∂X(x)h‖H2

+
(
E

[ ∫ 1

0

‖Df
(
X(x)(t)− σ(X(x + εh)(t)−X(x)(t))

)
−Df(X(x)(t))‖2L(H,R) dσ

]) 1
2 ‖∂X(x)h‖H2 .

Thus, we get that

|Rαf(x + εh)−Rαf(x)
ε

−
∫ ∞

0

e−αtE[Df(X(x)(t))∂X(x)h(t)] dt|

≤
∫ ∞

0

e−αt dt sup
x∈H

‖Df(x)‖L(H,R)‖
X(x + εh)−X(x)

ε
− ∂X(x)h‖H2

+
∫ ∞

0

e−αt
(
E

[ ∫ 1

0

‖Df
(
X(x)(t)− σ(X(x + εh)(t)−X(x)(t))

)
−Df(X(x)(t))‖2L(H,R) dσ

]) 1
2 dt ‖∂X(x)h‖H2 .
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The first summand converges to 0 as ε → 0 as X : H → H2(T,H) is Gâteaux-
differentiable.
To prove the convergence to 0 of the second summand we use lemma 18.
Since X(t) : H → L2(Ω,Ft, P ;H) is continuous we can conclude that for fixed
σ ∈ [0, 1]

X(x)(t)− σ(X(x + εh)(t)−X(x)(t)) →
ε→0

X(x)(t) in P -measure.

Moreover, Df : H → L(H, R) is continuous and we obtain by lemma 18 that

‖Df(X(x)(t)− σ(X(x + εh)(t)−X(x)(t)))−Df(X(x)(t))‖2L(H,R) →
ε→0

0

in P -measure. As this sequence is bounded by
4 supx∈H‖Df(x)‖2L(H,R) < ∞ it follows that

E
[
‖Df(X(x)(t)− σ(X(x + εh)(t)−X(x)(t)))−Df(X(x)(t))‖2L(H,R)

]
→

ε→0
0.

Since this expectation is bounded by 4 supx∈H‖Df(x)‖2L(H,R) < ∞ we get by
Lebesgue’s dominated convergence theorem that∫ 1

0

E
[
‖Df(X(x)(t)− σ(X(x + εh)(t)−X(x)(t)))−Df(X(x)(t))‖2L(H,R)

]
dσ

→
ε→0

0.

Finally, again by Lebesgue’s theorem, we obtain that∫ ∞

0

e−αtE
[ ∫ 1

0

‖Df(X(x)(t)− σ(X(x + εh)(t)−X(x)(t)))

−Df(X(x)(t))‖2L(H,R) dσ
] 1

2 dt ‖∂X(x)h‖H2

→ 0 as ε → 0.

We proved the existence of the directional derivatives ∂Rαf(x, ;h), x, h ∈ H.
Obviously, ∂Rαf(x, ;h) ∈ L(H, R) and therefore the assertion of the proposition
follows.

Using the gradient estimate (14) for the mild solution and the representation of
∂Rαf(x)h we get, if f ∈ C1

b (H, R) and α > ω0, that

‖∂Rαf(x)h‖ = ‖
∫ ∞

0

e−αtE[Df(X(x)(t))∂X(x)h(t)] dt‖

≤
∫ ∞

0

e−αtE[sup
x∈H

‖Df(x)‖L(H,R)‖∂X(x)h(t)‖] dt

≤
∫ ∞

0

e−αt sup
x∈H

‖Df(x)‖L(H,R)e
ω0t‖h‖ dt

=
1

α− ω0
sup
x∈H

‖Df(x)‖L(H,R)‖h‖

Finally, we have

‖∂Rαf(x)‖L(H,R) ≤
1

α− ω0
sup
x∈H

‖Df(x)‖L(H,R) for all α > ω0 and f ∈ C1
b (H, R).
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A Existence, continuity and differentiability of
implicit functions

Let (E, ‖ ‖) and (Λ, ‖ ‖Λ) be two Banach spaces. In the whole chapter we
consider a mapping G : Λ × E → E which is a contraction in the second
variable, i.e. there exists an α ∈ [0, 1[ such that

‖G(λ, x)−G(λ, y)‖ ≤ α‖x− y‖ for all λ ∈ Λ, x, y ∈ E. (15)

Then, by Banach’s fixed point theorem, we get the existence of a unique implicit
function ϕ : Λ → E, i.e.

ϕ(λ) = G(λ, ϕ(λ)) for all λ ∈ Λ.

Theorem 26 (Continuity of the implicit function). (i) If for all x ∈ E
the mapping G(·, x) : Λ → E is continuous then ϕ : Λ → E is continuous.

(ii) If there exists a constant L ≥ 0 such that

‖G(λ, x)−G(λ̃, x)‖E ≤ L‖λ− λ̃‖Λ for all x ∈ E

then ϕ : Λ → E is Lipschitz continuous.

Proof. [15, Theorem D.1, p.164]

To analyze the differentiability of the implicit function we adapt an idea
first proposed in [33]. We introduce two further Banach spaces (Λ0, ‖ ‖Λ0) and
(E0, ‖ ‖E0) continuously embedded in (Λ, ‖ ‖Λ) and (E, ‖ ‖E), respectively. We
assume that G : Λ × E → E and G : Λ0 × E0 → E0 fulfill condition (15) with
the same α ∈ [0, 1[.

Theorem 27 (First order differentiability). We assume that the mapping
G : Λ× E → E fulfills the following conditions.

1. G(·, x) : Λ → E is continuous for all x ∈ E,

2. for all λ, µ ∈ Λ and all x, y ∈ E there exist the directional derivatives

∂1G(λ, x;µ) = E − lim
h→∞

G(λ + hµ, x)−G(λ, x)
h

∂2G(λ, x; y) = E − lim
h→∞

G(λ, x + hy)−G(λ, x)
h

and ∂1G : Λ× E × Λ → E and ∂2G : Λ× E × E → E are continuous.

Then the implicit function ϕ : Λ → E is Gâteaux differentiable such that the
mapping Λ× Λ → E, (λ, µ) 7→ ∂ϕ(λ)µ is continuous and

∂ϕ(λ)µ = [I − ∂2G(λ, ϕ(λ))]−1∂1G(λ, ϕ(λ))µ (16)

for all λ, µ ∈ Λ
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Proof. [15, Theorem D.8, p.168]

Theorem 28. Let Gn : Λ× E → E, n ∈ N, such that

‖Gn(λ, x)−Gn(λ, y)‖ ≤ α‖x− y‖ for all λ ∈ Λ and all
x, y ∈ E and n ∈ N.

Moreover, assume that the mappings G and Gn, n ∈ N, fulfill the following
conditions.

1. G(·, x) and Gn(·, x), n ∈ N, are continuous for all x ∈ E,

2. G, Gn, n ∈ N, are Gâteaux differentiable such that

∂1G : Λ× E × Λ → E and ∂2G : Λ× E × E → E

∂1Gn : Λ× E × Λ → E and ∂2Gn : Λ× E × E → E, n ∈ N,

are continuous,

3. ∂1Gn(λ, ·)µ and ∂2Gn(λ, ·)x, λ, µ ∈ Λ, x ∈ E, are continuous uniformly
in n ∈ N,

4. Gn → G, ∂1Gn → ∂1G and ∂2Gn → ∂1G pointwisely as n →∞.

Then there exist unique implicit functions ϕ, ϕn : Λ → E, n ∈ N, such that
G(λ, ϕ(λ)) = ϕ(λ) and Gn(λ, ϕn(λ)) = ϕn(λ), n ∈ N, for all λ ∈ Λ.
ϕ and ϕn, n ∈ N, are Gâteaux differentiable.

Moreover, ϕn(λ) → ϕ(λ) and ∂ϕn(λ)µ → ∂ϕ(λ)µ as n →∞ for all λ, µ ∈ Λ.

Proof. For all λ ∈ Λ we have that

‖ϕn(λ)− ϕ(λ)‖ = ‖Gn(λ, ϕn(λ))−G(λ, ϕ(λ))‖
≤‖Gn(λ, ϕn(λ))−Gn(λ, ϕ(λ))‖+ ‖Gn(λ, ϕ(λ))−G(λ, ϕ(λ))‖
≤α‖ϕn(λ)− ϕ(λ)‖+ ‖Gn(λ, ϕ(λ))−G(λ, ϕ(λ))‖.

Subtracting on both sides of the above equation α‖ϕn(λ)− ϕ(λ)‖ and dividing
by (1− α) we get that

‖ϕn(λ)− ϕ(λ)‖ ≤ 1
1− α

‖Gn(λ, ϕ(λ))−G(λ, ϕ(λ))‖ −→
n→∞

0

by assumption.
By theorem 27 (i) ϕ and ϕn, n ∈ N, are Gâteaux differentiable. Using the
representation (16) of the Gâteaux derivatives of ϕn, n ∈ N, and ϕ we can
estimate ‖∂nϕ(λ)µ− ∂ϕ(λ)µ‖, λ, µ ∈ Λ, in the following way:

‖∂nϕ(λ)µ− ∂ϕ(λ)µ‖
≤‖∂2Gn(λ, ϕn(λ))∂ϕn(λ)µ− ∂2G(λ, ϕ(λ))∂ϕ(λ)µ‖

+ ‖∂1Gn(λ, ϕn(λ))µ− ∂1G(λ, ϕ(λ))µ‖
≤‖∂2Gn(λ, ϕn(λ))∂ϕn(λ)µ− ∂2Gn(λ, ϕn(λ))∂ϕ(λ)µ‖
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+ sup
m∈N

‖∂2Gm(λ, ϕn(λ))∂ϕ(λ)µ− ∂2Gm(λ, ϕ(λ))∂ϕ(λ)µ‖

+ ‖∂2Gn(λ, ϕ(λ))∂ϕ(λ)µ− ∂2G(λ, ϕ(λ))∂ϕ(λ)µ‖
+ sup

m∈N
‖∂1Gm(λ, ϕn(λ))µ− ∂1Gm(λ, ϕ(λ))µ‖

+ ‖∂1Gn(λ, ϕ(λ))µ− ∂1G(λ, ϕ(λ))µ‖

Since
‖∂2Gn(λ, ϕn(λ))∂ϕn(λ)µ− ∂2Gn(λ, ϕn(λ))∂ϕ(λ)µ‖ ≤ α‖∂nϕ(λ)µ− ∂ϕ(λ)µ‖ we
obtain that

‖∂nϕ(λ)µ− ∂ϕ(λ)µ‖

≤ 1
1− α

(
sup
m∈N

‖∂2Gm(λ, ϕn(λ))∂ϕ(λ)µ− ∂2Gm(λ, ϕ(λ))∂ϕ(λ)µ‖

+ ‖∂2Gn(λ, ϕ(λ))∂ϕ(λ)µ− ∂2G(λ, ϕ(λ))∂ϕ(λ)µ‖
+ sup

m∈N
‖∂1Gm(λ, ϕn(λ))µ− ∂1Gm(λ, ϕ(λ))µ‖

+ ‖∂1Gn(λ, ϕ(λ))µ− ∂1G(λ, ϕ(λ))µ‖
)

−→
n→∞

0,

since ϕn(λ) → ϕ(λ) as n → ∞ and by the assumptions on the mappings Gn,
n ∈ N, and G.

B Properties of the Bochner integral

Let (X, ‖ ‖) be a Banach space, B(X) the Borel σ-field of X and (Ω,F , µ) a
measure space with finite measure µ.

Proposition 29. Let f ∈ L1(Ω,F , µ;X). Then∫
ϕ ◦ f dµ = ϕ

(∫
f dµ

)
holds for all ϕ ∈ X∗ = L(X, R).

Proof. [8, Proposition E.11, p.356]

Proposition 30. Let Y be a further Banach space, ϕ ∈ L(X, Y ) and f ∈
L1(Ω,F , µ;X) such that ϕ ◦ f is strongly measurable. Then∫

ϕ ◦ f dµ = ϕ
(∫

f dµ
)
.

Proof. [9, Proposition 1.6, p.21]

Proposition 31 (Fundamental theorem). Let −∞ < a < b < ∞ and
f ∈ C1([a, b];X). Then

f(t)− f(s) =
∫ t

s

f ′(u) du :=

{ ∫
1[s,t](u)f ′(u) du if s ≤ t

−
∫

1[t,s](u)f ′(u) du otherwise

for all s, t ∈ [a, b] where du denotes the Lebesgue measure on B(R).
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Proof. [15, Proposition A.7, p.152]

Proposition 32. Let [a, b] be a finite interval and f ∈ L1([a, b],B([a, b]), λ; R),
where λ denotes the Lebesgue measure. Then the mapping F : [a, b] → R,
s 7→

∫ s

a
f(t) dt, is differentiable λ-a.e. on [a, b[ and F ′(s) = f(s) for λ-a.e.

s ∈ [a, b[.

Proof. [11, Chapter 4, Theorem 12, p.89]

Proposition 33. Let [a, b] be a finite interval and let
f ∈ L1([a, b],B([a, b]), λ;X), where λ denotes the Lebesgue measure. Then the
mapping F : [a, b] → X, s 7→

∫ s

a
f(t) dt, is differentiable λ-a.e. on [a, b[ and

F ′(s) = f(s) for λ-a.e. s ∈ [a, b[.

Proof. Since f([a, b]) is separable there exist xn, n ∈ N, such that {xn |n ∈ N}
is a dense subset of f([a, b]). Then ‖f − xn‖ ∈ L1([a, b], λ) for all n ∈ N. Conse-
quently, by proposition 32 the mappings Fn : [a, b] → R, s 7→

∫ s

a
‖f(t)− xn‖ dt,

n ∈ N, are differentiable λ-a.e. on [a, b[ and Fn(s) = ‖f(s)− xn‖ for all n ∈ N
and for λ-a.e. s ∈ [a, b[.
Then we get for λ-a.e. s ∈ [a, b[ that

lim sup
h→0

‖ 1
h

( ∫ s+h

a

f(t) dt−
∫ s

a

f(t) dt
)
− f(s)‖

= lim sup
h→0

‖ 1
h

∫ s+h

s

(f(t)− f(s) dt‖

≤ lim sup
h→0

1
h

∫ s+h

s

‖f(t)− f(s)‖ dt

≤ lim sup
h→0

1
h

∫ s+h

s

‖f(t)− xn‖ dt− ‖f(s)− xn‖

=2‖f(s)− xn‖.

Choosing a subsequence xnk
, k ∈ N, such that ‖f(s)− xnk

‖ → 0 as k →∞ we
obtain that for λ-a.e. s ∈ [a, b[ holds

‖ 1
h

( ∫ s+h

a

f(t) dt−
∫ s

a

f(t) dt
)
− f(s)‖ → 0 as h → 0.

Definition 34 (Absolut continuity). Let −∞ ≤ a < b ≤ ∞. A function
f : [a, b] → R is absolutely continuous (on [a, b]) if for every ε > 0 there exists
δ > 0 such that

∑n
i=1|f(xi)− f(yi)| < ε whenever

∑n
i=1|xi − yi| < δ for any

set of disjoint intervals such that (xi, yi) ⊂ [a, b] for each i ∈ {1, . . . , n}.

Proposition 35. Let [a, b] be a finite interval and f : [a, b] → R absolutely
continuous, then if x ∈ [a, b]

f(x)− f(a) =
∫ x

a

f ′(t) dt

Proof. [11, Chapter 9, Corollary 3, p.162]
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C Complements

In this chapter we present some results, needed in the theorem 14, for the drift
part

∫ t

0
S(t− s)F (X(s)) ds, t ∈ [0, T ], of equation (3). They can also be found

in [FrKn 2002].

Theorem 36. Assume that F fulfills hypotheses H.0 and H.1.

(i) Let Y, Z ∈ H2(T,H), predictable. Then 1[0,t](·)S(t − ·)∂F (Y (·))Z(·) is
P -a.s. Bochner integrable on [0, T ].

(ii) Let Y, Z ∈ H2(T,H), predictable. Then

sup
t∈[0,T ]

‖
∫ t

0

S(t− s)
(F (Y (s) + hZ(s))− F (Y (s))

h
− ∂F (Y (s))Z(s)

)
ds‖L2

≤MT T
1
2 E

[ ∫ T

0

‖F (Y (s) + hZ(s))− F (Y (s))
h

− ∂F (Y (s))Z(s)‖2 ds
] 1

2

−→
h→0

0.

(iii) Let Y, Yn, Z, Zn ∈ H2(T,H), predictable, n ∈ N, such that Yn → Y and
Zn → Z in H2(T,H). Then

sup
t∈[0,T ]

‖
∫ t

0

S(t− s)(∂F (Yn(s))Zn(s)− ∂F (Y (s))Z(s)) ds‖L2

−→
n→∞

0.

Proof. (i) Since Y is predictable and F is B(H)/B(H)-measurable the process
∂F (Y (·))Z(·) is predictable. Moreover, ‖∂F (Y )Z‖ ≤ C‖Z‖ ∈ L1(Ω× [0, T ], P⊗
λ). Hence, ∂F (Y (·))Z(·) is P -a.s. Bochner integrable.

(ii) The estimate is an easy calculation. Then by Lebesgue’s dominated con-
vergence theorem the convergence to 0 follows (see also [15, Proof of Theorem
4.3.(i), Step 1, (b), (1.), p.97]).

(iii)

sup
t∈[0,T ]

‖
∫ t

0

S(t− s)(∂F (Yn(s))Zn(s)− ∂F (Y (s))Z(s)) ds‖Lp

can be estimated by

MT T
p−1

p

[
CT

1
p ‖Zn − Z‖Hp

+
(
E

[ ∫ T

0

‖∂F (Yn(s))Z(s)− ∂F (Y (s))Z(s)‖p ds
]) 1

p

]
.
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‖Zn − Z‖Hp → 0 as n →∞ by assumption. The second summand converges to
0 as n →∞, by the continuity of ∂F , lemma 18 and the fact that

‖∂F (Yn(s))Z(s)− ∂F (Y (s))Z(s)‖p ≤ 2pCp‖Z‖p ∈ L1(Ω× [0, T ],PT , P × λ)

(see also [15, Proof of Theorem 4.3.(i), Step 2, (b), (1.), p.100/101]).

D The Theorem of Hille-Yosida

Let (E, ‖ ‖) be a separable Banach space.

Proposition 37. Let S(t), t ≥ 0 be a C0-semigroup on E and let (A,D(A)) be
its infinitesimal generator. If x ∈ D(A) then S(t)x ∈ D(A) and

d

dt
S(t)x = AS(t)x = S(t)Ax for all t ≥ 0.

Proof. [25, I. Theorem 2.4, p.4/5]

Proposition 38 (Hille-Yosida). Let (A,D(A)) be a linear operator on E.
Then the following statements are equivalent.
(i) A is the infinitesimal generator of a C0-semigroup S(t), t ≥ 0, such that
there exist constants M ≥ 1 and ω ≥ 0 such that ‖S(t)‖L(E) ≤ Meωt for all
t ≥ 0.
(ii) A is closed and D(A) is dense in E, the resolvent set ρ(A) contains the
interval ]ω,∞[ and the following estimates for the resolvent Gα := (α − A)−1,
α ∈ ρ(A), associated to A hold

‖Gk
α‖L(H) ≤

M

(α− ω)k
, k ∈ N, α > ω.

Proof. [25, I. Theorem 5.3, p.20]

Let (A,D(A)) be the infinitesimal generator of a C0-semigroup S(t), t ≥ 0,
such that there exist constants M ≥ 1 and ω ≥ 0 such that ‖S(t)‖L(E) ≤ Meωt

for all t ≥ 0. We define now the Yosida-approximation of A. For n ∈ N, n > ω,
define

An := nAGn = nGnA.

Proposition 39. Let (A,D(A)) be the infinitesimal generator of a C0-semigroup
S(t), t ≥ 0, such that there exist constants M ≥ 1 and ω ≥ 0 such that
‖S(t)‖L(E) ≤ Meωt for all t ≥ 0. Then

lim
n→∞

Anx = Ax for all x ∈ D(A).

Proof. Let x ∈ D(A) and n > ω, then

‖nGnx− x‖E = ‖Gn(nx−Ax) + GnAx− x‖E
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= ‖GnAx‖E ≤ M

n− ω
‖Ax‖E −→

n→∞
0.

But, by proposition 38, D(A) is dense in E and ‖nGnx‖L(E) ≤ Mn
n−ω , where the

sequence Mn
n−ω , n > ω, is convergent and therefore bounded. Hence we get for

arbitrary x ∈ E that ‖nGnx− x‖E → 0.
In particular, we obtain for all x ∈ D(A) that

Anx = nGnAx −→
n→∞

Ax.

Proposition 40. Let (A,D(A)) be the infinitesimal generator of a strongly
continuous semigroup S(t), t ≥ 0, such that there exist constants M ≥ 1 and
ω ≥ 0 such that ‖S(t)‖L(E) ≤ Meωt for all t ≥ 0. Moreover, let An, n ∈ N,
n > ω, be the Yosida-approximation of A. Then

S(t)x = lim
n→∞

Sn(t)x locally uniformly in t ≥ 0 for all x ∈ E

where Sn(t) := etAn , t ≥ 0, and the following estimate holds

‖Sn(t)‖L(E) ≤ Mexp(
ωnt

n− ω
) for all t ≥ 0, n > ω.

Proof. [25, I. Theorem 5.5, p.21]
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[6] Blanchard, P., Brüning, E.: Variational Methods in Mathematical Physics.
Berlin-Heidelberg-New York: Springer Verlga 1982

[7] Chow, Y., Teicher, H.: Probability Theory. New York-Heidelberg-Berlin:
Springer Verlag 1978



39

[8] Cohn, D.L.: Measure Theory. Boston: Birkhäuser 1980
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