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Given a second order parabolic operator

Lu(t, x) :=
∂u(t, x)

∂t
+ aij(t, x)∂xi∂xju(t, x) + bi(t, x)∂xiu(t, x),

we consider the weak parabolic equation L∗µ = 0 for Borel probability measures on (0, 1)×Rd.
The equation is understood as the equality∫

(0,1)×Rd

Lu dµ = 0

for all smooth functions u with compact support in (0, 1) × Rd. This equation is satisfied for
the transition probabilities of the diffusion process associated with L. We show that under
broad assumptions µ has the form µ = %(t, x) dt dx, where the function x 7→ %(t, x) is Sobolev,
|∇x%(x, t)|2/%(t, x) is Lebesgue integrable over [0, τ ] × Rd, and % ∈ Lp([0, τ ] × Rd) for all p ∈
[1,+∞) and τ < 1. Moreover, a sufficient condition for the uniform boundedness of % on
[0, τ ]× Rd is given.
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1. Introduction and notation

The objective of this work is to give efficient conditions for the global Sobolev regularity
and integrability of densities of solutions of the parabolic equations of the form

L∗µ = 0 (1.1)

for Borel measures µ on (0, 1) × Rd. Such equations have been recently investigated in
[1], [2], [3], [16]. Here L is a second order parabolic operator

Lu(t, x) :=
∂u(t, x)

∂t
+ aij(t, x)∂xi

∂xj
u(t, x) + bi(t, x)∂xi

u(t, x),

and the interpretation of our equation is the following. We shall say that a Borel proba-
bility measure µ on (0, 1)× Rd represented in the form µ(dt dx) = µt(dx) dt by means of
a family of Borel measures (µt)t∈[0,1) on Rd satisfies the weak parabolic equation (1.1) if
the functions aij and bi are integrable on every compact set in (0, 1)×Rd with respect to
the measure µ = µt dt and, for every u ∈ C∞

0 ((0, 1)× Rd), one has∫
(0,1)×Rd

Ludµ =

∫ 1

0

∫
Rd

Lu(t, x)µt(dx) dt = 0. (1.2)

We shall say that µ satisfies the initial condition µ0 = ν at t = 0 if ν is a Borel measure
on Rd and

lim
t→0

∫
Rd

ζ(x)µt(dx) =

∫
Rd

ζ(x) ν(dx) (1.3)

for all ζ ∈ C∞
0 (Rd).

The same definitions are introduced in the case where Rd is replaced by an open set
Ω ⊂ Rd or by an open set in a Riemannian manifold.
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1758.2003.1, DFG 436 RUS 113/343/0(R), INTAS 03-51-5018, and the SFB 701 at the University of
Bielefeld.
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Equation (1.1) is satisfied for the transition probabilities of the diffusion process gov-
erned by the stochastic differential equation

dξt =
√

2A(t, ξt)dwt + b(t, ξt)dt

provided that such a diffusion exists and the coefficients A and b satisfy certain conditions.
However, (1.1) can be considered regardless of any probabilistic assumptions. Moreover,
a study of this equation in a purely analytical setting may be useful for constructing an
associated diffusion (see [16]).

Our main result states that the density % of any solution has the property that %(t, · )
is Sobolev on Rd and |∇%(t, x)|2/%(t, x) is integrable over [0, τ ] × Rd provided that the
functions |b| and ln(|x|+1) are in L2(µ), the coefficient A is uniformly bounded, uniformly
invertible and uniformly Lipschitzian in x, and the initial distribution µ0 = %(0, · ) dx has
finite entropy. The assumptions on A can be relaxed if b has certain additional local
integrability. An efficient condition in terms of Lyapunov functions is given in order to
ensure the square integrability of |b| and ln(|x| + 1) with respect to the solution µ. The
main result enables us to show that % belongs to all Lp([0, τ ] × Rd) whenever τ < 1,
provided that supt ‖b(t, · )‖Ld(µt) < ∞ and %(0, · ) ∈ Lp(Rd) for all p ≥ 1. If |b| ∈ Lβ(µ)

for some β > d + 2 and %(0, · ) ∈ L∞(Rd), then the density % is uniformly bounded on
[0, τ ]×Rd whenever τ < 1. By using this assertion we obtain pointwise upper bounds of the
form %(t, x) ≤ Φ(x)−1. Note that unlike many known results on the global boundedness
of solutions, it is not required here that the drift term be dissipative or potential.

Analogous results in the elliptic case have been obtained in [7], [4], [8], [14], [5] and [6].
One might regard the elliptic case as the situation when the solution and the coefficients
are independent of time. Then our parabolic result does not recover the elliptic one,
because the initial distribution (which in this case coincides with the solution) must have
finite entropy, and the latter assumption cannot be completely removed in the parabolic
case. On the other hand, a reasonable parabolic analogue of the elliptic result might
be as follows: the integrability of |%|2/% on [τ1, τ2] × Rd for any closed interval [τ1, τ2] ⊂
(0, 1) without restrictions on the initial distribution. So far we have not succeeded in
investigating this second possibility. Of course, if for some τ > 0 the measure µτ has
finite entropy, then our hypotheses are satisfied on [τ, 1].

Our result will be applied in a forthcoming paper on the uniqueness problem for para-
bolic equations for measures. It can also be useful in the study of transition probabilities
of diffusion processes and in Nelson’s dynamics (see [9], [10], [11], [12], [15]).

Let W p,1(Rd) denote the Sobolev space of functions that belong to Lp(Rd) with their
generalized partial derivatives. This space is equipped with the standard norm

‖f‖W p,1 := ‖f‖p + ‖∇f‖p,

where ‖ · ‖p denotes the Lp(Rd)-norm on scalar or vector functions. The symbol Lp,q,
where 1 ≤ p, q <∞, will stand for the space of all measurable functions f on [0, 1]× Rd

with finite norm

‖f‖p,q :=
(∫ 1

0

(∫
Rd

|f(t, x)|p dx
)q/p

dt
)1/q

.

The space Lp,∞, where 1 ≤ p < ∞, consists of all measurable functions f on [0, 1] × Rd

with t 7→ ‖f(t, · )‖Lp(Rd) ∈ L∞[0, 1]. For analogous spaces of functions on [0, τ ] × Rd

we used the notation Lp,q([0, τ ] × Rd). Finally, Hp,q([0, τ ] × Rd) denotes the space of all
measurable functions f on [0, τ ]× Rd with finite norm

‖f‖Hp,q([0,τ ]×Rd) :=
(∫ τ

0

‖f(t, · )‖q
W p,1 dt

)1/q

.

For simplicity of notation the gradient of a function u on (0, 1) × Rd with respect to
the argument from Rd is denoted by ∇u, i.e.,

∇u(t, x) := ∇xu(t, x) = (∂xi
u(t, x), . . . , ∂xd

u(t, x)).
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We use the standard rule of summation with respect to repeated indices, e.g.,

∂xi
aij :=

d∑
i=1

∂xi
aij, aij∂xi

∂xj
u :=

d∑
i,j=1

aij∂xi
∂xj

u.

We say that a nonnegative measure µ0 on Rd has finite entropy if µ0 = %0 dx and
%0 ln %0 ∈ L1(Rd), where we set 0 ln 0 := 0. The entropy of %0 is the integral of %0 ln %0.

It was shown in [3] that if the coefficient A is nondegenerate, then µ is absolutely
continuous with respect to Lebesgue measure on (0, 1) × Rd. The corresponding density
will be denoted by %.

A sufficient condition for the existence of a solution in the class of probability measures
is the following (see [2] which improves [1]). The coefficients aij and bi are Borel functions
on [0, 1]×Rd such that A(t, x) = (aij(t, x)) is a nonnegative symmetric matrix and there
is p > d+ 2 such that, for every ball B and all i, j ≤ d, one has

(C1) inf(t,x)∈[0,1]×B detA(t, x) ≥M1(B) > 0 and supt∈[0,1] ‖aij(t, · )‖W p,1(B) ≤M2(B),

(C2) supt∈[0,1] ‖bi(t, · )‖Lp(B) ≤M3(B).

If (C1) and (C2) are fulfilled and there is a nonnegative function V on Rd such that
lim

|x|→+∞
V (x) = +∞ and LV ≤ c1V + c2 for some constants c1 and c2, then a solution

µ = µt(dx) dt with probability measures µt exists for every initial distribution µ0 and the
function

t 7→
∫

Rd

ζ(x)µt(dx)

is continuous on [0, 1) for every ζ ∈ C∞
0 (Rd). Moreover, if V ∈ L1(µ0), then∫ 1

0

∫
Rd

V (x)µt(dx) dt <∞.

In addition, if LV ≤ c2, then ∫
Rd

V (x)µt(dx) ≤ c2

for almost every t. For example, if the coefficient A is uniformly bounded and

〈b(t, x), x〉 ≤ k1|x|2 + k2,

then we take the function V (x) = ln(|x|2 + 1). This gives an estimate LV ≤ const, hence
the integrals of ln(|x| + 1) against µt are uniformly bounded provided that ln(|x| + 1) ∈
L1(µ0). If the coefficient A is uniformly bounded and

〈b(t, x), x〉 ≤ k1|x|2 ln(|x|+ 1) + k2,

then we set V (x) = | ln(|x|2 + 1)|2 and obtain LV ≤ c1V + c2, hence | ln(|x| + 1)|2 is
µ-integrable provided that it is µ0-integrable.

Our main estimate will be established in the two cases corresponding to two different
approaches:

1) when (C1) is replaced by a stronger assumption and (C2) is replaced by the condition
that |b|, ln max(|x|, 1) ∈ L2(µ),

2) the condition |b|, ln max(|x|, 1) ∈ L2(µ) is imposed in addition to (C1), (C2) and a
certain global condition on A.

Set

ΘA(t, x) :=
d∑

j=1

∣∣∣ d∑
i=1

∂xi
aij(t, x)

∣∣∣.
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2. Bounds on logarithmic gradients

Our first main result establishes the square integrability of the logarithmic gradient of µ,
i.e., the mapping ∇%/%, with respect to µ. If %(t, · ) ∈ W 1,1

loc , then we use the following
convention: ∇%(t, x)/%(t, x) := 0 if %(t, x) = 0.

Theorem 2.1. Suppose µ, where each µt is a probability measure, satisfies (1.1), (1.3).
Let

(i) the mapping A be uniformly bounded with A(t, x) ≥ α · I for some constant α > 0,
and let the functions x 7→ aij(t, x) be Lipschitzian with constant λ,

(ii) |b| ∈ L2(µ).
Assume also that the function Λ(x) := ln max(|x|, 1) is in L2(µ) (which is the case if, e.g.,
〈b(t, x), x〉 ≤ C1|x|2Λ(x) +C2 with some constants C1 and C2 and Λ ∈ L2(µ0)). If µ0 has
finite entropy, then µt = %(t, · ) dx, where %(t, · ) ∈ W 1,1

loc , and for each τ < 1 one has∫ τ

0

∫
Rd

|∇%(t, x)|2

%(t, x)
dx dt <∞. (2.1)

In particular, we have
√
% ∈ H2,2([0, τ ] × Rd)) and % ∈ Ld/(d−2),1([0, τ ] × Rd)) if d > 2,

and % ∈ Ls,1([0, τ ]× Rd)) for all s ∈ [1,∞) if d = 2.

If the integrals

∫
Rd

%(t, x)Λ(x) dx are bounded as t → 1 (which is the case, e.g., if

〈b(t, x), x〉 ≤ C1|x|2 + C2 with some constants C1 and C2 and Λ ∈ L1(µ0)), then (2.1) is
true for τ = 1.

Proof. We shall use the following fact (see, e.g., [4, Lemma 2.1]): given two nonnegative
functions f1, f2 ∈ L1(Rd), for any measurable function ψ such that |ψ|2f1 ∈ L1(Rd) one
has ∫

Rd

|(ψf1) ∗ f2|2

f1 ∗ f2

dx ≤
∫

Rd

|ψ|2f1 dx

∫
Rd

f2 dx, (2.2)

where |(ψf1) ∗ f2(x)|2/(f1 ∗ f2(x)) := 0 if f1 ∗ f2(x) = 0.
For a function w ∈ C∞

0 (Rd) we set

% ∗ w(t, x) :=

∫
Rd

w(x− y)%(t, y) dy, x ∈ Rd.

Here and in what follows the convolutions are always taken with respect to the variable
from Rd. Equation (1.2) and the inclusion |b| ∈ L2(µ) yield that the following equality
holds in Sobolev’s sense:

∂t(% ∗ w) = (aij%) ∗ ∂xi
∂xj

w − (bi%) ∗ ∂xi
w. (2.3)

We shall deal with a version of %∗w (denoted by the same symbol) defined by the formula

% ∗ w(t, x) := % ∗ w(0, x) +

∫ t

0

v(s, x) ds, (2.4)

where v is the right-hand side of (2.4). Since |b| ∈ L2(µ) and the functions aij are bounded,
one has v ∈ L1([0, 1]×Rd). Hence the function %∗w is absolutely continuous in t on [0, 1]
and belongs to the class C∞

b (Rd) in x. For almost every t, the indicated version coincides
for all x with the initial version defined by the convolution. It will be important as well
that this is true for t = 0. Since the initial version does not exceed supx |w(x)| in the
absolute value, the same is true for our new version for almost all t, and then pointwise by
the continuity in t. It is readily seen from conditions (i) and (ii) that the aforementioned
properties, including (2.3), also remain valid for the functions

wε(x) = ε−dg(x/ε),
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where g is the standard Gaussian density and ε ∈ (0, 1). Below we take for ε only numbers
of the form 1/n, n ∈ N. Let us set

%ε := % ∗ wε, fε(t, x) := %ε(t, x) + εmax(1, |x|)−d−1,

where we take for %ε the version indicated in (2.4). Since the function %Λ is integrable,
one can find τ as close to 1 as we like such that∫

Rd

%(τ, x)Λ(x) dx <∞. (2.5)

A number τ for which (2.5) is fulfilled can be chosen in such a way that for each ε = 1/n,
our version of %ε(τ, x) will coincide with the convolution %(τ, · ) ∗ wε(x) for all x. Then
the easily verified inequality ln max(|x+ y|, 1) ≤ ln max(|x|, 1) + |y| yields∫

Rd

fε(τ, x)Λ(x) dx ≤
∫

Rd

%ε(τ, x)Λ(x) dx+ ε

∫
Rd

max(|x|, 1)−d−1Λ(x) dx

≤
∫

Rd

%(τ, x)Λ(x) dx+

∫
Rd

|y|wε(y) dy + ε

∫
Rd

max(|x|, 1)−d−1Λ(x) dx ≤M1, (2.6)

where M1 is a number independent of ε. By (2.3) we have∫ τ

0

∫
Rd

∂t(% ∗ wε) ln fε dx dt =

∫ τ

0

∫
Rd

[
(aij%) ∗ ∂xi

∂xj
wε − (bi%) ∗ ∂xi

wε

]
ln fε dx dt, (2.7)

because |fε| ≤ c1 + c2Λ with some constants c1 and c2 and the functions ((bi%) ∗ ∂xi
wε)Λ

and ((aij%) ∗ ∂xi
∂xj

wε)Λ are integrable on (0, 1) × Rd. Indeed, since % ∗ |∂xi
wε| > 0, one

has

((bi%) ∗ ∂xi
wε)Λ = ((bi%) ∗ ∂xi

wε)(|∂xi
wε| ∗ %)−1/2(|∂xi

wε| ∗ %)1/2Λ.

Then ((bi%)∗∂xi
wε)(|∂xi

wε|∗%)−1/2 ∈ L2((0, 1)×Rd) by (2.2) and the inclusion |b| ∈ L2(µ).
In addition, (|∂xi

wε| ∗ %)1/2Λ ∈ L2((0, 1)× Rd) by the estimate

| ln max(|x+ y|, 1)|2 ≤ 4 + 2| ln max(|x|, 1)|2 + 2| ln max(|y|, 1)|2

and the same computations as in (2.6). Similarly we verify the integrability of the function
[(aij%)∗∂xi

∂xj
wε]Λ on (0, 1)×Rd. We observe that one can integrate by parts on the right

in (2.6). Indeed,∫ τ

0

∫
Rd

|∇fε|2

fε

dx dt ≤ 2

∫ τ

0

∫
Rd

|∇%ε|2

%ε

dx dt+ 2ε(d+ 1)2

∫
{|x|≥1}

|x|−d−3 dx,

which is finite by (2.2), since ∇%ε = (∇wε) ∗ % and |∇wε|2/wε ∈ L1(Rd). In addition,

one has [(bi%) ∗ wε]%
−1/2
ε ∈ L2((0, 1) × Rd) again by (2.2) and the inclusion |b| ∈ L2(µ).

Similarly, we have [(aij%) ∗ ∂xi
wε]%

−1/2
ε ∈ L2((0, 1)× Rd). Since fε > %ε, one has

∂xi
fε

(
∂xj

[(aij%) ∗ wε]− (bi%) ∗ wε

)
f−1

ε ∈ L1(Rd).

Therefore,∫ τ

0

∫
Rd

∂t%ε ln fε dx dt = −
∫ τ

0

∫
Rd

∂xi
fε

fε

(
∂xj

[(aij%) ∗ wε]− (bi%) ∗ wε

)
dx dt. (2.8)

The integrand on the left can be written as ∂t(fε ln fε) − ∂t%ε. Since the integrals of
%ε(τ, x) and %ε(0, x) in x equal one, we see that the left-hand side of (2.8) equals

Lε :=

∫
Rd

[fε(τ, x) ln fε(τ, x)− fε(0, x) ln fε(0, x)] dx.

Since fε(τ, · ) ln fε(τ, · ) ∈ L1(Rd) by (2.6) and the estimate | ln fε| ≤ c1 + c2Λ, one has
fε(0, · ) ln fε(0, · ) ∈ L1(Rd). We need a lower bound on Lε. To this end, we observe that
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by the convexity of the function s 7→ s ln s on (0,+∞) and Jensen’s inequality one has∫
Rd

fε(0, x) ln fε(0, x) dx

≤
∫

Rd

%ε(0, x) ln(2%ε(0, x)) dx+

∫
Rd

εmax(|x|, 1)−d−1 ln(2εmax(|x|, 1)−d−1) dx

≤ ln 2 +

∫
Rd

%ε(0, x) ln %ε(0, x) dx+ ε ln 2

∫
Rd

max(|x|, 1)−d−1 dx

≤ ln 2 +

∫
Rd

%0(x) ln %0(x) dx+ ε ln 2

∫
Rd

max(|x|, 1)−d−1 dx =: M(ε).

On the other hand, (2.6) gives∫
Rd

fε(τ, x) ln fε(τ, x) dx ≥ −(d+ 1)

∫
Rd

fε(τ, x)Λ(x) dx− εM1(d+ 1) =: −K(ε).

Note that for any bounded Borel function a on (0, 1) × Rd that is Lipschitzian in the
second argument with Lipschitz norm λ, for every j we have

∂xj
[(a%) ∗wε](t, x) = a(t, x) ∂xj

%ε(t, x)+

∫
Rd

∂xj
wε(x− y)[a(t, y)− a(t, x)] %(t, y) dy (2.9)

and∣∣∣∫
Rd

∂xj
wε(x− y)[a(t, y)− a(t, x)] %(t, y) dy

∣∣∣ ≤ λ

∫
Rd

|∂xj
wε(x− y)| |y − x| %(t, y) dy

≤ λ

∫
Rd

ε−d |x− y|2

ε2
g
(x− y

ε

)
%(t, y) dy = λ(% ∗ qε)(t, x), (2.10)

where qε(x) := wε(x)|x/ε|2, x ∈ Rd. Let us note for the sequel that in the derivation of
(2.8) and (2.9) we have not used the µ-integrability of Λ2 and the existence of entropy
of µ0. By using (2.8) and (2.9) we obtain

∫ 1

0

∫
Rd

aij ∂xi
fε

fε

∂xj
fε dx dt =

∫ 1

0

∫
Rd

∂xi
fε

fε

[
(bi%) ∗ wε + εaij∂xj

1

max(|x|, 1)d+1

]
dx dt

−
∫ 1

0

∫
Rd

(∂xi
fε(t, x)

fε(t, x)

∫
Rd

∂xj
wε(x− y)[aij(t, y)− aij(t, x)] %(t, y) dy

)
dx dt− Lε.

The right-hand side of this equality does not exceed

(∫ τ

0

∫
Rd

|∇fε|2

fε

dx dt
)1/2[(∫ τ

0

∫
Rd

∑d
i=1[(b

i%) ∗ wε]
2

fε

dx dt
)1/2

+ εMCd

]
+ d3/2λ

(∫ τ

0

∫
Rd

|∇fε|2

fε

dx dt
)1/2(∫ τ

0

∫
Rd

(% ∗ qε)2

fε

dx dt
)1/2

+M(ε) +K(ε),

where M = supt,x ‖A(t, x)‖ and Cd is the integral of (d+1)2|x|−d−3 over the set {|x| ≥ 1}.
By (2.2) we have∫ τ

0

∫
Rd

[(bi%) ∗ wε]
2

fε

dx dt ≤
∫ τ

0

∫
Rd

|bi|2 dµ, 1 ≤ i ≤ d ,

∫ τ

0

∫
Rd

(% ∗ qε)2

fε

dx dt ≤ γ :=

∫
Rd

|x|4g(x) dx.
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Since A ≥ α · I, we arrive at the estimate

α

∫ τ

0

∫
Rd

|∇fε|2

fε

dx dt

≤
(∫ τ

0

∫
Rd

|∇fε|2

fε

dx dt
)1/2(

‖b‖2,µ + εMCd + λd3/2√γ
)

+M(ε) +K(ε),

which by the inequality c
√
x ≤ αx/2 + c2/(2α) yields the estimate∫ τ

0

∫
Rd

|∇fε|2

fε

dx dt ≤ α−2
(
‖b‖2,µ + εMCd + λd3/2√γ

)2

+ 2α−1(M(ε) +K(ε)). (2.11)

The quantities M(ε) and K(ε) are uniformly bounded in ε. Letting ε → 0 we obtain

that
√
%(t, · ) ∈ W 2,1(Rd) for almost all t ∈ (0, 1). Hence %(t, · ) ∈ W 1,1(Rd) for almost

all t ∈ (0, τ). In addition, the integral of |∇%|2/% does not exceed the right-hand side of
(2.11) with ε = 0. Thus,

√
% ∈ H2,2([0, τ ] × Rd)). By the Sobolev embedding theorem

we have % ∈ Ld/(d−2),1([0, τ ] × Rd)) if d > 2, and % ∈ Ls,1([0, τ ] × Rd)) for all s ∈ [1,∞)
if d = 2.

The last claim of the theorem is clear from our reasoning. �

The proof yields a useful estimate∫ τ

0

∫
Rd

|∇%|2

%
dx dt ≤ α−2

(
‖b‖2,µ + λd3/2√γ

)2

+ 2 ln 2α−1 + 2α−1

∫
Rd

%0(x) ln %0(x) dx

+ 2α−1(d+ 1)

∫
Rd

%(τ, x)Λ(x) dx. (2.12)

Remark 2.1. It is clear from the proof that the entropy of %ε(0, x) has to be estimated
only from above, so in place of the integrability of %(0, x) ln %(0, x) it suffices to require
only the integrability of %(0, x) max(0, ln %(0, x)) (then Jensen’s inequality must be applied
to the function smax(0, ln s)). This leads to the effect that in estimate (2.12) in place of
%(0, x) ln %(0, x) we obtain %(0, x) max(0, ln %(0, x)). However, the obtained estimates and
(2.8) show that if we keep all other assumptions, the entropy of %(0, x) is finite anyway.
But if no µ-integrability of Λ is required, then the situation may change. For example, if
d = 1, b = 0 and a = 1/2, then for any initial distribution µ0, the solution is given by the
convolution µ0 ∗ gt, where gt(x) = (2πt)−1/2 exp(−x2/(2t)). If µ0 has a density %0 such
that |%′0|2/%0 ∈ L1(R1), but the function %0 ln %0 is not integrable, then the solution %(t, x)
has no entropy for any t, although the quantities

∫
|∂x%(t, x)|2%(t, x)−1 dx are uniformly

bounded. The same example shows that for validity of estimate (2.1) certain conditions
on the initial distribution are necessary. It suffices to take for µ0 Dirac’s measure at the
origin. Then the function |∂x%|2/% is not integrable on (0, 1)×R1. It would be interesting
to find a sufficient condition on A and b ensuring finite entropy of %(t, · ) for t > 0 and
any initial distribution.

In Example 3.1 below and in [1] one can find conditions on the coefficients A and b that
ensure the inclusion |b| ∈ L2(µ).

Estimate (2.12) can be improved under additional hypotheses on A and b.
Set b0 := (bj0), b

j
0 = bj − ∂xi

aij.

Theorem 2.2. Suppose µ satisfies (1.1), (1.3), where ν = %0 dx, %0 has finite entropy
and is locally Hölder continuous. Let A and b satisfy (C1) and (C2) with some p > d+ 2.
Suppose that |A−1/2b0| ∈ L2(µ), ln(1 + |x|) ∈ L4(µ) and that

lim inf
r→∞

∫ 1

0

∫
r≤|x|≤2r

[
r−4‖A(t, x)‖2 + r−2ΘA(t, x)2

]
µt(dx) dt = 0. (2.13)
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Then %(t, · ) ∈ W p,1
loc and for almost all τ ∈ [0, 1] one has∫ τ

0

∫
Rd

∣∣∣√A∇%
%

∣∣∣2 dµ ≤ ∫ τ

0

∫
Rd

|A−1/2b0|2 dµ+ 2

∫
Rd

[%(0, x) ln %(0, x)− %(τ, x) ln %(τ, x)] dx

and the right-hand side is finite. Under the additional assumption that A ≥ α · I for
some α > 0, one has

√
% ∈ H2,2([0, 1] × Rd)), % ∈ Ld/(d−2),1([0, 1] × Rd)) if d > 2 and

% ∈ Ls,1([0, 1]× Rd)) for all s ∈ [1,∞) if d = 2.

Proof. By the local theory [3], we know that µ has a continuous positive density % such
that for every ball B and every closed interval [t1, t2] in (0, 1) we have ‖%(t, · )‖W p,1(B) ∈
Lp[t1, t2]. Let Bj denote the closed ball of radius j centered at the origin. We fix a function
ζ ∈ C∞

0 (Rd) such that ζ(x) = 1 if |x| ≤ 1, ζ(x) = 0 if |x| > 2. Set ζj(x) := ζ(x/j). For
small ε > 0 and large k > 0, let

%k,ε := min(k, %ε), %k = min(k, %), Ωk,ε := {%ε < k}, Ωk := {% < k}.

As in Theorem 2.1, for almost all τ one has (2.5), which gives the integrability of
%(τ, · ) ln %(τ, · ) on Rd. For any δ > 0 and τ = 1− δ we have the equality∫ τ

δ

∫
Rd

(∂t%ε)(ln %k,ε)ζ
2
j dx dt

= −
∫ τ

δ

∫
Rd

(aik∂xi
%) ∗ wε

∂xk
%ε

%ε

ζ2
j IΩk,ε

dx dt− 2

∫ τ

δ

∫
Rd

(aik∂xi
%) ∗ wε∂xk

ζj(ln %k,ε)ζj dx dt

+

∫ τ

δ

∫
Rd

IΩk,ε

(
(b0%) ∗ wε,

∇%ε

%ε

)
ζ2
j dx dt+ 2

∫ τ

δ

∫
Rd

(
(b0%) ∗ wε,∇ζj)

)
ζj ln %k,ε dx dt.

Since %ε∂t ln %k,ε = ∂t%k,ε, the left-hand side equals

E(j, k, ε, δ) :=

∫
Rd

ζ2
j (x)%ε(τ, x) ln %k,ε(τ, x) dx−

∫
Rd

ζ2
j (x)%ε(δ, x) ln %k,ε(δ, x) dx

+

∫
Rd

ζ2
j (x)%k,ε(δ, x) dx−

∫
Rd

ζ2
j (x)%k,ε(τ, x) dx.

Keeping δ > 0 fixed, letting ε → 0 and using the integrability of the function t 7→
‖%(t, · )‖W p,1(B2j) on [δ, τ ] as well as the continuity and strict positivity of % on [δ, τ ]×B2j,
we obtain

Sj,k,δ :=

∫ τ

δ

∫
Rd

(
A∇%, ∇%

%

)
ζ2
j IΩk

dx dt

= −2

∫ τ

δ

∫
Rd

(A∇%,∇ζj)ζj ln %k dx dt+

∫ τ

δ

∫
Rd

IΩk

(
b0,

∇%
%

)
ζ2
j % dx dt

+ 2

∫ τ

δ

∫
Rd

(b0,∇ζj)ζj(ln %k) % dx dt− E(j, k, δ),

where

E(j, k, δ) :=

∫
Rd

ζ2
j (x)%(τ, x) ln %k(τ, x) dx−

∫
Rd

ζ2
j (x)%(δ, x) ln %k(δ, x) dx

+

∫
Rd

ζ2
j (x)%k(δ, x) dx−

∫
Rd

ζ2
j (x)%k(τ, x) dx.
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Integrating by parts in the integral of (A∇%,∇ζj) ln %kζj = (∇%, ζjA∇ζj) ln %k and writing
(b0,∇%) = (A−1/2b0, A

1/2∇%), we find

Sj,k,δ = 2

∫ τ

δ

∫
Ωk

(∇%
%
,A∇ζj

)
ζj% dx dt+ 2

∫ τ

δ

∫
Rd

div(ζjA∇ζj)(ln %k) % dx dt

+

∫ τ

δ

∫
Ωk

(
b0,

∇%
%

)
ζ2
j % dx dt+ 2

∫ τ

δ

∫
Rd

(b0,∇ζj)ζj(ln %k) % dx dt− E(j, k, δ)

≤
√
Sj,k,δ

(
2‖IΩk

√
A∇ζj‖L2(µ) + ‖A−1/2b0

∥∥
L2(µ)

)
+Rj,k,δ − E(j, k, δ), (2.14)

where

Rj,k,δ := 2

∫ τ

δ

∫
Rd

div(ζjA∇ζj) ln %k % dx dt+ 2

∫ τ

δ

∫
Rd

(b0,∇ζj)ζj(ln %k) % dx dt.

Since %0 is Hölder continuous on B2j, one has lim
δ→0

%(δ, x) = %(0, x) uniformly on B2j (see,

e.g., [13, Ch. III, Theorem 7.1 and Theorem 10.1]). Hence

lim
δ→0

E(j, k, δ) = E(j, k, 0).

Therefore, (2.14) holds for δ = 0. Keeping k fixed, we observe that, given ε > 0, for all
sufficiently large numbers j of the form j = rl with rl → ∞ chosen according to (2.13),
the quantity Rj,k,δ can be made smaller than ε in absolute value. Indeed, it follows by
the hypotheses and the estimates

sup
x
|∇ζj(x)| ≤ j−1 sup

x
|∇ζ(x)|, sup

x
|∂xi

∂xmζj(x)| ≤ j−2 sup
x
|∂xi

∂xmζ(x)|

that for all j = rl the first term in the expression for Rj,k,δ can be estimated by

M‖ ln %k‖L2(µ)r
−2
l

(∫ 1

0

∫
{rl≤|x|≤2rl}

‖A(t, x)‖2 µt(dx) dt
)1/2

+M‖ ln %k‖L2(µ)r
−1
l

(∫ 1

0

∫
{rl≤|x|≤2rl}

ΘA(t, x)2 µt(dx) dt
)1/2

,

where M is a constant that depends on the maxima of the first and second derivatives
of ζ. The fact that ln %k ∈ L2(µ) follows by the µ-integrability of | ln(|x| + 1)|2, because

on the set {x : %(t, x) ≤ 1} we have | ln %(t, x)|2
√
%(t, x) ≤ C, hence

| ln %(t, x)|2%(t, x) ≤ (2d+ 2)2(ln(|x|+ 1))2%(t, x) + C(|x|+ 1)−d−1.

Similarly, by the Cauchy inequality and the estimate

|b(t, x)| ≤ ‖A1/2(t, x)‖|A−1/2(t, x)b(t, x)|,
the second term in the expression for Rj,k,δ is majorized by

Mr−1
l ‖A−1/2b‖L2(µ)‖ ln %k‖2

L4(µ)

(∫ 1

0

∫
rl≤|x|≤2rl

‖A(t, x)‖2 µt(dx) dt

)1/2

.

The quantities E(j, k, 0) are bounded from below by a constant independent of j and k,
because we consider only those τ for which %(τ, · ) ln %(τ, · ) ∈ L1(Rd), and we have

%(0, · ) ln %(0, · ) ∈ L1(Rd) by assumption. This yields that the integrals of |
√
A∇%/%|2

over the sets Ωk against µ are uniformly bounded. Letting k → ∞ and then j → ∞ we
see that the function |

√
A∇%|2%−1 is integrable on [0, τ ] × Rd. In addition, by (2.14) its

integral S satisfies the inequality S ≤
√
S‖A−1/2b0

∥∥
L2(µ)

+E, where E is the difference of

entropies of %(0, · ) and %(τ, · ). This yields the desired bound. �

Remark 2.2. If A is uniformly bounded, then the assumption Λ ∈ L4(µ) in the second
theorem can be relaxed to Λ ∈ L2(µ).
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3. Higher integrability and boundedness of densities

The results of the previous section show that the solutions are globally integrable in
some power greater than 1. Here we derive yet stronger integrability properties and the
global boundedness under additional assumptions on the coefficients. In what follows we
assume that the measure µ is given by a density % such that for every t ∈ [0, 1), the
function x 7→ %(t, x) is a probability density with respect to Lebesgue measure.

Set
‖u‖p,q,τ = ‖uI[0,τ ]‖p,q,

where t→ I[0,τ ](t) is the indicator function of the interval [0, τ ].

Lemma 3.1. Let d > 2. For every function u ∈ H2,2([0, τ ]×Rd)
⋂
L2,∞([0, τ ]×Rd), one

has the inequality

‖u‖p,q,τ ≤ c(d, p)
(
‖∇u‖L2([0,τ ]×Rd) + ‖u‖2,∞,τ

)
,

where 2 ≤ q, 2 < p ≤ 2d/(d− 2) and 1/q + d/(2p) = d/4.

Proof. Let δ = d/2− d/p = 2/q. Then

(d− 2)δ

2d
+

1− δ

2
=

1

p
.

Let r = 2d/(pδ(d − 2)). Then r ≥ 1 (r > 1 if p < 2d/(d − 2)) and r′ = r/(r − 1) =
2/(p(1− δ)). Writing |u|p = |u|pδ|u|p(1−δ) and applying Hölder’s inequality with r and r′

we obtain (∫
Rd

|u|p dx
)1/p

≤
(∫

Rd

|u|2d/(d−2) dx
)(d−2)δ/d(∫

Rd

|u|2 dx
)(1−δ)/2

.

The Sobolev inequality yields

‖u(t, · )‖p ≤ c(d, p)‖∇u(t, · )‖δ
2 ‖u(t, · )‖1−δ

2 .

Therefore, for almost all t ∈ [0, τ ] we have

‖u(t, ·)‖p ≤ c(d, p)‖∇u(t, · )‖δ
2 ‖u‖1−δ

2,∞,τ .

Since δ = 2/q, one has( τ∫
0

‖u(t, · )‖q
p dt

)1/q

≤ c(d, p)
( τ∫

0

‖∇u(t, · )‖2
2 dt

)1/q(
‖u‖2,∞,τ

)1−2/q

.

By the Young inequality we obtain the required estimate. �

Lemma 3.2. Suppose that hypothesis (i) of Theorem 2.1 is fulfilled and we have addi-
tionally

sup
t∈[0,1]

‖b(t, · )‖Ls(µt) <∞, % ∈ Lks/(s−2)+1,k+(s−2)/s([0, T ]× Rd) (3.1)

with some T ∈ [0, 1], s > 2, k ≥ 2/s. Furthermore, let µ0 = %(0, · ) dx, where %(0, · ) ∈
Lk+1(Rd). Then for almost all τ ∈ [0, T ] we have %(τ, · ) ∈ W 1,1

loc and

2

αk(k + 1)

∫
Rd

%(τ, x)k+1 dx+

∫ τ

0

∫
Rd

|∇%(t, x)|2%(t, x)k−1 dx dt

≤ C(α, λ, d, s)

∫ τ

0

(∫
Rd

%(t, x)ks/(s−2)+1 dx
)(s−2)/s

dt+
2

αk(k + 1)

∫
Rd

%(0, x)k+1 dx, (3.2)

where α is the constant from the condition A(t, x) ≥ α ·I and C(α, λ, d, s) is some number
that depends only on α, λ, d, s.

If in place of (3.1) we have the condition

|b| ∈ Ls(µ), % ∈ Lks/(s−2)+1([0, T ]× Rd), (3.3)
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where s > 2, k > 0, then for almost all τ ∈ [0, T ], one has the inequality

2

αk(k + 1)

∫
Rd

%(τ, x)k+1 dx+

∫ τ

0

∫
Rd

|∇%(t, x)|2%(t, x)k−1 dx dt

≤ C(α, λ, d, s)
(∫ τ

0

∫
Rd

%(t, x)ks/(s−2)+1 dx dt
)(s−2)/s

+
2

αk(k + 1)

∫
Rd

%(0, x)k+1 dx. (3.4)

Proof. Let %ε be the same as in Theorem 2.1, in particular, ε ∈ {1/n}. By (2.3) we have∫ τ

0

∫
Rd

∂t(% ∗ wε)ϕdx dt =

∫ τ

0

∫
Rd

[
(aij%) ∗ ∂xi

∂xj
wε − (bi%) ∗ ∂xi

wε

]
ϕdx dt

for every bounded measurable function ϕ on [0, 1]×Rd, because the indicated convolutions
are integrable. Let us take

ϕ(t, x) := %ε(t, x)
k.

We observe that [
(aij%) ∗ ∂xj

wε − (bi%) ∗ wε

]
%k−1

ε ∂xi
%ε ∈ L1([0, 1]× Rd).

Indeed, the function %k
ε is bounded and the functions[
(aij%) ∗ ∂xj

wε − (bi%) ∗ wε

]
%−1/2

ε , |∇%ε|%−1/2
ε

belong to L2([0, 1]×Rd), as already noted in the proof of Theorem 2.1. Therefore, we can
integrate by parts, which gives∫ τ

0

∫
Rd

∂t(% ∗ wε)%
k
ε dx dt = −

∫ τ

0

∫
Rd

[
(aij%) ∗ ∂xj

wε − (bi%) ∗ wε

]
k%k−1

ε ∂xi
%ε dx dt. (3.5)

Let Lε denote the left-hand side of this equality. Then

Lε =
1

k + 1

∫
Rd

%ε(τ, x)
k+1 dx− 1

k + 1

∫
Rd

%ε(0, x)
k+1 dx.

Note that the integrability of %ε(τ, x)
k+1 in x follows by the boundedness of this function

and its integrability for k = 0. By using Hölder’s inequality, we estimate Lε from below
as follows:

Lε ≥
1

k + 1

∫
Rd

%ε(τ, x)
k+1 dx− 1

k + 1

∫
Rd

%(0, x)k+1 dx.

Let us consider the right-hand side Rε of equality (3.5). By using equality (2.9), we obtain

Rε = −k
∫ τ

0

∫
Rd

aij∂xj
%ε∂xi

%ε%
k−1
ε dx dt

− k

∫ τ

0

∫
Rd

(
∂xi
%ε(t, x)%ε(t, x)

k−1

∫
Rd

∂xj
wε(x− y)[aij(t, y)− aij(t, x)]%(t, y) dy

)
dx dt

+ k

∫ τ

0

∫
Rd

%ε∂xi
%ε%

k−1
ε [(bi%) ∗ wε] dx dt.

Hence, by (2.10) (we recall that in the derivation of (2.10) we have not used the µ-
integrability of | ln(1 + |x|)|2 and the existence of entropy of µ0) we have

Rε ≤ −kα
∫ τ

0

∫
Rd

|∇%ε|2%k−1
ε dx dt

+ kd3/2λ
(∫ τ

0

∫
Rd

|∇%ε|2%k−1
ε dx dt

)1/2(∫ τ

0

∫
Rd

%k−1
ε (% ∗ qε)2 dx dt

)1/2

+ k
(∫ τ

0

∫
Rd

|∇%ε|2%k−1
ε dx dt

)1/2(∫ τ

0

∫
Rd

%k−1
ε

d∑
i=1

[(bi%) ∗ wε]
2 dx dt

)1/2

,
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where qε is the same as in (2.10). By the inequality ab ≤ αa2/4 + b2/α we obtain the
estimate

Rε ≤ −1

2
kα

∫ τ

0

∫
Rd

|∇%ε|2%k−1
ε dx dt+

kd3λ2

α

∫ τ

0

∫
Rd

%k−1
ε (% ∗ qε)2 dx dt

+
k

α

∫ τ

0

∫
Rd

%k−1
ε

d∑
i=1

[(bi%) ∗ wε]
2 dx dt.

Combining our bounds on Lε and Rε we arrive at the inequality

2

αk(k + 1)

∫
Rd

%ε(τ, x)
k+1 dx+

∫ τ

0

∫
Rd

|∇%ε|2%k−1
ε dx dt

≤ C(α, λ, d)
(∫ τ

0

∫
Rd

%k−1
ε (% ∗ qε)2 dx dt+

∫ τ

0

∫
Rd

%k−1
ε

d∑
i=1

[(bi%) ∗ wε]
2 dx dt

)
+

2

αk(k + 1)

∫
Rd

%(0, x)k+1 dx.

Note that |(bi%) ∗ wε|2 ≤ %ε(|bi|2%) ∗ wε. By Hölder’s inequality we have∫
Rd

%k−1
ε |(bi%) ∗ wε|2(t, x) dx

≤
∫

Rd

%k
ε(|bi|2%) ∗ wε(t, x) dx =

∫
Rd

(∫
Rd

%ε(t, x)
kwε(x− y) dx

)
|bi(t, y)|2%(t, y) dy

≤ ‖(bi(t, · ))2‖Ls/2(µt)

(∫
Rd

(∫
Rd

%ε(t, x)
kwε(x− y) dx

)s/(s−2)

%(t, y) dy
)(s−2)/s

≤ ‖bi(t, · )‖2
Ls(µt)

(∫
Rd

%ε(t, x)
k(s−2)/swε(x− y) dx

)
%(t, y) dy

)(s−2)/s

= ‖bi(t, · )‖2
Ls(µt)

(∫
Rd

%ε(t, x)
ks/(s−2)+1 dx

)(s−2)/s

.

Similarly, taking into account the estimate

|% ∗ qε(t, x)|2 ≤ %ε(t, x)

∫
Rd

%(t, y)
|x− y|4

ε4
wε(x− y) dy

we obtain∫
Rd

%k−1
ε (% ∗ qε)2(t, x) dx ≤

∫
Rd

∫
Rd

%ε(t, x)
k%(t, y)

|x− y|4

ε4
wε(x− y) dx dy

≤ γ(s)

∫
Rd

%(t, y)
(∫

Rd

%ε(t, x)
ks/(s−2)wε(x− y) dx

)s/(s−2)

dy

≤ γ(s)
(∫

Rd

∫
Rd

%(t, y)%ε(t, x)
ks/(s−2)wε(x− y) dx dy

)s/(s−2)

= γ(s)
(∫

Rd

%ε(t, x)
ks/(s−2)+1 dx

)(s−2)/s

,

where

γ(s) :=
(∫

Rn

|x|2sg(x) dx
)2/s

.

Set

B(s) := max
t∈[0,1]

∥∥b(t, · )∥∥2

Ls(µt)
.
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Finally, we obtain

2

αk(k + 1)

∫
Rd

%ε(τ, x)
k+1 dx+

∫ τ

0

∫
Rd

|∇%ε|2%k−1
ε dx dt

≤ C(α, λ, d)
(
γ(s) +B(s)

) ∫ τ

0

(∫
Rd

%ε(t, x)
ks/(s−2)+1 dx

)(s−2)/s

dt

+
2

αk(k + 1)

∫
Rd

%(0, x)k+1 dx.

Passing to the limit as ε→ 0, we obtain the required estimate for almost every τ ∈ [0, T ].
Indeed, for almost every τ we have lim

ε→0
%ε(τ, x) = %(τ, x) for almost all x, and the right-

hand side of the above inequality remains bounded as ε → 0. This yields that %(τ, · ) ∈
W 1,1

loc for almost all τ . Hence lim
ε→0

∇%ε(τ, x) = ∇%(τ, x) for almost all x, which gives the

indicated estimate by Fatou’s theorem.
In the case of condition (3.3) the proof repeats entirely the foregoing reasoning except

for the estimate of the integral of %k−1
ε |(bi%) ∗ wε|2, for which we have∫ τ

0

∫
Rd

%k−1
ε |(bi%) ∗ wε|2 dx dt

≤
∫ τ

0

∫
Rd

%k
ε(|bi|2%) ∗ wε dx dt =

∫ τ

0

∫
Rd

(∫
Rd

%ε(t, x)
kwε(x− y) dx

)
|bi(t, y)|2%(t, y) dy dt

≤ ‖(bi)2‖Ls/2(µ)

(∫ τ

0

∫
Rd

(∫
Rd

%ε(t, x)
kwε(x− y) dx

)s/(s−2)

%(t, y) dy dt
)(s−2)/s

≤ ‖b‖2
Ls(µ)

(∫ τ

0

∫
Rd

%ε(t, x)
ks/(s−2)+1 dx dt

)(s−2)/s

by Hölder’s inequality. �

Remark 3.1. It is seen from the proof that the assumption that the integrals of %(t, x)
with respect to x equal 1 can be replaced by the assumption that these integrals are
uniformly bounded.

Theorem 3.1. Suppose that under the hypotheses of Theorem 2.1 we have additionally

sup
t∈[0,1]

‖b(t, · )‖Ld(µt) <∞

and µ0 = %(0, · ) dx, where %(0, · ) ∈ Lp(Rd) for all p ∈ [1,+∞). Then

% ∈ Lp,q([0, τ ]× Rd)

for all p, q ∈ [1,+∞) and τ ∈ (0, 1).

Proof. Let us consider the case d > 2. Let % ∈ Lks/(s−2)+1,k+(s−2)/s([0, τ ] × Rd), where
s > 2 and k ≥ 2/s. Then by Lemma 3.2 we obtain the estimate∫ τ

0

∫
Rd

|∇%(t, x)|2%(t, x)k−1 dx dt

≤ C(α, λ, d, s)

∫ τ

0

(∫
Rd

%(t, x)ks/(s−2)+1 dx
)(s−2)/s

dt+
2

αk(k + 1)

∫
Rd

%(0, x)k+1 dx.

By the Sobolev embedding theorem applied to the functions x 7→ %(t, x)(k+1)/2 with

|∇%(k+1)/2|2 =
(k + 1)2

4
|%(k−1)/2∇%|2
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we have

4

(k + 1)2

∫ τ

0

(∫
Rd

%(t, x)d(k+1)/(d−2) dx
)(d−2)/d

dt ≤
∫ τ

0

∫
Rd

|∇%(t, x)|2%(t, x)k−1 dx dt

≤ C̃(α, λ, d, s)

∫ τ

0

(∫
Rd

%(t, x)ks/(s−2)+1 dx
)(s−2)/s

dt+
2

αk(k + 1)

∫
Rd

%(0, x)k+1 dx.

Thus, one has(
‖%‖d(k+1)/(d−2),k+1,τ

)k+1

≤ C(α, λ, d, s, k)
(
‖%‖ks/(s−2)+1,k+(s−2)/s,τ

)k+(s−2)/s

+M(k, α), (3.6)

where

M(k, α) :=
k + 1

2αk

∫
Rd

%(0, x)k+1 dx.

Now set

pn := pn−1 +
2

d− 2
, qn := qn−1 +

2

d
, q1 = 1, p1 =

d

d− 2
.

By Theorem 2.1 we have % ∈ Lp1,1([0, τ ] × Rd) for all τ < 1. This enables us to start
iterations based on (3.6). Namely, if in (3.6) we set s = d and k = qn−1−(d−2)/d = qn−1,
then we arrive at the estimate(

‖%‖pn,qn,τ

)qn

≤ C(α, λ, d, d, qn − 1)
(
‖%‖pn−1,qn−1,τ

)qn−1

+M(qn − 1, α).

Since pn → ∞ and qn → ∞ as n → ∞, the theorem is proven in the case d > 2. The
cases d = 1 and d = 2 are even simpler, because in the Sobolev inequality in place of
the exponent d/(d − 2) one can take any number r > 1. However, we need not consider
these cases separately and deduce them from the result for d = 3. To this end, we pass
from the function of two variables to the function of three variables u = %(t, x1, x2)g(x3),
where g is the standard Gaussian density. The measure u dx dt satisfies our equation on
[0, 1) × R3 with the coefficients aij and bi that coincide with the initial ones if i, j ≤ 2,
and a33 = 1, a3j = aj3 = 0, b3(t, x) = −x3. �

Theorem 3.2. Suppose that under the hypotheses of Theorem 2.1 for some β > d+ 2 we
have |b| ∈ Lβ(µ) and %(0, · ) ∈ L∞(Rd). Supppose that either supt∈[0,1] ‖b(t, · )‖Ld(µt) <∞
or % ∈ Lp([0, τ ]×Rd), for all τ < 1 with some p > 1. Then % ∈ L∞([0, τ ]×Rd) for every
τ < 1.

Proof. Let d > 2. Let us fix τ < 1. Let % ∈ Lkβ/(β−2)+1([0, τ ] × Rd), where k > 0. Then
by (3.4) we obtain∫ τ

0

∫
Rd

|∇%(t, x)|2%(t, x)k−1 dx dt

≤ C(α, λ, d, β)
(∫ τ

0

∫
Rd

%(t, x)kβ/(β−2)+1 dx dt
)(β−2)/β

+
2

αk(k + 1)

∫
Rd

%(0, x)k+1 dx.

Therefore,

4

(k + 1)2

(
‖∇(%(k+1)/2)‖L2([0,τ ]×Rd)

)2

≤ C(α, λ, d, β)
(∫ τ

0

∫
Rd

%(t, x)kβ/(β−2)+1 dx dt
)(β−2)/β

+
2

αk(k + 1)

∫
Rd

%(0, x)k+1 dx.
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By inequality 3.4 we have for almost all t < τ∫
Rd

%(t, x)k+1 dx

≤ k(k + 1)C(α, λ, d, β)
(∫ τ

0

∫
Rd

%kβ/(β−2)+1 dx dt
)(β−2)/β

+

∫
Rd

%(0, x)k+1 dx,

whence we obtain(
‖%(k+1)/2‖2,∞,τ

)2

≤ k(k + 1)C(α, λ, d, β)
(∫ τ

0

∫
Rd

%kβ/(β−2)+1 dx dt
)(β−2)/β

+

∫
Rd

%(0, x)k+1 dx.

Lemma 3.1 for u = %(k+1)/2 and p = q = 2(d+ 2)/d yields the estimate

‖%(k+1)/2‖p,q,τ ≤ C(d, 2(d+ 2)/d)
(
‖∇(%(k+1)/2)‖L2([0,τ ]×Rd) + ‖%(k+1)/2‖2,∞,τ

)
.

By using the inequality (a+ b)2 ≤ 2a2 + 2b2 and the bounds found above we obtain(
‖%‖L(d+2)(k+1)/d([0,τ ]×Rd)

)k+1

≤ 4(k + 1)2C(α, λ, d, β)
(
‖%‖Lkβ/(β−2)+1([0,τ ]×Rd)

)k+(β−2)/β

+
(
2 +

k + 1

αk

) ∫
Rd

%(0, x)k+1 dx. (3.7)

Since %(0, · ) ∈ L∞([0, τ ]× Rd), there exists a constant C such that(
2 +

k + 1

αk

) ∫
Rd

%(0, x)k+1 dx ≤ Ck+1.

Now we set

pn =
(d+ 2)(β − 2)

dβ

(
pn−1 +

2

β − 2

)
, p1 =

d

d− 2
,

An = ‖%‖Lpn ([0,τ ]×Rd), C1 = 4
( d

d+ 2

)2

C(α, λ, d, β).

We have % ∈ Lp1([0, τ ]×Rd) by Theorem 3.1 if supt ‖b(t, · )‖Ld(µt) <∞; if % ∈ Lp p > 1,
then the same can be readily deduced from (3.7). Note that

1 <
(d+ 2)(β − 2)

dβ
≤ d

d− 2
,

since β > d+2. Hence pn ≥
(
(d+2)(β− 2)/(dβ)

)n
. In order to prove the membership of

% in the space L∞([0, τ ] × Rd), it suffices to establish the uniform boundedness of {An}.
Suppose that An →∞. Then there exists N such that for every n > N we have

C

An−1

< 1, (An−1)
−2/β < 1,

( C

An−1

)pnd/(d+2)

< 1.

Let k := pnd/(d+ 2)− 1. Then

pn−1 =
kβ

β − 2
+ 1, pn−1

β − 2

β
− pn

d

d+ 2
= − 2

β

so (3.7) yields

(An)pnd/(d+2) ≤ p2
nC1(An−1)

pn−1(β−2)/β + Cpnd/(d+2).

Therefore, ( An

An−1

)pnd/(d+2)

≤ p2
nC1(An−1)

−2/β +
( C

An−1

)pnd/(d+2)

≤ p2
nC1 + 1.

whence we obtain

lnAn − lnAn−1 ≤
d+ 2

pnd
ln

(
p2

nC1 + 1
)
, n > N.
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Since pn ≥
(
(d+ 2)(β − 2)/(dβ)

)n
, the above estimate yields convergence of the series of

lnAn − lnAn−1, which contradicts the unboundedness of An. The case d ≤ 2 is justified
in the same manner as in the previous theorem. �

Remark 3.2. (i) According to Remark 2.1, no integrability %(0, x) ln %(0, x) in Theorems
3.1 and 3.2 is required, since the integrability of %(0, x) max(0, ln %(0, x)) follows by the
inclusion %(0, · ) ∈ Lp(Rd) with p > 1.

(ii) It is seen from the proof and Remark 3.1 that the assumption in Theorem 3.1 and
Theorem 3.2 that the integrals of %(t, x) with respect to x equal 1 can be replaced by the
assumption that these integrals are uniformly bounded.

(iii) Let us note that if in Theorem 3.2 it is given in advance that % ∈ Lp([0, τ ]×Rd) for
some p > 1, then we need not require the integrability of the function | ln(1+ |x|)|2%(t, x),
but the boundedness of %(0, x) is important.

Now we employ the proven theorem for obtaining upper bounds on %. As in the elliptic
case considered in the papers [14], [5], [6], the idea is this: in order to obtain a pointwise
estimate %(t, x) ≤ Φ(t, x)−1, one has to consider the measure ν := Φ · µ and establish the
boundedness of its density. We shall consider functions Φ that do not depend on t. If Φ
has locally bounded first and second order derivatives, then the measure ν satisfies the
equation

L∗ν = (aij∂xi
∂xj

Φ)%+ 2∂xi
Φ∂xj

(aij%)− bi∂xi
Φ% = −LΦ · %+ 2∂xj

(aij∂xi
Φ%)

understood in the same sense as (1.1).

Theorem 3.3. Suppose that all hypotheses of Theorem 3.2 are fulfilled and we are given
a function Φ ≥ c > 0 on Rd with locally bounded second order derivatives such that
%(0, x) ≤ CΦ(x)−1, Φ ∈ L1(µ0) and

Φ1+ε, |LΦ|β/2Φ1−β/2, |A∇Φ|βΦ1−β ∈ L1(µ), sup
t∈[0,1]

∫
Rd

Φ(x)%(t, x) dx <∞

with some ε > 0. Then for every τ < 1 there is a number Cτ such that

%(t, x) ≤ CτΦ(x)−1 for almost all (t, x) ∈ [0, τ).

Proof. It is seen from the reasoning used in the proof of Theorem 3.2 and Remark 3.2 that
it suffices to establish estimate (3.4) with s = β for the measure ν = Φ · µ whose density
belongs to L1+ε([0, 1] × Rd) by the boundedness of %. In that estimate a homogeneous
equation was concerned, and the measures µt were probabilities. However, under present
assumptions the same estimate remains valid in the presence of the indicated right-hand
side as well if in place of the condition µt(Rd) = 1 we assume only the uniform boundedness
of measures µt. Indeed, on the right-hand side of (3.5) with ν in place of µ, i.e., with
u := Φ% in place of %, there appears additionally the integral of the expression

−(LΦ · %) ∗ wε[u ∗ wε]
k + [2∂xj

(aij∂xi
Φ%)] ∗ wε[u ∗ wε]

k.

Let us set ξ := LΦ/Φ, η := |A∇Φ|/Φ and estimate this integral J as follows:

J = −
∫ τ

0

∫
Rd

(ξu)εu
k
ε dx dt− 2k

∫ τ

0

∫
Rd

(aij∂xi
Φ%)εu

k−1
ε ∂xj

uε dx dt

≤
(∫ τ

0

∫
Rd

|ξ|β/2u dx dt
)2/β(∫ τ

0

∫
Rd

ukβ/(β−2)+1
ε dx dt

)(β−2)/β

+ 2k
(∫ τ

0

∫
Rd

(ηu)2
εu

k−1
ε dx dt

)1/2(∫ τ

0

∫
Rd

|∇uε|2uk−1
ε dx dt

)1/2

.

It remains to observe that there hold the equality∫ τ

0

∫
Rd

|ξ|β/2u dx dt =

∫ τ

0

∫
Rd

|LΦ|β/2Φ1−β/2% dx dt
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and the inequality∫ τ

0

∫
Rd

(ηu)2
εu

k−1
ε dx dt ≤

(∫ τ

0

∫
Rd

ηβΦ% dx dt
)2/β(∫ τ

0

∫
Rd

u(kβ)/(β−2)+1
ε dx dt

)(β−2)/β

,

which is verified in the same manner as in Lemma 3.2. Since s = β, one has r′ ≤ β/2. �

Example 3.1. Suppose that A and A−1 are uniformly bounded, A is uniformly Lips-
chitzian in x, and for some β > d+ 2, r > 0, ε > 0, K > 0 one has

|b| ∈ Lβ(µ), exp[(2K + ε)|x|r] ∈ L1(µ), sup
t∈[0,1]

∫
Rd

exp(K|x|r)%(t, x) dx <∞. (3.8)

Let supt∈[0,1] ‖b(t, · )‖Ld(µt) < ∞. Finally, let the function exp(K|x|r)%(0, x) be bounded

and integrable on Rd. Then for every τ < 1 there is a number C(τ) such that

%(t, x) ≤ C(τ) exp(−K|x|r), (t, x) ∈ [0, τ ]× Rd.

In order to ensure condition (3.8) and the assumptions on b and %(0, · ) it suffices to have
the estimates |b(t, x)| ≤ C exp(2Kβ−1|x|r), %(0, x) ≤ C exp(−K ′|x|r) with K ′ > K and

(x, b(t, x)) ≤ c1 − c2|x|r, c2 > 2rK sup
t,x

‖A(t, x)‖. (3.9)

Indeed, let Φ ∈ C2(Rd), Φ(x) = exp(K|x|r) |x| ≥ 1. All hypotheses of Theorem 3.3 are
fulfilled. Under condition (3.9) we pick δ ∈ (0, ε) such that one has the inequality r(2K+
δ) supt,x ‖A(t, x)‖ < c2, and take a function V ∈ C2(Rd) that equals exp[(2K + δ)|x|r]
if |x| ≥ 1. Then, for some c, we have the estimate LV ≤ c. It follows from [1] that a
solution exists and the norms ‖V %(t, · )‖L1(Rd) are uniformly bounded. Other assumptions
of Theorem 3.3 are fulfilled as well. Similarly, under weaker conditions, one can obtain a
power bound.

Analogous theorems are valid in the situation of the second theorem of the previous
section.

Most of the work has been done during visits of the first and third authors to the
University of Bielefeld.

References
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