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Introduction

In a series of articles ([Ge 95], [Ge 99a], [Ge 99b]), R. K. Getoor studied the Schrödinger equation

(∗) (q −L)u + µu = f

where L is the generator of the (sub-Markovian) resolvent of kernels U = (Uα)α>0 associated with a
Borel right process X with state space E, a Lusin topological space, µ is a signed measure charging no
m-semipolar set (m is a fixed U-excessive measure) and satisfying a smooth property, and q is a strictly
positive real number. The problem which arises is the following: If p ≥ 1, then under what conditions
does L − µ, in some sense, generate a strongly continuous resolvent of contractions on Lp(E, m)? Such
a problem was considered in many other papers, using different approaches related to harmonic spaces,
Dirichlet forms or Markov processes, see e.g., [BoHaHu 87], [FeLa 88], [AlBlMa 89], [Ma 91], [MaRö 92],
[StVo 96], [ChZa 95].

In this paper we investigate the equation (∗) for the essentially larger class of measures µ charging no
m-polar set, but possible charging some m-semipolar set (even being carried by such a set). An example
is given by the heat operator

L = ∆ −
∂

∂t

in R
n+1, where ∆ is the Laplacean in R

n and µ is the n-dimensional Lebesgue measure on a horizontal
hyperplane in R

n+1, which is a semipolar set for the process in R
n+1 having the generator ∆ − ∂

∂t
. The

consideration of the wider class of measures charging no set that is m-polar, imposed us to use a class of
functions (namely the strongly supermedian functions; see e.g. [BeBo 04]) which is larger than the set of
all excessive functions, usually taken into account.

A main tool in our approach is given by the so called Revuz formula, and the Revuz correspondence,
which associates to every positive σ-finite measure charging no set that is m-polar a strongly supermedian
kernel (i.e. a kernel taking values in the set of strongly supermedian functions and satisfying some
domination principle), uniquely determined up to m-polar sets. In classical situations, when a Green
function exists, the Revuz correspondence is precisely the association of the Green potential to a positive
measure. In this case the Revuz formula reduces to the Green one.

If in addition the positive measure µ has a smoothness (that is, a kind of finiteness) property, then
there exists a m-inessential set N in E and a sub-Markovian resolvent W = (Wα)α>0 on E \N which is
subordinate to U (i.e., Wα ≤ Uα for all α > 0), such that for every p ∈ [1,∞), each positive measurable
function f lying in Lp(E, m) and q > 0, the function Wqf is a weak solution of the equation (∗) and the
family W = (Wα)α>0 becomes a strongly continuous resolvent of contractions on Lp(E, m).

We consider also the Schrödinger equation (∗) with µ a signed measure, µ = µ+ − µ−, where µ+ and
µ− are positive σ-finite measures charging no m-polar set and in addition µ+ is satisfying the smoothness
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property. We construct a new resolvent of kernels (W ′
α)α>0 on E \ N , such that if certain conditions

concerning q and f are fulfilled, then W ′
qf will be the weak solution of the equation (∗).

We complete the introduction with some probabilistic interpretations. If the measure µ is positive and
charges no m-semipolar set, then the above resolvent W is associated with a right Markov process with
state space E\N , which is obtained by killing the initial proces X with a (right) continuous multiplicative
functional (Mt)t≥0, i.e.

(∗∗) Wαf(x) = Ex
∫ ∞

0 Mte
−αtf ◦ Xtdt.

If the measure µ charges some m-semipolar set, then there is no such a multiplicative functional. Gen-
erally, one can construct a left continuous multiplicative functional (in the sense of Fitzsimmons-Getoor,
see [FiGe 03]) such that the Feynman-Kac formula (∗∗) holds. However, there exists a right process with
state spece E \N as above such that its resolvent equals W m-a.e., for detailes we refer to Chapter 5 in
[BeBo 04].

The paper is organized as follows: In Section 1, after introducing our setup, we present the necessary
results on the subordinate resolvents. Particularly, we study the subordination induced by some potential
kernels, more precisely, by the regular strongly supermedian kernels generating sub-Markovian resolvents.
Section 2 is devoted to the Revuz formula and correspondence, the proofs are presented in Appendix.
The main results of the paper, on the existence and uniqueness of the weak solutions for the equation
(∗), are established in Section 3. Finally we give an example, including some computations.

1 Subordination induced by regular strongly supermedian kernels

Let U = (Uα)α>0 be a sub-Markovian resolvent of kernels on a Lusin measurable space (E,B). We shall
denote by pB (resp. bpB the set of all numerical positive (resp. bounded positive) B-measurable functions
on E.

A function s ∈ pBu(Bu is the universally completion of B) is termed U-supermedian if αUαs ≤ s for
all α > 0. A U-supermedian function s is named U-excessive if in addition supα>0αUαs = s. We denote
by E(U) the set of all U-excessive functions on E. If s is U- supermedian then the function ŝ defined by
ŝ(x) = supα>0αUαs, x ∈ E is U-excessive.

Recall that a σ-finite measure ξ on (E,B) is called U-excessive if ξ ◦αUα ≤ ξ for all α > 0. We denote
by ExcU the set of all U-excessive measures.

We assume further in this section that U is proper, (i.e. there exists a strictly positive function
fo ∈ bρB such that Ufo ≤ 1, where U = U0 = supα>0 Uα is the initial kernel of U) and that E(U) is
min-stable, contains the positive constant functions and pB ∩ E(U) generates the σ-algebra B.

A U-excessive measure of the form µ ◦ U (where µ is a σ-finite measure) is called potential. The
set E is called semisaturated with respect to U provided that every U-excessive measure dominated by
a potential is also a potential. Recall that the set E is semisaturated with respect to U if and only if
there exists a Lusin topology on E such that B is the σ-algebra of all Borel sets on E and there exists a
transient right process with state space E, having U as associated resolvent.

We suppose that E is semisaturated with respect to U .
For each s ∈ E(U) and every subset A of E we consider as usual the function RAs = inf{t ∈ E(U)/

t ≥ s on A}, called the reduced function of s on A. It is known that if A ∈ B then RAs is a universally

B-measurable U-supermedian function and we put BAs = R̂As. Let µ be a σ-finite on E.
A subset M of E is called µ-polar (with respect to U) provided that there exists M0 ∈ B, M0 ⊃ M ,

such that BM01 = 0 µ-a.e. The set M is named nearly B-measurable if for every finite measure µ on E
there exists a set M1 ⊂ M , M1 ∈ B, such that the set M\M1 is µ-polar and µ-negligible. We denote by
Bn the σ-algebra of all nearly B-measurable subsets of E and clearly we have B ⊂ Bn ⊂ Bu. A function
s ∈ pBn is called strongly supermedian (with respect to U) if for every two finite measures µ, ν on E such
that µ ◦U ≤ ν ◦U we have µ(s) ≤ ν(s). Obviously each strongly supermedian function is U-supermedian
and since E(U) ⊂ pBn, it follows that every U-excessive function is strongly supermedian. Notice that
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if (sn)n is a sequence of strongly supermedian functions then lim infn sn is also a strongly supermedian
function.

Let further V = (Vα)α>0 be a sub-Markovian resolvent on (E,Bu). A kernel P on (E,Bu) is called weak
subordination operator with respect to V provided that Pu ≤ u and the function inf(u, Pu+v−Pv+Pf)
is V-supermedian for all u, v ∈ E(V) with v < ∞ and f ∈ pB. If in addition the above function is
V-excessive, then P is named exact subordination operator.

If P is a weak subordination operator with respect to V we denote by EP the set defined by

EP = {x ∈ E/ there exists s ∈ E(V) with Ps(x) < s(x)}.

A second sub-Markovian resolvent of kernels W = (Wα)α>0 on (E,Bn) is called subordinate to V
provided that Wα ≤ Vα for all α > 0.

We collect now some results on the subordination operators and subordinate resolvents; cf. [BeBo 04].
i) Let P be a weak subordination operator with respect to V . Then there exists a sub-Markovian

resolvent W = (Wα)α>0 on (E,Bu) such that W is subordinate to V and Wf = V f−PV f for all f ∈ pBu

with V f < ∞. The sub-Markovian resolvent W is called generated by P .
ii) Let W = (Wα)α>0 be a sub-Markovian resolvent on (E,Bu) which is subordinate to U . Then there

exists a uniquely determined weak subordination operator with respect to U such that W is generated
by P , particularly we have PUf = Uf − Wf for all f ∈ pB with Uf < ∞.

iii) If q > 0 then the kernel qUq is an exact subordination operator with respect to U . The resolvent
generated by qUq is Uq = (Uq+α)α>0. One can show that a set M ⊂ E is µ-polar with respect to U if
and only if it is µ-polar with respect to Uq .

iv) Let q > 0, f ∈ pB and s, t two strongly supermedian functions, t < ∞. Then the function
inf(s, qUqs + t − qUqt + qUqf) is also strongly supermedian.

v) Let EU be the set of all U-excessive functions which are finite U-a.e. and let us denote by � the
specific order in EU : s ≺ t means that there exists u ∈ EU such that t = s + u. Let further P : EU −→ EU
be a map which is additive, increasing and contractive (i.e. Ps ≤ s for all s ∈ EU). Then for every s ∈ EU
there exists s′ ∈ EU , s′ ≺ s, such that s′ − Ps′ = s− Ps and s′ ≤ u for all u ∈ EU with s− Ps ≤ u− Pu.
This assertion follows from Theorem 1.2.6 and Lemma 2.1.3 in [BeBo 04].

A kernel P on (E,Bu) is called subordination operator with respect to U if the following properties
hold:

a) P is a weak subordination operator with respect to every proper sub-Markovian resolvent U ′ on
(E,B) such that E(U) = E(U ′).

b) If U ′ is as above, then E(W) = E(W ′), where W ,W ′ are the subordinate resolvents to U and
respectively to U ′ generated by P .

vi) If P is kernel satisfying condition a) and in addition Ps is a strongly supermedian function for all
s ∈ E(U), then P is a subordination operator.

Recall that a proper kernel V on (E,Bn) is called regular strongly supermedian (with respect to U)
provided that V f is a strongly supermedian function for every f ∈ pB and if s ∈ E(U) is such that V f ≤ s
on the set [f > 0] then the inequality holds on E.

Proposition 1.1. Let V be a regular strongly supermedian kernel on (E,Bn). Then for every q > 0 the
kernel Qq on (E,Bn) given by

Qqf = V f − qUqV f

for all f ∈ pB with V f < ∞, satisfies the complete maximum principle. Moreover for every f, g ∈ bpB
and w ∈ E(Uq) we have Qqf ≤ Qqg + w provided that the inequality holds on the set [f > 0].

Proof. We may assume that V is a bounded kernel. Let w = Uqh with h ∈ pB, Uh < ∞, and f, g ∈ bpB be
such that Qqf ≤ Qqg+w on the set [f > 0]. We get V f ≤ t on [f > 0], where t = qUqV f+V g−qUqV g+w.
By iv) we deduce that the function inf(V f, t) is strongly supermedian and therefore V f ≤ t on E or
equivalently Qqf ≤ Qqg + w.
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Proposition 1.2. Let V be a regular strongly supermedian kernel such that there exists a sub-Markovian
resolvent V = (Vα)α>0 on (E,Bn) having V as initial kernel. If q > 0 then there exists a sub-Markovian
resolvent of kernels (Qq

α)α>0 on (E,Bn) having Qq = V − qUqV as initial kernel and moreover Qq
α ≤ Vα

for all α > 0.

Proof. By Hunt approximation theorem it follows that every V-excessive function is strongly supermedian
and therefore from assertion iv) we get that the kernel qUq is a weak subordination operator with
respect to V . By i) there exists a resolvent (Qq

α)α>0 on (E,Bn) which is subordinate to V and having
Qq = V − qUqV as initial kernel.

Theorem 1.3. Let V = (Vα)α>0 be a proper sub-Markovian resolvent of kernels on (E,Bn) such that its
initial kernel V is regular strongly supermedian and there exists a strictly positive functin fo ∈ bpB with
Ufo bounded and infααVαUfo = 0. Then the kernel V1 is a subordination operator with respect to U such
that EV1

= E and U = W +V W , where W = U −V1U . Moreover the sub-Markovian resolvent of kernels
on (E,Bn) having W as initial kernel is given by

Wα = Uα − Qα
1 Uα

where (Qα
β)β>0 is the resolvent of kernels associated with V in Proposition 1.2.

Proof. Since every s ∈ E(U) is V-supermedian it follows that V1s is V-excessive and thus it is strongly
supermedian. By assertion vi) we only have to show that V1 is a weak subordination operator with
respect to every proper sub-Markovian resolvent U ′ on (E, B) such that E(U) = E(U ′). We may assume
that U = U ′. By Proposition 1.2 for every q > 0 there exists a sub-Markovian resolvent of kernels
Qq = (Qq

α)α>0 on (E,Bn) having Qq = V − qUqV as initial kernel and Qq
α ≤ Vα for all α > 0. From

Proposition 1.1 we deduce that every Uα-excessive function is Qα-supermedian and therefore we may
define a kernel Wα on (E,Bn) by

Wαf = Uα − Qα
1 Uαf, f ∈ bpB, Uf < ∞.

We get Uαf = Wαf+QαWαf+v, where v = infn(Qα
1 )nUαf . It follows that if f ≤ f0 then Qα

1 v = v ≤ Ufo

and so qQα
q v = v for all q > 0, v = infqqVqv ≤ infqqVqUfo = 0. We deduce that Uαf = Wαf + QαWαf

for all f ∈ bpB with Uf < ∞ and we obtain Uf = (I + αU)Uαf = Wαf + αUWαf + V Wαf . Since
αUWαf ≤ Uf < ∞, it results that (I − V1)Uf = (I − V1)(I + V )Wαf + (I − V1)U(αWαf) = Wαf +
(I − V1)U(αWαf), Wf = Wαf + W (αWαf) and therefore W = Wα + αWWα.

It remains to prove that WWα = WαW . We define the kernel T on (E, Bn) by Tf = f +∑
n=1(αWα)nf for all f ∈ pB. Because Wαf ≤ Uαf and (I + αU)fo = fo +

∑∞
n=1(αUα)nfo we conclude

that for all f ∈ pB, f ≤ fo we have: Tf ≤ (I + αU)f < ∞, (I − αWα)Tf = f, Wf = W (I − αWα)Tf =
WαTf =

∑∞
n=1 αn−1W n

α f and thus WWαf = WαWf .
We show now that EV1

= E. Assume that there exists a ∈ E\EV1
. We get V1s(a) = s(a) for

all s ∈ E(U) and consequently V1g(a) = 0 for all g ∈ pB with V g(a) < ∞, contradicting the relation
0 6= Ufo(a) = V1Ufo(a).

Remark. 1. Theorem 1.3 details and completes Theorem 5.1.8 from [BeBo 04]. In the case when V is a
bounded kernel, the result has been obtained essentially by G. Mokobodzki in [Mo 83].
2. One can show that the set E(W) of all W-excessive functions is min-stable and genearally 1 6∈ E(W).
The constant function 1 is W-excessive if and only if W is exactly subordinate to U or equivalently, V is
a regular U-excessive kernel (cf. [BeBo 04], Remark following Theorem 5.1.20).

2 The Revuz correspondence

In this section U = (Uα)α>0 will be a proper sub-Markovian resolvent as in Section 1. Notice that if
q > 0 then the resolvent Uq = (Uq+α)α>0 possesses the same properties as U , namely E(Uq) is min-stable,
1 ∈ E(Uq), pB ∩ E(Uq) generates B and E is semisaturated with respect to Uq ; see also [BeBoRö 05].
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If s is a strongly supermedian function with respect to U and ξ ∈ ExcU , we define L(ξ, s) by

L(ξ, s) = sup{µ(s)/µ ◦ U ≤ ξ}.

The functional (ξ, s) 7→ L(ξ, s) is called the energy functional associated with U . We shall denote by Lq

the energy functional with respect to Uq.
Let S be the convex cone of all finite strongly supermedian functions. Recall that S is a cone of

potentials, particularly if s, t ∈ S, s ≤ t, then the reduced function of t−s, R(t−s) = inf{u ∈ S/u ≥ t−s},
belongs to S and R(t − s) ≺ t, where ≺ denotes here the specific order in S. A function s ∈ S is called
regular (in S) if for every sequence (sn)n ⊂ S, sn ↗ s, we have infnR(s − sn) = 0. It is known that a
function s ∈ S is regular if and only if there exists a regular strongly supermedian kernel V such that
s = V 1. Recall that the following Mertens decomposition holds for every finite strongly supermedian
function s : s = s0 + s1, where s0 ∈ S is regular and s1 is U-excessive (cf. [BeBo 04]). We shall denote
by Sq the convex cone of all finite strongly supermedian functions with respect to Uq and notice that
S ⊂ Sq .

The proofs of the next two results are presented in Appendix.

Proposition 2.1. Let q > 0 be fixed and t ∈ Bn a finite function on E. Then the following assertions
hold.

1. The function t is strongly supermedian with respect to U if and only if t − qUqt is strongly super-
median with respect to Uq. Particularly we have: t ∈ E(U) if and only if t − qUqt ∈ E(Uq).

2. Assume that t ∈ S and let m ∈ ExcU . Then L(m, t0) = Lq(m, t− qUqt), where t0 = t− infααUαt.
The function t is regular in S if and only if infααUαt = 0 and t − qUqt is regular in Sq.

In the sequel m will be a fixed U-excessive measure. Clearly for all q > 0 the measure m is Uq-
excessive. We denote by N (m) the set of all nearly B-measurable sets which are m-polar. Let σm be
the set of positive σ-finite measures charging no set from N (m).

A set N ∈ Bn is called m-inessential (with respect to U) if it belongs to N (m) and RN1 = 0 on E\N .
We remark that every element from N (m) is the subset of a m-inessential set. Indeed, let A ∈ N (m)

and A0 ∈ B, A ⊂ A0, such that RA01 = 0 m-a.e. We consider the set N = [RA01 > 0] and we get
A0 ⊂ N ∈ Bn, m(N) = 0 and RN1 = 0 on E \ N , hence N is m-inessential.

A property depending on x ∈ E is said to hold m-quasi everywhere (abbreviated m-q.e.) if the set of
all x ∈ E for which it does not hold is m-polar.

Recall that the fine topology is the topology on E generated by all U-excessive functions. A function
f ∈ pBn is named m-finely continuous if it is finely continuous outside a set from N (m).

If g ∈ pBn then a m-fine version of g is a function f which is m-finely continuous and f = g m-a.e.
By Theorem 4.4.2 in [BeBo 04] it follows that if ξ ∈ ExcU and ξ � m then there exists a m-fine

version of the Radon-Nikodym derivative dξ/dm.
If µ ∈ σm and q ≥ 0 then by Theorem 6.1.2 in [BeBo 04] there exists a kernel V q

µ on (E,Bn) which
is regular strongly supermedian with respect to Uq, such that µ(f) = Lq(m, V q

µ f), for all f ∈ pB.
The kernel V q

µ as above is uniquely determined m-q.e. and for every ξ ∈ ExcUq
such that ξ � m the

following Revuz formula holds:
Lq(ξ, V

q
µ f) = Lq(m, V q

µ (t̃f)).

where t̃ is a m-fine version of the Radon-Nikodym derivative dξ/dm. The map µ 7→ V q
µ is called the

Revuz correspondence. We shall write Vµ instead of V 0
µ .

A measure µ ∈ σm is termed smooth (with respect to U) provided that there exists an increasing
sequence (Ak)k, Ak ∈ Bn, µ(Ak) < ∞ for all k, such that the set [infkRE\Akpo > 0] belongs to N (m); po

is a bounded U-excessive function of the form po = Ufo with fo > 0, fo ∈ bpB. Notice that the notion
of smoothness we considere here is precisely the “m-smoothness” from [BeBo 04]. Clearly if µ ∈ σm is a
finite measure then it is smooth.

Proposition 2.2. The following assertions hold for every q > 0.
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1. If µ ∈ σm and f ∈ pBn is such that Vµf < ∞ then we have m-q.e.

V q
µ f = Vµf − qUqVµf.

2. A measure from σm is smooth with respect to U if and only if it is smooth with respect to Uq.
3. A set will be m-inessential with respect to U if and only if it has the same property with respect to

Uq.

3 Weak solution for the Schrödinger equation

In this section U = (Uα)α>0 will be the sub-Markovian resolvent of a right process X with state space
E, a Lusin topological space,

Uαf(x) = Ex

∫ ∞

0

e−αtf ◦ Xtdt, f ∈ pB, α > 0

(B is the Borel σ-algebra on E). We do not assume that the process is transient (i.e. U is not necessary
a proper kernel). However the result from the previous sections, obtained in the transient case, will be
applyed further to the bounded resolvent Uq = (Uq+α)α>0 for q > 0. The results on the semisaturation
of E extend to the non-transient case as follows [cf. [BeBoRö 05]): If U = (Uα)α>0 is a sub-Markovian
resolvent of kernels on a Lusin measurable space (E,B), then there exists a Lusin topology on E such that
B is the Borel σ-algebra on E and a right process with state space E having U as associated resolvent if
and only if for one q > 0 (or equivalently for all q > 0) the set E(Uq) is min-stable, 1 ∈ E(Uq), pB ∩ E(Uq)
generates B and E is semisaturated with respect to Uq.

Let m be a fixed U-excessive measure and N (m) be the family of all sets from Bn which are m-polar
(with respect to Uq) for one q > 0 (and therefore for all q > 0).

We shall maintain the notation σm for the set of all positive σ-finite measures charging no set from
N (m).

Let µ ∈ σm be a smooth measure (with respect to Uq for one q > 0, and therefore for all q > 0; cf.
Proposition 2.2) and V q

µ the regular strongly supermedian kernel with respect to Uq , associated with µ
by the Revuz correspondence.

Theorem 3.1. If µ ∈ σm is a smooth measure, then there exists a m-inessential set N and a sub-
Markovian of kernels (Wq)q>0 on (E\N,Bn|E\N ) such that for all q > 0 we have

Uq|E\N = Wq + V q
µ |E\N (Wq).

More precisely for all q, q′ > 0, q′ > q, we have V q′

µ |E\N = V q
µ |E\N − (q′ − q)Uq′V q |E\N and V q

µ |E\N is
the initial kernel of a sub-Markovian resolvent of kernels V q = (V q

α )α>0 on (E\N,Bn|E\N ),

Wq = Uq |E\N − V q
1 (Uq|E\N ) and inf

α
αV q

α (Uq1|E\N ) = 0.

Proof. By Theorems 6.3.1 and 6.3.2 in [BeBo 04] for every q > 0 there exists a m-inessential set Nq

and a sub-Markovian resolvent of kernels (V q
α )α>0 on (E\Nq,B

n|E\Nq
) having V q = V q

µ |E\Nq
as initial

kernel and such that infα αV q
α (Uq1|E\Nq

) = 0. If q′ > q then from Proposition 2.2 we get V q′

µ =
V q

µ − (q′ − q)Uq′ |E\Nq
V q.

The set N =
⋂∞

n=1N 1
n

is a m-innesential set and considering the restriction of all the kernels to E\N ,

we may consider in the sequel that N = ∅. The claimed resolvent Vq, q > 0, is that one with the initial

kernel V q as follows: V
1

n+1 = V
1
n + 1

n(n+1)U 1
n

+1V
1
n for all n ≥ 1 and V q = V

1
n − (q − 1

n
)UqV

1
n if

q ∈ [ 1
n
, 1

n−1 ), with the convention 1
0 = ∞. If we define Wq = Uq − V q

1 Uq for all q > 0, one can check,
using Theorem 1.3, that the family W = (Wq)q>0 is a resolvent of kernels.
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Let α > 0. Since m is a U-excessive measure it follows that Uαf = 0 m-a.e. provided that f = 0
m-a.e. and Uα induces a bounded operator on Lp(E, m) for all p ∈ [1,∞): if f ∈ Lp(E, m) then Uαf ∈
Lp(E, m), ‖αUαf‖Lp(E,m) ≤ ‖f‖Lp(E,m) (see e.g. Proposition 7.5.1 in [BeBo 04]) and limα→∞αUαf = f
in Lp(E, m). We shall denote by L the infinitesimal operator of U , that is the map defined on D(L) =
Uα(Lp(E, m)) with values in Lp(E, m) by

L(Uαf) = αUαf − f, f ∈ Lp(E, m).

Let U∗ = (U∗
α)α>0 be a second sub-Markovian resolvent of kernels on (E,B) such that σ(pB∩E(U ∗

q )) =
B, E(U∗

q ) is min-stable, 1 ∈ E(U∗
q ) for one q > 0 and

∫
fUαgdm =

∫
gU∗

αfdm for all f, g ∈ pB and α > 0;
such a resolvent U∗ always exists by Corollary 2.4 in [BeBoRö 05].

Definition. Let q > 0 and p ∈ [1,∞). A test function (with respect to U , q, p and m) is a m-finely

continuous positive function ϕ such that ϕ · m is a Uq-excessive measure and there exists g ∈ Lp′

+(E, m)
such that ϕ ≤ U∗

q g m-a.e., where 1/p + 1/p′ = 1.

Remark 3.2. 1. If g ∈ Lp′

+(E, m) then U∗
q g ∈ Lp′

+ (E, m) and the measure U∗
q g · m is a potential Uq-

excessive measure, U∗
q g · m = (g · m) ◦ Uq. Therefore the m-fine version of U∗

q g will be a test function.
2. Since E is semisaturated with respect to Uq, it follows that ϕ · m will be a potential Uq-excessive
measure, hence for every test function ϕ there exists a unique σ-finite measure λϕ on (E,B) such that
ϕ · m = λϕ ◦ Uq .
3. Let λ be a σ-finite measure on (E,B). By Theorem 3.4.2 in [BeBo 04] it follows that λ ∈ σm if and only
if there exists a sequence (ϕn)n of test functions (with respect to U , q, p and m) such that λ =

∑
nλϕn

.
Consequently a set will be in N (m) if and only if it is λϕ-negligible for every test function ϕ (with respect
to U , q, p and m).

Following [Ge 99a] we consider signed measures: let µ+, µ− ∈ σm be such that µ+ ⊥ µ−. We write
µ = (µ+, µ−) and think of µ = µ+ − µ−. Let also |µ| = µ+ + µ−.

Definition. Let µ = (µ+, µ−) and q > 0. A numerical Bn-measurable function u on E is called weak
solution (with respect to m) of the Schrödinger equation

(∗) (q −L)u + µu = f

where f is a given function from Lp(E, m), provided that the following two conditions are satisfied for
every test function ϕ (with respect to U , q, p and m):

a) u ∈ L1(E, λϕ + ϕ · |µ|);
b)

∫
udλϕ +

∫
uϕdµ+ −

∫
uϕdµ− =

∫
fϕdm.

Remark. 1 (The case µ+ = µ− = 0). It is easy to see that Uqf is the weak solution of the Schrödinger
equation (q −L)u = f .
2. If ui, i = 1, 2, is a weak solution of the Schrödinger equation (q −L)u + µu = fi then for all α ∈ R the
function u1 + αu2 is a weak solution of the equation (q −L)u + µu = (f1 + αf2).
3. R. K. Getoor has considered in [Ge 99a] the functions U ∗

q f with f ∈ Lp′

(E, m) as being the test
functions, where (U∗

α)α>0 is the “moderate dual resolvent”. Since the equation (∗) has been considered
for the particular measures µ charging no m-semipolar set, and U ∗

q f differs from its m-fine version outside
a m-semipolar set, we conclude that in this case our class of test functions is a larger one. However the
weak solution in the sense of [Ge 99a] coincides with that from this paper.

Proposition 3.3. Let u ∈ bBn, f ∈ Lp
+(E, m) and q > 0. Then u will be a weak solution of the

Schrödinger equation (∗) if and only if the following two conditions hold:
a′) V q

|µ|(|u|) ∈ Lp(E, m);

b′) u + V q

µ+u = V q

µ−
u + Uqf m-q.e.

Particularly every weak solution of the equation (∗) possesses a m-fine version.
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Proof. Notice firstly that by the Revuz formula, for every test function ϕ, each ν ∈ σm and h ∈ pBn

we get
∫

V q
ν hdλϕ = Lq(ϕ · m, V q

ν h) = Lq(m, V q
ν (ϕh)) =

∫
ϕhdν. Applying this to ν = |µ| and h = |u|,

we deduce that for every g ∈ Lp′

(E, m) we have
∫

gV q

|µ|(|u|)dm =
∫

ϕ|u|d|µ|, where ϕ = Ũ∗
q g, and we

conclude that assertion a) from the definition of a test function is equivalent with a′). Applying again
the above equality for ν = µ+, µ−, we obtain that condition b) is equivalent with

∫
udλϕ +

∫
V q

µ+udλϕ =∫
V q

µ−
udλϕ +

∫
Uqfdλϕ for every test function ϕ. By assertion 3 of Remark 3.2, the last equality is

equivalent with condition b′). Since the functions V q

µ−
u,V q

µ+u and Uqf possess m-fine versions, it follows
that u has the same property.

The case of positive measures

For the next two results we assume that µ− = 0 and we shall write µ instead of µ+.

Proposition 3.4. Let µ ∈ σm and f ∈ Lp
+(E, m). Then u will be a weak solution of the Schrödinger

equation (∗) if and only u ≥ 0 and u + V q
µ u = Uqf m-q.e.

Proof. If u is a weak solutin of the equation (∗), then by Proposition 3.3 we get u + V q
µ = Uqf m-q.e. If

we take a m-inessential set N such that [u + V q
µ u 6= Uqf ] ⊂ N and we consider the restrictions of u, V q

µ

and Uq to E \N , we may assume that u + V q
µ = Uqf everywhere and thus V q

µ u ≤ Uqf on the set [u > 0].
The kernel V q

µ being regular stronlgy supermedian, we conclude that V q
µ u ≤ Uqf , or equivalently, u ≥ 0

m-q.e. Converesely, if u ≥ 0 and u + V q
µ = Uqf m-q.e., then clearly u and V q

µ u belong to Lp
+(E, m) and

again by Proposition 3.3 it follows that u is a weak solution of the equation (∗).

We state now the main result of this paper.

Theorem 3.5. If µ ∈ σm is a smooth measure then the following assertions hold.
1. For every q > 0 and f ∈ Lp(E, m) the Schrödinger equation (∗) has a unique weak solution.

Moreover if N is the m-inessential set and W = (Wq)q>0 the sub-Markovian resolvent on (E\N,Bn|E\N )
associated with µ in Theorem 3.1, then the function from pBn which equals Wqf on E\N is a weak
solution of the equation (∗).

2. If f ∈ Lp(E, m), let Wqf denote the element of Lp(E, m) given by the weak solution of the equation
(∗). Then the family (Wq)q>0 is a strongly continuous resolvent of contractions on Lp(E, m).

Proof. 1. The uniqueness follows by Proposition 3.4. For the existence we may assume that f ≥ 0
and let u ∈ pB be such that u = Wqf on E \ N . We get u ∈ Lp(E, m) since clearly u ≤ Uqf . From
Wqf +V q

µ |E\N (Wqf) = Uqf on E\N we deduce that u+V q
µ u = Uq m-q.e. on E. By assertion 3 in Remark

3.2 it follows that for every test function ϕ with respect to U , q, p and m we have
∫

udλϕ +
∫

uϕdµ =∫
(u + V q

µ u)dλϕ =
∫

Uqfdλϕ =
∫

fϕdm < ∞ and we conclude that u is a weak solution of the equation
(∗).

2. Let Vq = (V q
α )α>0 be the sub-Markovian resolvent of kernels on (E\N,Bn|E\N ) having V q

µ |E\N as
initial kernel.

In the sequel we may suppose that N = ∅. Because Wqf ≤ Uqf for all f ∈ pBn, we get ‖qWq‖Lp(E,m) ≤
1 and from V q

1 Uqf ≤ Uqf we obtain ‖V q
1 Uqf‖Lp(E,m) ≤ ‖Uqf‖Lp(E,m). The set Uq(L

p(E, m)) being

dense in Lp(E, m), we can extend V q
1 by continuity to a bounded linear operator Ṽ q

1 on Lp(E, m) with

‖Ṽ q
1 ‖Lp(E,m) ≤ 1. Notice that if h ∈ Lp(E, m) ∩ E(Uq) then the function V q

1 h is a version of Ṽ q
1 h.

We fix now qo > 0 and let go ∈ pB ∩ Lp(E, m), 0 < go ≤ 1. Then there exists fo ∈ pB, 0 < fo ≤ 1
such that V qofo ≤ Uqo

go and thus V qofo ∈ Lp(E, m). From V qo+α = V qo − αUqo+αV qo it follows that
limα→∞ V qo+αfo = 0 and then limq→∞ V q

1 fo = 0 in Lp(E, m). The set {f ∈ Lp(E, m) / there exists

θ > 0 with |f | ≤ θfo} is dense in Lp(E, m) and as a consequence limq→∞ Ṽ q
1 g = 0 for all g ∈ Lp(E, m).

We conclude that for all f ∈ pB ∩ Lp(E, m) we have limq→∞ V q
1 (qVqf) = 0 and so limq→∞ qWqf = f in

Lp(E, m).

The case of Lp-resolvents

Let (Uα)α>0 be a strongly continuous sub-Markovian resolvent of contractions on Lp(E, m), where m
is a σ-finite measure on the Lusin measurable space (E,B). Then by Theorem 2.2 in [BeBoRö 05] there
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exists a sub-Markovian resolvent of kernels U = (Uα)α>0 on (E,B) such that Uα regarded as operator on
Lp(E, m) coincides with Uα for all α > 0 and for some β > 0 we have 1 ∈ E(Uβ), pB∩E(Uβ) in min-stable
and generates B. Moreover there exists a Lusin topological space E1 such that E ⊂ E1, E ∈ B1 (the
σ-algebra of Borel sets on E1) and a sub-Markovian resolvent of kernels U1 = (U1

α)α>0 on (E1,B1) which
is an extension of U to E1 (i.e. U1

α(1E1\E) = 0 for all α > 0) and U1 is associated with a right process
with state space E1. We assume that m ∈ ExcU and let σm be the family of all σ-finite measure on (E,B)
such that there exists a resolvent U = (Uα)α>0 as above and for all m′ ∈ ExcUq

, m � m′, m′ � m, there
exists a sequence (µk)k of finite measures on (E,B) with µ =

∑
k µk and µk ◦ Uq ≤ m′ for all k and one

q > 0. We remark that by Theorem 3.4.2 in [BeBo 04] this notation agrees with that already considered.
Let m be the measure on (E1,B1) extending m by zero on E1\E. In this way (Uα)α>0 may be viewed as
a resolvent on Lp(E1, m) and on E1 one can consider the test functions with respect to U1, p, q and m.

Taking into account the above considerations, we can establish the following result on the Schrödinger
equation for Lp-resolvents, as a consequence of Theorem 3.5.

Corollary 3.6. Let p ∈ [1,∞), (Uα)α>0 be a strongly continuous sub-Markovian resolvent of contractions
on Lp(E, m) and µ ∈ σm be a smooth measure. Then for every q > 0 and f ∈ Lp(E, m) the Schrödinger
equation (∗) (verified with the test functions on E1) has a unique weak solution Wqf . The family (Wq)q>0

is a strongly continuous resolvent of contractions on Lp(E, m) and

Wq = Uq − V q
1 Uq ,

for all q > 0, where V q
1 is a sub-Markovian contraction on Lp(E, m).

Signed measures

We return now to the general case: µ = (µ+, µ−), with µ+, µ− ∈ σm, and assume that µ+ is a
smooth measure. For every q > 0 let V q = V q

µ+ (resp. V q
− = V q

µ−
) be the regular strongly supermedian

kernel associated with µ+ (resp. µ−) by the Revuz correspondence. Theorem 3.1 implies the existence
of a m-inessential set N such that, considering the restrictions of the kernels Uq, V q and V q

− to E \ N ,
for all α, q > 0, α < q, we have V q

− = V α
− − (q −α)UqV

α
− , UqV

α
− = UαV q

− and V α is the initial kernel of a
sub-Markovian resolvent of kernels Vα = (V α

β )β>0 on (E\N,Bn|E\N ), such that infβ βV α
β (Uα1) = 0. The

family W = (Wα)α>0, where Wα = Uα−V α
1 Uα, is a sub-Markovian resolvent of kernels on (E\N,Bn|E\N ).

Since the function V α
− f is Uα-strongly supermedian for every f ∈ pBn, it follows that V α

1 V α
− f ≤ V α

− f
and therefore there exists a kernel Tα on (E \ N,Bn|E\N ) such that

Tαf = V α
− f − V α

1 V α
− f

for every f ∈ pBn with V α
− f < ∞. Because there exists a function go ∈ pB, 0 < go ≤ 1, such that

V α
− go ≤ Uα1, we deduce that (I + V α)Tα = V α

− .

Proposition 3.7. If α, β > 0, α < β, then the following assertions hold.
1. Tβ = Tα − (β − α)WβTα and WβTα = WαTβ.
2. For every natural number n we have: T n

α Wα = T n
β Wβ+ (β−α)

∑
i+j=n T i

βWβT j
αWα and

∑
i+j=n T i

β

WβT j
αWα =

∑
i+j=n T i

αWαT j
βWβ .

Proof. Let us put S = Tα − (β − α)WβTα. Because Tα is a Wα-supermedian kernel, it follows that S is
a kernel and we get V βTα ≤ V αTα ≤ V α

− . We have to show that S = Tβ, or equivalently, (I + V β)S =
(I + V β)Tβ . Indeed, we have (I + V β)S =(I + V β)(I − (β − α)Wβ)Tα = (I + V β − (β − α)Uβ)Tα =

(I − (β − α)Uβ)(I + V α)Tα = (I − (β − α)Uβ)V α
− = V β

− = (I + V β)Tβ . Further we have WαTβ =
Wα(I − (β − α)Wβ)Tα = WβTα.

The second assertion follows by an induction procedure, similar to the proof of Lemma 5.2.1 in
[BeBo 04].

For every α > 0 we define the kernel W ′
α on (E \ N,Bn|E\N ) by

W ′
α =

∞∑

n=0

T n
α Wα.
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We can state now the existence result for the equation (∗), in the general case of the signed measures.

Theorem 3.8. Let µ = (µ+, µ−), with µ+, µ− ∈ σm, and assume that µ+ is a smooth measure. Let
further α > 0 and f ∈ Lp(E, m) such that V α

µ−
W ′

α(|f |) ∈ Lp(E, m). Then for every q ≥ α the Schrödinger
equation (∗) has a weak solution. More precisely a function from pBn which equals W ′

qf on E \ N is a
weak solution of the equation (∗). The family (W ′

α)α>0 is a resolvent of kernels on (E \N,Bn|E\N ).

Proof. We may assume that f ≥ 0. On E \N we have (I + V q)W ′
qf = V q

−W ′
qf + Uqf , hence u + V q

µ+u =

V q

µ−
u + Uqf m-q.e., where u ∈ pBn, u = W ′

qf on E \ N . By Proposition 3.3, in order to prove that u

is a weak solution of the equation (∗), it remains to show that V q

|µ|u ∈ Lp(E, m), which holds since by

hypothesis V q

µ−
u ∈ Lp(E, m) and V q

µ+ ≤ V q

µ−
u + Uqf .

Let us check now that the family of kernels (W ′
α)α>0 is a resolvent. By Proposition 3.7, for all α, β > 0,

α < β, we have W ′
βW ′

α =
∑∞

i,j=0 T i
βWβT j

αWα =
∑∞

n=0

∑
i+j=n T i

βWβT j
αWα =

∑∞
n=0

∑
i+j=n T i

αWαT j
βWβ =

W ′
αW ′

β . We get also W ′
β +(β−α)W ′

βW ′
α =

∑∞
n=0(T

n
β Wβ+ (β−α)

∑
i+j=n T i

βWβT j
αWα) =

∑∞
n=0 T n

α Wα =
W ′

α.

Remark. In a forthcoming paper, using probabilistic methods (the stochastic calculus for the positive left
additive functionals), we shall give suplementary Lp-properties for the solution W ′

αf of the Schrödinger
equation (∗), under suitable Kato type hypothesis (as in [Ge 99a]) on the measures µ+ and µ−.

Example. We consider the heat operator in E = R
n × R,

L = ∆ −
∂

∂t
.

Let a ∈ R and µ be the n-dimensional Lebesgue measure on the horizontal hyperplane R
n × {a}. We

denote by U = (Uα)α>0 the proper sub-Markovian resolvent generated by L and let m be the (n + 1)-
dimensional Lebesgue measure on E. Notice that m is a reference measure for U (i.e. U(1M ) = 0
provided that m(M) = 0) and therefore a subset M of E will be m-polar if and only if it is polar (i.e.
BM1 = 0). Clearly the measure µ charges no polar set and it is smooth will respect to U since there
exists an increasing sequence (Kn)n of compact sets in E such that

⋃
nKn = E and infnBE\Knpo = 0

where po = Ufo is bounded, fo ∈ pB, 0 < fo ≤ 1. By Theorem 3.4 for every q > 0, p ∈ [1,∞) and
f ∈ Lp(E, m) the Schrödinger equation (∗) has a unique weak solution Wqf in pBn ∩ Lp(E, m) and the
family of operators (Wq)q>0 on Lp(E, m) is a strongly continuous resolvent of contractions on Lp(E, m).

Notice that the results of R. K. Getoor from [Ge 95] and [Ge 99a] are not applicable to this situation,
since the measure µ is carried by a semipolar set.

We shall complete this example with computations in the one dimensional case. In fact we take
E = [0,∞) and the proper sub-Markovian resolvent U = (Uα)α>0 on E associated with the uniform
motion to the right:

Uαf(x) =

∫ ∞

0

e−αtf(x + t)dt, f ∈ pB(E).

Let m be the Lebesgue measure on (E,B(E)) and µ = εx0
, where x0 ∈ (0,∞). Let V be the regular

strongly supermedian kernel on (E,B(E)) given by

V f = f(x0)R
{x0}1.

It is easy to see that V V = V and therefore the family V = ( 1
1+α

V )α>0 is a sub-Markovian resolvent on

(E,B(E)) having V as initial kernel. Since m = ε0 ◦ U we get L(m, V f) = V f(0) = f(x0)R
{x0}1(0) =

µ(f), and so V is associates with µ by the Revuz correspondence (with respect to U and m), V = V 0
µ . By

Proposition 2.2, for every q > 0 we have V q
µ f = V − qUqV f = f(x0)hq , where hq = R{x0}1− qUqR

{x0}1.
We deduce that (V q

µ )n = θn−1
q V , with θq = hq(x0), 0 < θq < 1. If Vq = (V q

α )α>0 is the sub-Markovian
resolvent of kernels having V q

µ as initial kernel (notice that N = φ) it is easy to see that

V q
1 =

∞∑

n=1

(−1)n−1(V q
µ )n =

1

1 + θq
V.
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Theorem 3.5 implies that the Schrödinger equation

(q −
d

dt
)u + µu = f,

where f ∈ pB ∩ Lp(E, m), has as weak solution the function on E given by

Wqf = Uqf − V q
1 Uqf = Uqf −

1

1 + θq
Uqf(x0)R

{x0}1.

Appendix

Proof of Proposition 2.1.

1. Let t ∈ S and µ, ν be two finite measures on (E,B) such that µ◦Uq ≤ ν ◦Uq. We may suppose that
t is bounded. We get (µ+ν ◦qUq)◦U ≤ (ν+µ◦qUq)◦U and therefore (µ+ν ◦qUq)(t) ≤ (ν+µ◦qUq)(t) or
equivalently µ(t−qUqt) ≤ ν(t−qUqt). Consequently t−qUqt ∈ Sq . Conversely, assume that t−qUqt ∈ Sq .
Since t − qUqt is Uq-supermedian we get that t is U-supermedian. Let u = infα αUαt and t′ = t − u.
Then t′ ∈ pBn, αUαu = u for all α > 0, t′ − qUqt

′ = t − qUqt and inf αUαt′ = 0. Because clearly
u ∈ E(U), it remains to show that t′ ∈ S. Let µ, ν be two finite measures such that µ ◦U ≤ νU . We have
µ◦ (I + qU)◦Uq ≤ ν ◦ (I + qU)◦Uq and from U(t′− qUqt

′) = supαUα(t′− qUqt
′) = supα Uq(t

′−αUαt′) =
Uqt

′ we conclude that µ(t′) = µ ◦ (I + qU)(t′ − qUqt
′) ≤ ν ◦ (I + qU)(t′ − qUqt

′) = ν(t′), t′ ∈ S.
2. Let t ∈ S and µ be a finite measure on (E,B), µ◦U ≤ m. We may assume that t = t′, or equivalently

infα αUαt = 0. In this case we have t = (I +qU)(t−qUqt) and since µ◦ (I +qU)◦Uq = µ◦U ≤ m we get:
L(µ◦U, t) = µ(t) = µ◦ (I +qU)(t−qUqt) = Lq(µ◦ (I +qU)◦Uq, t−qUqt) ≤ Lq(m, t−qUqt). To prove the
converse inequality let µ be a finite measure on (E,B) such that µ◦Uq ≤ m. We get Lq(µ◦Uq , t−qUqt) =
µ(t) − µ ◦ qUq(t) = L(µ ◦ U, t) − L((µ ◦ qUq) ◦ U, t) ≤ L(m, t), Lq(m, t − qUqt) ≤ L(m, t).

Assume that t is regular in S then there exists a sequence (tn)n ⊂ S such that t =
∑

n tn and
tn ≤ Uf0 for all n. Therefore infααUαtn = 0 for all n, infα αUαt = 0. Let t′ = t − qUqt and (s′n)n ⊂ Sq ,
s′n ↗ t′. If we put sn = s′n + qUs′n then (sn)n ⊂ S and sn ↗ t. The function t being regular in S we get
Rq(t

′ − s′n) ≤ Rq(t − sn) ≤ R(t − sn) ↘ 0, where Rq denotes the reduction operator in Sq .
Suppose now that t ∈ S is such that infααUαt = 0 and t′ is regular in Sq . By Mertens decomposition,

to show that t is regular we may assume that t is U-excessive. We consider a sequence (fn)n ⊂ bpB such
that Uqfn ↗ t′. It follows that Ufn ↗ t = (I + qU)t′ and R(t−Ufn) ≤ (I + qU)Rq(t

′ −Uqfn) ≤ t < ∞.
Since infnRq(t

′−Uqfn) = 0 we get infnR(t−Ufn) = 0 and by Proposition 2.4.6 in [BeBo 04] we conclude
that t is regular, completing the proof.

Proof of Proposition 2.2.

1. Since Vµf is a regular function from S, by Proposition 2.1 we have µ(f) = L(m, Vµf−qUqVµf). The
assertion follows now because by Proposition 1.1 the kernel Vµ − qUqVµ is regular strongly supermedian
with respect to Uq.

2. If µ is smooth with respect to U , then we consider an increasing sequence (Ak)k ⊂ Bn such that
µ(Ak) < ∞ for all k and the set [infkRE\Akpo > 0] belongs to N (m). Since RA

q po ≤ RApo (where RA
q po

denotes the reduced function of po on A ∈ Bn, with respect to E(Uq)) we get [infkR
E\Ak
q po > 0] ∈ N (m).

Therefore the measure µ is smooth with respect to Uq . Conversely, assume that µ is smooth with respect

to Uq and let (A′
k)k ⊂ Bn be such that µ(A′

k) < ∞ for all k and [infkR
E\A′

k
q p′o > 0] ∈ N (m), where

p′o = Uqf0. From RE\A′

kpo ≤ (I + qU)R
E\A′

k
q p′o ≤ po < ∞ we get [inf RE\A′

kpo > 0] ∈ N (m).
3. Let N ∈ Bn. Since RN

q 1 ≤ RN1 we have to prove that if RN
q 1 = 0 on E\N then RN1 = 0 on E\N .

Indeed, if RN
q 1 = 0 on E \ N , we get 1N ∈ Sq , αUq+α(1N ) ≤ 1N and therefore εx ◦ Uq(1N) = 0, for all

x ∈ E\N, U(1N ) = 0 on E\N . From RN1 ≤ (I + qU)RN
q 1 we deduce now that RN1 = 0 on E \ N .
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