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Abstract. We study integrability properties of the optimal transportation mapping T
which pushes forward a probability measure µ to another measure g ·µ. We assume that
T minimizes some cost function c and µ is satisfied some special properties related to c
(the infimum-convolution inequality or the logarithmic c-Sobolev inequality). We apply
our results for measures of the type exp(−|x|α).

Keywords: optimal transportation, logarithmic Sobolev inequality, transportation in-
equalities.

1. Introduction

In this paper we consider a probability measure µ and an optimal mapping

T (x) = x + F (x)

which pushes forward µ to another probability measure g · µ and minimizes some cost
function c. The latter means that T minimizes the following integral:

K(µ, g · µ, c, T ) :=

∫
X

c(F (x)) µ(dx).

We assume that µ satisfies some special inequalities related to the cost c such as the
infimum-convolution inequality or the logarithmic c-Sobolev inequality. We recall that a
measure µ on Rd is said to satisfy the logarithmic Sobolev inequality if for every smooth
function f one has

Entµf
2 ≤ 2C

∫
Rd

|∇f |2 dµ, (1.1)

where

Entµg :=

∫
Rd

g log g dµ−
(∫

Rd

g dµ
)
log

∫
Rd

g dµ.

Applying (1.1) to 1 + εf one obtains in the limit ε → 0 the Poincaré inequality∫
Rd

f 2 dµ−
(∫

Rd

f dµ
)2

≤ C

∫
Rd

|∇f |2 dµ. (1.2)

It is well known that every measure satisfying (1.1) satisfies the infimum-convolution
inequality ∫

Rd

exp QCf dµ ≤ exp

∫
Rd

f dµ, QCf(x) = inf
y

[
f(y) +

|x− y|2

2C

]
(1.3)
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and the transportation inequality∫
Rd

|F |2 dµ ≤ 2CEntµg, (1.4)

where T = Id + F is the optimal transportation mapping sending µ to g · µ and corre-
sponding to the cost c = |x|2 (see [1], [2]). According to the results from [3], [4] (see also
recent books [5], [6], [7]), T has the form T = ∇V , where V is a convex function.

Inequality (1.4) (proved in [8] for the standard Gaussian measure and extended in [9] to
every measure satisfying (1.1)) gives a very simple integral estimation of |F (x)| by some
quantity depending only on g and µ. A further step in this direction due to Fernique
[10] who considered a Gaussian measure γ on a separable Fréchet space and a probability
measure g · γ such that g ∈ Lp(γ) for some p > 1. It was shown in [10] that there exists a
mapping T = U + S, where the mapping U preserves the measure γ and S is a mapping
with values in the Cameron–Martin space H of γ, such that the function exp(ω|S|2H) is
integrable for sufficiently small ω (however, the mapping T is not necessarily the optimal
transportation). This result was generalized in [11]. In particular, the following theorem
was obtained there.

Theorem 1. Suppose that µ satisfies the logarithmic Sobolev inequality (1.1). Consider
the optimal transportation mapping T (x) = x + F (x) which pushes forward µ to g · µ and

minimizes c(x) = x2

2
. If g| log g|p ∈ L1(µ), then |F |2p ∈ L1(γ). Moreover, if g ∈ Lp(µ),

then exp(ω|F |2) ∈ L1(µ) for some sufficiently small ω = ω(C, p).

In addition, certain precise estimates in the Gaussian case for different types of map-
pings (also non-optimal) and some similar estimates for measures satisfying the Poincaré
inequality were obtained.

In this paper, we give a generalization of Theorem 1 for non-quadratic costs. As a main
example we consider the probability measure

µα =
1

Zd
α

d∏
i=1

e−|xi|αdxi

where Zα =
∫

R e−|x|
α
dx and 1 < α ≤ 2. In the proof we use recent results from [12].

2. Main results

We consider a cost function c(x) on Rd. Throughout the paper c satisfies the following
assumptions:

A1) c is non-negative, even and c(0) = 0.
A2) c is strictly convex. This means that c is convex and, in addition, the equality

c(tx + (1− t)y) = tc(x) + (1− t)c(y)

implies that x = y, or t = 0, or t = 1.
A3) c is superlinear, i.e., one has

lim
x→∞

c(x)

|x|
= ∞

A4) Given r > 0 and θ ∈ (0, π), whenever p ∈ Rd is far enough from the origin, there
exists a direction z ∈ Rd such that on the truncated cone K defined by

K =
{
x ∈ Rd, |x− p||z| cos(θ/2) ≤

〈
z, x− p

〉
≤ r|z|

}
,

the function c assumes its maximum at p.



3

Assumptions A2) - A4) were introduced in [13]. Below we use some existence and
regularity results from [13].

For every c one defines the corresponding conjugated function

c∗(x) = sup
y∈Rd

(〈
x, y

〉
− c(y)

)
.

Let µ and g · µ be absolutely continuous probability measures such that

Wc(µ, g · µ) = inf
m

∫
(Rd)2

c(x− y) dm < ∞,

where the infimum is taken among the measures on (Rd)2 with the projections µ and g ·µ.
It is known that under A2) - A4) there exists an optimal mapping T = Id+F such that
T pushes forward µ to g · µ and∫

Rd

c(F ) dµ = Wc(µ, g · µ).

It is known (see [13] or Theorem 2.44 in [7]) that T has the form

T (x) = x +∇c∗(∇Φ) µ− a.e. (2.5)

for some c-convex function Φ. This means that

−Φ = QcΨ

for some Ψ. Here
Qcf(x) = inf

y

[
f(y) + c(x− y)

]
is the infimum-convolution Qcf of f . For the theory of convex convolutions and the
structure of c-convex potentials, see [5], [6], [7]. We set Φc = −QcΦ and note that
Ψ = Φc. By a result in [13], there exists a convex set K such that Φ is locally Lipschitz
on Ω = Int(K) and

Ω ⊆ Dom(Φ) ⊆ K,

hence (2.5) is well-defined. Note that unlike the standard way we do not use the rep-
resentation T (x) = x − ∇c∗(∇Φ̃), where Φ̃ is a c-concave function. However, since c is
assumed to be even, our representation (2.5) is equivalent to the standard one.

We will use the following well-known formulas:

Φ(x) + Φc(y) ≥ −c(x− y),

Φ(x) + Φc(T (x)) = −c(T (x)− x) for µ− a.e. x.

A measure µ is said to satisfy the infimum-convolution inequality for c if for every bounded
measurable function f one has ∫

Rd

eQcf dµ

∫
Rd

e−f dµ ≤ 1. (2.6)

Note that (2.6) and the Jensen inequality imply∫
Rd

eQcf dµ ≤ e
R

Rd f dµ. (2.7)

It is easy to verify (see, for example, [11], where the case of the quadratic cost was
considered) that (2.7) holds under (2.6) for every µ-integrable f .

It is well-known (see [1], [2]) that the Talagrand inequality
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∫
Rd

c(F ) dµ ≤ Entµg

for the convex cost c is equivalent to (2.7).
We say that a probability measure µ on Rd satisfies the logarithmic c-Sobolev inequality

with the cost c if for some Λ > 0 the following estimate holds for every locally Lipschitz
function f :

Entµf
2 ≤ Λ

∫
Rd

c∗
(∇f

f

)
f 2 dµ. (2.8)

We note that for many cost functions (2.8) implies (2.7). It was proved in [12] that
the product of the one-dimensional measures of the type e−|x|

α
dx satisfies (2.8) for a

cost function c which is quadratic for small x and equals to A
∑d

i=1 |xi|α for large x. We
consider this example in the next section.

In the lemma below we generalize a result from [14]. The proof is very similar to the
original one, however, it is given for the reader’s convenience.

Lemma 1. Suppose that for every locally Lipschitz function ϕ the probability measure µ
satisfies the following inequality:

Entµe
ϕ ≤ 1

2

∫
X

H(∇ϕ)eϕ dµ, (2.9)

where H : Rd → R+ has the following property: the function λ → H(
√

λx) is non-
decreasing and convex on [0,∞) for every x and H(0) = 0. Then∫

Rd

exp
[
ϕ−

∫
Rd

ϕ dµ
]
dµ ≤

∫
Rd

eH(∇ϕ) dµ.

In particular, if t → c∗(
√

tx) is convex and non-decreasing on [0,∞) and µ satisfies (2.8),
then for every locally Lipschitz ϕ one has∫

Rd

exp
[
ϕ−

∫
Rd

ϕ dµ
]
dµ ≤

∫
Rd

exp
(
2Λc∗

[∇ϕ

2

])
dµ. (2.10)

Proof. Set

g = H(∇ϕ)− log

∫
Rd

eH(∇ϕ) dµ,

so that
∫

Rd eg dµ = 1. By a well known property of the entropy

Entµf = sup
{∫

Rd

fg dµ : g is such that

∫
Rd

exp(g) dµ ≤ 1
}

one obtains ∫
Rd

eϕg dµ ≤ Entµe
ϕ.

Hence by (2.9) we have

2Entµe
ϕ ≤

∫
Rd

eϕH(∇ϕ) dµ ≤
(∫

Rd

eϕ dµ
)
log

(∫
Rd

eH(∇ϕ) dµ
)

+ Entµe
ϕ.

Hence

Entµe
ϕ ≤

(∫
Rd

eϕ dµ
)
log

(∫
Rd

eH(∇ϕ) dµ
)
.
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Applying the latter to λϕ, we obtain

Entµe
λϕ ≤

(∫
Rd

eλϕ dµ
)
log

(∫
Rd

eH(λ∇ϕ) dµ
)
. (2.11)

Set

K(λ) =
1

λ
log

∫
Rd

eλϕ dµ.

Let us calculate the following derivative:

K
′
(λ) =

Entµe
λϕ

λ2
∫

Rd eλϕ dµ
≤

log
(∫

Rd eH(λ∇ϕ) dµ
)

λ2
.

Let

F (t) = log
(∫

Rd

eH(
√

t∇ϕ) dµ
)
.

Obviously, F is non-negative and non-decreasing. Let us show that F is convex. Indeed,
it follows from the fact (which is easily verified) that any function of the type

∑d
i=1 eWi ,

where every Wi is convex, has the form eW for some convex W . We get our claim by
approximating the integral by finite sums.

Taking into account that F (0) = 0, we obtain that F (t)
t

is non-decreasing. Hence

λ →
log

(∫
Rd eH(λ∇ϕ) dµ

)
λ2

is non-decreasing. Consequently, one has

log

∫
Rd

eϕ dµ = K(1) ≤ K(0) +

∫ 1

0

K
′
(λ) dλ ≤

∫
Rd

ϕ dµ + log
(∫

Rd

eH(∇ϕ) dµ
)

and we obtain our claim. Finally, (2.10) follows from the Lemma and (2.8) by setting
f 2 = eg. �

Theorem 2. Suppose that c satisfies assumptions A1) - A4) and µ satisfies infimum-
convolution inequality (2.7) and Poincaré inequality (1.2). Suppose in addition that

1) Inequality (2.10) holds
2) t → c∗(

√
tx) is convex and non-decreasing for every x on [0,∞)

3) There exists a function N(τ) > 0 such that

c∗
(τx

2

)
≤ N(τ)c(∇c∗(x))

and limτ→0
N(τ)

τ
= 0.

Then for every p > 1 there exist positive numbers ω = ω(p, Λ, N(τ)), M = M(p, Λ, N(τ))
such that

M

∫
Rd

c(F )eωc(F ) dµ ≤ ‖g‖Lp(µ).

Proof. First we note that Φ ∈ L2(µ). Indeed, in follows from assumption 2) that c∗(x) ≥
a|x|2 + b for some a > 0. Then it follows from assumption 3) that for some B > 0 one has

|x|2 ≤ A + Bc(∇c∗(x)).

Hence

|∇Φ|2 ≤ A + Bc(∇c∗(∇Φ)) = A + Bc(T (x)− x) = A + Bc(F ).
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Since (2.7) implies the Talagrand inequality for the cost c and Entµg < ∞, we obtain that∫
Rd

c(F ) dµ < ∞, |∇Φ| ∈ L2(µ).

Hence by the Poincaré inequality Φ ∈ L2(µ). Let us choose Φ in such a way that∫
Rd Φ dµ = 0.
Let τ > 2ω > 0. By the Young inequality xy ≤ x log x − x + ey, where x ≥ 0, y ∈ R,

one has

τc(F )eωc(F ) = τ(−Φ− Φc(T ))eωc(F ) ≤ e−τΦ + e−τΦc(T ) + 2ωc(F )eωc(F ) − 2eωc(F ).

Hence for every A ⊂ Rd we have

(τ − 2ω)

∫
A

c(F )eωc(F ) dµ + 2

∫
A

eωc(F ) dµ ≤
∫

A

e−τΦ dµ +

∫
A

e−τΦc(T ) dµ.

We estimate the right-hand side as follows:∫
Rd

e−τΦc(T ) dµ =

∫
Rd

e−τΦc

g dµ ≤
(∫

Rd

gp dµ
) 1

p
(∫

Rd

e−qτΦc

dµ
) 1

q
.

Suppose that τ ≤ 1
q
. We find by (2.7) that∫

Rd

e−qτΦc

dµ ≤
(∫

Rd

e−Φc

dµ
) 1

qτ ≤ e
1

τq

R
Rd Φ dµ = 1

and ∫
Rd

e−τΦc(T ) dµ =

∫
Rd

e−τΦc

g dµ ≤
(∫

Rd

gp dµ
) 1

p
.

Further, set A := AN =
{
x : −Φ(x) ≤ N

}
. One has ∇

[
max(Φ,−N)

]
= ∇ΦχAN

µ-a.e.
Therefore, 3) and (2.10) yield that∫

AN

e−τΦ dµ ≤
∫

Rd

exp
(
−τ max(Φ,−N)

)
dµ ≤

∫
Rd

exp
(
2Λc∗

(τ

2
∇ΦχAN

))
dµ

≤
∫

Rd

exp
(
2ΛN(τ)c

[
∇c∗(∇ΦχAN

)
])

dµ =

∫
AN

e2ΛN(τ)c
(

F
)

dµ + 1− µ(AN).

We note that for all x ∈ AN one has

c(T (x)− x) = −Φ(x)− Φc(T (x)) ≤ N − Φc(T (x)).

Choosing τ in such a way that 2ΛN(τ) ≤ τ ≤ 1
q
, we obtain that

χAN
e2ΛN(τ)c

(
F
)
≤ eτNe−τΦc(T )

and by the above estimate χAN
e2ΛN(τ)c

(
F
)

is integrable and

(τ − 2ω)

∫
AN

c(F )eωc(F ) dµ + 2

∫
AN

eωc(F ) dµ ≤(∫
Rd

gp dµ
) 1

p
+

∫
AN

e2ΛN(τ)c
(

F
)

dµ + 1− µ(AN).

Setting ω := 2ΛN(τ), M := τ − 8ΛN(τ) and choosing sufficiently small τ we obtain

(τ − 2ω)

∫
AN

c(F )eωc(F ) dµ +

∫
AN

eωc(F ) dµ ≤
(∫

Rd

gp dµ
) 1

p
+ 1− µ(AN).



7

We obtain our claim letting N →∞. �

Theorem 3. Let c satisfy assumptions A1) - A4) and let µ satisfy infimum-convolution
inequality (2.7) and Poincaré inequality (1.2). Suppose in addition that

1)
∫

Rd g| log g|p dµ < ∞ for some p ≥ 1.

2) There exists p′ ≥ 1 and Np′ > 0 Mp′ > 0 such that p′ ≥ p and |∇c|2p′ ≤
Np′cp + Mp′ .

3) There exists some B > 0 such that

|x|2 ≤ A + Bc(∇c∗(x)).

Then cp(F ) ∈ L1(µ).

Proof. The idea of the proof is essentially the same as in Theorem 2. We just give below
the formal estimates which imply the result. A more detailed proof can be given exactly
in the same way as in Theorem 2.

It follows from the identity c(x− T (x)) = −Φ− Φc(T ) that∫
Rd

cp(x− T (x)) dµ = −
∫

Rd

cp−1(x− T (x))
(
Φ + Φc(T )

)
dµ.

By using 3) and the Poincaré inequality we show as in Theorem 2 that Φ ∈ L2(µ). We
choose Φ in such a way that

∫
Rd Φ dµ = 0. Then by the Young inequality one has

−
∫

Rd

Φc(T (x))cp−1(x− T (x)) dµ = −
∫

Rd

Φc(x)cp−1(x− T−1(x))g dµ ≤
∫

Rd

e−Φc(x) dµ

+

∫
Rd

cp−1(x− T−1(x))g log
[
cp−1(x− T−1(x))g

]
dµ−

∫
Rd

cp−1(x− T−1(x))g dµ.

By using (2.7) we obtain ∫
Rd

e−Φc

dµ ≤ e
R

Rd Φ dµ = 1.

Hence

−
∫

Rd

Φc(T (x))cp−1(x− T (x)) dµ ≤ 1 +

∫
Rd

cp−1(x− T (x)) log
[
cp−1(x− T (x))g(T )

]
dµ

−
∫

Rd

cp−1(x− T (x)) dµ ≤ 1 +

∫
Rd

cp−1(x− T (x)) log
[
cp−1(x− T (x))

]
dµ

+

∫
Rd

cp−1(x− T (x)) log g(T ) dµ−
∫

Rd

cp−1(x− T (x)) dµ.

By the Hölder inequality and the change of variables formula∫
Rd

cp−1(x− T (x)) log g(T ) dµ ≤
[∫

Rd

cp(x− T (x)) dµ
]1− 1

p
[∫

Rd

| log g|pg dµ
] 1

p
.

In addition,∣∣∣−∫
Rd

Φ(x)cp−1(x− T (x)) dµ
∣∣∣ ≤ [∫

Rd

cp(x− T (x)) dµ
]1− 1

p
[∫

Rd

|Φ(x)|p dµ
] 1

p .

We note that every measure that satisfies the Poincaré inequality satisfies also the follow-
ing inequality for every p′ ≥ 1:∫

Rd

∣∣ϕ− ∫
Rd

ϕ dµ
∣∣2p′

dµ ≤ C2p′

∫
Rd

∣∣∇ϕ
∣∣2p′

dµ
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(see, for example, [11]). Hence by the Hölder inequality we obtain∫
Rd

|Φ|p dµ ≤
(∫

Rd

|Φ|2p′
dµ

) p
2p′ ≤

(∫
Rd

C2p′|∇Φ|2p′
dµ

) p
2p′

= C
p/2p′

2p′

(∫
Rd

|∇c(F )|2p′
dµ

) p
2p′
≤ C

p/2p′

2p′

(∫
Rd

Np′cp(F ) dµ + Mp′

) p
2p′

.

Finally, for an appropriate choice of A′ > 0 and B′ > 0 we obtain

−
∫

Rd

Φcp−1(F ) dµ ≤ A′[∫
Rd

cp(F ) dµ
]1− 1

p
+ 1

2p′ + B′

and

−
∫

Rd

Φc(T )cp−1(F ) dµ ≤ 1 +

∫
Rd

cp−1(F ) log
[
cp−1(F )

]
dµ

+
[∫

Rd

cp(F ) dµ
]1− 1

p
[∫

Rd

| log g|pg dµ
] 1

p
.

Hence
∫

Rd cp(F ) dµ does not exceed the sum of the right-hand sides of these inequalities.
This estimate easily implies the result. �

Remark 1. 1) Examples of costs satisfying conditions of Theorem 2 and Theorem 3
are functions of the type

c(x) =
1

p
|x|p,

where 1 < p ≤ 2.
2) Let c = x2

2
. Then Theorem 1 follows from Theorem 2, Theorem 3 and Lemma 1.

3. Examples

Let α ≥ 1. We define the following probability measure on Rd:

µα =
1

Zd
α

d∏
i=1

e−|xi|αdxi

where Zα =
∫

R e−|x|
α
dx.

The spectral properties of this measure were studied first in [15]. In particular, it was
shown that µα satisfies a family of inequalities which can be considered as an interpolation
between log-Sobolev and Poincaré. In our paper we use another result obtained recently
by Gentil, Guillin and Miclo in [12].

They have shown that µα satisfies the transportation inequality for the cost functions
of the following type:

Ld
A,α(x) =

d∑
i=1

LA,α(xi),

where 2 ≥ α > 1, A > 0, 1
α

+ 1
β

= 1 and

LA,α(x) =

{
x2

2
if |x| ≤ A

A2−α |x|α
α

+ A2 α−2
2α

if |x| ≥ A.

One can verify that
(
Ld

A,α

)∗
= Hd

A,α,
(
Hd

A,α

)∗
= Ld

A,α, where
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Hd
A,α(x) =

d∑
i=1

HA,α(xi), HA,α(x) =

{
x2

2
if |x| ≤ A

A2−β |x|β
β

+ A2 β−2
2β

if |x| ≥ A.

In what follows we suppress the index d and write LA,α, HA,α.
Now let us formulate the main results of [12].
Theorem. The following inequalities hold for µα:

1) (Logarithmic c-Sobolev ineqiality) There exists a constant Cα > 0 such that for
every f ∈ C∞

0 (Rd) one has

Entµαf 2 ≤ Cα

∫
Rd

HA,α

(∇f

f

)
f 2 dµα.

2) (Transportation inequality) For every probability measure g · µα one has

TL ACα
2 ,α

(µα, g · µα) ≤ Cα

4
Entµαg,

where

TL ACα
2 ,α

(µα, g · µα) = inf
{∫

R2d

LACα
2

,α(x− y) dπ(x, y)
}

,

where the infimum is taken over the set of probability measures π on Rd×Rd such
that π has the marginals g · µα and µα.

3) (Infimum-convolution inequality) For every bounded measurable ϕ one has∫
Rd

eQϕ dµα ≤ e
R

Rd ϕ dµα ,

where

Qϕ = inf
y

{
ϕ(y) +

4

Cα

LTCα
2

,α(x− y)
}
.

In fact, items 2) and 3) follow from 1). If α = 2, we arrive at the classical log-Sobolev
and transportation inequalities for Gaussian measures. It is worth noting that this result
also holds in the case α = 1 for the following cost function:

Ld
A,1(x) =

d∑
i=1

LA,1(xi),

where

LA,1(x) =

{
x2

2
if |x| ≤ A

A|x| − A2

2
if |x| ≥ A,

HA,1(x) = L∗A,1(x) =

{
x2

2
if |x| ≤ A

∞ if |x| ≥ A.

Proposition 1. Let g · µα be a probability measure and T (x) = x + F (x) be the optimal
transportation mapping pushing forward µα to g · µα and corresponding to the cost c =
LACα

2
,α.

1) If g ∈ Lp(µα) for some p > 1 then eεc(F ) ∈ L1(γ) for some ε = ε(α, p) > 0.
2) If g| log g|p ∈ L1(µα) for some p > 1, then c(F ) ∈ Lp(µα).

Proof. For the proof of 1) let us apply Theorem 2. Let us check that all the requirements
for c are fulfilled. Indeed, A1) - A4) and assumption 2) of Theorem 2 are easily verified.
We note that for d = 1 one has

HA,α(x) = max
{

f1(x), f2(x)
}

, where f1(x) =
x2

2
, f2(x) = A2−β |x|β

β
+ A2β − 2

β
.
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Since the functions t → f1(
√

tx), t → f2(
√

tx) are convex, we obtain that t → c∗(
√

tx) is
convex and increasing. Let us show 3). Indeed, it is readily verified that for every A one
has

LA,α

(
∇HA,α(x)

)
=

{
x2

2
if |x| ≤ A

A2−β |x|β
α

+ A2
(

α−2
2α

)
if |x| ≥ A.

By using this formula one easily verifies that for small enough τ there holds the estimate

H
(τx

2

)
≤

(τ

2

)2

LA,α

(
∇HA,α(x)

)
.

It is well-known that µα satisfies Poincaré inequality (see [12]). Now let us show inequality
(2.10). By Theorem 3 for every nice function f we have∫

Rd

exp
(
f −

∫
Rd

f dµα

)
dµα ≤

∫
Rd

exp
(
2CαHA,α

(∇f

2

))
dµα.

We note that for A ≤ A′ and some appropriate M(A, A′ ≥ 1 one has HA,α ≤ HA′,α ≤
M(A, A′HA,α. Hence (2.10) holds also for the function HACα

2
,α = c∗ and an appropriate

number Λ > 0. Inequality (2.7) for the cost function 4
Cα

LTCα
2

,α follows from Theorem 3.

Hence it holds also for the cost LTCα
2

,α up to the constant 4
Cα

. The reader can easily verify

that the conclusion of Theorem 2 is true also in this case. The proof of 1) is complete.
Item 2) easily follows from Theorem 3, the main result of [12] and the assumption

α ≤ 2. In order to verify that assumption 2) of Theorem 3 is satisfied we set p′ = p

2(1− 1
α

)
.

The verification of assumption 3) of Theorem 3 follows the same line as in the verification
of assumption 3) of Theorem 2. �
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[5] Ambrosio L., Gigli N., Savaré G. Gradient flows in metric spaces and in the Wasserstein spaces of
probability measures (in press).
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