INTEGRABILITY OF OPTIMAL MAPPINGS
ALEXANDER V. KOLESNIKOV

ABSTRACT. We study integrability properties of the optimal transportation mapping T
which pushes forward a probability measure p to another measure g- . We assume that
T minimizes some cost function ¢ and p is satisfied some special properties related to ¢
(the infimum-convolution inequality or the logarithmic ¢-Sobolev inequality). We apply
our results for measures of the type exp(—|x|%).

Keywords: optimal transportation, logarithmic Sobolev inequality, transportation in-
equalities.

1. INTRODUCTION

In this paper we consider a probability measure 4 and an optimal mapping

T(x)=xz+ F(x)

which pushes forward p to another probability measure ¢ - ;1 and minimizes some cost
function c. The latter means that 7" minimizes the following integral:

Klpug - poe T) = [ e(P(a) uldo)

We assume that p satisfies some special inequalities related to the cost ¢ such as the
infimum-convolution inequality or the logarithmic c-Sobolev inequality. We recall that a
measure ;1 on RY is said to satisfy the logarithmic Sobolev inequality if for every smooth
function f one has

Ent, f? < 20/ |V £|? d, (1.1)
R4

where

Ent,g ::/ gloggdu — (/ gdu) log/ gdpu.
Rd R R

Applying (1.1) to 1 4+ €f one obtains in the limit € — 0 the Poincaré inequality

[ 7 au- (/Rdfduf sc/RdePdu. (1.2)

It is well known that every measure satisfying (1.1) satisfies the infimum-convolution
inequality

a2
/Rdexp@cfdugexp/Rdfdu, ch(x):ir;f[f(y)jt% (1.3)

The research was supported by the RFBR project 04-01-00748 and the DFG Grant 436 RUS
113/343/0(R). The author gratefully acknowledges the support of the Centro di Ricerca Matematica
Ennio De Giorgi, Scuola Normale Superiore di Pisa.

1



2
and the transportation inequality

|F|? dp < 2CEnt,g, (1.4)
Rd
where T' = Id + F' is the optimal transportation mapping sending p to g - p and corre-
sponding to the cost ¢ = |z|* (see [1], [2]). According to the results from [3], [4] (see also
recent books [5], [6], [7]), T has the form T'= VV, where V is a convex function.
Inequality (1.4) (proved in [8] for the standard Gaussian measure and extended in [9] to
every measure satisfying (1.1)) gives a very simple integral estimation of |F(x)| by some
quantity depending only on g and pu. A further step in this direction due to Fernique
[10] who considered a Gaussian measure 7 on a separable Fréchet space and a probability
measure ¢ -y such that g € LP(y) for some p > 1. It was shown in [10] that there exists a
mapping T' = U + S, where the mapping U preserves the measure v and S is a mapping
with values in the Cameron—Martin space H of +, such that the function exp(w|S|%) is
integrable for sufficiently small w (however, the mapping 7T is not necessarily the optimal
transportation). This result was generalized in [11]. In particular, the following theorem
was obtained there.

Theorem 1. Suppose that j satisfies the logarithmic Sobolev inequality (1.1). Consider
the optimal transportation mapping T'(x) = x + F(x) which pushes forward p to g - and
minimizes c(x) = 2. If g|log g|P € L*(y), then |F|* € L'(y). Moreover, if g € LP(p),
then exp(w|F|?) € L' (u) for some sufficiently small w = w(C,p).

In addition, certain precise estimates in the Gaussian case for different types of map-
pings (also non-optimal) and some similar estimates for measures satisfying the Poincaré
inequality were obtained.

In this paper, we give a generalization of Theorem 1 for non-quadratic costs. As a main
example we consider the probability measure

|l
= — —lzil® g
H/Oé Zg H € 1:1
where Z, = [ e7""dz and 1 < o < 2. In the proof we use recent results from [12].

2. MAIN RESULTS
We consider a cost function ¢(x) on R%. Throughout the paper c satisfies the following
assumptions:
A1) c is non-negative, even and ¢(0) = 0.
A2) cis strictly convex. This means that ¢ is convex and, in addition, the equality
c(te+ (1 —t)y) =te(x) + (1 —t)e(y)

implies that x =y, or t =0, or t = 1.
A3) c is superlinear, i.e., one has

A4) Given r > 0 and 6 € (0,7), whenever p € R? is far enough from the origin, there
exists a direction z € R? such that on the truncated cone K defined by

K = {z e R |z — p||z| cos(0/2) < (z,2 — p) <r|z|},

the function ¢ assumes its maximum at p.
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Assumptions A2) - A4) were introduced in [13]. Below we use some existence and
regularity results from [13].
For every ¢ one defines the corresponding conjugated function

() = s;g((a y> — c(y)).

Let o and g - p be absolutely continuous probability measures such that

Wolpsg ) =it [ cla = y)dm < oc,
(R?)2

m

where the infimum is taken among the measures on (R%)? with the projections p and g- .
It is known that under A2) - A4) there exists an optimal mapping 7" = Id + F such that
T pushes forward p to g - p and

4dC(F)du=Wc(u7g-u).

It is known (see [13] or Theorem 2.44 in [7]) that 7" has the form

T(x) =2+ V' (VP) pu—ae. (2.5)
for some c-convex function ®. This means that
- =Q.V

for some ¥. Here
Qef(z) = inf[f(y) + ez —y)]

is the infimum-convolution @Q.f of f. For the theory of convex convolutions and the
structure of c-convex potentials, see [5], [6], [7]. We set &¢ = —Q.P and note that
U = ®°. By a result in [13], there exists a convex set K such that ® is locally Lipschitz
on = Int(K) and

2 C Dom(®) C K,
hence (2.5) is well-defined. Note that unlike the standard way we do not use the rep-
resentation T'(z) = v — Vc*(V®), where @ is a c-concave function. However, since ¢ is

assumed to be even, our representation (2.5) is equivalent to the standard one.
We will use the following well-known formulas:

O(z) + @(y) = —c(r —y),
O(x) + (T (x)) = —c(T(x) —z) for p—ae. x.
A measure p is said to satisfy the infimum-convolution inequality for c if for every bounded

measurable function f one has
/ e@ef d,u/ e Fdu < 1. (2.6)
Rd R4

Note that (2.6) and the Jensen inequality imply
/ et dy < elwe 1 (2.7)
Rd

It is easy to verify (see, for example, [11], where the case of the quadratic cost was
considered) that (2.7) holds under (2.6) for every u-integrable f.
It is well-known (see [1], [2]) that the Talagrand inequality



/ c(F)dp < Ent,g
R4

for the convex cost ¢ is equivalent to (2.7).

We say that a probability measure ;1 on R? satisfies the logarithmic c-Sobolev inequality
with the cost ¢ if for some A > 0 the following estimate holds for every locally Lipschitz
function f:

Ent,f> <A [ ¢ (V_f) fdp. (2.8)

Rt N f
We note that for many cost functions (2.8) implies (2.7). It was proved in [12] that
the product of the one-dimensional measures of the type e~ 1#I" dx satisfies (2.8) for a

cost function ¢ which is quadratic for small x and equals to A 2?21 |z;|* for large x. We
consider this example in the next section.

In the lemma below we generalize a result from [14]. The proof is very similar to the
original one, however, it is given for the reader’s convenience.

Lemma 1. Suppose that for every locally Lipschitz function ¢ the probability measure p
satisfies the following inequality:
1
Ent,e? < 5/ H(Vy)e? dpu, (2.9)
X

where H : R — RT has the following property: the function X — H(\v/Azx) is non-
decreasing and convez on [0,00) for every x and H(0) = 0. Then

/ exp[so—/ sodu} duS/ Ve dp.
]Rd Rd Rd

In particular, if t — c¢*(\/tx) is conver and non-decreasing on [0, 00) and u satisfies (2.8),
then for every locally Lipschitz ¢ one has

/Rd exXp [‘P - /Rd @dﬂ] dp < /Rd eXp<2Ac* [%D du. (2.10)

g=H(Vy) —log / eV du,

R4
so that fRd eddp = 1. By a well known property of the entropy

Proof. Set

Ent,f = Sup{/ fgdu: g is such that / exp(g) du < 1}
R R
one obtains
/ e?gdu < Ent,e”.
Rd

Hence by (2.9) we have

2Ent,e” < / e?H(Vp)du < (/ e¥ d,u) log</ eH(Ve) du) + Ent,e”.
R R4 R

Ent,e? < (/ e? d,u> log(/ eH Vo) du).
R Rd

Hence



Applying the latter to Ay, we obtain

Ent,e** < (/d e d,u)log(/d eHOVe) du). (2.11)
R R

1
K(\) = —log/ e dy.
)\ R4
Let us calculate the following derivative:

K/ ()\) _ Entlue)wp - log (f]Rd eH(/\V‘P) d#)
N [aeMdu T A2 '

F(t) = log(/d e Vive) du).
R

Obviously, F' is non-negative and non-decreasing. Let us show that F' is convex. Indeed,
it follows from the fact (which is easily verified) that any function of the type S0 | eV,
where every W; is convex, has the form e" for some convex W. We get our claim by
approximating the integral by finite sums.

Taking into account that F'(0) = 0, we obtain that

log (f]Rd e (AVe) du)
\2

Set

Let

F(t)
( is non-decreasing. Hence

A —

is non-decreasing. Consequently, one has

1
log/ €¢dM:K<1)§K(0)+/ K/()\)d)\g/ wdu%—log(/ eH(V‘P)du>
R 0 R¢ R4

and we obtain our claim. Finally, (2.10) follows from the Lemma and (2.8) by setting
Theorem 2. Suppose that ¢ satisfies assumptions Al) - A4) and p satisfies infimum-

convolution inequality (2.7) and Poincaré inequality (1.2). Suppose in addition that

1) Inequality (2.10) holds
2) t — c*(Vtz) is convex and non-decreasing for every x on [0, 00)
3) There exists a function N(1) > 0 such that

(%) £ N@e(Ve' (@)

NG _ g,

Then for every p > 1 there exist positive numbers w = w(p, A, N(1)), M = M(p, A, N(7))
such that

M | e(F)e" ™ dp < ||g|| 1oy

R4

Proof. First we note that ® € L?(u1). Indeed, in follows from assumption 2) that ¢*(z) >
a|z|* +b for some a > 0. Then it follows from assumption 3) that for some B > 0 one has

2| < A+ Be(Ver(z)).
Hence

IV®|? < A4 Be(Vc* (VD)) = A+ Be(T(z) — x) = A+ Be(F).
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Since (2.7) implies the Talagrand inequality for the cost ¢ and Ent,g < oo, we obtain that

/ o(F)dp < 00, |VD| € L2(1).
]Rd

Hence by the Poincaré inequality ® € L2?(u). Let us choose @ in such a way that

Joa @ dp = 0.
R4

Let 7 > 2w > 0. By the Young inequality zy < xlogx — x + ¥, where x > 0, y € R,
one has

TC(F)@WC(F) — 7—(_(1) _ (I)C(T))ewC(F) < e e + e~ TeT) + 2wC(F)ewc(F) _ gewel®)

Hence for every A C R? we have

(r-2) [P dusn [ e Waus [etaus [ e @ o
A A A A

We estimate the right-hand side as follows:

1 1

/ e T24(T) du :/ e—q—écgdu < </ g° d,u>p</ e~ am®° dﬂ)i.
R4 R4 R4 R4

Suppose that 7 < %. We find by (2.7) that

R4

Rd

and )

/ e TeT) d#:/ G_Tq)cgdug (/ gpd,u>;,
R¢ R4 R4

Further, set A := Ay = {z : —®(z) < N}. One has V[max(®, —N)| = Vdy, p-ae.
Therefore, 3) and (2.10) yield that

/ e du S/ exp(—TmaX(‘I)a—N))d“S/ eXp<2AC*<ZV(DXAN>>dM
An R " ’

< /Rd exp <2AN(T)C[VC*(V(I>XAN)]> dp = /A eQAN(T)C(F) dp+1— p(An).

N

We note that for all x € Ay one has
o(T'(z) —z) = —P(z) — *(T(2)) < N — @(T'(x)).
Choosing 7 in such a way that 2AN(7) < 7 < %, we obtain that

i €2AN(7—)C(F) <e

2AN(r)e(F)

TN —7®°(T)

and by the above estimate x4, € is integrable and

(T — 2w) / c(F)e ) dy + 2/ e dy <
AN AN

</ 7 d,u) "+ / 62AN(T)C(F) dp+1— pu(Ay).
R4 AN

Setting w := 2AN(7), M := 7 — 8AN(7) and choosing sufficiently small 7 we obtain

1
(T — 2w) c(F)e“s®) qy, +/ e qpy < </ q° du) "1 — u(An).
R4

AN AN
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We obtain our claim letting N — oo. O

Theorem 3. Let ¢ satisfy assumptions A1) - A4) and let u satisfy infimum-convolution
inequality (2.7) and Poincaré inequality (1.2). Suppose in addition that

1) fRd gllog g|P du < oo for some p > 1.

2) There exists p" > 1 and Ny > 0 My > 0 such that p' > p and |Vc\2p/ <

Np/Cp + Mp/.
3) There exists some B > 0 such that
z|? < A+ Be(Ver(x)).

Then P(F) € L*(p).
Proof. The idea of the proof is essentially the same as in Theorem 2. We just give below
the formal estimates which imply the result. A more detailed proof can be given exactly

in the same way as in Theorem 2.
It follows from the identity c(z — T'(x)) = —® — ®°(T) that

/]Rd Alx—T(x))dp=— /Rd Nz —T(x) (@ + (7)) dp.

By using 3) and the Poincaré inequality we show as in Theorem 2 that ® € L?(u). We
choose ® in such a way that [y, ®dp = 0. Then by the Young inequality one has

) / (T (@)~ Tlw)) dpu = ~ / @ T @< [ 0

+ /Rd o =T (z))glog["(x — T (x))g] du — /Rd " Ha =T (x))g dp.

By using (2.7) we obtain
/ e dp < elea ®dn _
Rd

Hence
- [ @)t - T dn < 1+ [ oo - T) gl o~ T(a))g(T)]
- [ - T@ydn < 1+ [ o= T logle @ = T))] di

+ [ & Ha—T(x))logg(T) du — /]Rd Nz —T(x))dp.

Rd
By the Holder inequality and the change of variables formula

[ete-T@ogg(rydn < [ [ - 1) a] | [ gt :

R4
In addition,

- [ o@e =Ty < [ =T [ P

We note that every measure that satisfies the Poincaré inequality satisfies also the follow-
ing inequality for every p’ > 1:

/ |QD—/ @dﬂ‘zpld/lSCQPI/ }v(pl?p/dlu
Rd Rd Rd
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(see, for example, [11]). Hence by the Hélder inequality we obtain

[rerdus< ([ 08 anF < ([ colver an
R4 R4 R4

= oy ( / Ve(F)[> du) e ( / Nyc?(F)dp + Mp/>
P Rd P Rd

Finally, for an appropriate choice of A’ > 0 and B’ > 0 we obtain

—/ O (F)dp < A’ [/ P(F)dp) 7 4+ B
Rd

Rd
and

_ /d OAT)e ™ (F)dp < 1+ [ ' (F)log[e"!(F)] dp

+ [/Rdcp(F)duT_; [/Rdllogmpgdu};-

Hence [y, ¢?(F) dp does not exceed the sum of the right-hand sides of these inequalities.
This estimate easily implies the result. 0

Remark 1. 1) Ezamples of costs satisfying conditions of Theorem 2 and Theorem 3

are functions of the type
1

C(l’) - _|x|P7
where 1 < p < 2.
2) Let c = % Then Theorem 1 follows from Theorem 2, Theorem 3 and Lemma 1.

3. EXAMPLES

Let o > 1. We define the following probability measure on R%:
1
Hao = ﬁ H@ilxi‘ d.Z'l
@ =1
where Z, = [ e "I"dz.

The spectral properties of this measure were studied first in [15]. In particular, it was
shown that p,, satisfies a family of inequalities which can be considered as an interpolation
between log-Sobolev and Poincaré. In our paper we use another result obtained recently
by Gentil, Guillin and Miclo in [12].

They have shown that pu, satisfies the transportation inequality for the cost functions
of the following type:

where 2 > a >1, A>0, é+

Lyo(z) = { g Mll<a

Azl g p2ac2 g 1) > A,
One can verify that (L4 ,)" = HY,, (H$.)" = L%, where



. d o if o] < A
Hj o(x) = ZHA,a(zi)> Haolz) = AQ—B% _|_A2[3_*ﬂ2 if |z| > A
=1 2 = .

In what follows we suppress the index d and write L4 o, Haq-
Now let us formulate the main results of [12].
Theorem. The following inequalities hold for pis:
1) (Logarithmic c-Sobolev ineqiality) There exists a constant Cy > 0 such that for
every f € C°(RY) one has
Vf

Bnt, f* < Ca /R Haa <7> £ dy,.

2) (Transportation inequality) For every probability measure g -y, one has

Ca
TLAg'a a ([’[’Oé; g * NO&) S IEntuag7
where

TL pcs a(ua,g o) = inf{/ LA%A(:L‘ —v) dﬂ(x,y)},
==,

R2d

where the infimum is taken over the set of probability measures ™ on R? x R? such
that ™ has the marginals g - p1o, and .
3) (Infimum-convolution inequality) For every bounded measurable ¢ one has

Rd

where A
Qp = inf{e(y) + 7 Lrca (¢ —y)}-

In fact, items 2) and 3) follow from 1). If & = 2, we arrive at the classical log-Sobolev
and transportation inequalities for Gaussian measures. It is worth noting that this result
also holds in the case a = 1 for the following cost function:

d
Lfl4,1 (z) = Z L (i),
i=1

where
2 . 2 .
_J 5 iz <A _ _ ) 5 iffz[ <A
Laa(x) { Alz] -4 if |z > A, Han(@) = Ly (@) oo if |z] > A.

Proposition 1. Let g - o be a probability measure and T'(x) = x + F(x) be the optimal
transportation mapping pushing forward p, to g - pe and corresponding to the cost ¢ =

LA§a7a

1) If g € LP(j1a) for some p > 1 then e=F) € Li(v) for some ¢ = e(a, p) > 0.
2) If g|log g|P € L' (ua) for some p > 1, then c(F) € LP(jug).

Proof. For the proof of 1) let us apply Theorem 2. Let us check that all the requirements
for ¢ are fulfilled. Indeed, A1) - A4) and assumption 2) of Theorem 2 are easily verified.

We note that for d = 1 one has
2

Hyo(x) = max{fl(m), fg(l’)}, where fi(x) = %, fa(x) = AQ_ﬁyggﬁ + A2ﬁ ; 2.




10

Since the functions ¢ — fi(v/tx), t — fo(V/tx) are convex, we obtain that t — c¢*(v/tx) is
convex and increasing. Let us show 3). Indeed, it is readily verified that for every A one
has

o iffa] < A

A8l p2(a=2)p g > A

By using this formula one easily verifies that for small enough 7 there holds the estimate

1) = (5) ban(Faat0).

It is well-known that p, satisfies Poincaré inequality (see [12]). Now let us show inequality
(2.10). By Theorem 3 for every nice function f we have

/Rd eXp<f ~ ) fdﬂa> dpta < /Rd exp<20aHA7a <V7f>> dyi,.

We note that for A < A" and some appropriate M (A, A" > 1 one has Hy o < Har o <
M(A, A’H 4 ,. Hence (2.10) holds also for the function Hac. , = ¢* and an appropriate

2

number A > 0. Inequality (2.7) for the cost function FLrce
o 2

Laa(VHao(z)) =

., follows from Theorem 3.

)

Hence it holds also for the cost Lrc, , up to the constant ci‘ The reader can easily verify
2 [e%

that the conclusion of Theorem 2 is true also in this case. The proof of 1) is complete.
Item 2) easily follows from Theorem 3, the main result of [12] and the assumption

a < 2. In order to verify that assumption 2) of Theorem 3 is satisfied we set p’ = ﬁ.
The verification of assumption 3) of Theorem 3 follows the same line as in the verification
of assumption 3) of Theorem 2. U
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