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Abstract. Let γ be a Gaussian measure on a Suslin space X, H be the correspond-
ing Cameron-Martin space and {ei} ⊂ H be an orthonormal basis of H. Suppose
that µn = ρn · γ is a sequence of probability measures which weakly converges to a
probability measure µ = ρ · γ. Consider a sequence of Dirichlet forms {En}, where
En(f) =

∫
X
‖∇Hf‖2Hρn dγ and

√
ρn ∈ W 2,1(γ). We prove some sufficient conditions for

Mosco convergence
En → E ,

where E(f) =
∫

X
‖∇Hf‖2Hρ dγ. In particular, if X is a Hilbert space,

sup
n
‖√ρn‖W 2,1(γ) < ∞

and ∂ei
ρn

ρn
can be uniformly approximated by finite dimensional conditional expectations

IEFN
µn

(∂ei
ρn

ρn

)
for every fixed ei, then under broad assumptions En → E Mosco and the

distributions of the associated stochastic processes converge weakly.
Keywords: Dirichlet forms; Mosco convergence; convergence of stochastic processes;

Gaussian measures.

1. Introduction

In this paper we consider a Gaussian measure γ on a Suslin space X. Denote by
H the corresponding Cameron-Martin space. It is assumed throughout the paper that
supp(γ) = X. Let us choose some orthonormal basis {ei} in H. Since H can be considered
as a completion of X∗ in L2(γ) (see [3] for details), we may assume without loss of
generality that ei ∈ X∗. Denote by xi := êi(x) the corresponding coordinate function.
We denote by FC∞ the linear span of smooth cylindrical functions, i.e. the functions of
the type

f(x) = ϕ(x1, · · · , xn),

where ϕ is a smooth compactly supported function on Rn.
The reader may think for simplicity of X = R∞ and the product measure γ = (γ1)

∞,
where γ1 is the standard Gaussian measure on R1. Another example is a separable Hilbert

space, where γ is given by the formal expression e−
〈

Q−1x,x
〉

X dx (see [3] for details). Here
Q is a symmetric positive trace operator. In the case of R∞ we take for xi the i-th
coordinate function.

Let {ρn} be a sequence of probability densities (with respect to γ) on X such that√
ρn ∈ W 2,1(γ) for every n and, in addition, for every i

(1) sup
n

∫
X

(
∂ei

ρn

)2

ρn

dγ < ∞.
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Recall that W 2,1(γ) consists of all functions which are weakly differentiable along H and
admit the finite norm

‖f‖2
W 2,1(γ) =

∫
X

f 2 dγ +

∫
X

‖∇Hf‖2
H dγ.

Here ∇Hf denotes the standard Malliavin gradient of f .
Consider the following sequence of Dirichlet forms:

E0
n(ϕ) =

∫
X

‖∇Hϕ‖2
Hρn dγ, ϕ ∈ FC∞

0 .

It is known, that (E0
n,FC∞

0 ) is closable in L2(µn) (see [18]) under assumption
√

ρn ∈
W 2,1(γ). In addition, the Markov uniqueness for (E0

n,FC∞
0 ) holds. This means that the

operator

L =
∞∑
i=1

∂2
ei
−

[
xi − ∂ei

ln(ρn)
]
∂ei

is essentially self-adjoint in L2(µn) and the corresponding strong and weak Sobolev spaces
coincide (see [23], [24], [5] and [7], Theorem 5.1, Corollary 5.1). The closure of (E0

n,FC∞
0 )

will be denoted by (En,D(En)).
Let FN be the sigma-algebra generated by functions depending only on (x1, · · · , xN).

We write

IEN
mf := IEFN

m f

for the conditional expectation of f ∈ L1(m) with respect to some Borel probability
measure m and sigma-algebra FN . Let PN be projection on the first N coordinates:
PNx =

∑N
i=1 xiei. Set SN(x) = x − PN(x). Then γ can be represented as a product

measure γ =
(
γ ◦ P−1

N

)
×

(
γ ◦ S−1

N

)
. It is known that

IEN
γ f =

∫
f(PNx + SNx) dγ ◦ S−1

N

(see [3]). In particular, this formula implies that for every f ∈ W 1,1(γ)

∇HIEN
γ f = IEN

γ

(
∇N

Hf
)
.

Here

∇N
Hf =

(
∂e1f, · · · , ∂eN

f, 0, · · · , 0, · · ·
)
.

Let Ω = C([0,∞) → X) be the space of all continuous mappings from [0,∞) into X
and Xt be the coordinate function on Ω such that Xt(ω) = ω(t). We denote by

{Ω, Xt,Ft,Pn
x , x ∈ X}

the diffusion process associated with (En,D(En)). This process exists by a result from [2].
Define

Pµn =

∫
X

Pn
x ρn dγ.

By a recent result of Posilicano and Zhang [22], if
√

ρ
n
→ √

ρ in W 2,1(γ) and
√

ρn,
√

ρ ∈
W 2+ε,1 for some ε > 0, then

Pµn → Pµ

in total variation norm on Ft for any t > 0.
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In this paper we study some sufficient conditions for weak convergence Pµn → Pµ. It
turns out that the weak convergence of the distributions of the processes takes place under
much weaker assumptions. For example, if X is a Hilbert space, the weak convergence
holds under assumption supn ‖∇H

√
ρn‖W 2,1(γ) < ∞ and some uniform approximation

property of
∂eiρn

ρn
by the finite dimensional conditional expectations for every fixed ei.

We stress that we don’t assume any strong convergence of
∂eiρn

ρn
. We emphasize that

the problem of the weak convergence of the diffusion processes appears in many physical
models without L2-strong convergence of the corresponding logarithmic partial derivatives
(see, for instance, [9]). Note that unlike [22] we require γ-a.e. positivity of the densities
ρn, ρ.

In this paper we apply the techniques of Mosco convergence of quadratic forms defined
on different L2-spaces, initiated in [27], [13] and developed in [11], [12]. We give below the
basic definitions of this theory and refer the reader to the cited works for detailed proofs.

Some other results on Mosco convergence and convergence of stochastic processes can
be found in [1], [10], [14], [15], [16], [20], [21], [25], [26].

2. Main results

We assume throughout the paper that

µn → µ

weakly, where µn = ρn · γ, µ = ρ · γ and ρn > 0, ρ > 0 γ-a.e. Moreover, we assume that
ρn → ρ weakly in L1(γ). Every Dirichlet form E of the type

E(f) =

∫
‖∇f‖2 dm or E(f) =

∫ ( ∂f

∂xi

)2

dm

is considered on the space L2(m). Here m means some Borel non-negative measure and
∇ denotes either the Malliavin gradient on the Wiener space or the standard gradient on
Rd.

Following [27], [13] we consider the union H = ∪nL
2(µn) and introduce a convergence

on H. We say that a sequence of functions {fn}, where fn ∈ L2(µn), converges weakly to
f ∈ L2(µ) if

∫
X

fnϕ dµn →
∫

X
fϕ dµ for every ϕ ∈ FC∞

0 . If, in addition, ‖fn‖L2(µn) →
‖f‖L2(µ), we say that fn → f strongly. The sequence of bounded operators {Bn}, where
Bn ∈ L(L2(µn)), strongly converge to a bounded operator B ∈ L(L2(µ)) if Bnfn → Bf
strongly for every strongly convergent fn → f .

We set E(f) := ∞ for every f /∈ D(E).

Definition 2.1. We say that a sequence {En : L2(µn) → R} of quadratic symmetric forms
Mosco converges to a quadratic form E on L2(µ) if the following conditions are fulfilled:

(M1) If fn → f weakly, then

E(f) ≤ limnEn(fn).

(M2) For every f ∈ L2(µ) there exists a strongly convergent sequence fn → f such that

E(f) = lim
n
En(fn).

It is known that the following statements are equivalent:

(1) {En} Mosco converges to E
(2) the corresponding associated semigroups {Tn,t} strongly converges to Tt for every

t > 0.
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We employ the following fact from the theory of convergent Hilbert spaces:
Every sequence {fn} such that supn ‖fn‖L2(µn) < ∞ admits a weakly convergent subse-

quence fn → f . In addition, ‖f‖L2(µ) ≤ limn‖fn‖L2(µn).
More on Mosco convergence see in [19], [27], [13], [11], [12].
Throughout the paper we consider the weighted Sobolev spaces W 2,1(µ) with respect

to some measure µ (finite of infinite dimensional) which admits the logarithmic derivative
βxi

along every xi. This means that for every test function ϕ∫
X

ϕxi
dµ = −

∫
X

ϕβxi
dµ.

The weak (Sobolev) derivative fxi
of some function f is defined by the integration by

parts in the following way:∫
X

ϕxi
f dµ = −

∫
X

ϕfβxi
dµ−

∫
X

ϕfxi
dµ.

Then

W 2,1(µ) =
{

f is weakly differentiable and f, ‖∇Hf‖H ∈ L2(µ)
}

.

By Theorem 5.1 from [7] W 2,1(µ) can be also defined as a completion of FC∞
0 in the

corresponding norm.
The following lemma can be proved by the compactness imbedding theorem for the

sequences
√

%n ⊂ W 2,1
loc (Rd) and {fn%n} ⊂ W 1,1

loc (Rd) (see [12] for details).

Lemma 2.2. Let X = Rd. Consider sequences of functions {%n}, {fn} such that %n > 0.
Suppose that for every ball B ⊂ Rd:

sup
n

(∫
B

%n dx +
1

4

∫
B

‖∇%n‖2

%n

dx
)

= sup
n
‖√%n‖W 2,1(B) < ∞.

and

sup
n

[∫
B

f 2
n%n dx +

∫
B

(∇fn)2%n dx
]

< ∞.

Then there is a subsequence {nm} such that {√%nm} converges in L2
loc(Rd) and {fnm%nm}

converges in L1
loc(Rd).

The proof of the following theorem can be found in [12] (Theorem 4.2). The idea is
to prove first that En → E in the sense of Γ-convergence (which is weaker than Mosco
convergence, see [6] for details). The next step is to prove that an uniformly bounded
sequence of functions {fn} satisfying supn En(fn) < ∞ admits a H-strongly convergent
subsequence. This can be verified with the help of Lemma 2.2. Then using the contraction
properties of the Dirichlet forms and the cutoff approximations one easily completes the
proof.

Theorem 2.3. Let {%n} be a sequence of positive functions such that every %n dx is a
probability measure and %n dx → % dx weakly. In addition, we assume that % > 0 almost
everywhere and

sup
n

∫
Rd

(
∇%n

)2

%n

dx < ∞.

Then En → E Mosco, where En(f) =
∫

Rd ‖∇f‖2%n dx, E(f) =
∫

Rd ‖∇f‖2% dx.
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In addition, (M1) holds for every partial form: if fn → f weakly in the sense on
H-convergence, then for every 1 ≤ i ≤ N∫

X

( ∂f

∂xi

)2

% dx ≤ limn

∫
X

(∂fn

∂xi

)2

%n dx.

Now we are ready to prove the main result of this paper. We consider a centered
Gaussian measure γ on X. Everywhere below ‖ · ‖ means the H-norm.

Theorem 2.4. Let {ρn} be a sequence of probability densities. Denote µn := ρn · γ,
µ := ρ · γ. Suppose that {µn} satisfies the following assumptions

1) ρn(x) > 0, ρ(x) > 0 for γ-almost all x and ρn → ρ weakly in L1(γ).
2) for every n

√
ρn ∈ W 2,1(γ) and for every i

sup
n

∫
X

(
∂ei

ρn

)2

ρn

dγ < ∞

3) for every i ∈ N

(2) lim
N

[
sup

n

∫
X

(∂ei
ρn

ρn

− IEN
µn

[∂ei
ρn

ρn

])2

dµn

]
= 0.

Then En → E Mosco, where

En(f) =

∫
X

‖∇Hf‖2ρn dγ, E(f) =

∫
X

‖∇Hf‖2ρ dγ.

Proof. Let fn → f be a H-weakly convergent sequence of functions fn ∈ L2(µn) such that
supn En(fn) < ∞. Suppose first that supX |fn| ≤ K. Let us show that (M1) is fulfilled.

Set:

ρN
n := IEN

γ

(
ρn

)
, fN

n := IEN
µn

(
fn

)
, µN

n :=
(
ρN

n

)
· γ.

We note that µN
n =

(
µn ◦ P−1

N

)
×

(
γ ◦ S−1

N

)
. Obviously, {µN

n } is a sequence of probability

measures and µN
n → µN weakly. In what follows we consider some integrals involving the

measures {µN
n } and some functions depending only on (x1, · · · , xN). Since these integrals

can be reduced to the finite dimensional ones, we may use some finite dimensional results
(like compactness embedding of Sobolev spaces etc.).

First we show that L2-norms of logarithmic derivatives of {µN
n } are uniformly bounded

for every fixed N . Then we show that the values of the corresponding Dirichlet forms on
{fN

n } are bounded by some constant.
Since ρn > 0, one has

IEN
µn

(fn) =
IEN

γ (fnρn)

IEN
γ (ρn)

.

Hence∫
X

∥∥∇HρN
n

∥∥2

ρN
n

dγ =

∫
X

∥∥IEN
γ

[
∇N

Hρn

]∥∥2

IEN
γ ρn

dγ =

∫
X

∥∥∥IEN
γ

[
∇N

Hρn

]
IEN

γ ρn

∥∥∥2

IEN
γ ρn dγ

=

∫
X

∥∥∥IEN
γ

[
∇N

Hρn

]
IEN

γ ρn

∥∥∥2

ρn dγ =

∫
X

∥∥∥IEN
µn

[∇N
Hρn

ρn

]∥∥∥2

ρn dγ ≤
∫

X

IEN
µn

[∥∥∥∇N
Hρn

ρn

∥∥∥2]
ρn dγ

=

∫
X

‖∇N
Hρn‖2

ρn

dγ ≤
N∑

i=1

∫
X

(
∂xi

ρn

)2

ρn

dγ.
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It follows from (1) that the right-hand side of this estimate is uniformly bounded for
every fixed N . Further we get∫

X

(
fN

n

)2
ρN

n dγ =

∫
X

(
fN

n

)2
IEN

γ (ρn) dγ =

∫
X

(
fN

n

)2
ρn dγ ≤

∫
X

IEN
µn

(
fn

)2
ρn dγ = ‖fn‖2

L2(µn).

Now let us analyze
∫

X
‖∇HfN

n ‖2
H dµN

n . One has

∇HIEN
µn

(fn) =
IEN

γ (∇N
Hfnρn) + IEN

γ (fn∇N
Hρn)

IEN
γ (ρn)

−
IEN

γ (fnρn)IEN
γ (∇N

Hρn)(
IEN

γ (ρn)
)2

= IEN
µn

(∇N
Hfn) + IEN

µn

[
fn
∇N

Hρn

ρn

]
− IEN

µn

(
fn

)
IEN

µn

[∇N
Hρn

ρn

]
= IEN

µn
(∇N

Hfn) + IEN
µn

[
fn

(∇N
Hρn

ρn

− IEN
µn

[∇N
Hρn

ρn

])]
= I + II.

Obviously, ∫
X

I2 dµN
n =

∫
X

I2 dµn =

∫
X

I2ρn dγ ≤
∫

X

‖∇Hfn‖2ρn dγ

and ∫
X

II2 dµN
n =

∫
X

II2 dµn =

∫
X

II2ρn dγ ≤ K2

∫
X

(∇N
Hρn

ρn

− IEN
µn

[∇N
Hρn

ρn

])2

ρn dγ

= K2
[∫

X

‖∇N
Hρn‖2

ρn

dγ −
∫

X

(
IEN

µn

[∇N
Hρn

ρn

])2

ρn dγ
]
.

In the same way we show the similar estimates for the partial logarithmic derivatives
along ei, where N > i

(3) sup
n

∫
X

(
∂ei

ρN
n

)2

ρN
n

dγ ≤ sup
n

∫
X

(
∂ei

ρn

)2

ρn

dγ < ∞.

In particular we get that supn ‖βN,n
xi
‖L2(µN

n ) < ∞, where βN,n
xi

is the logarithmic partial

derivative of µN
n along ei. Indeed

βN,n
xi

=
∂ei

ρN
n

ρN
n

− xi.

Hence by the Young inequality and the log-Sobolev inequality

1

2
‖βN,n

xi
‖L2(µN

n ) ≤
∫

X

(
∂ei

ρN
n

)2

ρN
n

dγ +

∫
X

x2
i ρ

N
n dγ

≤
∫

X

(
∂ei

ρN
n

)2

ρN
n

dγ + 3
(∫

X

e
x2

i
3
−1 dγ +

∫
X

ρN
n log ρN

n dγ
)

≤
∫

X

(
∂ei

ρN
n

)2

ρN
n

dγ + 3

∫
X

e
x2

i
3
−1 dγ + 3

∫
X

‖∇ρN
n ‖2

2ρN
n

dγ.

Hence supn ‖βN,n
xi
‖L2(µN

n ) < ∞ and one can apply Theorem 2.3 to the sequence {µN
n }.

Further we get analogously to the above estimates

(4) ∂ei
IEN

µn
(fn) = IEN

µn
(∂ei

fn) + IIi,n,N
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and

(5)

∫
X

(
IEN

µn
∂ei

fn

)2
dµn ≤

∫
X

(
∂ei

fn

)2
ρn dγ

(6)

∫
X

II2
i,n,N dµN

n ≤ K2
[∫

X

(∂ei
ρn)2

ρn

dγ −
∫

X

(
IEN

µn

[∂ei
ρn

ρn

])2

ρn dγ
]
.

We know that µN
n → µN weakly. Moreover, by (3)

√
ρN

n is uniformly bounded in
W 2,1(γ) for every fixed N . Using the compactness embedding W 2,1(B) → L2(B) for
every ball B ⊂ RN , and applying the standard diagonal procedure, one can extract a
subsequence {ρN

nm
} which converges in L1

loc. By the weak convergence µN
n → µN , the limit

of {ρN
nm
} coincides with ρN := IEN

γ (ρ), hence the whole sequence {ρN
n } converges in L1

loc

to the same limit. In addition, by the log-Sobolev inequality and (3)

sup
n

∫
X

ρN
n log ρN

n dγ ≤ sup
n

∫
X

‖∇N
HρN

n ‖2

2ρN
n

dγ < ∞.

Hence {ρN
n } is uniformly γ-integrable and

(7) ρN
n → ρN in L1(γ).

Using the above estimates for ‖fN
n ‖L2(µN

n ), ‖∇HfN
n ‖L2(µN

n ) and positivity of {ρN
n }, we

get by Lemma 2.2 that there exist a subsequence (denoted again by fN
n ) and a function

f̃N such that fN
n → f̃N γ-a.e. By the properties of conditional expectations |fN

n | ≤ K.

Let us show that f̃N = IEN
µ f . Indeed, fix a bounded continuous ϕ(x1, · · · , xN):

lim
n→∞

∫
X

fN
n ϕρn dγ = lim

n→∞

∫
X

fN
n ϕρN

n dγ = lim
n→∞

∫
X

fN
n ϕρN dγ + lim

n→∞

∫
X

fN
n ϕ(ρN

n − ρN) dγ.

The first term tends to
∫

X
f̃NϕρN dγ =

∫
X

f̃Nϕρ dγ by the Lebesque domination conver-
gence theorem. The second one can be estimated by

sup(|ϕ|)K‖ρN
n − ρN‖L1(γ).

This obviously tends to zero by (7). Hence

lim
n→∞

∫
X

fN
n ϕρn dγ =

∫
X

f̃Nϕρ dγ.

In the other hand, we get by the weak H-convergence fn → f

lim
n

∫
X

fN
n ϕρn dγ = lim

n

∫
X

(
IEN

µn
fn

)
ϕρn dγ = lim

n

∫
X

fnϕρn dγ =

∫
X

fϕρ dγ.

Hence ∫
X

fϕρ dγ =

∫
X

f̃Nϕρ dγ

and IEN
µ f = f̃N . Using the L1(γ)-convergence of ρN

n to ρN and the uniform boundedness of

{fN
n }, we obtain that fN

n → IEN
µ f H-weakly (even H-strongly) in the sense of convergent

L2(µN
n )-spaces.
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Then using Theorem 2.3 (which is applicable since all the function and measures are
essentially finite dimensional), (4), (5), (6) and assumption 3) of the theorem, we get for
every i ∈ N

(8)

∫
X

(∂IEN
µ f

∂xi

)2

dµ ≤ limn

∫
X

(∂IEN
µ fn

∂xi

)2

dµn

and
(9)

limn

∫
X

(∂IEN
µ fn

∂xi

)2

dµn ≤ limn

∫
X

(∂fn

∂xi

)2

dµn + Mi,N + 2M
1/2
i,N

[
limn

∫
X

(∂fn

∂xi

)2

dµn

]1/2

,

where

Mi,N = sup
n

∫
X

II2
i,n,N dµn.

In addition, we get that IEN
µ f belongs to the maximal domain of definition (we note that

since ‖
√

ρN‖W 2,1(γ) < ∞, it coincides with the minimal one) of the finite dimensional
gradient Dirichlet form associated with the measure µN .

Now let us show that f ∈ W 2,1(µ). The sequence
∂IEN

µ f

∂xi
is bounded in L2(µ) according

to (9). Hence one can extract a subsequence (denoted again by
∂IEN

µ f

∂xi
), which converges

weakly to F ∈ L2(µ). Take a smooth cylindrical test function ϕ = ϕ(x1, · · · , xm). One
obtains for i ≤ m

lim
N

∫
X

ϕ
∂IEN

µ f

∂xi

ρ dγ =

∫
X

ϕFρ dγ.

Integrating by parts we get∫
X

ϕ
∂IEN

µ f

∂xi

ρ dγ = −
∫

X

IEN
µ

(
f
)(

ϕxi
− xiϕ

)
ρ dγ −

∫
X

IEN
µ

(
f
)
ϕρxi

dγ.

Note that the functions IEN
µ f are uniformly bounded and tends γ-a.e. to f . Hence, we

get in the limit ∫
X

ϕFρ dγ = −
∫

X

f
(
ϕxi

− xiϕ
)
ρ dγ −

∫
X

fϕρxi
dγ.

This implies that f ∈ W 2,1(µ) and ∂f
∂xi

= F . By the property of weak convergence we get

from (8) ∫
X

( ∂f

∂xi

)2

ρ dγ = lim
N

∫
X

(∂IEN
µ f

∂xi

)2

ρ dγ ≤ lim
N

limn

∫
X

(∂IEN
µ fn

∂xi

)2

dµn

Hence by (9) and (2) ∫
X

( ∂f

∂xi

)2

ρ dγ ≤ limn

∫
X

(∂fn

∂xi

)2

ρn dγ.

Since this inequality holds for every i, we get∫
X

|∇Hf |2ρ dγ =
∞∑
i=1

∫
X

( ∂f

∂xi

)2

ρ dγ ≤
∞∑
i=1

limn

∫
X

(∂fn

∂xi

)2

ρn dγ

≤ limn

∞∑
i=1

∫
X

(∂fn

∂xi

)2

ρn dγ = limn

∫
X

|∇Hfn|2ρn dγ < ∞.
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The proof of (M1) for a sequence of uniformly bounded functions {fn} is complete.
Now let us consider the general case. Let {fn} be a sequence of functions such that

fn → f weakly in H and supn En(fn) < ∞. Note that∫
|fn|ρn>K

|fn|ρn dγ ≤
∫
|fn|>

√
K

|fn|ρn dγ +

∫
ρn>

√
K

|fn|ρn dγ

≤
∫

X
|fn|2ρn dγ
√

K
+

(∫
X

|fn|2ρn dγ
)1/2(∫

ρn>
√

K

ρn dγ
)1/2

.

Since {ρn} is weakly compact in L1(γ), we get that |fn|ρn is uniformly integrable, hence
weakly compact in L1(γ). By the standard subsequence arguments fnρn → fρ weakly in
L1(γ).

Let us consider the cutoff functions fn,N =
(
fn ∧ N

)
∨ (−N), where N ∈ N. Extract

some H-weakly convergent subsequence fn,N → fN (denoted by the same index). By the
same reason as above fn,Nρn → fNρ weakly in L1(γ). Representing every fn,N as the
difference of the positive and non-positive part fn,N = f+

n,N − f−n,N one can assume that

f+
n,N → f1,N and f−n,N → f2,N

H-weakly to some non-negative functions f1,N , f2,N . Obviously,

0 ≤ f1,N ≤ f+ ∧N and 0 ≤ f2,N ≤ f− ∧N.

Hence |fN | ≤ |f | ∧N . By the above result and the contraction properties of En (see [18])

(10) E(fN) ≤ limnEn(fn,N) ≤ limnEn(fn).

It remains to show that E(f) ≤ limNE(fN). If we prove that fN → f weakly in
L2(µ) (at least for some subsequence), the proof will be complete. Since |fN | ≤ f and∫

X
f 2ρ dγ < ∞, one can choose a L2(µ)-weakly convergent subsequence fN → f̃ . By

Komlós theorem (see [4], Theorem 4.7.23) for every ε > 0 there exists Xε ⊂ X such that
γ(X \Xε) ≤ ε and (for an appropriate subsequence which we denote by the same index)∫

Xε

∣∣∣f1ρ1 + · · ·+ fnρn

n
− fρ

∣∣∣dγ → 0

and ∫
Xε

∣∣∣f1,Nρ1 + · · ·+ fn,Nρn

n
− fNρ

∣∣∣dγ → 0.

Note that∫
X

∣∣∣f1ρ1 + · · ·+ fnρn

n
− f1,Nρ1 + · · ·+ fn,Nρn

n

∣∣∣ dγ ≤ 1

n

n∑
i=1

∫
X

∣∣∣fi − fi,N

∣∣∣ρi dγ

≤ 1

n

n∑
i=1

∫
|fi|≥N

|fi

∣∣ρi dγ ≤ 1

N
sup

i

∫
X

f 2
i ρi dγ.

Hence

lim
N

∫
Xε

|f − fN |ρ dγ ≤ lim
N

( 1

N
sup

i

∫
X

f 2
i ρi dγ

)
= 0.

Hence fN → f in measure. This implies that f̃ = f . The proof of (M1) is complete.
The proof of condition (M2) is much easier and follows from the Markov uniqueness

property of the limiting form and Lemma 2.8 of [12].
9
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Remark 2.5. Since
∂eiρn

ρn
∈ L2(µn), we get by the martingale property of conditional

expectations that for every n

lim
N

∫
X

(∂ei
ρn

ρn

− IEN
µn

[∂ei
ρn

ρn

])2

dµn = 0.

Assumption 3) of Theorem 2.4 requires the uniform convergence in n. Note that∫
X

(
IEN

µn

[∂ei
ρn

ρn

])2

ρn dγ = 4

∫
X

(
∂ei

√
IEN

γ (ρn)
)2

dγ

if N > i.

Corollary 2.6. Suppose that conditions 1)-2) of Theorem 2.4 hold. Suppose in addition
that for every i ∈ N

lim
M→∞

sup
n≥M

∫
X

(
∂ei

ρn

)2

ρn

dγ = 0

(for example
√

ρn →
√

ρ in W 2,1(γ)). Since∫
X

(∂ei
ρn

ρn

− IEN
µn

[∂ei
ρn

ρn

])2

dµn ≤
∫

X

(
∂ei

ρn

)2

ρn

dγ,

we get by the previous remark that condition 3) of Theorem 2.4 holds and En → E Mosco.

In the following corollary we prove the convergence of the associated stochastic processes
on a Hilbert space under additional assumption supn ‖

√
ρn‖W 2,1(γ) < ∞, which is stronger

that assumption 2) of Theorem 2.4.

Corollary 2.7. Suppose that X is a Hilbert space and the assumptions of Theorem 2.4
are fulfilled. Suppose in addition, that supn ‖

√
ρn‖W 2,1(γ) < ∞. Then Pµn → Pµ weakly.

Proof. The tightness of {Pµn} was shown in [17], Theorem 3.1. The assumptions of
Theorem 3.1, [17] are obviously fulfilled except of

(11) sup
n

∫
X

‖x‖2
X dµn < ∞,

where ‖ · ‖X is the Hilbert norm on X. Let us show that (11) holds indeed. By the Young
inequality

ε‖x‖2
Xρn ≤ eε‖x‖2X−1 + ρn log ρn.

By the Fernique theorem (see [3]) eε‖x‖2X ∈ L1(γ) for a small enough ε and

sup
n

∫
X

ρn log ρn dγ < sup
n

∫
X

‖∇Hρn‖2
H

2ρn

dγ < ∞

by the log-Sobolev inequality. This gives (11).
Now let us show that every weak limiting point of {Pµn} coincides with Pµ. To this

end let us fix some FC∞
0 -functions f0, · · · , fm. Then∫

f0(X
n
0 )f1(X

n
t1
)f2(X

n
t1+t2

) · · · fm(Xn
t1+···+tm) dPµn

=

∫
f0T

n
t1
(f1T

n
t2
(f2 · · ·T n

tm(fm)) · · · ) dµn,

10



where every T n
t is associated with En. By Theorem 2.4 and properties of Mosco conver-

gence T n
t → Tt strongly in H. We note that ϕfn → ϕf for every ϕ ∈ FC∞

0 if fn → f
H-strongly and |fn| ≤ C. This follows easily from the weak L1(γ)-convergence of ρn to ρ
and basic properties of H-convergence. Since every T n

t is sub-Markovian, one gets∫
f0(X

n
0 )f1(X

n
t1
)f2(X

n
t1+t2

) · · · fm(Xn
t1+···+tm) dPµn

→
∫

f0(X0)f1(Xt1)f2(Xt1+t2) · · · fm(Xt1+···+tm) dPµ.

The proof is complete. �

The author gratefully acknowledges the support of the Centro di Ricerca Matematica
Ennio De Giorgi, Scuola Normale Superiore di Pisa.
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