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1 Introduction

The uniqueness problem for infinite dimensional diffusion operators plays a crucial role
in several areas of mathematical physics including Euclidean quantum field theory and

∗Corresponding author.
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statistical mechanics. Hence such problems are discussed in many areas of stochastic
analysis. However, these problems are still understood very insufficiently in the sense that
there are several important types of infinite dimensional diffusion operators for which it
is not known whether uniqueness holds or not. The most prominent example in which
essential self-adjointness is not known is the stochastic quantization of a P (φ)2-quantum
field in infinite volume. Even in finite volume, this problem was open for many years and
only solved in Liskevich-Röckner [17] and then independently in Da Prato-Tubaro [7].
We refer to Eberle [11] and references therein for a detailed review. However, we would
like to mention two references here, namely, Shigekawa [21] and Albeverio-Kondratiev-
Röckner [1]. In both papers, techniques were developed which work to prove essential
self-adjointness for special classes of operators. [21] is based on the Malliavin calculus,
while [1] is based on the analysis of stochastic differential equations associated with certain
approximating operators. An analytic variant of the latter led to the proof of essential
self-adjointness in [17] for the stochastic quantization of P (φ)2 in finite volume.

All these approaches, however, do not apply to show the main result of the present
paper, namely the essential self-adjointness for the diffusion operators of P (φ)1-quantum
fields in infinite volume. The diffusion operators are defined through Dirichlet forms on
an infinite volume path space C(R, Rd) with a Gibbs measure. The Gibbs measure is
associated with the (formal) Hamiltonian

H(w) :=
1

2

∫

R

|w′(x)|2dx +

∫

R

U(w(x))dx,

where U : R
d → R is an interaction potential function. Our methods are based on quite

recent work by Da Prato-Tubaro [8] and Da Prato-Röckner [6] where an Lp-analysis of
Kolmogorov operators in infinitely many variables is developed. Their work is based
on the theory of SPDE in an essential way and gives a new approach to tackle such
uniqueness problems. In this paper we adopt their approach, however, with substantial
necessary modifications.

The organization of this paper is as follows: In Section 2, we present the frame-
work and state our main results. In Section 3, we present basic properties of parabolic
SPDEs. In Section 4, we give some results about the Ornstein-Uhlenbeck semigroup and
its generator. By using these results, we can state the key approximations by cylinder
functions. It implies that our Dirichlet operator can be regarded as a perturbation of the
Ornstein-Uhlenbeck operator by a nonlinearity. Finally in Section 5, we prove the main
theorem and discuss the connection with our SPDE. There is an enormous literature on
uniqueness problems for diffusion operators. We only mention here that a weaker type
of uniqueness, namely Markov uniqueness, was also studied intensively (see e.g. Takeda
[24] and Röckner-Zhang [25]). For the precise connections, we again refer to [11], where
non-symmetric operators are also treated and where it is discussed in detail why neither
Markov uniqueness nor essential self-adjointness (strong uniqueness) can be deduced from
the fact that the associated stochastic (partial) differential equation has a unique solution.

Finally, we would like to emphasize that to the best of our knowledge, this paper is the
first where essential self-adjointness for a Dirichlet operator is proved in infinite volume,
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i.e., where the differential operator, which determines the drift term, is defined on an
unbounded domain.

2 Framework and Main Result

Let us introduce some notations and objects we will be working with. First we define a
weight function ρr ∈ C∞(R, R), r ∈ R, by ρr(x) := erχ(x), x ∈ R, where χ ∈ C∞(R, R) is
a positive symmetric convex function satisfying χ(x) = |x| for |x| ≥ 1. We fix a constant
r > 0 such that K1 +2r2 > 0, where the constant K1 is denoted in condition (U1) below.
We set E = L2

r(R, Rd) := L2(R, Rd : ρ−2r(x)dx). This space is a Hilbert space with the
inner product defined by

(X, Y )E :=

∫

R

(
X(x), Y (x)

)
Rdρ−2r(x)dx, X, Y ∈ E.

Moreover, we set H := L2(R, Rd) and denote by ‖ · ‖E and ‖ · ‖H the corresponding norms
of E and H, respectively. We regard the dual space E∗ of E as L2(R, Rd : e2rχ(x)dx).

We also introduce a suitable subspace of C(R, Rd). For functions in C(R, Rd), we set

‖w‖r,∞ := sup
x∈R

|w(x)|ρ−r(x) for r ∈ R,

and consider
C :=

⋂

r>0

{
w ∈ C(R, Rd) | ‖w‖r,∞ < ∞

}
.

Then it becomes a Fréchet space with the system of norms ‖ · ‖r,∞. We easily see that
the inclusion C ⊂ E ∩ C(R, Rd) is dense with respect to the topology of E. We endow
C(R, Rd) with the σ-field B generated by the point evaluation and denote by P(C(R, Rd))
the class of all probability measures on the space (C(R, Rd),B). For T > 0, we also
denote by BT and BT,c the σ-fields of C(R, Rd) generated by {w(x);−T ≤ x ≤ T} and
{w(x); x ≤ −T, x ≥ T}, respectively.

In this paper, we impose the following conditions on the potential function U ∈
C(Rd, R):

(U1) There exist a constant K1 ∈ R and a convex function Ũ : R
d → R such that

U(z) = −K1

2
|z|2 + Ũ(z), z ∈ R

d.

(U2) There exist K2 > 0 and p > 0 such that

|∇̃U(z)| ≤ K2(1 + |z|p), z ∈ R
d,

where ∇̃U(z) := −K1z + ∂0Ũ(z), z ∈ R
d and ∂0Ũ is the minimal section of the subdiffer-

ential ∂Ũ . (The reader is referred to Showalter [22] for definitions of the subdifferential

3



for a convex function and its minimal section.)

(U3) lim|z|→∞ U(z) = ∞.

As examples of U satisfying the above conditions, we can include the case

U(z) =
2m∑

j=0

aj|z|j, a1 = 0, a2m > 0, m ∈ N.

Especially, we are interested in a square potential and a double-well potential. Those are,
U(z) = a|z|2 and U(z) = a(|z|4 − |z|2), a > 0, respectively.

Remark 2.1 In the case of U ∈ C1(Rd, R), ∇̃U defined in condition (U2) coincides with
the usual gradient ∇U . Moreover condition (U1) is equivalent to the following one-sided
Lipschitz condition:

(U1)’
(
∇U(z1) −∇U(z2), z1 − z2

)
Rd ≥ −K1|z1 − z2|2, z1, z2 ∈ R

d.

Remark 2.2 For the convex function Ũ , we define the Moreau-Yosida approximation by

Ũn(z) := inf
z′∈Rd

{
Ũ(z′) + n|z − z′|2

}
, z ∈ R

d, n ∈ N.

Then Ũn is differentiable and

lim
n→∞

Ũn(z) = Ũ(z), lim
n→∞

∇Ũn(z) = ∂0Ũ(z), z ∈ R
d.

Now, we introduce a Gibbs measure. Consider the Schrödinger operator HU :=
−1

2
∆ + U on L2(Rd, R), where ∆ :=

∑d
i=1 ∂2/∂z2

i is the d-dimensional Laplacian. Then
the condition (U3) assures that HU has purely discrete spectrum and a complete set of
eigenfunctions. We denote by λ0(> min U) the minimal eigenvalue and by Ω the corre-
sponding normalized eigenfunction in L2(Rd, R). It is called ground state and it decays
exponentially. See Theorems X. 28, XIII. 47, XIII. 67 and XIII. 70 in Reed-Simon [19]
for details.

Let W−T,z1;T.z2
, T > 0, z1, z2 ∈ R

d, be the path measure of Brownian bridge such that
w(−T ) = z1, w(T ) = z2. We sometimes regard this measure as a probability measure on
the space (C(R, Rd),B) by considering w(x) = z1 for x ≤ −T and w(x) = z2 for x ≥ T .
We define µ(A) for A ∈ BT , T > 0, by

µ(A) := e2Tλ0

∫

Rd

∫

Rd

Ω(z1)Ω(z2)p(2T, z1, z2)

×E
W−T,z1;T,z2

[
exp

(
−

∫ T

−T

U(w(x))dx
)
; A

]
dz1dz2, (2.1)

where p(t, z1, z2) is the transition probability of standard Brownian motion on R
d. Then

by the Feynman-Kac formula and the Markov property of Brownian motion, we can see
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that µ is well-defined as an element of P(C(R, Rd)) and it satisfies the following DLR-
equation for every T > 0 and µ-a.e. ξ ∈ C(R, Rd):

µ(dw|BT,c)(ξ) = Z−1
T,ξ exp

(
−

∫ T

−T

U(w(x))dx
)
W−T,ξ(−T );T,ξ(T )(dw), (2.2)

where ZT,ξ is a normalizing constant. See Proposition 2.7 in Iwata [14] for details. Al-
though generally there exist other µ’s in P(C(R, Rd)) satisfying the DLR-equation (2.2),
in this paper we only consider the Gibbs measure µ which has been constructed in (2.1).

Remark 2.3 In [3], Betz and Lörinczi prove that if, for some a > 2, U(z) grows at
infinity faster than |z|a but slower than |z|2a−2, then there is a unique Gibbs measure on
C(R, Rd). See Theorem 3.4 of [3] for details.

Here we note that the Gibbs measure µ is supported on C by using the standard
moment estimates of Brownian motion. Then by the continuity of the inclusion map of
C into E, we can regard µ ∈ P(E) by identifying it with its image measure under the
inclusion map.

By virtue of the DLR-equation (2.2), the Gibbs measure µ is C∞
0 (R, Rd)-quasi-invariant,

i.e., µ(· + k) and µ are mutually equivalent and

µ(k + dw) = Λ(k, w)µ(dw) (2.3)

holds for every k ∈ C∞
0 (R, Rd). The Radon-Nikodym density Λ(k, w) is represented by

Λ(k, w) = exp
{∫

R

(
U

(
w(x)

)
−U

(
w(x)+k(x)

)
−1

2
|k′(x)|2+(w(x), ∆xk(x))Rd

)
dx

}
, (2.4)

where ∆x := d2/dx2. For details the reader is referred to Theorem 3.21 in Iwata [14] or
Lemma 4.1 in Funaki [12]. Moreover, we have µ is translation invariant, i.e., τx ◦ µ = µ,
where the shift operator {τx}x∈R on C(R, Rd) is defined by τxw(·) := w(· − x), x ∈ R.
Hence by combining this with the fact that Ω decays exponentially, we see that

∫

E

( ∫

R

|w(x)|2mρ−2r(x)dx
)
µ(dw) ≤ 1

r

∫

Rd

|z|2mΩ(z)2dz < ∞ (2.5)

holds for any m ∈ N and r > 0. These properties will be used below.
Now we define the space of smooth cylinder functions. Let K ⊂ E∗ be a dense linear

subspace of E. We say a function F : E −→ R is in a class FC∞
b (K) if there exist n ∈ N,

{ϕ1, · · · , ϕn} ⊂ K and a function f ≡ f(α1, · · · , αn) ∈ C∞
b (Rn) such that

F (w) ≡ f(〈w,ϕ1〉, · · · , 〈w, ϕn〉), w ∈ E. (2.6)

Here we use the notation 〈w, ϕ〉 :=
∫

R
(w(x), ϕ(x))Rddx if the integral is absolutely con-

verging and denote FC∞
b := FC∞

b

(
C∞

0 (R, Rd)
)

for simplicity.
Since K is dense in E, we have supp (µ) = E. See Proposition 2.7 in Albeverio-

Röckner [2] for the proof. Hence two different functions in FC∞
b (K) represent two different

µ-classes. Note that FC∞
b (K) is dense in L2(µ).
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For F ∈ FC∞
b , we also define the H-Fréchet derivative DHF : E → H by

DHF (w)(x) :=
n∑

j=1

∂f

∂αj

(〈w, ϕ1〉, · · · , 〈w, ϕn〉)ϕj(x), x ∈ R. (2.7)

We consider a pre-Dirichlet form (E ,FC∞
b ) which is given by

E(F,G) =
1

2

∫

E

(
DHF (w), DHG(w)

)
H

µ(dw), F,G ∈ FC∞
b .

Then by virtue of the C∞
0 (R, Rd)-quasi-invariance, we have the following integration

by parts formula for any F,G ∈ FC∞
b and ϕ ∈ C∞

0 (R, Rd):

∫

E

(
DHF (w), ϕ

)
H

G(w)µ(dw)

= −
∫

E

F (w)
(
ϕ,DHG(w)

)
H

µ(dw) −
∫

E

F (w)G(w)βϕ(w)µ(dw), (2.8)

where βϕ is the logarithmic derivative of the Gibbs measure µ in the direction ϕ ∈
C∞

0 (R, Rd) in the sense of

lim
ε→0

1

ε

∫

E

F (w)
{
Λ(εϕ, w) − 1

}
µ(dw) =

∫

E

F (w)βϕ(w)µ(dw), F ∈ FC∞
b .

Here by recalling Remark 2.2 and (2.4), we easily see that

βϕ(w) = 〈w, ∆xϕ〉 − 〈∇̃U(w(·)), ϕ〉, ϕ ∈ C∞
0 (R, Rd). (2.9)

Next we define a differential operator L0 with domain FC∞
b by

L0F (w) :=
1

2
Tr(D2

HF (w)) − 1

2

〈
∇̃U(w(·)), DHF (w)

〉
+

1

2

〈
w, ∆xDHF (w(·))

〉
, (2.10)

that is, if F (w) = f(〈w, ϕ1〉, · · · , 〈w,ϕn〉), then

L0F (w) =
1

2

n∑

i,j=1

∂2f

∂αi∂αj

(
〈w, ϕ1〉, · · · , 〈w, ϕn〉

)
〈ϕi, ϕj〉

+
1

2

n∑

i=1

∂f

∂αi

(
〈w, ϕ1〉, · · · , 〈w,ϕn〉

)
·
{
〈w, ∆xϕi〉 − 〈∇̃U(w(·)), ϕi〉

}
.

Then (2.8) and (2.9) imply the equality

E(F, G) =
(
− L0F, G

)
L2(µ)

, F, G ∈ FC∞
b . (2.11)

This means the operator L0 is the pre-Dirichlet operator which is associated with the pre-
Dirichlet form (E ,FC∞

b ). In particular, (E ,FC∞
b ) is closable on L2(µ). So we can define
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D(E) as the completion of FC∞
b with respect to E1/2

1 -norm and (E ,D(E)) is a Dirichlet
form.

(2.9) also implies that the operator L0 is symmetric in L2(µ). In many applications,
it is an important problem whether one has essential self-adjointness for L0, i.e., self-
adjointness of the closure (L0, Dom(L0)) of (L0,FC∞

b ) in L2(µ). The reason is that in

general there are many lower bounded self-adjoint extensions L̃2 of L0 in L2(µ) which

therefore define symmetric strongly continuous semigroups {et eL2}t≥0 generated by them.
In fact, there always exists one such extension called the Freidrichs extension which is the
operator corresponding to the Dirichlet form (E ,D(E)). If L0 is essentially self-adjoint,
there is hence only one such semigroup. Consequently, only one such dynamics associated
with the Gibbs measure µ exists.

The following is the main result of this paper. In Theorem 5.1, we give a more extended
statement, i.e., we show that our semigroup is not only unique but also represented by the
solution of a parabolic SPDE (3.2) on the infinite interval R in the case of U ∈ C1(Rd, R).

Theorem 2.4 The pre-Dirichlet operator (L0,FC∞
b ) is essentially self-adjoint in L2(µ).

As a corollary of this theorem, we obtain the Markov uniqueness. See e.g. Chapter
1 in Eberle [11] for the proof. We recall that a Dirichlet form (E , Dom(E)) in L2(µ) is
an extension of (L0,FC∞

b ) if FC∞
b ⊂ Dom(E) and E(F,G) =

(
− L0F,G

)
L2(µ)

for any

F ∈ FC∞
b and G ∈ Dom(E).

Corollary 2.5 The Dirichlet form (E ,D(E)) is the unique extension of (L0,FC∞
b ).

3 Preliminaries from Parabolic SPDEs

In this section, we make some preparations starting from the underlying parabolic SPDE
for our later use. Throughout this section, we suppose U ∈ C1(Rd, R).

Let (Θ,F , P, {Ft}t≥0) be a complete probability space with filtration on which an
{Ft}t≥0-adapted H-cylindrical Brownian motion (white noise process) {Bt}t≥0 is defined.
More precisely, for a complete orthonormal system (C.O.N.S.) {hj}∞j=1 of H,

Bt(·) =
(
βj(t)hj(·)

)∞
j=1

t ≥ 0, (3.1)

where {βj}∞j=1 is a sequence of independent one-dimensional {Ft}t≥0-Brownian motions.
See Chapter 4 in Da Prato-Zabczyk [9] for details.

We consider the following parabolic SPDE which is called time dependent Ginzburg-
Landau type SPDE:

dXt(x) =
1

2

{
∆xXt(x) −∇U(Xt(x))

}
dt + dBt(x), x ∈ R, t > 0. (3.2)

Following e.g. [9], Iwata [15] and Shiga [20], we call a C-valued {Ft}-adapted continuous
stochastic process X := {Xt(x)} a mild solution of (3.2) with initial datum X0 = w ∈ C
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if X satisfies the stochastic integral equation

Xt(x) = Gtw(x) − 1

2

∫ t

0

∫

R

g(t − s, x, y)∇U(Xs(y))dyds

+

∫ t

0

∫

R

g(t − s, x, y)dBs(y)dy, x ∈ R, t ≥ 0, (3.3)

P-almost surely. Here we denote the heat kernel by

g(t, x, y) :=
1√
2πt

exp
{
− (x − y)2

2t

}
, t > 0, x, y ∈ R

and the heat semigroup by

Gtw(x) :=

∫

R

g(t, x, y)w(y)dy, x ∈ R.

It is well-known that SPDE (3.2) has a unique solution living in C([0,∞), C) for every
initial datum w ∈ C under conditions (U1)’ and (U2). Hereafter we sometimes consider
the solution as an element in C([0,∞), E). Moreover, we also have that the solution is in
C([0,∞), E) for any initial datum w ∈ E in the case where ∇U is Lipschitz continuous.
See Theorems 3.2, 5.1 and 5.2 in [15] and Theorem 2.1 in Funaki [13] for details. In the
sequel, we denote by Xw := {Xw

t (·)}t≥0 the solution of SPDE (3.2) with initial datum
w ∈ C and by Pw the probability measure on C([0,∞), E) induced by Xw.

We define the transition semigroup {Pt}t≥0 by

PtF (w) := E
[
F (Xw

t )
]

=

∫

E

F (y)Pw(Xt ∈ dy), w ∈ C, F ∈ Cb(E, R). (3.4)

Here we recall that the Gibbs measure µ is a reversible measure of our dynamics. That
is, ∫

E

F (w)PtG(w)µ(dw) =

∫

E

PtF (w)G(w)µ(dw), t ≥ 0, (3.5)

holds for F, G ∈ Cb(E, R). See Lemma 2.9 in Iwata [14] for details. Then {Pt}t≥0 can be
extended to an L2(µ) -symmetric strongly continuous contraction semigroup. We denote
by (L2, Dom(L2)) its infinitesimal generator.

Now, we set

C∞
∞ :=

∞⋂

k=0

⋂

r>0

{
ϕ ∈ C∞(R, Rd) |

∥∥dkϕ

dxk

∥∥
−r,∞

< ∞
}

.

It is obvious that C∞
0 (R, Rd) ⊂ C∞

∞ and C∞
∞ is dense in E. We remark that the differential

operators DH and L0 can be naturally extended to the domain FC∞
b (C∞

∞) as (2.7) and
(2.10), respectively. To prove our main result, we need
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Proposition 3.1 We have (L0,FC∞
b (C∞

∞)) ⊂ (L2, Dom(L2)), that is, for F ∈ FC∞
b (C∞

∞),
F ∈ Dom(L2) and L2F = L0F .

Proof. Let F ∈ FC∞
b (C∞

∞) be given as (2.6). Then by similar arguments as in the proof
of Theorem 2.1 in [20], (3.3) implies that P-almost surely,

〈Xw
t , ϕ〉 = 〈w, ϕ〉 +

1

2

∫ t

0

〈Xw
s , ∆xϕ〉ds − 1

2

∫ t

0

〈
∇U(Xw

s (·)), ϕ
〉
ds + 〈Bt, ϕ〉, t ≥ 0 (3.6)

holds for every ϕ ∈ C∞
∞ . Where 〈Bt, ϕ〉 is a one-dimensional {Ft}-Brownian motion

multiplied by ‖ϕ‖H . Then the Itô formula implies

F (Xw
t ) = F (w) +

n∑

i=1

∫ t

0

∂f

∂αi

(
〈Xs, ϕ1〉, · · · , 〈Xs, ϕn〉

)
d〈Xw

s , ϕi〉

+
1

2

n∑

i,j=1

∫ t

0

∂2f

∂αi∂αj

(
〈Xw

s , ϕ1〉, · · · , 〈Xw
s , ϕn〉

)
d
[
〈Xw

· , ϕi〉, 〈Xw
· , ϕj〉

]
s

= F (w) +

∫ t

0

L0F (Xw
s )ds +

∫ t

0

(
DHF (Xw

s ), dBs

)
H

. (3.7)

Here we note that (2.5) implies L0F ∈ Lp(µ), p ≥ 1. Then by taking expectation on
both sides of (3.7), we have

PtF (w) = E[F (Xw
t )] = F (w) +

∫ t

0

Ps(L0F )(w)ds, w ∈ C. (3.8)

and thus

lim
t→0

1

t

(
PtF (w) − F (w)

)
= lim

t→0

1

t

∫ t

0

Ps(L0F )(w)ds = L0F (w), w ∈ C.

Moreover, by taking into account the invariance of the Gibbs measure µ, we have

∫

E

∣∣∣
1

t
(PtF (w) − F (w))

∣∣∣
2

µ(dw) =

∫

E

∣∣∣
1

t

∫ t

0

Ps(L0F )(w)ds
∣∣∣
2

µ(dw)

≤ 1

t

∫ t

0

ds
{∫

E

|Ps(L0F )(w)|2µ(dw)
}

≤
∫

E

|L0F (w)|2µ(dw) < ∞.

Therefore by Lebesgue’s dominated convergence theorem,

lim
t→0

1

t
(PtF − F ) = L0F in L2(µ).

This completes the proof.
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Before closing this section, we give another representation of the stochastic integral

equation (3.3) for our later use. We fix a constant κ > 0 with κ > 2r2 and set ω :=
κ

2
− r2.

We divide the potential function U into

U(z) =
κ

2
|z|2 − V (z), z ∈ R

d,

and consider
Stw(x) := e−κt/2Gtw(x), x ∈ R.

Then we have

Lemma 3.2 {St}t≥0 is a strongly continuous contraction semigroup on E and we have
the estimate

‖Stw‖E ≤ e−ωt‖w‖E, w ∈ E. (3.9)

Proof. Since the strong continuity of the semigroup {Gt}t≥0 on E is almost obvious (cf.
Lemma 2.2 in Funaki [13]), it is sufficient to show the estimate (3.9). To show this, we
need an elementary and useful estimate on g(t, x, y). By |χ′| ≤ 1 and the convexity of χ,
we easily have

1

2
∆xρ−2r(x) ≤ 2r2ρ−2r(x), x ∈ R.

Hence by standard potential theory, this leads us to
∫

R

g(t, x, y)ρ−2r(y)dy ≤ e2r2tρ−2r(x), t > 0, x ∈ R. (3.10)

(cf. e.g. Lemma 9.44 in Da Prato-Zabcyzk [10].)
Then we can proceed as

‖Stw‖2
E ≤ e−κt

∫

R

( ∫

R

g(t, x, y)|w(y)|2dy
)
ρ−2r(x)dx

= e−κt

∫

R

|w(y)|2
( ∫

R

g(t, x, y)ρ−2r(x)dx
)
dy

≤ e−κt

∫

R

|w(y)|2
(
e2r2tρ−2r(y)

)
dy

= e−2ωt‖w‖2
E,

where we used (3.10) for the third line. This completes the proof.

Let A : Dom(A) ⊂ E → E be the infinitesimal generator of {St}t≥0. By the Hille-
Yosida theorem, (A, Dom(A)) is m-dissipative and (3.9) leads us to

(Aw, w)E ≤ −ω‖w‖2
E, w ∈ Dom(A). (3.11)

Moreover we note that C∞
∞ ⊂ Dom(A) and

Aw =
1

2
∆xw − κ

2
w, w ∈ C∞

∞ .
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Remark 3.3 (A, Dom(A)) is not a symmetric operator on E. In fact, we obtain the
following expression of A∗ by an easy calculation:

A∗w =
1

2
∆xw − 2rχ′w′ + {2r2(χ′)2 − r∆xχ − κ

2
}w, w ∈ C∞

∞ .

The following proposition is more or less obvious, however we include a proof for the
reader’s convenience.

Proposition 3.4 Let Xw be the solution of the SPDE (3.2). Then it is the solution of
the SPDE

dXt(x) =
1

2

(
∆x − κ

)
Xt(x)dt +

1

2
∇V (Xt(x))dt + dBt(x), x ∈ R, t > 0,

with initial datum w. Namely, it satisfies the stochastic integral equation

Xw
t (x) = Stw(x) +

1

2

∫ t

0

∫

R

e−κ(t−s)/2g(t − s, x, y)∇V (Xw
s (y))dyds

+

∫ t

0

∫

R

e−κ(t−s)/2g(t − s, x, y)dBs(y)dy, x ∈ R, t ≥ 0, (3.12)

holds P-almost surely. Moreover, the converse also holds.

Proof. First we note the equality

eκ(t−s)/2 = 1 +
κ

2
e−κs/2

∫ t

s

eκτ/2dτ, 0 ≤ s ≤ t. (3.13)

Then by (3.13) and the semigroup property for {Gt}t≥0, we have the following expansion
on the first term of the right hand side of (3.3):

Gtw(x) = Stw(x) +
κ

2

∫ t

0

eκτ/2Stw(x)dτ

= Stw(x) +
κ

2

∫ t

0

St−τ (Gτw)(x)dτ. (3.14)

Now we give the expansion on the second term of the right hand side of (3.3). By
using (3.13), Fubini’s theorem and the semigroup property for {Gt}t≥0, it holds that

∫ t

0

∫

R

g(t − s, x, y)∇U(Xw
s (y))dyds

=

∫ t

0

eκ(t−s)/2St−s

{
∇U(Xw

s (·))
}
(x)ds

=

∫ t

0

St−s

{
∇U(Xw

s (·))
}
(x)ds

+
κ

2

∫ t

0

e−κs/2
( ∫ t

s

eκτ/2dτ
)
St−s

{
∇U(Xw

s (·))
}
(x)ds

11



=

∫ t

0

St−s

{
∇U(Xw

s (·))
}
(x)ds

+
κ

2

∫ t

0

eκτ/2
(∫ τ

0

e−κs/2St−s

{
∇U(Xw

s (·))
}
(x)ds

)
dτ

=

∫ t

0

St−s

{
∇U(Xw

s (·))
}
(x)ds

+
κ

2

∫ t

0

St−τ

( ∫ τ

0

Gτ−s

{
∇U(Xw

s (·))
}
(·)ds

)
(x)dτ. (3.15)

Next we proceed to the expansion on the third term of the right hand side of (3.3).
Here we recall (3.1). By using (3.13), stochastic Fubini’s theorem and the semigroup
property for {Gt}t≥0, we have

∫ t

0

∫

R

g(t − s, x, y)dBs(y)dy

=
∞∑

j=1

∫ t

0

eκ(t−s)/2St−shj(x)dβj(s)

=
∞∑

j=1

∫ t

0

St−shj(x)dβj(s) +
κ

2

∞∑

j=1

∫ t

0

e−κs/2
( ∫ t

s

eκτ/2dτ
)
St−shj(x)dβj(s)

=
∞∑

j=1

∫ t

0

St−shj(x)dβj(s) +
κ

2

∞∑

j=1

∫ t

0

eκτ/2
( ∫ τ

0

e−κs/2St−shj(x)dβj(s)
)
dτ

=
∞∑

i=1

∫ t

0

St−sei(x)dβi(s) +
κ

2

∫ t

0

St−τ

{ ∞∑

j=1

∫ τ

0

Gt−shj(·)dβj(s)
}

(x)dτ. (3.16)

Finally, we combine (3.14), (3.15) and (3.16). Then by (3.3), we have

Xt(x) = Stw(x) − 1

2

∫ t

0

St−s

{
∇U(Xw

s (·))
}
(x)ds +

∞∑

j=1

∫ t

0

St−shj(x)dβj(s)

+
κ

2

∫ t

0

St−τ

{
(Gτw) − 1

2

( ∫ τ

0

Gτ−s

{
∇U(Xw

s (·))
}
ds

)

+
( ∞∑

j=1

∫ τ

0

Gt−shj(·)dβj(s)
)}

(x)dτ

= Stw(x) − 1

2

∫ t

0

St−s

{
∇U(Xw

s (·))
}
(x)ds +

∞∑

j=1

∫ t

0

St−shj(x)dβj(s)

+
κ

2

∫ t

0

St−s

(
Xw

s (·)
)
(x)ds

= Stw(x) +
1

2

∫ t

0

St−s

{
∇V (Xw

s (·))
}
(x)ds +

∞∑

j=1

∫ t

0

St−shj(x)dβj(s)
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= Stw(x) +
1

2

∫ t

0

∫

R

e−κ(t−s)/2g(t − s, x, y)∇V (Xw
s (y))dyds

+

∫ t

0

∫

R

e−κ(t−s)/2g(t − s, x, y)dBs(y)dy, x ∈ R, t ≥ 0.

The converse can be shown in the same manner. This completes the proof.

Remark 3.5 Here we give an abstract representation of (3.12) for our later use. Let Q
be a bounded linear operator on E defined by Qw := ρ−2rw,w ∈ E. For the H-cylindrical
Brownian motion {Bt}t≥0, we consider

Wt(·) :=
∞∑

j=1

βj(t)(Q
−1/2hj)(·), t ≥ 0.

Then {Wt}t≥0 is a E-cylindrical Brownian motion because {Q−1/2hj}∞j=1 is a C.O.N.S. of
E. Let b : C → C ⊂ E be a continuous map defined by

b(w)(·) :=
1

2
(∇V )(w(·)), w ∈ C.

By the proof of Lemma 4.1 below, we can see St−s

√
Q is a Hilbert-Schmidt operator on E.

Hence (3.12) is interpreted as the E-valued stochastic integral equation

Xw
t = Stw +

∫ t

0

St−sb(X
w
s )ds +

∫ t

0

St−s

√
QdWs, t ≥ 0. (3.17)

4 Some Results on the Ornstein-Uhlenbeck Semigroup

In this section, we present some properties of the Ornstein-Uhlenbeck semigroup {Rt}t≥0

and its infinitesimal generator L. In this paper, we consider {Rt}t≥0 on suitable subsets
of continuous functions on E so that the domain of its generator L lies between FC∞

b

and Dom(L0). However, since {Rt}t≥0 is not strongly continuous, we need a more refined
treatment based on Da Prato-Röckner [6] and Da Prato-Tubaro [8].

4.1 Characterization of the Ornstein-Uhlenbeck Semigroup and
its Infinitesimal Generator

At the beginning of this subsection, we present a lemma which is necessary to define the
Ornstein-Uhlenbeck semigroup. Hereafter, we often use the notation etA instead of St.

Lemma 4.1 We define a bounded linear operator Q∞ : E → E by

Q∞w :=

∫ ∞

0

etAQetA∗

wdt, w ∈ E. (4.1)

Then Q∞ is invertible and Tr(Q∞) < ∞.
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Proof. For the first assertion, we need to show Ker(Q∞) = {0} in E. We recall
√

Qw =
ρ−rw,w ∈ E. Then for w ∈ Ker(Q∞), we have

0 = (Q∞w,w)E =

∫ ∞

0

‖
√

QetA∗

w‖2
Edt.

Hence for a.e. t ≥ 0,
√

QetA∗

w = 0 holds and by the continuity with respect to t, we
obtain

√
Qw = 0. This leads us to w = 0.

For the second assertion, we consider the natural embedding map i : H → E, i.e.,
i(h) := h, h ∈ H. Then the adjoint operator i∗ : E → H is represented by i∗(w) =
ρ−2rw = Qw, w ∈ E. By noting that Q = ii∗, we can see that

Tr(Q∞) ≤
∫ ∞

0

Tr{(etAi)(etAi)∗}dt ≤
∫ ∞

0

‖etAi‖2
H⊗Edt.

On the other hand, we have

‖etAi‖2
H⊗E =

∞∑

j=1

‖etAi(hj)‖2
E

= e−κt

∞∑

j=1

∥∥
∫

R

g(t, ·, y)hj(y)dy
∥∥2

E

= e−κt

∫

R

∞∑

j=1

(
g(t, x, ·), hj(·)

)2

H
ρ−2r(x)dx

= e−κt

∫

R

( ∫

R

g(t, x, y)2dy
)
ρ−2r(x)dx

= e−κt

∫

R

dy
( ∫

R

g(t, x, y)2ρ−2r(x)dx
)

≤ e−κt

√
2πt

∫

R

dy
( ∫

R

g(t, x, y)ρ−2r(x)dx
)

≤ e−γt

√
2πt

∫

R

e2r2tρ−2r(y)dy

=
e−2ωt

√
2πt

∫

R

ρ−2r(y)dy = Ct−1/2e−2ωt,

where we used (3.10) for the sixth line. Therefore, we can conclude that

Tr(Q∞) ≤ C

∫ ∞

0

t−1/2e−2ωtdt = CΓ(1/2) < ∞.

This completes the proof.
Now we are in a position to introduce the Ornstein-Uhlenbeck semigroup {Rt}t≥0. Let

Qt, t ≥ 0, be a bounded linear operator on E defined by

Qtw :=

∫ t

0

esAQesA∗

wds, w ∈ E.
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We remark this operator is of trace class by Lemma 4.1. We denote by NQt
the Gaussian

measure on E with mean 0 and covariance operator Qt.
Next we introduce some function spaces on which the Ornstein-Uhlenbeck semigroup

will act. We denote by UCb,2(E) the Banach space of all functions F : E → R such that
F (·)

1+‖·‖2
E

is uniformly continuous and bounded. Endowed with the norm

‖F‖b,2 := sup
w∈E

|F (w)|
1 + ‖w‖2

E

,

UCb,2(E) is a Banach space. For E-valued continuous functions, we can also define
UCb,2(E,E) in the same manner. Moreover, C1

b,2(E) denotes the subspace of UCb,2(E) of
those functions F which are continuously differentiable with

‖DF‖b,2 := sup
w∈E

‖DF (w)‖E

1 + ‖w‖2
E

< ∞ ,

where DF : E → E means the E-Fréchet derivative of F . We have the relation

DHF = Q1/2DF.

Then the Ornstein-Uhlenbeck semigroup {Rt}t≥0 is given by

RtF (w) :=

∫

E

F (etAw + y)NQt
(dy), w ∈ E,F ∈ UCb,2(E). (4.2)

For F ∈ UCb,2(E, E), {Rt}t≥0 can be defined in the same manner as (4.2). In this case, the
integral should be regarded as a Bochner integral. The following result is straightforward.
We include a proof for completeness.

Proposition 4.2 Rt maps UCb,2(E) into itself for all t ≥ 0 and

‖RtF‖b,2 ≤ (1 + Tr(Q∞)) ‖F‖b,2. (4.3)

Moreover Rt maps C1
b,2(E) into itself for all t ≥ 0 and

‖DRtF‖b,2 ≤ (1 + Tr(Q∞)) ‖DF‖b,2. (4.4)

Proof. Since the proofs for the first assertion and the second assertion are almost the same,
we only show the second assertion. (For the proof of the first assertion, see Proposition
2.1 in Da Prato [5].) For F ∈ C1

b,2(E), we easily have

(
DRtF (w), k

)
E

=

∫

E

(
DF (etAw + y), etAk

)
E
NQt

(dy), k ∈ E.

This implies the intertwining property of the Ornstein-Uhlenbeck semigroup

DRtF = etA∗

RtDF, F ∈ C1
b,2(E).
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Hence we have

‖DRtF (w)‖E

1 + ‖w‖2
E

≤
∫

E

‖etA∗

DF (etAw + y)‖E

1 + ‖w‖2
E

NQt
(dy)

≤
∫

E

‖DF (etAw + y)‖E

1 + ‖w‖2
E

NQt
(dy)

≤ ‖DF‖b,2

∫

E

1 + ‖etAw + y‖2
E

1 + ‖w‖2
E

NQt
(dy)

≤ ‖DF‖b,2

∫

E

(1 + ‖y‖2
E)NQt

(dy)

≤
(
1 + Tr(Q∞)

)
‖DF‖b,2,

where we used Lemma 3.2 for the second and the fourth lines. This leads us to the desired
estimate (4.4).

Lemma 4.3 The Ornstein-Uhlenbeck semigroup {Rt}t≥0 has the following representation:

RtF (w) := E[F (Y w
t )] =

∫

E

F (y)Rw(Yt ∈ dy), w ∈ E, F ∈ UCb,2(E),

where Rw is the probability measure on C([0,∞), E) induced by the Ornstein-Uhlenbeck
process Y w = {Y w

t (·)}t≥0, i.e., the solution of the SPDE

dYt(x) =
1

2

(
∆x − κ

)
Yt(x)dt + dBt(x), x ∈ R, t > 0, (4.5)

with initial datum Y0 = w ∈ E.

Proof. By Proposition 3.4 and Remark 3.5, the solution of (4.5) is given by the following
representation:

Y w
t = etAw +

∫ t

0

e(t−s)A
√

QdWs, t ≥ 0.

Hence obviously Y w
t , t ≥ 0, is a Gaussian random variable on E with mean etAw and

the covariance operator is given by

∫ t

0

(esA
√

Q)(esA
√

Q)∗ds =

∫ t

0

esA(
√

Q)2esA∗

ds = Qt.

(See Theorem 5.2 in [9]). This completes the proof.

The Ornstein-Uhlenbeck semigroup {Rt}t≥0 is not strongly continuous in UCb,2(E).
However, it can be proved that it is a π-semigroup in the sense of Priola [18]. Thus one
can define its infinitesimal generator L through its Laplace transform

ΨλF (w) =

∫ ∞

0

e−λtRtF (w)dt, w ∈ E, λ > 0.
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By virtue of Proposition 4.2, it is easy to see that every Ψλ maps UCb,2(E) and C1
b,2(E)

into themselves for all λ > 0, respectively, and that {Ψλ}λ>0 is a pseudo-resolvent. Con-
sequently, there exists a unique closed operator L in UCb,2(E) such that

R(λ, L) = (λ − L)−1 = Ψλ, λ > 0.

We call L the infinitesimal generator of Rt on UCb,2(E).
Since the image of the resolvent is independent of λ > 0, we can set

D(L,UCb,2(E)) := R(λ, L)(UCb,2(E)), D(L,C1
b,2(E)) := R(λ, L)(C1

b,2(E)).

Remark 4.4 It holds that F ∈ D(L, UCb,2(E)) and LF = G if and only if

(i) lim
tց0

1

t
(RtF (w) − F (w)) = G(w), w ∈ E. (4.6)

(ii) sup
t>0

1

t
‖RtF − F‖b,2 < ∞. (4.7)

The reader is referred to Remark 2.2 in [5] and Proposition 2.2.8 in [18] for the details.

Proposition 4.5 FC∞
b (C∞

∞) ⊂ D(L,C1
b,2(E)) holds and we have

LF (w) =
1

2
Tr

(
D2

HF (w)
)

+ 〈w,ADHF (w)〉, F ∈ FC∞
b (C∞

∞). (4.8)

Namely, for F (w) = f(〈w, ϕ1〉, · · · , 〈w,ϕn〉), ϕi ∈ C∞
∞ , i = 1, · · · , n, we obtain

LF (w) =
1

2

n∑

i,j=1

∂2f

∂αi∂αj

(
〈w, ϕ1〉, · · · , 〈w,ϕn〉

)
〈ϕi, ϕj〉

+
1

2

n∑

i=1

∂f

∂αi

(
〈w,ϕ1〉, · · · , 〈w, ϕn〉

)
·
{
〈w, ∆xϕi〉 − κ〈w,ϕ〉

}
.

Proof. We denote the right-hand side of (4.8) by L0F . Since 〈w, ADHF (w)〉 has a linear
growth with respect to ‖w‖E and is smooth in the Fréchet sense, we have L0F ∈ C1

b,2(E).
First we show the inclusion FC∞

b (C∞
∞) ⊂ D(L,UCb,2(E)). We only need to check two

conditions in Remark 4.4. By repeating the argument in the proof of Proposition 3.1, for
F ∈ FC∞

b (C∞
∞), we easily obtain

lim
tց0

1

t

(
RtF (w) − F (w)

)
= L0F (w), w ∈ E. (4.9)

On the other hand, by noting that L0F ∈ UCb,2(E), we also have

1

t
‖RtF − F‖b,2 ≤ 1

t

∫ t

0

‖RsL0F‖b,2ds

≤ 1

t

∫ t

0

(
1 + Tr(Q∞)

)
‖L0F‖b,2ds

=
(
1 + Tr(Q∞)

)
‖L0F‖b,2, (4.10)
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where we used Proposition 4.2 for the second line. Hence by (4.9) and (4.10), we have
the expression (4.8).

Finally, by combining L0F ∈ C1
b,2(E) and F = Ψλ(L0F ), it is easy to see that

FC∞
b (C∞

∞) ⊂ D(L,C1
b,2(E)). This completes the proof.

4.2 Approximations by Cylinder Functions

The main object of this subsection is to show that functions in D(L, C1
b,2(E)) can be

approximated point-wise in the graph norm by functions in FC∞
b (C∞

∞) with uniformly
bounded norm. These approximations are not possible by using simple sequences, but
k-sequences, k ∈ N, that is sequences {Fn} = {Fn1,··· ,nk

} depending on k indices. We say
that {Fn} is convergent to F if

lim
n→∞

Fn(w) := lim
n1→∞

· · · lim
nk→∞

Fn1,··· ,nk
(w) = F (w), w ∈ E.

Proposition 4.6 (1) Let F ∈ D(L,C1
b,2(E)). Then there exists a 4-sequence {Fn}n∈N4 =

{Fn1,··· ,n4
} ⊂ FC∞

b (C∞
∞) such that for all w ∈ E we have

lim
n→∞

Fn(w) = F (w), lim
n→∞

DFn(w) = DF (w), lim
n→∞

LFn(w) = LF (w) (4.11)

and the estimates

‖Fn‖b,2 ≤ 2e

e − 1

(
1 + Tr(Q∞)

)
·
(
‖F‖b,2 + ‖LF‖b,2

)
, (4.12)

‖DFn‖b,2 ≤ 2e

e − 1

(
1 + Tr(Q∞)

)

×
(
2‖F‖b,2 + ‖DF‖b,2 + 2‖LF‖b,2 + ‖DLF‖b,2

)
, (4.13)

‖LFn‖b,2 ≤ 1 + 2
(
2 + Tr(Q∞)

)
·
(
‖F‖b,2 + ‖LF‖b,2

)
. (4.14)

(2) D(L,C1
b,2(E)) ⊂ Dom(L0) and the following identity holds:

L0F = LF + (b,DF )E, F ∈ D(L,C1
b,2(E)), (4.15)

where b : Dom(b) ⊂ E → E is a measurable mapping with Dom(b) = C is defined by

b(w)(·) :=
1

2
∇̃V (w(·)), w ∈ C.

Before giving the proof, we need some preparations about the operator (L0, Dom(L0)).

Lemma 4.7 For all F ∈ FC∞
b (C∞

∞), we have
∫

E

L0F (w)F (w)µ(dw) = −1

2

∫

E

‖DHF (w)‖2
Hµ(dw).

Consequently, (L0,FC∞
b (C∞

∞)) is dissipative in L2(µ).
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Proof. Let F ∈ FC∞
b (C∞

∞) be given as (2.6) with K = C∞
∞ . We construct an approximating

sequence of FC∞
b . Let ηk ∈ C∞

0 (R, R), k > 0, be a cut-off function such that 0 ≤ η ≤ 1,
ηk(x) = 1 if |x| ≤ k, η(x) = 0 if |x| ≥ 2k, |η′

k| ≤ 2/k and |∆xηk| ≤ 8/k2. We define Fk ∈
FC∞

b , k ∈ N, by Fk(w) := f
(〈

w, ηkϕ1

〉
, · · · ,

〈
w, ηkϕn

〉)
. Then we have the expressions

DHFk(w) =
n∑

j=1

∂f

∂αj

(〈
w, ηkϕ1

〉
, · · · ,

〈
w, ηkϕn

〉)
· ηkϕj, (4.16)

L0Fk(w) =
1

2

n∑

i,j=1

∂2f

∂αi∂αj

(〈
w, ηkϕ1

〉
, · · · ,

〈
w,ϕnηk〉

)〈
ηkϕi, ηkϕj

〉

+
1

2

n∑

i=1

∂f

∂αi

(〈
w, ηkϕ1

〉
, · · · ,

〈
w, ηkϕn

〉)

×
{〈

w, (∆xηk)ϕi + 2η′
kϕ

′
i + ηk∆xϕi

〉
−

〈
∇U(w(·)), ηkϕi

〉}
. (4.17)

By noting (4.16), (4.17), ηk → 1, η′
k → 0, ∆xηk → 0 as k → ∞ and the integrability (2.5),

we can use Lebesgue’s dominated convergence theorem, and thus we have

‖F − Fk‖L2(µ) + ‖DHF − DHFk‖L2(µ;H) + ‖L0F − L0Fk‖L2(µ) → 0 as k → ∞. (4.18)

On the other hand, we have the equality E(Fk, Fk) =
(
− L0Fk, Fk

)
L2(µ)

for each

k ∈ N by recalling (2.11). Hence we can complete the proof by combining this with the
convergence (4.18).

By this lemma, we see that (L0,FC∞
b (C∞

∞)) is closable in L2(µ). Then we have the
following lemma:

Lemma 4.8 The closure of (L0,FC∞
b (C∞

∞)) in L2(µ) coincides with (L0, Dom(L0)).

Proof. We denote by (L̃0, Dom(L̃0)) the closure of (L0,FC∞
b (C∞

∞)) in L2(µ). We only

need to show that for any F ∈ Dom(L̃0), there exists an approximation sequence of FC∞
b

with respect to the graph norm. First, we choose a sequence {Fm}∞m=1 ⊂ FC∞
b (C∞

∞) such
that

‖F − Fm‖L2(µ) + ‖L̃0F − L0Fm‖L2(µ) <
1

m
.

We set Fm(w) = fm(〈w,ϕ1〉, · · · , 〈w, ϕn(m)〉), where n(m) ∈ N, ϕ1, · · · , ϕn(m) ∈ C∞
∞ and

fm ∈ C∞
b (Rn(m)). For each Fm, we construct an approximated sequence {Fm,k}∞k=1 ⊂ FC∞

b

by defining Fm,k := (Fm)k. See the proof of Lemma 4.7 for the meaning of (Fm)k.
By (4.18), for each m ∈ N, we have

‖Fm − Fm,k‖L2(µ) + ‖L0Fm − L0Fm,k‖L2(µ) → 0 as k → ∞.

Hence for each m ∈ N, there exists a sequence {m(k)}∞k=1 with limk→∞ m(k) = ∞ and

‖Fm − Fm,m(k)‖L2(µ) + ‖L0Fm − L0Fm,m(k)‖L2(µ) <
1

k
.

Finally, we consider {Fm,m(m)}∞m=1 ⊂ FC∞
b . By the above arguments, we easily see

that it is the desired sequence. This completes the proof.
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Remark 4.9 By Proposition 3.1 and Lemma 4.8, we know that

(L0, Dom(L0)) ⊂ (L2, Dom(L2)). (4.19)

The hard part will be to prove the dense inclusion (see Subsection 5.2 below).

Proof of Proposition 4.6. (1) We mainly follow the argument in [8]. However, since we
need some modifications in our situation, we give the proof for the reader’s convenience.
We proceed in several steps.
Step 1: For F ∈ D(L,C1

b,2(E)), we construct an approximated sequence of cylinder

functions. Take {ej}∞j=1 ⊂ C∞
0 (R, Rd) to be a fixed C.O.N.S. of E throughout the proof.

We define a finite dimensional projection Πn1
: E → E, n1 ∈ N, by

Πn1
(w) :=

n1∑

j=1

(w, ej)Eej, w ∈ E,

and define Fn1
: E → R by Fn1

(w) := F (Πn1
(w)). Moreover, we define fn1

: R
n1 → R

by fn1
(α1, · · · , αn1

) := F (α1e1 + · · · + αn1
en1

) for α = (α1, · · · , αn1
) ∈ R

n1 . Then we
obviously have

Fn1
(w) = fn1

(
(w, e1)E, · · · , (w, en1

)E

)

and since F ∈ C1
b,2(E), we have that fn1

∈ C1(Rn1 , R) and

sup
α∈Rn1

|fn1
(α)|

1 + |α|2 ≤ ‖F‖b,2 , sup
α∈Rn1

|∇fn1
(α)|

1 + |α|2 ≤ ‖DF‖b,2 , (4.20)

where ∇ stands for the gradient on R
n1 . We note that (4.20) means ‖Fn1

‖b,2 ≤ ‖F‖b,2

and ‖DFn1
‖b,2 ≤ ‖DF‖b,2. Then by recalling that limn1→∞ ‖Πn1

(w) − w‖E = 0 and
DFn1

(w) = DF (Πn1
(w)) for w ∈ E, we obtain

lim
n1→∞

Fn1
(w) = F (w), lim

n1→∞
DFn1

(w) = DF (w), w ∈ E. (4.21)

Step 2: Since Fn1
is not bounded and smooth, we need next approximations. Let ψn1,n2

∈
C∞

0 (Rn1 , R), n2 ∈ N, be a cut-off function defined by ψn1,n2
(α) := ηn2

(
|α|

)
, α ∈ R

n1 , where
ηn2

is defined as in the proof of Lemma 4.8. We note that |∇ψn1,n2
| ≤ 2/n2 for all n1 ∈ N.

Now we choose a non-negative symmetric function ζ ∈ C∞
0 (Rn1 , R) satisfying ζ(α) = 0

for |α| ≥ 1 and
∫

Rn1
ζ(α)2dα = 1. Moreover, we define ζε(α) := ε−n1ζ(α/ε) for ε > 0 and

define by gε := (ζε ∗ g) the mollification of a function g. Here we consider

F (ε)
n1,n2

(w) :=
(
ψn1,n2

· fn1

)
ε

(
(w, e1)E, · · · , (w, en1

)E

)
, n2 ∈ N, ε > 0.

Then for sufficiently small ε > 0, we have the estimates
∣∣F (ε)

n1,n2(w)|
1 + ‖w‖2

E

≤ 2|(ψn1,n2
· fn1

)(
(w, e1)E, · · · , (w, en1

)E

)∣∣
1 + ‖w‖2

E

≤ 2|fn1

(
(w, e1)E, · · · , (w, en1

)E

)∣∣
1 + ‖w‖2

E

≤ 2|F (Πn1
(w))|

1 + ‖Πn1
(w)‖2

E

≤ 2‖F‖b,2 , (4.22)
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and
∥∥DF

(ε)
n1,n2(w)‖E

1 + ‖w‖2
E

≤ 2|∇(ψn1,n2
· fn1

)(
(w, e1)E, · · · , (w, en1

)E

)∣∣
1 + ‖w‖2

E

≤ 2|(ψn1,n2
∇fn1

)
(
(w, e1)E, · · · , (w, en1

)E

)∣∣
1 + ‖w‖2

E

+
2|(fn1

∇ψn1,n2
)
(
(w, e1)E, · · · , (w, en1

)E

)∣∣
1 + ‖w‖2

E

≤ 2 · ‖DF (Πn1
(w))‖E

1 + ‖w‖2
E

+
4

n2

· |F (Πn1
(w))|

1 + ‖w‖2
E

≤ 2‖DF‖b,2 + 4‖F‖b,2. (4.23)

Therefore, there exists a decreasing sequence {ε(j)}∞j=1 such that limεց0 ε(j) = 0 and

(4.22), (4.23) hold for every F
(ε(j))

n1,n2 .

Finally, we define by Fn := F
(ε(n3))

n1,n2 ∈ FC∞
b for n = (n1, n2, n3) ∈ N

3. Then by noting
that

lim
εց0

∥∥(
ψn1,n2

· fn1

)
ε
− ψn1,n2

· fn1

∥∥
L∞(Rn1 )

= lim
εց0

∥∥∇
(
ψn1,n2

· fn1

)
ε
−∇(ψn1,n2

· fn1
)
∥∥

L∞(Rn1 ,Rn1 )
= 0,

and recalling (4.21), we easily see that

lim
n→∞

Fn(w) = F (w), lim
n→∞

DFn(w) = DF (w), w ∈ E. (4.24)

We also note that (4.22) and (4.23) lead us to the estimates

‖Fn‖b,2 ≤ 2‖F‖b,2, ‖DFn‖b,2 ≤ 2‖DF‖b,2 + 4‖F‖b,2.

Step 3: We proceed to give an approximation for LF ∈ C1
b,2(E). We set G := F −LF ∈

C1
b,2(E). By the above argument, there exists a 3-sequence {Gn} = {Gn1,n2,n3

} ⊂ FC∞
b

such that (4.24) (with F replaced by G) holds and

‖Gn‖b,2 ≤ 2(‖F‖b,2 + ‖LF‖b,2),

‖DGn‖b,2 ≤ 2(‖DF‖b,2 + ‖DLF‖b,2 + 2‖F‖b,2 + 2‖LF‖b,2).

Next we set Fn := R(1, L)Gn. Then LFn = Fn −Gn and by recalling Proposition 4.2,
we have

‖Fn‖b,2 ≤
∫ ∞

0

e−t‖RtGn‖b,2dt

≤ (1 + Tr(Q∞))‖Gn‖b,2

≤ 2
(
1 + Tr(Q∞)

)
·
(
‖F‖b,2 + ‖LF‖b,2

)
, (4.25)
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‖DFn‖b,2 ≤
∫ ∞

0

e−t‖DRtGn‖b,2dt

≤
(
1 + Tr(Q∞)

)
·
(
‖DF‖b,2 + ‖DLF‖b,2 + 2‖F‖b,2 + 2‖LF‖b,2

)
, (4.26)

‖LFn‖b,2 ≤ ‖Gn‖b,2 + ‖Fn‖b,2

≤ 2
(
2 + Tr(Q∞)

)
·
(
‖F‖b,2 + ‖LF‖b,2

)
. (4.27)

Therefore Lebesgue’s dominated convergence theorem leads us to the convergence

lim
n→∞

Fn(w) = F (w), lim
n→∞

DFn(w) = DF (w), lim
n→∞

LFn(w) = LF (w), w ∈ E.

(4.28)
However, Fn is not a cylinder function in general. Thus we need one more approximation.
Step 4: For any M, N ∈ N, we set

Fn,M,N(w) :=
1

M

N∑

h=0

M∑

k=1

e−(h+k/M)Rh+k/MGn(w), w ∈ E,

where Rh+k/MGn is represented as

Rh+k/MGn(w) = f (R,G)
n

(
〈w, ϕ1〉, · · · , 〈w,ϕn1

〉
)
, f (R,G)

n ∈ C∞
b (Rn1 , R),

and {ϕi}n1

i=1 is given by

ϕi(x) = e−(h+k/M)

∫

R

g(h + k/M, x, y)ρ−2r(y)ei(y)dy, x ∈ R.

Moreover, we note that each ϕi, i = 1, · · · , n1, does not have compact support. So, {ϕi}n1

i=1

is not included in C∞
0 (R, Rd) but in C∞

∞ . Then we can see that Fn,M,N ∈ FC∞
b (C∞

∞).
We have the following estimates on Fn,M,N and DFn,M,N :

‖Fn,M,N‖b,2 ≤ 1

M

N∑

h=0

M∑

k=1

e−(h+k/M)‖Rh+k/MGn‖b,2

≤ 2

M

( N∑

h=0

e−h
)( M∑

k=1

e−k/M
)
·
(
1 + Tr(Q∞)

)(
‖F‖b,2 + ‖LF‖b,2

)

≤ 2e

e − 1

(
1 + Tr(Q∞)

)
·
(
‖F‖b,2 + ‖LF‖b,2

)
, (4.29)

‖DFn,M,N‖b,2 ≤ 1

M

N∑

h=0

M∑

k=1

e−(h+k/M)‖DRh+k/MGn‖b,2

≤ 2e

e − 1

(
1 + Tr(Q∞)

)

×
(
‖DF‖b,2 + ‖DLF‖b,2 + 2‖F‖b,2 + 2‖LF‖b,2

)
. (4.30)
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Next we proceed to the term LFn,M,N . By using a similar argument as in the proof of
Proposition 4.5, we easily see that LFn,M,N ∈ D(L,C1

b,2(E)) and that

LFn,M,N =
1

M

N∑

h=0

M∑

k=1

e−(h+k/M)Rh+k/M(LGn)(w), w ∈ E.

On the other hand, since Gn ∈ FC∞
b , both the maps t 7→ RtGn and t 7→ RtLGn are

continuous as UCb,2(E)-valued maps. See Corollary 2.3 in [8] for the details. Moreover,
by the intertwining property DRtGn = etA∗

RtDGn, we obtain that DRtGn is also con-
tinuous on t in UCb,2(E, E). These properties yield the following convergence for any
n = (n1, n2, n3):

lim
M,N→∞

∥∥∥
∫ ∞

0

e−tRtLGndt − 1

M

N∑

h=0

M∑

k=1

e−(h+k/M)Rh+k/MLGn

∥∥∥
b,2

= 0. (4.31)

Therefore for any n4 ∈ N, there exist M(n4), N(n4) ∈ N such that

‖LFn − LFn,M(n4),N(n4)‖b,2 ≤ 1/n4. (4.32)

Hereafter we replace Fn,M(n4),N(n4) by Fn = F(n1,n2,n3,n4). Then (4.27) and (4.32) imply
the estimate

‖LFn‖b,2 ≤ 1/n4 + ‖LFn1,n2,n3
‖b,2 ≤ 1 + 2(2 + Tr(Q∞))

(
‖F‖b,2 + ‖LF‖b,2

)
.

We note that (4.29) and (4.30) still hold for Fn.
Finally, we note that a convergence similar to (4.31) also holds for RtGn1,n2,n3

and
DRtGn1,n2,n3

. Hence the above-mentioned argument and (4.28) imply the point-wise
convergence

lim
n→∞

Fn(w) = F (w), lim
n→∞

DFn(w) = DF (w), lim
n→∞

LFn(w) = LF (w), w ∈ E.

This completes the proof of the first item.

(2) Let F ∈ D(L,C1
b,2(E)). Then by assertion (1), there exists a 4-sequence {Fn}n∈N4 ∈

FC∞
b (C∞

∞) such that the point-wise convergence (4.11) and

|Fn(w)| + ‖DFn(w)‖E + |LFn(w)| ≤ C∗(1 + ‖w‖2
E), w ∈ E, (4.33)

holds. Here the constant C∗ > 0 is given by the sum of the right hand side of (4.12),
(4.13) and (4.14).

By noticing that

(
b(w), DFn(w)

)
E

=
1

2

∫

R

(
∇̃V (w(x)), DFn(w)(x)

)
Rdρ−2r(x)dx

=
1

2

∫

R

(
∇̃V (w(x)), ρ2r(x)DHFn(w)(x)

)
Rdρ−2r(x)dx

=
1

2

〈
∇̃V (w(·)), DHFn(w)

〉
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and combining this with Proposition 4.5, we have

L0Fn(w) = LFn(w) +
(
b(w), DFn(w)

)
E
, w ∈ C. (4.34)

Then by taking limits on both sides of (4.34), we obtain the point-wise convergence

lim
n→∞

L0Fn(w) = LF (w) +
(
b(w), DF (w)

)
E
, w ∈ C. (4.35)

On the other hand, by (4.33)

|L0Fn(w)| ≤ |LFn(w)| + ‖b(w)‖E · ‖DF (w)‖E

≤ C∗(1 + ‖w‖2
E)(1 + ‖b(w)‖2

E), w ∈ C. (4.36)

Hence by recalling that µ(C) = 1, condition (U2) and the integrability (2.5), it follows
that the right-hand side of (4.36) is in L2(µ). Lebesgue’s dominated convergence theorem
then leads us to

lim
n→∞

L0Fn = LF +
(
b, DF

)
E
, in L2(µ).

Finally, by remembering Lemma 4.8, we have F ∈ Dom(L0) and (4.15). This com-
pletes the proof.

5 Proof of the Main Result

In this section, we give a proof of the main result, namely, we show the following theorem.

Theorem 5.1 The pre-Dirichlet operator (L0,FC∞
b ) is essentially self-adjoint in L2(µ).

Moreover, if we assume U ∈ C1(Rd, R), the semigroup {Tt}t≥0 generated by (L0, Dom(L0))
satisfies the following identity for each F ∈ L2(µ):

TtF = PtF, µ-a.s.,

where {Pt}t≥0 is the transition semigroup corresponding to SPDE (3.2).

At the beginning, we make some preparations for the proof of Theorem 5.1. Let
Ũ ∈ C(R, Rd) be given as in condition (U1). That is,

Ũ(z) := U(z) +
K1

2
|z|2 = −V (z) +

1

2
(K1 + κ)|z|2, z ∈ R

d.

We note that ∂0Ũ : R
d → R

d is monotone, i.e., we have
(
∂0Ũ(z1) − ∂0Ũ(z2), z1 − z2

)
Rd ≥ 0, z1, z2 ∈ R

d. (5.1)

In this section, we consider SPDE (3.2) as the following stochastic evolution equation
on E given by

dXt = AXtdt + b(Xt)dt +
√

QdWt,

= AXtdt +
1

2
(K1 + κ)Xtdt + b̃(Xt)dt +

√
QdWt, (5.2)
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where the measurable map b̃ : Dom(̃b) ⊂ E → E with Dom(̃b) = C is defined by

b̃(w)(·) := −1

2
∂0Ũ(w(·)), w ∈ Dom(̃b). (5.3)

By (5.1), it is obvious that b̃ is also dissipative, i.e.,

(
w1 − w2, b̃(w1) − b̃(w2)

)
E
≤ 0, w1, w2 ∈ Dom(̃b).

However b̃ is not continuous on E in general.
In what follows, we give the proof of Theorem 5.1 based on Da Prato-Röckner [6]. We

divide it into two steps. In the first subsection, we solve an infinite dimensional elliptic
equation which is essential for the proof. We do this under the condition

(D) b̃ : E → E is dissipative, smooth and has bounded derivatives of all orders.

Of course, in this case, b̃ is Lipschitz continuous. Hence SPDE (5.2) can be treated
more easily. In the second subsection, we drop condition (D). By adopting the Yosida

approximation and regularizing the drift b̃, we can use the results in the first subsection.

5.1 The Elliptic Problem on the Hilbert Space

Throughout this subsection, we impose condition (D) denoted above. Under this condi-
tion, we can give the following proposition. Here C2

b (E) denotes the space of all functions
F : E → R that are uniformly continuous and bounded together with their first and
second derivatives.

Proposition 5.2 Let F ∈ C2
b (E) and let {Pt}t≥0 be the transition semigroup for X

defined in (3.4). Then PtF ∈ C2
b (E) and it holds that

(
DPtF (w), k

)
E

= E
[(

DF (Xw
t ), Zt(w; k)

)
E

]
, w ∈ E, t ≥ 0, (5.4)

for k ∈ E, where Zt(w; k) is the mild solution of the first variation equation

dut

dt
= Aut + Db(Xw

t )[ut]E, t > 0,

with initial datum u0 = k and we have

‖Zt(w; k)‖E ≤ e(K1+2r2)t/2‖k‖E, P-a.s. (5.5)

Moreover

D2PtF (w)
[
k1, k2

]
E×E

= E
[(

DF (Xw
t ), Zt(w; k1, k2)

)
E

]

+E
[
D2F (Xw

t )
[
Zt(w; k1), Zt(w; k2)

]
E×E

]
, w ∈ E, t ≥ 0,

holds for k1, k2 ∈ E, where Zt(w; k1, k2) is the mild solution of the equation

dvt

dt
= Avt + Db(Xw

t )[vt]E + D2b(Xw
t )

[
Zt(w; k1), Zt(w; k2)

]
E×E

, t > 0, (5.6)
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with initial datum v0 = 0. We also have the estimate

‖Zt(w; k1, k2)‖E ≤ ‖D2b‖∞√
2K1 + 4r2

e(3K1+6r2+1)t/2 · ‖k1‖E‖k2‖E, P-a.s. (5.7)

Proof. This proposition can be proved in just the same way as Chapter 4 of Cerrai’s
book [4]. Unfortunately, a complete proof would require several pages and is too long to
be repeated. Here we only explain the derivation of the estimate (5.7) for the reader’s
convenience. (Note that the estimate (5.5) is essentially obtained in Lemma 2.1 of Kawabi
[16].) We set vt := Zt(w; k1, k2) and multiply (5.6) by vt. Then by taking into account
(3.11) and the dissipativity of b̃, we have

d

dt
‖vt‖2

E ≤ −2ω‖vt‖2
E + 2

(
Db(Xw

t )[vt]E, vt

)
E

+2
(
D2b(Xw

s )
[
Zs(w; k1), Zs(w; k2)

]
E×E

, vt

)
E

≤ (−2ω + K1 + κ)‖vt‖2
E + 2

(
Db̃(Xw

t )[vt]E, vt

)
E

+2
(
‖D2b‖∞‖Zs(w; k1)‖E‖Zs(w; k2)‖E

)
· ‖vt‖E

≤ (−2ω + K1 + κ + 1)‖vt‖2
E + ‖D2b‖2

∞‖Zs(w; k1)‖2
E‖Zs(w; k2)‖2

E

≤ (−2ω + K1 + κ + 1)‖vt‖2
E

+‖D2b‖2
∞

(
e(K1+2r2)t/2‖k1‖E

)2(
e(K1+2r2)t/2‖k2‖E

)2

= (K1 + 2r2 + 1)‖vt‖2
E + e2(K1+2r2)t‖D2b‖2

∞‖k1‖2
E‖k2‖2

E, (5.8)

where we used (5.5) for the fourth line. Needless to say, by lack of regularity for vt,
the above computations are formal. However, we can approximate vt by means of more
regular solutions to justify (5.8). (For details of these approximations, see Proposition
6.2.2 of [4] or the mollifier technique in Lemma 2.1 of [16].)

By remembering K1 + 2r2 > 0, the Gronwall inequality leads us to

‖vt‖2
E ≤ e(K1+2r2+1)t

( ∫ t

0

e2(K1+2r2)sds
)
‖D2b‖2

∞‖k1‖2
E‖k2‖2

E

≤ e(3K1+6r2+1)t

2(K1 + 2r2)
‖D2b‖2

∞‖k1‖2
E‖k2‖2

E.

This completes the proof of the estimate (5.7).

Proposition 5.3 Let F ∈ C2
b (E) and we consider the elliptic problem

λΦ(w) − LΦ(w) −
(
b(w), DΦ(w)

)
E

= F (w), w ∈ E, (5.9)

where λ > K1

2
+ r2. Then (5.9) has a unique solution Φ ∈ D(L,C1

b,2(E)) ∩ C2
b (E), which

is given by

Φ(w) =

∫ ∞

0

e−λtPtF (w)dt, w ∈ E. (5.10)
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Proof. We show Φ which is given in (5.10) belongs to D(L,C1
b,2(E)). By (5.4) and (5.5),

we have the following estimate:

∣∣(DΦ(w), k)E

∣∣ ≤
∫ ∞

0

e−λt
E

[
‖DF (Xw

t )‖E‖Zt(w; k)‖E

]
dt

≤
∫ ∞

0

e−λt
E

[
‖DF (Xw

t )‖E ·
{
e(K1+2r2)t/2‖k‖E

}]
dt

≤
( ∫ ∞

0

e−(2λ−K1−2r2)t/2dt
)
· ‖DF‖∞‖k‖E

=
2

2λ − K1 − 2r2
· ‖DF‖∞‖k‖E, k, w ∈ E.

This implies the estimate

∥∥DΦ(w)
∥∥

E
≤ 2

2λ − K1 − 2r2
· ‖DF‖∞, w ∈ E. (5.11)

Next, we aim to check conditions (4.6) and (4.7) in Remark 4.4 as in the proof of
Proposition 4.5. We set

S(b)(w)t :=

∫ t

0

St−sb(X
w
s )ds, w ∈ E, t ≥ 0.

By the mean value theorem, we have

1

t

(
RtΦ(w) − Φ(w)

)

=
1

t
E

[
Φ(Y w

t ) − Φ(w)
]

=
1

t
E

[
Φ

(
Xw

t − S(b)(w)t

)
− Φ(w)

]

=
1

t
E

[
Φ(Xw

t ) − Φ(w)
]

−1

t
E

[ ∫ 1

0

(
DΦ

(
Xw

t − θS(b)(w)t

)
, S(b)(w)t

)
E
dθ

]

=
1

t

(
PtΦ(w) − Φ(w)

)

−
∫ 1

0

E

[(
DΦ

(
Xw

t − θS(b)(w)t

)
,
1

t
S(b)(w)t

)
E

]
dθ. w ∈ E. (5.12)

By letting t ց 0 on the right-hand side of (5.12), we obtain

1

t

(
PtΦ(w) − Φ(w)

)
=

1

t

( ∫ ∞

0

e−λsPs+tF (w)ds −
∫ ∞

0

e−λsPs+tF (w)ds
)

=
eλt − 1

t

∫ ∞

t

e−λsPsF (w)ds − 1

t

∫ t

0

e−λsPsF (w)ds

−→ λΦ(w) − F (w) as t ց 0, w ∈ E. (5.13)
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and
∫ 1

0

E

[(
DΦ

(
Xw

t − θS(b)(w)t

)
,
1

t
S(b)(w)t

)
E

]
dθ

−→
∫ 1

0

E
[(

DΦ(Xw
0 ), b(Xw

0 )
)

E

]
dθ =

(
DΦ(w), b(w)

)
E

as t ց 0, w ∈ E. (5.14)

Hence by combining (5.12), (5.13) and (5.14), we obtain the point-wise convergence

lim
tց0

1

t

(
RtΦ(w) − Φ(w)

)
= λΦ(w) − F (w) −

(
DΦ(w), b(w)

)
E
, w ∈ E. (5.15)

On the other hand, we can see that Φ ∈ C2
b (E) by (5.10) and recalling Proposition 5.2.

Then we obtain that the right-hand side of (5.15) belongs to C1
b,2(E) by recalling (5.11)

and the drift b has a linear growth with respect to ‖w‖E. So, we can also check the second
condition (4.7) in Remark 4.4. Therefore, we conclude that Φ ∈ D(L,C1

b,2(E)) ∩ C2
b (E)

and it satisfies (5.9).
Finally, we show uniqueness. We assume that there exists another solution Φ′ ∈

D(L,C1
b,2(E))∩C2

b (E) to (5.9). Then by Proposition 4.6, it follows that Φ and Φ′ satisfy

F = (λ − L0)Φ = (λ − L0)Φ
′, λ >

K1

2
+ r2. (5.16)

Then by multiplying both sides of (5.16) by Φ−Φ′ and by integrating with respect to µ,
we obtain

λ‖Φ − Φ′‖2
L2(µ) −

(
L0(Φ − Φ′), Φ − Φ′

)
L2(µ)

= 0, λ >
K1

2
+ r2. (5.17)

Moreover, by using the dissipativity of (L0, Dom(L0)), (5.17) leads us to ‖Φ−Φ′‖2
L2(µ) ≤ 0.

This completes the proof of uniqueness.

5.2 Proof of Theorem 5.1

In this subsection, we give a proof of Theorem 5.1. We note that by Remark 4.9 it is
sufficient to prove only that (L0, Dom(L0)) generates a C0-semigroup on L2(µ). Since such
generators are maximal, it follows that we have the equality in (4.19) and all is proved.
For the proof, we use the result of the above subsection. So, we give an approximation
scheme of the drift b̃ as follows:

Firstly, we introduce the Yosida approximation of ∂0Ũ . By (5.1), it is a maximal
dissipative mapping (see e.g. Proposition 1.5 of Chapter IV in Showalter [22]). For any
α > 0, we set

Jα(z) :=
(
IRd + α∂0Ũ

)−1
(z), z ∈ R

d,

and define the Yosida approximation (∂0Ũ)α : R
d → R

d by

(∂0Ũ)α(z) := (∂0Ũ)(Jα(z)), z ∈ R
d.
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Then (∂0Ũ)α is monotone and the following Lipschitz continuity holds:

∣∣(∂0Ũ)α(z1) − (∂0Ũ)α(z2)
∣∣ ≤ 2

α
|z1 − z2|, z1, z2 ∈ R

d,

Moreover, it is well-known that
∣∣(∂0Ũ)α(z)

∣∣ ≤
∣∣∂0Ũ(z)

∣∣, z ∈ R
d, (5.18)

lim
αց0

(∂0Ũ)α(z) = ∂0Ũ(z), z ∈ R
d. (5.19)

b̃α : E → E is defined in the same way as b̃ with ∂0Ũ replaced by (∂0Ũ)α. Note that b̃α

is Lipschitz continuous and dissipative on E.
Secondly, we introduce a further regularization. Let B : Dom(B) ⊂ E → E be a

self-adjoint negative definite operator such that B−1 is of trace class. For any α, β > 0,
we set

b̃α,β(w) :=

∫

E

eβB b̃α

(
eβBw + y

)
N 1

2
B−1(e2βB−1)(dy), w ∈ E.

Then by Theorem 9.19 in [9], we can see that b̃α,β satisfies condition (D) and

lim
βց0

b̃α,β(w) = b̃α(w), w ∈ E. (5.20)

We also see that for any α > 0, there exists Cα > 0 such that

‖b̃α,β(w)‖E ≤ Cα(1 + ‖w‖E), w ∈ E. (5.21)

Finally, we are in a position to give the proof for our main result.

Proof of Theorem 5.1. Let F ∈ C2
b (E) and we consider the function

Φα,β(w) :=

∫ ∞

0

e−λtPα,β
t F (w)dt, w ∈ E,

where λ > K1

2
+ r2 and {Pα,β

t }t≥0 is the transition semigroup defined as {Pt}t≥0 with b̃

replaced by b̃α,β. Then by Propositions 4.6 and 5.3, we know that Φα,β ∈ D(L,C1
b,2(E)) ⊂

Dom(L0) and we have

(λ − L0)Φα,β = F +
(̃
bα,β − b̃, DΦα,β

)
L2(µ)

. (5.22)

The right-hand side of (5.22) can be estimated as follows:

Iα,β :=

∫

E

(̃
bα,β(w) − b̃(w), DΦα,β(w)

)2

E
µ(dw)

≤
∫

E

∥∥b̃α,β(w) − b̃(w)
∥∥2

E
·
∥∥DΦα,β(w)

∥∥2

E
µ(dw)

≤
( 2

2λ − K1 − 2r2
‖DF‖∞

)2
∫

E

∥∥b̃α,β(w) − b̃(w)
∥∥2

E
µ(dw). (5.23)

29



Hence by recalling (5.20) and (5.21), we have

lim sup
βց0

Iα,β ≤
( 2

2λ − K1 − 2r2
‖DF‖∞

)2
∫

E

∥∥b̃α(w) − b̃(w)
∥∥2

E
µ(dw).

Moreover, by recalling (5.18), (5.19) and using Lebesgue’s dominated convergence theo-
rem, we have

lim
αց0

lim
βց0

Iα,β = lim
αց0

(
lim sup

βց0
Iα,β

)
= 0. (5.24)

Therefore, by combining (5.22) and (5.24), we see

lim
αց0

lim
βց0

(λ − L0)Φα,β = F in L2(µ).

This means the closure of Range(λ−L0) contains C2
b (E). Since C2

b (E) is dense in L2(µ),
Range(λ − L0) is also dense in L2(µ). Then by the Lumer-Philips theorem (see The-
orem 1.1 and Theorem 1.2 in [11] for details), we can see (L0, Dom(L0)) generates the
C0-semigroup {Pt}t≥0. This completes the proof.
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[17] V. Liskevich and M. Röckner: Strong uniqueness for certain infinite-dimensional
Dirichlet operators and applications to stochastic quantization, Ann. Scuola Norm.
Sup. Pisa Cl. Sci., Serie IV, 27 (1998), no. 1, pp. 69–91.

[18] E. Priola: π-semigroups and applications, Preprint No. 9 of the Scuola Normale
Superiore di Pisa (1998)

[19] M. Reed and B. Simon: Methods of modern mathematical physics, Vol. II, IV. New
York: Academic Press, 1975, 1978.

[20] T. Shiga: Two contrasting properties of solutions for one-dimensional stochastic par-
tial differential equations, Canad. J. Math. 46 (1994), pp. 415–437.

31



[21] I. Shigekawa: An example of regular (r, p)-capacity and essential self-adjointness of
a diffusion operator in infinite dimensions, J. Math. Kyoto Univ. 35 (1995), pp.
639–651.

[22] R.E. Showalter: Monotone operators in Banach space and nonlinear partial differen-
tial equations. Mathematical Surveys and Monographs 49, American Mathematical
Society, Providence, RI, 1997.

[23] B. Simon: Functional integration and quantum physics. New York: Academic Press,
1979.

[24] M. Takeda: On the uniqueness of Markov self-adjoint extension of diffusion operators
on infinite dimensional spaces, Osaka J. Math. 22 (1985), pp. 733–742.
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