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Abstract. —We prove existence and, under an additional assumption,
uniqueness of an evolution system of measures (νt)t∈R for a stochastic differ-
ential equation with time dependent dissipative coefficients. Then we prove
that the corresponding transition evolution operator Ps,tϕ is attracted as
t → +∞ to a limit curve (which is independent of s) for any continuous and
bounded “observable” ϕ.

Key words. —Dissipative stochastic equations, evolution systems of
measures, mixing.

Riassunto. —Equazioni stocastiche dissipative is spazi di Hilbert aventi
coefficienti dipendenti dal tempo. Proviamo l’esistenza e, sotto un’ipotesi ad-
dizionale, l’unicità di un sistema di evoluzione di misure (νt)t∈R per un’equazione
differenziale stocastica con coefficienti dipendenti dal tempo. Inoltre di-
mostriamo che l’operatore di transizione corrispondente Ps,tϕ è attratto per
t → +∞ a una curva limite (independente da s) per ogni“osservabile” ϕ
continua e limitata.

1 Introduction

We are given a separable Hilbert space H (norm | · |, inner product 〈·, ·〉); we
denote by L(H) the space of all linear bounded operators in H and by P(H)
the set of all Borel probability measures on H. We are also given a cylindrical
Wiener process defined on a filtered probability space (Ω,F , (Ft)t≥0, P) in H.

We are concerned with the following stochastic differential equation

dX = (AX + F (t,X))dt +
√

C dW (t), X(s) = x ∈ H, (1.1)

where A : D(A) ⊂ H → H is the infinitesimal generator of a C0 semigroup
etA in H, C ∈ L(H) and F : D(F ) ⊂ R × H → H is such that F (t, ·) is
dissipative for all t ∈ R.

When s is negative, in order to give a meaning to equation (1.1), we shall
extend W (t) and the filtration (Ft)t≥0 for all t < 0. To do so we take another
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cylindrical process W1(t) independent of W (t) and set

W (t) =


W (t) if t ≥ 0,

W1(−t) if t ≤ 0.

Moreover, we denote by F t the σ–algebra generated by W (s), s ≤ t, t ∈
R, k ∈ N.

Concerning A, C, F we shall assume that

Hypothesis 1.1 (i) There is ω > 0 such that 〈Ax, x〉 ≤ −ω|x|2 for all
x ∈ D(A).

(ii) C ∈ L(H) is symmetric, nonnegative and such that∫ +∞

0

Tr [etACetA∗
]dt < +∞.

(iii) F : R×H → H is continuous and there exist M > 0 and K > 0 such
that

|F (t, 0)| ≤ M, |F (t, x)−F (t, y)| ≤ K|x−y|, for all x, y ∈ H, t ∈ R.

Moreover,

〈F (t, x)− F (t, y), x− y〉 ≤ 0, for all x, y ∈ H, t ∈ R.

A mild solution X(t, s, x) of (1.1) is an adapted stochastic process X ∈
C([s, T ]; L2(Ω,F , P)) such that

X(t, s, x) = e(t−s)Ax+

∫ t

s

e(t−r)AF (r, X(r, s, x))dr +WA(t, s), t ≥ s, (1.2)

where WA(t, s) is the stochastic convolution

WA(t, s) =

∫ t

s

e(t−r)A
√

C dW (r), t ≥ s. (1.3)

It is well known that, in view of Hypothesis 1.1–(ii), WA(t, s) is a Gaussian
random variable in H with mean 0 and covariance operator Qt,s given by

Qt.sx =

∫ t

s

erACerA∗
xdr, t ≥ s, x ∈ H (1.4)
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and that thre exists a unique mild solution of (1.1), see e.g. [5]. We define
the transition evolution operator

Ps,tϕ(x) = E[ϕ(X(t, s, x))], t ≥ s, ϕ ∈ Cb(H),

where Cb(H) is the Banach space of all continuous and bounded mappings
ϕ : H → R endowed with the sup norm

‖ϕ‖0 = sup
x∈H

|ϕ(x)|.

Remark 1.2 It is easy to check that Ps,t is Feller, that is Ps,tϕ ∈ Cb(H) for
all varphi ∈ Cb(H) and any s < t.

The aim of the paper is to prove the existence and, under a suitable
condition, uniqueness of an evolution system of measures (νt)t∈R indexed by
R, see [2]. This means that each νt is a probability measure on H and∫

H

Ps,tϕ(x)νs(dx) =

∫
H

ϕ(x)νt(dx) for all ϕ ∈ Cb(H), s < t. (1.5)

This concept is the natural generalization of the notion of an invariant mea-
sure to non autonomous systems. We notice that an evolution system of
measures indexed by R is a measure solution of the corresponding (dual)
Kolmogorov equation in all the real line. So, it is a generalization of a mea-
sure solution of (1.1) on half–lines, see the paper [1].

Using the system (νt)t∈R we are able to study the asymptotic behaviour
of Ps,tϕ(x). We prove that

lim
s→−∞

Ps,tϕ(x) =

∫
H

ϕ(x)νt(dx), (1.6)

and

lim
t→+∞

[
Ps,tϕ(x)−

∫
H

ϕ(x)νt(dx)

]
= 0. (1.7)

The second result implies that Ps,tϕ(x) approaches as t → +∞ a curve,
parametrized by t, which is independent of s and x. This is the natural
generalization of the strongly mixing property for an autonomous dissipative
sytem.

In a paper in preparation we shall study the case when the coefficient
F (t, x) is singular, generalizing the results in [3].
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2 Existence and uniqueness of an evolution

family of measures indexed by R
It is convenient to write equation (1.1) as a family of deterministic equations
indexed by ω ∈ Ω. Setting Y (t) = X(t, s, x) − WA(t, s), we see that Y (t)
fulfills the deterministic evolution equation,

Y ′(t) = AY (t) + F (t, Y (t) + WA(t, s)), Y (s) = x. (2.1)

Lemma 2.1 For any m ∈ N there is Cm > 0 such that

E
(
|X(t, s, x)|2m

)
≤ Cm(1 + e−mω(t−s)|x|2m). (2.2)

Proof. Multiplying (2.1) by |Y (t)|2m−2Y (t) and taking into account Hypoth-
esis 1.1, yields for a suitable constant C1

m,

1

2m

d

dt
|Y (t)|2m ≤ −ω|Y (t)|2m + 〈F (t,WA(t, s)), Y (t)〉|Y (t)|2m−2

+〈F (t, Y (t) + WA(t, s))− F (t,WA(t, s)), Y (t)〉|Y (t)|2m−2

≤ −ω|Y (t)|2m + 〈F (t,WA(t, s)), Y (t)〉|Y (t)|2m−2

≤ −ω

2
|Y (t)|2m + C1

m|F (WA(t, s))|2m.

By a standard comparison result it follows that

|Y (t)|2m ≤ e−mω(t−s)|x|2m + 2mC1
m

∫ t

s

e−mω(t−σ)|F (σ, WA(t, σ))|2mdσ,

and finally we find that, for some constant C2
m,

|X(t, s, x)|2m ≤ C2
me−mω(t−s)|x|2m

+C2
m

(∫ t

s

e−mω(t−σ)|F (σ, WA(t, σ))|2mdσ + |WA(t, s)|2m

)
.

(2.3)

Now the conclusion follows taking expectation, recalling that in view of Hy-
pothesis 1.1,

|F (t, x)| ≤ |F (t, 0)|+ |F (t, x)− F (t, 0)| ≤ M + K|x|, t ∈ R, x ∈ H,

and using the fact that

sup
t∈R,t≥s

E|WA(t, s)|2m < +∞.
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�
The following lemma gives a generalization to the time dependent case of

a result proved in [4].

Lemma 2.2 Assume that Hypothesis 1.1 holds. Then for any t ∈ R, there
exists ηt ∈ L2(Ω,F , P) (independent of x) such that

lim
s→−∞

X(t, s, x) = ηt in L2(Ω,F , P). (2.4)

Moreover,
E|X(t, s, x)− ηt|2 ≤ 2e−2ω(t−s)(|x|2 + C2). (2.5)

Proof. Let h > 0 and set Z(t) = X(t, s, x) − X(t, s − h, x), t ≥ s. Then
Z(t) is the mild solution of the following problem

Z ′(t) = AZ(t) + F (t,X(t, s, x))− F (t,X(t, s− h, x))

Z(s) = x−X(s, s− h, x).
(2.6)

Multiplying (2.6) by Z(t) and taking into account Hypothesis 1.1, yields

1

2

d

dt
|Z(t)|2 ≤ −ω|Z(t)|2.

Therefore

|X(t, s, x)−X(t, s− h, x)|2 = |Z(t)|2 ≤ e−2ω(t−s)|x−X(s, s− h, x)|2.

Now, by Lemma 2.1 it follows that

E|X(t, s, x)−X(t, s− h, x)|2 ≤ 2e−2ω(t−s)(|x|2 + C2(1 + e−2ωh|x|2). (2.7)

Consequently, for any t ∈ R and any x ∈ H, there exists the limit

lim
s→−∞

X(t, s, x) := ηt(x) in L2(Ω,F , P).

Moreover, letting h →∞, yields (2.5) (if we know that ηt(x) is independent
of x).

It remains to show that ηt(x) is independent of x.
Let x, y ∈ H and set V (t) = X(t, s, x) − X(t, s, y). Then V (t) is the

solution of the following problem
V ′(t) = AV (t) + F (t,X(t, s, x))− F (t,X(t, s, y))

V (s) = x− y.
(2.8)
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Multiplying (2.8) by V (t) and taking into account Hypothesis 1.1, yields

1

2

d

dt
|V (t)|2 ≤ −ω|V (t)|2,

so that
|X(t, s, x)−X(t, s, y)|2 = |V (t)|2 ≤ e−2ω(t−s)|x− y|2.

Letting s → −∞ we see that ηt(x) = ηt(y), as required. �

In the following we shall denote by νt the law of ηt, t ∈ R.

Proposition 2.3 (νt)t∈R is an evolution system of measures indexed by R,∫
H

Ps,tϕ(x)νs(dx) =

∫
H

ϕ(x)νt(dx), s ≤ t, ϕ ∈ Cb(H). (2.9)

Moreover, for all ϕ ∈ Cb(H) we have

lim
s→−∞

Ps,tϕ(x) =

∫
H

ϕ(y)νt(dy), x ∈ H (2.10)

Proof. Let us first prove (2.10). Let ϕ ∈ Cb(H). Letting s → −∞ in the
identity

Ps,tϕ(x) = E[ϕ(X(t, s, x))],

and recalling (2.4), yields

lim
s→−∞

Ps,tϕ(x) = E[ϕ(ηt)] =

∫
H

ϕ(y)νt(dy),

and (2.10) is proved. Let us prove (2.9). Let s < t < τ. Letting s → −∞ in
the identity

Ps,tPt,τϕ(x) = Ps,τϕ(x),

recalling Remark 1.2 and taking into account (2.10), yields∫
H

Pt,τϕ(y)νt(dy) =

∫
H

ϕ(y)ντ (dy).

�
The following result give informations on the asymptotic behaviour of

Ps,tϕ(x) when t →∞.

Proposition 2.4 Let ϕ ∈ C1
b (H). Then for any s ∈ R and x ∈ H, we have

lim
t→+∞

[
Ps,tϕ(x)−

∫
H

ϕ(x)νt(dx)

]
= 0. (2.11)
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Proof. Fix s ∈ R and x ∈ H and choose s1 < s. Set, for t > s

X(t) = X(t, s, x), Y (t) = X(t, s1, x)

and Z(t) = X(t)− Y (t). Then we have

d

dt
Z(t) = AZ(t) + F (t,X(t))− F (t, Z(t)), Z(s) = x−X(s, s1, x).

Multiplying scalarly both sides of this identity by Z(t) and taking into ac-
count the dissipativity of F (t, ·) yields

d

dt
|Z(t)|2 ≤ 2ω|Z(t)|2,

so that

|X(t, s, x)−X(t, s1, x)|2 = |Z(t)|2 ≤ e−2ω(t−s)|x−X(s, s1, x)|2.

Letting s1 → −∞ yields

|X(t, s, x)− ηt|2 = |Z(t)|2 ≤ e−2ω(t−s)|x− ηs|2.

Consequently∣∣∣∣Ps,tϕ(x)−
∫

H

ϕ(x)νt(dx)

∣∣∣∣2 = |E[ϕ(X(t, s, x))]− E[ϕ(ηt)]|2

≤ ‖ϕ‖2
C1

b (H)
E(|X(t, s, x)− ηt|2) ≤ ‖ϕ‖2

C1
b (H)

e−2ω(t−s)E(|x− ηs|2),

which yields the conclusion. �

We end the paper with a uniqueness result.

Proposition 2.5 Assume that (ζt)t∈R is an evolution system of measures
indexed by R and that there exists C > 0 such that

sup
t∈R

∫
H

|x|2ζt(dx) ≤ C.

Then ζt = νt for all t ∈ R.

Proof. Let ϕ ∈ C1
b (H). By the assumption we have for s < t∫

H

Ps,tϕ(x)ζs(dx) =

∫
H

ϕ(x)ζt(dx).
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We claim that

lim
s→−∞

∫
H

Ps,tϕ(x)ζs(dx) =

∫
H

ϕ(x)νt(dx). (2.12)

By the claim it follows that ζt = νt by the arbitrariness of ϕ. To prove the
claim write∫

H

Ps,tϕ(x)ζs(dx) =

∫
H

(
Ps,tϕ(x)−

∫
H

ϕ(y)νt(dy)

)
ζs(dx)

+

∫
H

ϕ(y)νt(dy).

(2.13)

But, since

Ps,tϕ(x)−
∫

H

ϕ(y)νt(dy) = E(ϕ(X(t, s, x)− ϕ(ηt)),

we have, taking into account (2.5)

|Ps,tϕ(x)−
∫

H

ϕ(y)νt(dy)|2 ≤ ‖ϕ‖2
C1

b (H)
E(|X(t, s, x)− ηt)|2)

≤ 2e−2ω(t−s)(|x|2 + C2)‖ϕ‖2
C1

b (H)
.

So, ∣∣∣∣∫
H

(
Ps,tϕ(x)−

∫
H

ϕ(y)νt(dy)

)
ζs(dx)

∣∣∣∣
≤ 2‖ϕ‖2

C1
b (H)e

−2ω(t−s)

(
C2 +

∫
H

|x|2ζs(dx)

)
,

and the conclusion follows. �
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[3] G. Da Prato and M. Röckner, A note on non autonomous stochastic differential equa-
tions, Proceedings of the Ascona Conference 2005 on Stochastic Analysis, to appear.

[4] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge
University Press, 1992.

8



[5] P. Guiotto, Cauchy problem for nonautonomous Kolmogorov equations. Stochastic
Anal. Appl. 14 no. 4, 393–410, 1996.

9


