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Abstract
We obtain lower bounds for solutions to second order elliptic and parabolic equations on

the whole space. Our method is based on the study of the dependence of a constant in Har-
nack’s inequality on the coefficients of the equation. As an application we obtain lower bounds
for densities of stationary distributions and transition probabilities of diffusion processes with
unbounded drift coefficients.
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1. Introduction

The goal of this work is to obtain lower bounds for densities of stationary distributions
and transition probabilities of diffusion processes with unbounded (possibly rapidly in-
creasing) drift coefficients. To this end, we obtain lower bounds on densities of solutions
to elliptic and parabolic equations of the form

L∗µ = 0 (1.1)

for Borel measures µ on Rd or on Rd×(0, 1), respectively. Here L is an elliptic or parabolic
second order operator of the form

Lu(x) := ∂xi
(aij(x)∂xj

u(x)) + bi(x)∂xi
u(x)

or

Lu(x, t) := ∂tu(x, t) + ∂xi
(aij(x, t)∂xj

u(x, t)) + bi(x, t)∂xi
u(x, t),

where the summation over repeated indices is taken, and the interpretation of our equation
is as follows.

We shall say that a Borel measure µ on Rd satisfies the weak elliptic equation (1.1)
if the functions aij and bi are integrable on every compact set in Rd with respect to the
measure µ and, for every u ∈ C∞

0 (Rd), we have∫
Rd

Lu dµ = 0. (1.2)

A Borel measure µ on (0, 1)×Rd satisfies the weak parabolic equation (1.1) if the functions
aij and bi are integrable on every compact set in Rd × (0, 1) with respect to µ and, for
every function u ∈ C∞

0 (Rd × (0, 1)), we have∫
Rd×(0,1)

Lu dµ = 0. (1.3)
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In this paper we assume that the matrices A(x) = (aij(x)) are nondegenerate, which
guarantees the absolute continuity of µ. For this reason, throughout we consider measures
µ represented in the form µ(dt dx) = µt(dx) dt by means of a family of Borel measures
(µt)t∈(0,1) on Rd. In this case (1.3) can be written as∫ 1

0

∫
Rd

Lu(x, t)µt(dx) dt = 0.

We say that the measure µ = µt dt satisfies the initial condition µ0 = ν at t = 0 if ν is a
Borel measure on Rd and

lim
t→0

∫
Rd

ζ(x)µt(dx) =

∫
Rd

ζ(x) ν(dx) (1.4)

for all ζ ∈ C∞
0 (Rd).

In the last decade, such equations attracted considerable attention; papers [1]–[12]
contain diverse comments and surveys on the principal results, some of which will be
mentioned below. The main feature of the estimates obtained below as compared to the
previously known results is that no boundedness, dissipativity or coercivity of the drift
coefficient b is assumed. For example, in the elliptic case, we obtain the estimate

%(x) ≥ C1 exp(−C2|x|β+1)

under the assumption that the duffusion coefficient A is uniformly bounded and uniformly
invertible and the function |b(x)| is majorized by C(1+|x|β). This estimate substantionally
reinforces the important recent result from [12], where considerably stronger restrictions
on the coefficients are imposed (in particular, the two-fold differentiability of b and the
three-fold differentiability of A is assumed). For the parabolic equation, we obtain a
similar, but somewhat weaker estimate

%(x, t) ≥ exp
{
−Kt(1 + |x|2β + |x|2)

}
.

Along with the upper bounds of the same form obtained in [10] and [11] this provides a
sufficiently precise description of the decay of solutions at infinity. Our proofs are based
on a study of the dependence of constants in the Harnack inequality on the coefficients
of the equation. As an application we give simple sufficient conditions for the inclusion
|∇%/%| ∈ Lp(µ), which reinforces a result from [12]. Finally, one more result of our work
gives broad sufficient conditions for the existence of finite entropy of the solution to the
parabolic equation for probability measures at any time t0 > 0 with an arbitrary initial
distribution. This result is important for applying the estimates of solutions obtained in
our paper [10], since they heavily use the existence of entropy of a solution at the moment
starting from which we estimate the solution.

Let us remark that the indicated divergence form equations arise as equations for sta-
tionary distributions and transition probabilities of stochastic differential equations in the
Stratonovich form. For a stochastic differential equation in the Ito form

dξt = A0(ξt)dwt +
1

2
b(ξt)dt

analogous equations are written with a non-divergence operator

Lu := aij∂xi
∂xj

u+ bi∂xi
u,

where A = AT
0A0. We consider operators of divergence form, which simplifies some

formulations, but indicate the corresponding analogs for non-divergence form operators.
For an arbitrary domain Ω ⊂ Rd let W q,1(Ω) denote the Sobolev space of functions

belonging to Lq(Ω) along with their generalized first order partial derivatives. This space
is equipped with the standard norm

‖f‖W q,1(Ω) := ‖f‖Lq(Ω) + ‖∇f‖Lq(Ω),
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where ‖ · ‖Lq(Ω) denotes the Lq(Ω)-norm of scalar or vector functions. Let C0,δ(Ω)
denote the space of all functions (possibly vector-valued or matrix-valued) on Ω that
are Hölder continuous of order δ. Given a matrix-valued mapping A on Ω, we set

‖A‖C0,δ := supx,y∈Ω

(
‖A(x)‖+ ‖A(x)− A(y)‖/|x− y|δ

)
.

Let J ⊂ (0, 1) be an interval and let ‖ · ‖q,Ω×J denote the Lq(Ω× J)-norm on scalar or
vector functions. Finally, let Hq,1(Ω× J) denote the space of all measurable functions f
on Ω× J with finite norm

‖f‖Hq,1(Ω×J) :=
(∫

J

(
‖f(·, t)‖W q,1(Ω)

)q
dt

)1/q

.

For notational simplicity the gradient of a function u on Rd × (0, 1) with respect to the
argument from Rd is denoted by

∇u := ∇xu = (∂x1u, . . . , ∂xd
u).

Let B(x,R) ⊂ Rd denote the open ball of radius R centered at a point x.

2. Investigation of constants in the Harnack inequality

In this section we investigate the dependence of a constant in the Harnack inequality
for elliptic and parabolic equations on the coefficients of the equation. We begin with
the elliptic case. First we recall certain known a priori estimates of solutions to elliptic
equations, which will be employed in the proof of the p-integrability of the logarithmic
gradient of the measure µ.

Let Ω be a bounded domain in Rd, let functions h1, . . . , hd be locally integrable in Ω, and
let x 7→ A(x) = (ai,j(x))1≤i,j≤d be a measurable locally bounded matrix-valued mapping
on Ω such that the matrices A(x) = (aij(x)) are positive symmetric. We shall say that a
function u from the class W q,1(Ω), where q > 1, is a solution to the equation

∂xi
(aij∂xj

u+ hi) = 0 (2.1)

in Ω if, for every function ϕ ∈ C1
0(Ω), the equality∫

Ω

∂xi
ϕ(aij∂xj

u+ hi) dx = 0

holds.

Theorem 2.1. Suppose that Ω is a bounded domain in Rd with a boundary of the class
C1, A ∈ C0,δ(Ω), where δ > 0, and that there exists a constant α > 0 such that A(x) ≥ αI
for all x ∈ Ω. Let hi ∈ Lq(Ω), where q > 1. If a function u from W q,1(Ω) satisfies equation
(2.1) in Ω, then

‖u‖W q,1(Ω) ≤ C
(
‖h‖Lq(Ω) + ‖u‖Lq(Ω)

)
,

where the number C depends only on d, q, α,Ω, and ‖A‖C0,δ , and, for any fixed d, q, and Ω,
the quantity C is a locally bounded function of α > 0 and ‖A‖C0,δ .

This theorem is a partial case of the result formulated by Morrey in his book [13, p. 156],
where only the idea of the proof was outlined. A complete proof with an investigation of
the dependence of the constant on the coefficients has been given in [14] (see the theorem
and corollary in [14]). Let us observe that here we need only that q > 1, although
it is assumed in [14] that q ≥ d/(d − 2). The fact that the latter condition can be
dropped in the situation under consideration follows at once from the reasoning in [14]
since the coefficients due to which this condition was necessary there are absent in equation
(2.1) (see the H1

q -conditions in [14]). In order to achieve a complete correspondence
with the results in [14] and Theorem 2.1 one has to use also the inequality ‖u‖L1(Ω) ≤
|Ω|(q−1)/q‖u‖Lq(Ω).

Corollary 2.1. If Ω = B(z, R), where R < 1, then the estimate from Theorem 2.1 holds
with a constant C = C(d, q, α, ‖A‖C0,δ)R−1.
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Proof. Let us consider the change of variables x = z+Ry. The function v(y) = u(z+Ry)
satisfies in B(0, 1) the equation

∂yj

(
aij(z +Ry)∂yi

v(y) +Rhi(z +Ry)
)

= 0.

By assumption, the matrix A is Hölder continuous, and we may assume that the Hölder
constant does not change since R < 1. Then the following estimate holds for the func-
tion v:

‖v‖W q,1(B(0,1)) ≤ C(d, q, α)
(
‖v‖Lq(B(0,1)) +R‖h‖Lq(B(0,1))

)
.

Returning to the initial coordinates and taking into account that R < 1 we obtain

‖v‖W q,1(B(0,1)) = R−d/q‖u‖Lq(B(z,R)) +R1−d/q‖∇u‖Lq(B(z,R)) ≥ R1−d/q‖u‖W q,1(B(z,R)).

Similarly, we have

‖v‖Lq(B(0,1)) +R‖h‖Lq(B(0,1)) = R−d/q‖u‖Lq(B(z,R)) +R1−d/q‖h‖Lq(B(z,R))

≤ R−d/q
(
‖u‖Lq(B(z,R)) + ‖h‖Lq(B(z,R))

)
.

On account of these estimates we obtain

‖u‖W q,1(B(z,R)) ≤ C(d, q, α, ‖A‖C0,δ)R−1
(
‖u‖Lq(B(z,R)) + ‖h‖Lq(B(z,R))

)
,

as required. �

We shall assume that there exist constants γ ≥ 0 and α > 0 such that∑
i,j

|ai,j(x)|2 ≤ γ2 and A(x) ≥ α · I for all x ∈ Ω. (2.2)

Let a mapping b : Ω → Rd be measurable and satisfy the condition

sup
x∈Ω

|b(x)| ≤ B <∞.

Suppose that a nonnegative function u ∈ W 2,1(Ω) satisfies the equation

∂xi
(aij∂xj

u− biu) = 0, (2.3)

i.e., for every function ϕ ∈ C1
0(Ω), one has the equality∫

Ω

∂xi
ϕ(aij∂xj

u− biu) dx = 0. (2.4)

Under the stated assumptions, the function u has a locally Hölder continuous version, in
particular, this version is locally bounded on Ω (see Theorem 8.22 in [16]).

For every integrable function v we set

vΩ =
1

|Ω|

∫
Ω

v dx.

In our study of constants in the Harnack inequality for solutions to equation (2.3) we
have to reproduce the main steps of the proof of Theorem 8.18 in [16]. Let us note that
in the remark following Theorem 8.20 in [16], the desired dependence of the constant on
the coefficients of the equation is indicated without proof. Since the exact form of this
dependence is important for the sequel we give a complete justification.

The following lemma is true (see Lemma 7.21 in [16]).

Lemma 2.1. Let Ω be a convex domain and let v ∈ W 1,1(Ω). Suppose that there exists a
constant K such that, for every ball B(x0, R), the following inequality holds:∫

Ω∩B(x0,R)

|∇v| dx ≤ KRd−1.

Then there exist positive constants σ0 and C, which depend only on d, such that∫
Ω

exp
( σ
K
|v − vΩ|

)
dx ≤ C(diam Ω)d,
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where σ = σ0|Ω|(diam Ω)−d and diam Ω = sup
x,y∈Ω

|x− y|.

Theorem 2.2. Let θ = 1 + 4δ, where 0 < δ ≤ 3. If B(y, θR) ⊂ Ω, then the following
inequality holds for the continuous version of the function u:

sup
x∈B(y,R)

u(x) ≤ C inf
x∈B(y,R)

u(x), (2.5)

where
C = exp

{
c(d)δ−1

(
γα−1 +Bα−1R

)}
,

and the number c(d) depends only on d.

Proof. We shall assume that d ≥ 3. The case d ≤ 2 reduces to the case d = 3 by passing
to the function u(x1, x2) exp(−|x3|).

1. Let R = 1, y = 0. Let η ∈ C1
0(Ω) and uk = u + k, k > 0. Let β ∈ (−∞,+∞).

Plugging the function ϕ = η2uβ
k into the integral identity (2.4), which can be easily

justified, we obtain

β

∫
Ω

(A∇u,∇uk)u
β−1
k η2 dx

= −2

∫
Ω

(A∇u,∇η)uβ
kη dx+ β

∫
Ω

(bu,∇uk)u
β−1
k η2 dx+ 2

∫
Ω

(bu,∇η)uβ
kη dx.

Applying the Cauchy inequality and taking into account our assumptions on the coeffi-
cients we obtain ∫

Ω

|∇uk|uβ−1
k η2 dx ≤ C

∫
Ω

(η + |∇η|)2uβ+1
k dx, (2.6)

where

C = 4
(( γ

|β|α
+
B

α

)2

+
B

|β|α

)
.

Since α ≤ dγ, one has

C ≤ 16d
( γ

|β|α
+
B

α

)2

.

So we shall use estimate (2.6) with C = 16d
(
γ|β|−1α−1 +Bα−1

)2

.

Let w = u
(β+1)/2
k if β 6= −1 and w = lnuk if β = −1. If β = −1, we have∫

Ω

|∇w|2η2 dx ≤ C1

∫
Ω

(η + |∇η|)2 dx, (2.7)

where

C1 = 16d
(γ
α

+
B

α

)2

.

If β 6= −1, we have ∫
Ω

|∇w|2η2 dx ≤ C2

∫
Ω

(η + |∇η|)2w2 dx, (2.8)

where

C2 = 4d(β + 1)2
( γ

|β|α
+
B

α

)2

.

2. Set

F (p, r) =
(∫

B(0,r)

up
k dx

)1/p

, p ∈ (−∞,+∞).

We shall find numbers p0 = p0(d, δ, α, γ, B) > 0 and C3 = C3(d, δ, α, γ, B) > 0 such that

F (p0, 1 + 3δ) ≤ C3F (−p0, 1 + 3δ).

Let r ≤ 1, let Br+δr be an arbitrary ball of radius r + δr contained in B(0, θ), and let Br

be the ball of radius r with the same center. Let us take a smooth function η such that
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η(x) = 1 if x ∈ Br, η(x) = 0 if x /∈ Br+δr, and 0 ≤ η ≤ 1 and |∇η| ≤ 2(δr)−1. According
to estimate (2.7) with β = −1 we obtain∫

Br

|∇w| dx ≤ (2r)d/2
(∫

Br

|∇w|2 dx
)1/2

≤ K0(d)δ
−1C

1/2
1 rd−1.

By Lemma 2.1 there exist numbers C(d) and K(d), which depend only on d, such that
the following inequality holds:∫

B(0,1+3δ)

exp
(
p0|w − wB(0,1+3δ)|

)
dx ≤ K(d), p0 = C(d)δC

−1/2
1 .

Therefore, one has∫
B(0,1+3δ)

ep0w dx

∫
B(0,1+3δ)

e−p0w dx

≤
∫

B(0,1+3δ)

ep0w−wB(0,1+3δ) dx

∫
B(0,1+3δ)

ewB(0,1+3δ)−p0w dx ≤ K(d)2.

Recalling that w = lnuk we obtain the estimate

F (p0, 1 + 3δ) ≤ C3F (−p0, 1 + 3δ),

where
C3 = K(d)2/p0 = exp

(
c1(d)δ

−1α−1(γ +B)
)
,

and the number c1(d) depends only on d.
3. It is known that

F (+∞, 1) := sup
B(0,1)

uk = lim
p→+∞

F (p, 1), F (−∞, 1) := inf
B(0,1)

uk = lim
p→−∞

F (p, 1).

We shall find numbers C4 = C4(d, δ, α, γ, B) > 0 and C5 = C5(d, δ, α, γ, B) > 0 such that

F (+∞, 1) ≤ C4F (p0, 1 + 3δ) ≤ C3F (−p0, 1 + 3δ) ≤ C5F (−∞, 1).

By the triangle inequality we have(∫
Rd

|∇(ηw)|2 dx
)1/2

≤
(∫

Rd

|η∇w|2 dx
)1/2

+
(∫

Rd

|w∇η|2 dx
)1/2

.

According to estimate (2.8) with β 6= −1 we obtain(∫
Ω

|∇(ηw)|2 dx
)1/2

≤ 2(C2 + 1)1/2
(∫

Ω

(η + |∇η|)2w2 dx
)1/2

. (2.9)

Let a smooth function η be such that η(x) = 1 if |x| ≤ r1, η(x) = 0 if |x| ≥ r2, where
1 < r1 < r2 ≤ 1 + 3δ, and 0 ≤ η ≤ 1 and |∇η| ≤ 2/(r2 − r1). By the Sobolev embedding
theorem, inequality (2.9) yields(∫

Br1 (0)

w2d/(d−2) dx
)(d−2)/2d

≤ C0(d)(C2 + 1)1/2

r2 − r1

(∫
Br2 (0)

w2 dx
)1/2

,

where the number C0(d) depends only on d. Let β + 1 > 0. Since w = u
(β+1)/2
k , we have

F
( d

d− 2
(β + 1), r1

)
≤

(
C0(d)(C2 + 1)1/2

r2 − r1

)2/(β+1)

F (β + 1, r2).

Set q = d/(d− 2) > 1. We shall apply the obtained estimate to the numbers r1 and r2 of
the form r1 = rm = 1 + δ2−m, r2 = rm−1 = 1 + δ2−m+1, and we shall take for β + 1 the
numbers qmp, where m = 0, 1, 2, . . ., and the number p is given by the equality

p = d(d− 1)−1((d− 2)/d)k,

in which k is a natural number such that
ln p0 − ln d+ ln(d− 1)

ln(d− 2)− ln d
< k <

ln p0 − ln d+ ln(d− 1)

ln(d− 2)− ln d
+ 2.
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A natural number in the indicated interval of length 2 exists because its left end is positive.
We observe that

(d− 2)2d−2p0 < p < p0.

In addition, for all nonnegative integers m one has the estimate

|qmp− 1| = |d(d− 1)−1(1− 2/d)k−m − 1| ≥ (d− 1)−1,

which is obvious from the consideration of the cases k ≥ m and k < m. It follows from
this estimate that C2 ≤ 4d(d− 1)2(β+1)2α−2(γ+B)2, whence by the relationship p < p0

we obtain the inequality

C2 ≤ 4d(d− 1)2q2mp2
0

(γ
α

+
B

α

)2

= 4δ2C(d)2d(d− 1)2q2m.

Thus, we arrive at the relationship

F (qm+1p, rm) ≤
(
Q(d)δ2

)2m/(qmp)
F (qmp, rm−1),

where the number Q(d) depends only on d. This relationship yields the estimate

F (qmp, rm) ≤
(
Q(d)δ2

)S/p
F (p, 1 + δ), S := S(d) := 2

∞∑
m=1

mq−m.

By Hölder’s inequality F (p, 1 + δ) ≤ exp(c2(d)/p0)F (p0, 1 + 3δ). Finally, we obtain the
inequality F (+∞, 1) ≤ C4F (p0, 1 + 3δ), where

C4 = exp
{
c3(d)δ

−1α−1(γ +B)
}
.

If β + 1 < 0, we have

F (β + 1, r2) ≤
(4C0(d)(C2 + 1)1/2

r2 − r1

)2/(|β+1|)
F

( d

d− 2
(β + 1), r1

)
.

Repeating the previous reasoning, we obtain the estimate

F (−p0, 1 + 3δ) ≤ C5F (−∞, 1), C5 = exp
{
c4(d)δ

−1α−1(γ +B)
}
.

Along with our previous estimates this yields the assertion of the theorem with a constant
of the required form in the case R = 1, y = 0. The case R 6= 1 reduces to the considered
case by the change of variable x = y + Rz. The function v(z) = u(y + zR) satisfies the
equation

∂zi

(
aij∂zj

v −Rbiv) = 0.

Hence B must be replaced by BR and the constants γ and α remain unchanged. �

It should be noted that it is mistakenly claimed in [16, Problem 8.3, p. 217] that in
the case when A is symmetric (which we assume), the constant can be refined as follows:

C = exp
(
c(d)(γ/α + BR)1/2

)
. However, this is not true in the case where A = I and

b(x) = −x because the solution is Gaussian and cannot be estimated from below by
C1 exp(−C2|x|).

Remark 2.1. In the case where our elliptic operator is written in the non-divergence
form L = aij∂xi

∂xj
+ bi∂xi

and A is locally Lipschitzian, the same lower bound holds if we
replace bi by bi − ∂xj

aij.

We now consider the Harnack inequality for the parabolic equation. Let Ω be a bounded
domain in Rd, let Q = Ω × (0, 1), and let A = (aij)1≤i,j≤d be a measurable matrix-value
mapping on Q such that there exist constants γ ≥ 0 and α > 0 such that∑

i,j

|ai,j(x, t)|2 ≤ γ2 and A(x, t) ≥ α · I for all (x, t) ∈ Q. (2.10)
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In addition, let b : Q→ Rd be a measurable vector field such that

sup
(x,t)∈Q

|b(x, t)| ≤ B <∞.

Suppose that a nonnegative function u ∈ H2,1(Q) satisfies the equation

∂tu = ∂xi
(aij∂xj

u− biu), (2.11)

i.e., for every function ϕ ∈ C1
0(Q), one has the equality∫ ∫

Q

[
−ϕtu+ ∂xi

ϕ
(
aij∂xj

u− biu
)]
dx dt = 0.

It follows from the general theory of parabolic equations (see, e.g., Theorem 8.1 in §8 and
Theorem 10.1 in §10 in Chapter 3 of [15]) that under our assumptions any solution u has
a version that is locally Hölder continuous.

Let us fix a point (x̄, t̄) ∈ Q. Let R(x̄, r) be the open cube with the edge length r
centered at the point x̄. Set

Q(r) = R(x̄, r)× (t̄− r2, t̄), Q∗(r) = R(x̄, r)× (t̄− 8r2, t̄− 7r2).

The following classical theorem is true (see Theorem 3 in [17] generalizing a result
from [18]).

Theorem 2.3. Let Q(3r) ⊂ Q. Then, for the continuous version of the function u
satisfying equation (2.11), we have

sup
(x,t)∈Q∗(r)

u(x, t) ≤ C inf
(x,t)∈Q(r)

u(x, t),

where the number C = C(d, α, γ, Br) depends only on d, α, γ, and Br.

As in the elliptic case, we are interested in a more precise form of dependence of C on
the indicated parameters.

Let Q′ = Ω′ × J ′, where Ω′ ⊂ Ω and J ′ ⊂ [0, 1] is an interval. If p, q > 1, we set

‖f‖p,q,Q′ :=
(∫

J ′

(∫
Ω′
|f(x, t)|p dx

) q
p
dt

) 1
q
.

If q = ∞, we set

‖f‖p,∞,Q′ := sup
J ′
‖f(·, t)‖Lp(Ω′).

The proof of the following lemma can be found in §3 of Chapter 2 in [15].

Lemma 2.2. Let d > 2. For every function v ∈ H2,1(Q′)
⋂
L2,∞(Q′) such that for almost

all t ∈ J ′ the function x→ v(x, t) has compact support in Ω′, one has the inequality

‖v‖p,q,Q′ ≤ c(d, p, |Ω′|)
(
‖∇v‖L2(Q′) + ‖v‖2,∞,Q′

)
,

where 2 ≤ q, 2 ≤ p ≤ 2d/(d− 2) and 1/q + d/(2p) = d/4.

Remark 2.2. Let us single out an important partial case of this lemma, which will be
used below. If p = q = 2(d+ 2)/d, then the above inequality takes the form

‖u‖L2(d+2)/d(Q′) ≤ C
(
‖∇u‖L2(Q′) + ‖u‖2,∞,Q′

)
,

where C depends only on d and |Ω|.

Set uε = u+ ε, ε > 0, and

H =

{
1

β+1
uβ+1

ε , β 6= −1

lnuε, β = −1.
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Lemma 2.3. Let η ∈ C1
0(Q). For almost all τ1, τ2 ∈ (0, 1) one has

sign β
(∫

Ω

[η(x, τ2)
2H(x, τ2)− η(x, τ1)

2H(x, τ1)] dx+
αβ

2

∫ τ2

τ1

∫
Ω

η2uβ−1
ε |∇uε|2 dx dt

)
≤ C(α, γ, β)

∫ τ2

τ1

∫
Ω

(|∇η|+ η)2uβ+1
ε dx dt+ 2

∫ τ2

τ1

∫
Ω

η|ηt||H| dx dt,

where

C(α, γ, β) =
16d

α|β|
(|β|B + γ)2.

Proof. It suffices to repeat the reasoning from steps 2 and 9 in [17], where one has to set
f = g = h = 0 and take into account that dγ > α. �

Let us fix a point (x̄, t̄) ∈ Q. Let R(r) be the open cube of the edge length r centered at
the point x̄. Let D = R(1/2)× (0, 1) and let Q+(l) and Q−(l) be the rectangles contained
in D and obtained from R(1/2)× (0, 1/2) and R(1/2)× (1/2, 1) respectively by means of
the transformations of the form

t 7→ l2t+ c1, x 7→ lx+ c2

with some numbers c1, c2, l. Set ψ(w) =
√
w if w > 0 and ψ(w) = 0 if w ≤ 0.

Lemma 2.4. Let D ⊂ Q. For all Q+(l), Q−(l) we have∫ ∫
Q−(l)

∫ ∫
Q+(l)

ψ
(
log

uε(y, s)

uε(x, t)

)
dy ds dx dt ≤ B1l

2d+4,

where

B1 = C(d)
(
1 +

1

α
+

(α+
√
α)

α
√
α

(B + γ)
)
.

Proof. A detailed proof is given in Section 6 of [17]. For complete correspondence it suffices
to note that the constant C6 indicated there has the form C6 = 4C(α, γ) = 64dα−1(B+γ)2

in our case. �

Let D+ = R(1/2) × (0, 1/4) and D− = R(1/2) × (3/4, 1). Then Lemma 2.4 and the
well-known Moser’s lemma [18] yield the following assertion.

Corollary 2.2. Let D ⊂ Q. Then the following inequality holds:∫ ∫
D−

uλ/B2
1

ε dy ds

∫ ∫
D+

u−λ/B2
1

ε dx dt ≤ K,

where B1 is the constant from Lemma 2.4 and the numbers λ = λ(d) and K = K(d)
depend only on d.

Theorem 2.4. Let Q(3r) ⊂ Q. Then the following inequality holds for the continuous
version of the function u:

sup
(x,t)∈Q∗(r)

u(x, t) ≤ C inf
(x,t)∈Q(r)

u(x, t),

where

C := C(d, α, γ, B, r) := exp
{
c(d)

(
1 +

1

α
+

(α+
√
α)

α
√
α

(Br + γ)
)2}

.

Proof. We shall follow the proof of Theorem 3 in [17].
1. Let x̄ = 0, t̄ = 1, r = 1/3, and Q(3r) = R(1) × (0, 1) ⊂ Q. As above, we set

uε = u+ ε, ε > 0. It suffices to obtain the estimate

sup
(x,t)∈Q∗(1/3)

uε(x, t) ≤ C inf
(x,t)∈Q(1/3)

uε(x, t), C = C(d, α, γ, B, 1/3).
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If 1/3 ≤ s ≤ 1/2, we set

S(s) = R(s)×
(
(1− s)/6, (1 + s)/6

)
.

Let l and l′ be two numbers such that 1/3 < l′ < l < 1/2 and let a smooth function η be
such that η(x, t) = 1 if (x, t) ∈ S(l′), η(x, t) = 0 outside S(l), and

0 ≤ η ≤ 1, |∇η| ≤ 2(l − l′)−1, |∂tη| ≤ 6(l − l′)−1.

Let β > −1 and v = u
(β+1)/2
ε . According to Lemma 2.3 we have

‖η∇v‖2
L2(S(l)) ≤ C1‖v‖2

L2(S(l)), ‖ηv‖2
2,∞ ≤ C2‖v‖2

L2(S(l)),

where

C1 = C(d)
(β + 1)2

(l − l′)2

(B
α

+
γ

|β|α

)2

, C2 =
α|β|C1

(β + 1)
.

Applying Lemma 2.2 we obtain

‖v‖L2(d+2)/d(S(l′)) ≤ (C3 + 1)1/2‖v‖L2(S(l)),

where

C3 = C(d)
(β + 1)(β + 1 + α|β|)

(l − l′)2

(B
α

+
γ

|β|α

)2

.

As in the elliptic case, if p > 0, we set

F (p, l) =
(∫ ∫

S(l)

up
ε dx dt

)1/p

.

We have proved that if β + 1 > 0 and q = (d+ 2)/d, then the following inequality holds:

F (q(β + 1), l′) ≤ (C3 + 1)1/(β+1)F (β + 1, l). (2.12)

Set l = lm = 3−1(1 + 2−m−1), l′ = l′m = 3−1(1 + 2−m−2) and p0 = λ/B2
1 , where λ is the

constant from Corollary 2.2 and the number B1 is defined in Lemma 2.4. There exists a
number p satisfying the condition (d/(d + 2))2p0 < p < p0 such that for some constant
C(d) > 1, which depends only on the dimension d, for all m we have

C3 ≤ C(d)
q2mp0(1 + α)

(l − l′)2

(B
α

+
γ

α

)2

≤ C(d)
q2mp0B

2
1

(l − l′)2
≤ C(d)(2q)2m.

Therefore, applying inequality (2.12) with β + 1 = pqm, we obtain the estimate

F (qm+1p, l′m) ≤
(
C(d)q + 1

)2m/(pqm)
F (qmp, lm).

Thus, we have

F (qmp, rm) ≤
(
C(d)(q + 1)

)2p−1S
F (p, 1/2), S := S(d) :=

∞∑
m=1

mq−m.

By Hölder’s inequality

F (p, 1/2) ≤ |S(1/2)|1/p−1/p0F (p0, 1/2).

Finally, we obtain

F (+∞, 1/3) ≤ C4F (p0, 1/2), C4 = exp
{
c(d)B2

1

}
.

2. Let Q(l) = R(l)× (1− l2, 1) if 1/3 ≤ l ≤ 1/2. Whenever p < 0 we set

F (p, l) =
(∫ ∫

Q(l)

u−p
ε dx dt

)−1/p

.

Similarly to Step 1, whenever β + 1 < 0 we have

F (β + 1, r2) ≤
(
C3 + 1

)1/(|β+1|)
F

( d

d− 2
(β + 1), r1

)
.
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Repeating the previous reasoning we obtain

F (−p0, 1/2) ≤ C5F (−∞, 1/2), C5 = exp
{
C(d)B2

1

}
.

3. We observe that S(1/2) ⊂ D−1 and Q(1/2) ⊂ D+. According to Corollary 2.2 we
have

F (p0, 1/2) ≤ C6F (−p0, 1/2), C6 = exp
{
C(d)B2

1

}
.

On account of the established inequalities we obtain the required estimate. The general
case, where r 6= 1 and (x̄, t̄) 6= (0, 1), reduces to the considered case by the change of
coordinates

(x, t) → ((x− x̄)/r, 1 + (t− t̄)/r2).

The theorem is proven. �

Our next result further refines the obtained estimate with respect to depends on r. Its
advantage as compared to the previous theorem is that now B2 enters without factor r.

Theorem 2.5. Suppose that B(z0, θr) ⊂ Ω for some θ > 1 and r > 0. Then, whenever
0 < s < t < 1 and x, y ∈ B(z0, r), the following inequality holds for the continuous version
of u:

u(y, s) ≤ u(x, t) exp
{
K

( |x− y|2

t− s
+ (B + 1)2 t− s

δ2
+ 1

)}
,

where δ = min{(θ − 1)r,
√
s} and the number K depends only on d, α, and γ as follows:

K := c(d)
∣∣∣1 + α−1 + (α−1 + α−1/2)γ

∣∣∣2,
and c(d) depends only on d.

Proof. Let us fix x ∈ B(z0, r) and y ∈ B(z0, r). Let

δ = min{(θ − 1)r,
√
s} and q0 =

δ

9d(B + 1)
.

Then δ < 1, q0B ≤ 1, and for all z ∈ B(z0, r) we have R(z, 3q0) ⊂ B(z0, θr) ⊂ Ω. Indeed,
for every z1 ∈ R(z, 3q0) we have

|z1 − z0| ≤ |z1 − z|+ |z − z0| ≤ 3dq0 +R ≤ θR.

We observe that whenever s < τ < t one has the inequality τ − 9q2
0 ≥ s− 9q2

0 ≥ 0, hence
(τ − 9q2

0, τ) ⊂ [0, 1]. Therefore, Q(3q0) = R(z, 3q0)× (τ − 9q2
0, τ) ⊂ Q.

Let xn = y+n(x− y)/N and tn = s+n(t− s)/N , where n = 0, 2, . . . , N . Then y = x0,
s = t0, x = xN , t = tN , and

|xn − xn−1| =
|x− y|
N

, |tn − tn−1| =
t− s

N
.

Set

q =
1

2

( 1

q2
0

+
56

t− s
+

256|x− y|2

(t− s)2

)−1/2

.

We have

q ≤ min
{
q0,

√
t− s

56
,

t− s

16|x− y|

}
.

Let

N =
[t− s

8q2

]
+ 1,

where [r] denotes the integer part of r. We observe that with this choice of N the following
inequalities hold:

2|x− y|
q

≤ t− s

8q2
≤ N,

t− s

7q2
− t− s

8q2
=
t− s

56q2
≥ 1.
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It follows at once that

|xn − xn−1| =
|x− y|
N

≤ q

2
≤ q0

2
.

Since N is the minimal natural number greater than (t− s)/8q2 and one has

t− s

7q2
− t− s

8q2
≥ 1,

we obtain
t− s

8q2
≤ N ≤ t− s

7q2
.

Therefore,

7q2 ≤ t− s

N
≤ 8q2.

Taking into account that xn−1 ∈ R(xn, q), 7q2 ≤ tn − tn−1 ≤ 8q2 and

R(3q, xn)× (tn − 9q2, tn) ⊂ R(3q0, xn)× (tn − 9q2
0, tn) ⊂ Q,

we apply Theorem 2.4 with r = q and obtain

u(xn−1, tn−1) ≤ sup
(z,τ)∈Q∗(q)

u(z, τ) ≤ C0 inf
(z,τ)∈Q(q)

u(z, τ) ≤ C0u(xn, tn),

where

Q∗(q) = R(xn, q)× (tn − 8q2, tn − 7q2), Q(q) = R(xn, q)× (tn − q2, tn),

C0 := exp
(
c(d)

∣∣∣1 + α−1 + (α−1 + α−1/2)γ
∣∣∣2).

Indeed, we have qB ≤ q0B ≤ 1. We obtain the following recurrent relationship:

u(xn−1, tn−1) ≤ C0u(xn, tn), 0 ≤ n ≤ N.

Therefore, one has the inequality

u(y, s) = u(x0, t0) ≤ CN
0 u(xN , tN) = CN

0 u(x, t).

Plugging in the value of N indicated above, we obtain

u(y, s) ≤ u(x, t) exp
{
K0

(t− s

8q2
+ 1

)}
,

where K0 = lnC0. Finally, we arrive at the estimate

u(y, s) ≤ u(x, t) exp
{
K

( |x− y|2

t− s
+ (B + 1)2 t− s

δ2
+ 1

)}
,

where K = K(d, α, γ) has the desired form and δ = min{(θ − 1)r,
√
s}. �

Remark 2.3. In the case where our parabolic operator is written in the non-divergence
form L = ∂t + aij∂xi

∂xj
+ bi∂xi

and the mappings x 7→ A(x, t) are locally Lipschitzian
uniformly in t, the same lower bound holds if we replace bi by bi − ∂xj

aij.

3. Lower estimates of densities

Here we obtain pointwise lower bounds for densities of measures satisfying weak elliptic
and parabolic equations. To this end, we employ the results on constants in the Harnack
inequality obtained above. In addition, in the elliptic case, we obtain sufficient conditions
for the inclusion ∇ ln % ∈ Lp(µ) for all p > 1, which reinforces analogous results obtained
in [12].

It is interesting to compare lower bounds obtained here with upper bounds from [10]
and [11], which we recall for the reader’s convenience. Suppose that a probability measure
µ with a density % satisfies equation (1.1), where the mappings A and A−1 are uniformly

bounded and satisfy the conditions aij ∈ W β,1
loc (Rd) and |b| ∈ Lβ(µ) with some β > d.
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Suppose we are given a positive function Φ ∈ W 1,1
loc (Rd). Then, for the validity of the

estimate

%(x) ≤ CΦ(x)−1

the following conditions are sufficient: Φ, |∇Φ|β, |∇aij|d ∈ L1(µ) (see Theorem 3.1 in [11]).
For example, if the mapping A is uniformly bounded, uniformly invertible and uniformly
Lipschitzian, then in order to have the estimate

%(x) ≤ C exp(−κ|x|β) (3.1)

with some C > 0, β > 0, and κ > 0, the following conditions are sufficient:

exp(M |x|β) ∈ L1(µ), |b(x)| ≤ C0 + C1 exp(M0|x|β), 0 ≤M0 < d−1M.

Among the listed conditions only one, the inclusion exp(M |x|β) ∈ L1(µ), is not explicitly
expressed via A and b. In order to ensure also this condition in terms of the coefficients,
it suffices to have the following estimate:

lim sup
|x|→∞

|x|−β(b(x), x) < −βd2M sup
i,j,x

|aij(x)|.

This follows by considering the Lyapunov function V (x) = exp(M |x|β); see details in
[3], [11].

Suppose that a probability measure µ on Rd×[0, 1) satisfies the parabolic equation (1.3),
(1.4), where the mappings A and A−1 are uniformly bounded, the mappings x 7→ A(x, t)
are uniformly Lipschitzian with a common constant, |b| ∈ Lβ(µ) with some β > d+2 and
supt∈(0,1) ‖b( · , t)‖Ld(µt) <∞. Suppose also that we are given a function Φ ≥ c > 0 on Rd

with locally bounded second order derivatives such that %(x, 0) ≤ CΦ(x)−1, Φ ∈ L1(µ0),
and

Φ1+ε, |LΦ|β/2Φ1−β/2, |A∇Φ|βΦ1−β ∈ L1(µ), sup
t∈[0,1)

∫
Rd

Φ(x)%(x, t) dx <∞

with some ε > 0. Then, according to Theorem 3.3 in [10], which can be used by passing
to the non-divergence form of our equation, for every τ < 1 there exists a number Cτ such
that

%(x, t) ≤ CτΦ(x)−1 for almost all (x, t) ∈ Rd × [0, τ ].

For example, let A and A−1 be uniformly bounded, let A be uniformly Lipschitzian in x,
and let β > d+ 2, r > 0, ε > 0, and K > 0 be such that

|b| ∈ Lβ(µ), exp
(
(2K + ε)|x|r

)
∈ L1(µ), sup

t∈[0,1)

∫
Rd

exp(K|x|r)%(x, t) dx <∞.

Suppose that supt∈(0,1) ‖b( · , t)‖Ld(µt) < ∞ and that the function exp(K|x|r)%(x, 0) is

bounded and integrable over Rd. Then, for every τ < 1, there exists a number C(τ) such
that

%(x, t) ≤ C(τ) exp(−K|x|r), (x, t) ∈ Rd × [0, τ ].

We obtain similar, although not of exactly the same order, lower bounds. For example,
in the elliptic case, in place of κ in estimate (3.1) we get some other constant in the lower
bound (but the exponent β does not change).

Suppose that a nonnegative locally bounded measure µ on Rd has a density % such that
% ∈ W 2,1(B) for every ball B ⊂ Rd. Let the measure µ satisfy equation (1.1) on Rd, where

L = ∂xi
(aij∂xj

) + bi∂xi
,

the matrix-valued mapping A = (aij)1≤i,j≤d is measurable, the functions ‖A(x)‖ and
‖A(x)−1‖ are locally bounded, and the coefficient b = (bi) is a measurable locally bounded
vector field.

Let V be a continuous increasing function on [0,∞) with V (0) > 0.
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Theorem 3.1. Let |b(x)| ≤ V (|x|/θ), where θ > 1. Set

α(r) := sup
|x|≤r

‖A(x)−1‖, γ(r) := sup
|x|≤r

‖A(x)‖.

Then there exists a positive number K(d) depending only on d such that the continuous
version of the function % satisfies the inequality

%(x) ≥ %(0) exp
{
−K(d)(θ − 1)−1α(θ|x|)−1

(
γ(θ|x|) + V (|x|)|x|

)}
.

In particular, if ‖A(x)‖ ≤ γ and ‖A(x)−1‖ ≤ α, then Then there exists a positive number
K = K(d, α, γ, θ) such that the continuous version of the function % satisfies the inequality

%(x) ≥ %(0) exp
{
−K

(
1 + V (|x|)|x|

)}
.

Proof. Let us fix x. Let us consider the ball B(0, θ|x|). Theorem 2.2 gives the desired
estimate since sup

z∈Bθ|x|(0)

|b(z)| ≤ V (|x|). �

Example 3.1. Suppose that condition (2.2) is satisfied with Ω = Rd. If, for some numbers
c1, c2 > 0 for almost all x one has the estimate

|b(x)| ≤ c1|x|β + c2,

then there exists a constant K such that the following inequality holds:

%(x) ≥ %(0) exp
{
−K

(
1 + |x|β+1

)}
.

If

sup
x,i,j

[
‖A(x)‖+ ‖A(x)−1‖+ |∇aij(x)|

]
<∞,

|b(x)| ≤ c1|x|β + c2, lim sup
|x|→∞

|x|−β−1(b(x), x) < 0,

then according to what we have proved we obtain the following two-sided estimate:

exp
{
−K1

(
1 + |x|β+1

)}
≤ %(x) ≤ exp

{
−K2

(
1 + |x|β+1

)}
.

For example, if A = I and bi(x) = xi, then the measure with density %(x) = exp(−|x|2/2)
is a solution. The results obtained above ensure the estimate

exp(−K1(1 + |x|2)) ≤ %(x) ≤ exp(−K2(1 + |x|2))

with some numbers K1, K2 > 0, which gives a sufficiently adequate description of the
decay at infinity, although does not yield a precise asymptotic.

It should be noted that the hypothesis that lim sup|x|→∞ |x|−β−1(b(x), x) < 0 is only

needed to ensure the integrability of exp(M |x|β) and can be replaced by the latter.

By using the obtained estimates we can give an effectively verified condition for the
membership in Lp(µ) for the logarithmic gradient ∇%/% of the measure µ. In the case
p = 2 simple sufficient conditions were obtained in [1], [2]. The first general result for p > 2
has recently been established in [12]. The condition found below improves this result since
we do not require the differentiability of the drift coefficient and assume lower regularity
of the diffusion coefficient (it is assumed in [12] that aij ∈ C3(Rd) and b ∈ C2(Rd)). This
weakening of the conditions on the coefficients has become possible due to the fact that,
unlike [12], we do not use methods of the theory of nonlinear equations. Let Lp(µ) denote
the space of all measurable functions that are integrable of order p with respect to the
measure µ on Rd. Let W p,1(µ) be the Sobolev space of functions that belong to the space
Lp(µ) along with their generalized first order partial derivatives.

Suppose that µ is a probability measure on Rd satisfying the elliptic equation (1.1).
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Theorem 3.2. Let aij ∈ C0,δ(Rd) ∩W p0,1
loc (Rd), where δ > 0 and p0 > d. Suppose that

condition (2.2) is satisfied with Ω = Rd. Let a positive function Φ ∈ W 1,1
loc (R1) increase on

[0,+∞) such that Φ(N +1) ≤ CΦ(N)1+ε with some C, ε > 0, and let the functions Φ(|x|)
and Φ′(|x|)p1 with some p1 > d be integrable against the measure µ on Rd. Suppose also
that there exist numbers p > 1, θ > 1, and γ ∈ [0, 1/d) such that

|b(x)| ≤ C0Φ(|x| − θ)γ, |∇aij(x)|d ≤ C0Φ(|x|),
∞∑

N=1

Nd−1Φ(N)−q <∞, where q := 1− γ(2p+ εd).

Then ln % ∈ W p,1(µ).

Proof. As shown in the above mentioned Theorem 3.1 of paper [11], under our assumptions
the density % is estimated as follows:

%(x) ≤ C1Φ(|x|)−1.

For any fixed x ∈ Rd with |x| > 2 we have

B := sup
z∈B(x,θ)

|b(z)| ≤ C0Φ(|x|)γ.

Let 0 < r < min{1/B, 1}. Then rB < 1. Hence by Theorem 2.2 there exists a constant
K = K(α, γ, d, θ, δ) such that for every y ∈ B(x, r) one has the inequality

K−1%(x) ≤ %(y) ≤ K%(x). (3.2)

Let us estimate the following integral:

I :=

∫
B(x,r)

|∇%(y)|p

%(y)p−1
dy.

According to inequality (3.2) we have

I ≤ %(x)1−pKp−1

∫
B(x,r)

|∇%(y)|p dy.

By using Corollary 2.1 and the estimate∫
B(x,r)

|b|p%p dy ≤ Bp

∫
B(x,r)

%p dy

we obtain that there exist constants C2 and C3 independent of r and x such that∫
B(x,r)

|∇%(y)|p dy ≤ C2r
−p(Bp + 1)

∫
B(x,r)

|%(y)|p dy ≤ C3r
d−pBp%(x)p.

Therefore,
I ≤ C4r

d−pBp%(x),

where the number C4 is independent of x and r. By the above estimates for B and %,
letting r = 2−1Φ(x)−γ, we obtain the inequality∫

B(x,r)

|∇%(y)|p

%(y)p−1
dy ≤ C5Φ(x)2γp−γd−1,

where C5 does not depend on x and r. Let Q(x, r) be the open cube centered at the point
x with the edge length r. Then this estimate holds, of course, for Q(x, r) ⊂ B(x, r). Set

QN = Q(0, N + 1)\Q(0, N), N > 1.

There exists a constant C6, which depends only on the dimension d, such that QN can be
covered by cubes Q(x, r) with pairwise disjoint interiors and r = 2−1(C0+1)−1Φ(N+1)−γ,
whose total number does not exceed

C6N
d−1Φ(N + 1)dγ.
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According to what has been proved above we obtain

IN :=

∫
QN

|∇%(y)|p

%(y)p−1
dy ≤ C5C6N

d−1Φ(N + 1)dγΦ(N)2γp−γd−1.

Since Φ(N + 1) ≤ CΦ(N)1+ε, one has the inequality

Nd−1Φ(N + 1)dγΦ(N)2γp−γd−1 ≤ CNd−1Φ−q.

Hence the series
∑∞

N=1 IN converges. Therefore, |∇ ln %|p% ∈ L1(Rd). �

Corollary 3.1. Let aij ∈ C0,δ(Rd) ∩W p0,1
loc (Rd), where δ > 0 and p0 > d > 1. Suppose

that condition (2.2) is satisfied with Ω = Rd. Let p > 1. Suppose that for some M > 0
and β > 0 the function exp(M |x|β) is integrable with respect to the measure µ on Rd and
that

|b(x)| ≤ C0 exp
{
κ|x|β

}
, |∇aij(x)| ≤ C0 exp

{
κ|x|β

}
, where 0 < 2κdmax(p, d) < M .

Then ln % ∈ W p,1(µ). In particular, if for every κ > 0 there is a number C(κ) such that

|b(x)|+ |∇aij(x)| ≤ C(κ) exp
{
κ|x|β

}
,

then ln % ∈ W p,1(µ) for all p ∈ [1,+∞).

Proof. There is a sufficiently small number ε0 > 0 such that for γ := (2 max(p, d))−1 − ε0

one has γ > 0 and κγ−1 < Md−1. Let us take for Φ the function Φ(r) = exp(M0|r|β),
where M0 is chosen in the interval (κγ−1,Md−1). Since 2pγ < 1, there is ε > 0 such that
q = 1− γ(2p+ εd) > 0. Set θ = 2. We observe that

exp
(
κrβ

)
≤ C1 exp

(
γM0|r − 2|β

)
since κ < γM0. Hence |b(x)| ≤ C0C1Φ(|x| − 2)γ. It is also clear that for some p1 > d the
function Φ′(|x|)p1 is integrable with respect to µ since M0d < M . It is easily seen that all
other assumptions of Theorem 3.2 are fulfilled. �

Similarly we prove the following result.

Corollary 3.2. Let aij ∈ C0,δ(Rd) ∩W p0,1
loc (Rd), where δ > 0 and p0 > d > 1. Suppose

that condition (2.2) is satisfied with Ω = Rd. Let p > 1. Suppose that for some β > 0 the
function |x|β is integrable with respect to the measure µ on Rd and that

|b(x)| ≤ C0 + C0|x|σ, |∇aij(x)| ≤ C0 + C0|x|β/d, where 0 < σd < β.

Then ln % ∈ W p,1(µ) for every p ∈ [1, (1 + βd−1)(2σ)−1).

Let us proceed to the parabolic equation. Let a measurable matrix-valued mapping
A = (aij)1≤i,j≤d on Rd × (0, 1) satisfy condition (2.10) with Ω = Rd and let b be a
measurable vector field on Rd × (0, 1).

Suppose that a nonnegative measure µ with a density % on Rd × (0, 1) such that % ∈
H2,1(B×J) for any ball B ⊂ Rd and any interval J with compact closure in (0, 1) satisfies
equation (1.1).

Let V be a continuous increasing function on [0,∞) with V (0) > 0.

Theorem 3.3. Let sup
t∈(0,1)

|b(x, t)| ≤ V (|x|/θ) for almost all x ∈ Rd, where θ > 1. Let

α(r) := sup
t∈(0,1),|x|≤r

‖A(x, t)−1‖, γ(r) := sup
t∈(0,1),|x|≤r

‖A(x, t)‖.

Then, there exists a positive number K = K(d) such that the continuous version of the
function % satisfies the inequality

%(x, t) ≥ %(0, s) exp
{
−K(d)

∣∣1 + α(θ|x|)−1 + (α(θ|x|)−1 + α(θ|x|)−1/2)γ(θ|x|)
∣∣2

×
(
1 +

t− s

s
V (|x|)2 +

t

t− s
|x|2

)}
, 0 < s < t < 1, x ∈ Rd.
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In particular, if ‖A(x, t)‖ ≤ γ and ‖A(x, t)−1‖ ≤ α, then there exists a positive number
K = K(d, α, γ, θ) such that the continuous version of the function % satisfies the inequality

%(x, t) ≥ %(0, s) exp
{
−K

(
1 +

t− s

s
V (|x|)2 +

t

t− s
|x|2

)}
, 0 < s < t < 1, x ∈ Rd.

Proof. We take Ω = B(0, θ|x|) and y = 0 in Theorem 2.5. This gives the required
estimate. �

Corollary 3.3. Suppose that under the assumptions of Theorem 3.3 one has ‖A(x, t)‖ ≤ γ
and ‖A(x, t)−1 ≤ α and that for almost all t ∈ (0, 1) the function x 7→ %(x, t) does not
vanish identically, then for every closed interval [τ1, τ2] in (0, 1) there exists a number
K = K(d, α, γ, θ, τ1, τ2) ≥ 0 such that for all t ∈ [τ1, τ2] and x ∈ Rd the following
inequality holds:

exp
(
−K

(
1 + V (|x|)2 + |x|2

))
≤ %(x, t) ≤ exp

(
K

(
1 + V (|x|)2 + |x|2

))
.

Proof. It follows from Theorem 2.5 and our hypothesis that the function t 7→ %(0, t) has
no zeros on (0, 1). Let us consider the interval [τ ′, τ ′′], where τ ′ = τ1/2, τ ′′ = 1−(1−τ2)/2.
The first of the estimates we are proving follows by Theorem 3.3, in which one should
take s = τ ′. The second estimate is clear from Theorem 2.5. �

Example 3.2. If A(x, t) and A(x, t)−1 are uniformly bounded and for some constants
c1 > 0 and c2 > 0 the inequality

sup
t∈(0,1)

|b(x, t)| ≤ c1(1 + |x|β)

holds for almost all x, then there exists a positive number K such that

%(x, t) ≥ %(0, s) exp
{
−K

(
1 +

t− s

s
|x|2β +

1

t− s
|x|2

)}
.

For example, if

L = ∂t +
1

2
∆,

then the measure (2πt)−1/2e−|x|
2/2t dx dt is a solution. Our results yield a number K > 0

such that % ≥ e−K(δ)|x|2/t in every strip Rd × (δ, 1), where δ > 0. Similarly, our lower
estimate is exact in the case of a linear drift coefficient, but it becomes less precise in the
case of a quadratic growth of |b|; e.g., if %(x, t) = C exp(−|x|3), then exp(−K|x|4) appears
in our lower bound.

Let us give conditions on the coefficients A and b ensuring two-sided exponential esti-
mates of the density of the solution in the parabolic case.

Example 3.3. Suppose that A(x, t) and A(x, t)−1 are uniformly bounded, the functions
x 7→ aij(x, t) are uniformly Lipschitzian with a common constant, and that for some
r > 1, σ ≥ 0, K > 0, and K ′ > K we have

|b(x, t)| ≤ C + C|x|r−1+σ, %(x, 0) ≤ C exp(−K ′|x|r),
(x, b(x, t)) ≤ c1 − c2|x|r, c2 > 2rK sup

x,t
‖A(x, t)‖.

Then, for every closed interval [τ1, τ2] ⊂ (0, 1), there exist numbers C1, C2, and K0 such
that

C1 exp
(
−K0|x|2r+2σ−2 −K0|x|2

)
≤ %(x, t) ≤ C2 exp(−K|x|r), (x, t) ∈ Rd × [τ1, τ2].

The upper bound follows from Example 3.1 of paper [10], and the lower bound follows
by the above results. Unlike the elliptic case, here there is no coincidence of the powers
of |x| in the lower and upper bounds. We observe that the indicated conditions also give
the existence of a solution µ = µt dt with probability measures µt with an arbitrary initial
distribution (see [8], [19]).
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One more application of our results is concerned with the proof of the existence of finite
entropy of any solution with respect to the space variable at any positive t for every initial
distribution. The existence of finite entropy, which is useful in many respects, is necessary
for applying the results of paper [10], which give the integrability of |∇%(x, t)|2/%(x, t).

Let V ∈ C2(0,∞) be a continuous increasing function on the half-line [0,∞) such that
V (0) > 0 and lim

r→∞
V (r) = +∞.

Corollary 3.4. Let the measures µt be probabilistic. Suppose that A(x, t) and A(x, t)−1

are uniformly bounded and the function |x|2 + V (|x|) is integrable with respect to the
measure µ and that for some θ > 1 the following inequality holds:

sup
t∈(0,1)

|b(x, t)|2 ≤ V (|x|/θ), x ∈ Rd.

Then, for almost every s ∈ (0, 1), we have∫
Rd

%(x, s)| ln %(x, s)| dx <∞.

Proof. By Harnack’s inequality %(t, x) > 0 for any t > 0. Let [τ1, τ2] ⊂ (0, 1). According
to Corollary 3.3, there exists a number K = K(d, α, γ, θ, τ1, τ2) > 0 such that

exp
{
−K

(
1+ |x|2+V (|x|)

)}
≤ %(x, s) ≤ exp

{
K

(
1+ |x|2+V (|x|)

)}
, s ∈ [τ1, τ2], x ∈ Rd.

By Fubini’s theorem, for almost every s ∈ (0, 1) the function x 7→ (|x|2 + V (|x|))%(x, s) is
integrable over Rd. For such s we obtain∫

Rd

%(x, s)| ln %(x, s)| dx ≤
∫

Rd

K(1 + |x|2 + V (|x|))%(x, s) dx.

The corollary is proven. �

Corollary 3.5. Let A ∈ H2,1
loc (Rd × (0, 1)), let the measures µt be probabilistic, and let

ν = µ0. Let V (r) ≥ c1 + c2r
2 and let A(x, t) and A(x, t)−1 be uniformly bounded. Suppose

that the function V (|x|) is integrable with respect to ν and that the function V0(x) := V (|x|)
satisfies the inequality LV0(x) ≤ C with some constant C > 0. In addition, suppose that
for some θ > 1 the following inequality holds:

sup
t∈(0,1)

|b(x, t)|2 ≤ V (|x|/θ), x ∈ Rd.

Then we have

sup
s∈(0,1)

∫
Rd

%(x, s)| ln %(x, s)| dx <∞.

Proof. Set bi0 := ∂xj
aij + bi. Then

L = ∂t + aij∂xi
∂xj

+ bi0∂xi
.

Therefore, we can apply the results of paper [19], where divergence form operators are
considered. According to Lemma 2.2 from [19], for almost all s ∈ [0, 1) we have∫

Rd

V (|x|)%(x, s) dx ≤ Cs+

∫
Rd

V (|x|) ν(dx).

By the continuity of % and Fatou’s theorem this inequality holds for every s ∈ (0, 1),
which enables us to apply the same reasoning as in the previous corollary. �

Example 3.4. Suppose that in Corollary 3.5 it is known additionally that the functions
x 7→ aij(x, t) are uniformly Lipschitzian with a common constant. Then, for every closed
interval [τ1, τ2] ⊂ (0, 1), according to Theorem 2.1 of [10] we have∫ τ2

τ1

∫
Rd

|∇%(x, t)|2

%(x, t)
dx dt <∞.
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Example 3.5. Suppose that A(x, t) and A(x, t)−1 are uniformly bounded, the functions
x 7→ aij(x, t) are uniformly Lipschitzian with a common constant and that

|b(x, t)| ≤ c0 exp(c|x|r), (b(x, t), x) ≤ c1 − c2|x|r, c2 > crd2.

Let the function exp(c|x|r) be integrable with respect to ν = µ0. Then∫ τ2

τ1

∫
Rd

|∇%(x, t)|2

%(x, t)
dx dt <∞

for every closed interval [τ1, τ2] ⊂ (0, 1). In order to justify this example it suffices to take
V (z) = exp(M |z|r) with M < c sufficiently close to c.
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[2] Bogachev V.I., Krylov N.V., Röckner M. Regularity of invariant measures: the case of non-constant
diffusion part. — J. Funct. Anal., 1996, v. 138, n 1, p. 223–242.
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[19] Bogachev V.I., Da Prato G., Röckner M. On parabolic equations for measures. — Preprint BiBoS
N 06-010, Bielefeld University, 2006, 16 pp.


